15.1分式的基本性质(1)
2019年人教版八年级数学上册《分式的基本性质》
时,小颖和小明的做法出现了分歧:
小明:
对于分数而言, 彻底约分后的分 数叫什么?
你对他们俩的解法有何看法?说说看! 一般约分要彻底, 使分子、分母没有公因式. 彻底约分后的分式叫最简分式.
, ,
:
把各分式化成相同分母的分式叫做分式的通分.
,
x 2 -6x+9 1.化简 2x-6 的结果是( ) x+3 x 2 +9 (A) (B) 2 2 x 2 -9 x-3 (C) (D) 2 2
为什么本题未给 x 0 ?
x=0时分式无意义.
y 若把分式 x y
的 x和
y 都扩大两倍,则分式的值(
)
A.扩大两倍 C.缩小两倍
B.不变 D.缩小四倍
2x 2x x 【解析】选B. . 2x 2y 2(x y) x y
1.下列变形不正确的是(
(A) b b 2a 2a
a ac (1) c 0 2b 2bc
【解析】 (1)由 c
(2)
x x xy y
3
2
知
a a c ac 2b 2b c 2bc
3 3 2
0
为什么给出 c 0 ?
C=0时分式无意义.
(2) 由 x 0,
x x x x 知 . xy xy x y
(2)
5. 不改变分式的值,使下列分子与分母都不含“-”号
5b (1) 6a
x (2) 3y
3b (3) a
2m (4) . n
5b 5b 【解析】 (1) 6a 6a
3b 3b (3) a a
(4)
x x (2) 3y 3y
2m 2m n n b b 分式的符你能得到分式的基本性质吗?说 说看!
人教数学 第15章分式 第2课时15.1.2分式的基本性质(1) 学生版导学案
课题:15.1.2分式的基本性质(1)月日班级:姓名:一、教材分析:(一)学习目标:1.经历分数基本性质的类比过程,知道分式的基本性质.2.会简单运用分式的基本性质,会根据分式的基本性质,指出分式变形的依据,求变形后分式的分子或分母.3.知道分式约分的意义,会利用分式的基本性质进行分式约分.(二)学习重点和难点:1.重点:分式的基本性质和分式的约分。
2.难点:根据分式的基本性质,求变形后分式的分子或分母。
二、问题导读单:阅读P129—131页(例3完了)回答下列问题:1.回忆说明分数的基本性质:_______________________________________________ ______________________________________________________________如:根据分数的基本性质,在12的分子、分母同乘2,分数的值不变,所以12=24;再如:根据______________,在69的______、______同除以___,分数的值______,所以69=23.2.写出分式的基本性质:(1)文字语言_____________________________________________________________________________________________________(2)符号语言_____________________________________________________(3)如2a3a2b6ab=说明如何得到的_________________________________________3.仔细研读例题2,与同学交流每题是根据什么填写的?从哪里入手?你得到启示是:_____________________________________________________4. 仔细研读130页思考及例题3,回答相应问题,并与同学交流每题是根据什么填写的?运用了哪些知识?你说明约分实质是:________________________________三、问题训练单:5.完成下面的解题过程:下列等式的右边是怎么从左边得到的?示例:324x2x2xy y=(1)26ba3ab=;解:3324x 4x 2x 2x 2xy 2xy 2x y÷==÷ 解:2a =——————=6b 3ab ; (2)210x 2x 15xy 3y= (3)b b 4a 4a -=-; 解:210x 15xy=——————=2x 3y ; 解:b 4a --=——————=b 4a ; (4)21x 1x 1x 1+=--. (5)x x 3y 3y -=- 解:1x 1-=—————————=2x 1x 1+-. 解: (6)222a a ab a b a b+=--. 解: 6.填空: (1)21()xy 2xy =; (2)22a a b 2a b ()=-; (3)24a ()6ab 3b =; (4)22x xy x y ()x++=. 7.直接写出约分的结果: (1)2bc ac = (2)234xy 6x y = (3)3218a b 6a c -= (4)233312x y z 15x y--= 8.约分: (1)22a ab (a b)++ (2)222x y (x y)-- = == = (3)222x y 3xy x 3xy-- (4)222a 4ab 4b 3a 6ab +++ = == =四、问题生成单:五、谈本节课收获和体会:。
2024年人教版八年级上册教学设计第十五章15.1 分式
15.1.1从分数到分式课时目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.借助从特殊到一般的的研究思路,类比分数,讨论要使分式有意义时分母应满足的条件,发展学生的推理能力.3.通过经历类比分数学习分式的过程,培养学生与人合作的意识,进一步体会类比转化、合情推理、抽象概括等学习方式,发展学生的抽象能力和推理意识.学习重点理解分式的概念,分式有意义的条件.学习难点能熟练地求出分式有意义的条件及分式的值为零的条件.课时活动设计回顾引入根据问题,填空:(1)长方形的面积为10 cm2,长为7 cm,宽为107cm;长方形的面积为S,长为a,宽为Sa.(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为20033cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为VS. 设计意图:以学生学过的分数引入分式,有利于体现知识的必然联系和循序渐进的原则;通过类比让学生解决实际问题,为新知的构建奠定基础.探究新知探究1 分式的概念问题1:请同学们看一下这四个式子,它们有什么相同点和不同点?107,S a ,20033,V S.学生先思考,再小组交流,教师请两个学生分别说出相同点和不同点. 解:相同点:这些式子有同样的形式,都是AB (即A ÷B )的形式. 不同点:107,20033分子和分母为整数,S a ,VS 分子和分母为代数式. 追问:S a ,V S 和9030+v ,6030−v 有什么相同点和不同点? 学生小组交流、讨论得出结论.解:相同点为这些式子有同样的形式,都是AB (即A ÷B )的形式,且分母都含有字母.不同点为9030+v ,6030−v 分子不含字母,S a ,VS 分子含有字母.教师说明这四个式子均为分式,并引导学生类比分数得到分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.问题2:下列各式中,哪些是整式?哪些是分式? 5x -7,3x 2-1,b -32a+1,m(n+p)7,-5,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.解:整式:5x -7,3x 2-1,-5; 分式:b -32a+1,m(n+p)7,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.设计意图:通过分析问题加深学生对分式的概念的理解,从而揭示分式的概念的本质.让学生在众多的代数式中区分出整式与分式,意在加深学生对分式的概念的本质的理解,进一步巩固分式的概念.探究新知探究2 分式有意义和值为0的条件问题1:我们知道,要使分数有意义,分数中的分母不能为0,那么要使分式有意义,分式中的分母应满足什么条件?学生先思考,再小组交流,类比分数有意义的条件得到分式有意义的条件. 结论:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式AB 才有意义.问题2:计算:03,05,07. 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分数的值为0. 问题3:计算:0x 2+1,0x+1(x ≠-1),0a (a ≠0). 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分式的值为0. 结论:分子为0,分母不为0,分式值为0.设计意图:掌握使分式有意义和值为0的条件,有利于学生更好地了解分式的概念.典例精讲例 下列分式中的字母满足什么条件时,分式有意义? (1)23x ; (2)1x -1; (3)15−3b ; (4)x+yx -y . 解:(1)x ≠0. (2)x ≠1. (3)b ≠53. (4)x ≠y.设计意图:让学生通过类比分数有意义的条件是分母不能为0,得到分式有意义的条件,自己发现问题、解决问题并找到关键所在,既能激发学生的求知欲望,又能让学生有效地认识新知,消化新知.巩固训练1.当x 为何值时,下列分式的值为0? (1)2x2x -6;(2)x 2-16x -4.解:(1)x =0. (2)x =-4.2.当x 为何值时下列分式无意义? (1)x -5x+5;(2)x -3(x+3)(2x -2). 解:(1)x =-5. (2)x =-3或1.设计意图:通过巩固训练,加深学生对分式有意义的条件的理解,并能正确地求出分式有意义的条件;同时让学生明白分式的值为0、有意义、无意义时必须同时满足的条件,区别“或”与“且”的用法.另外,设计“分式有意义”的变式题,意在让学生在题目具有挑战性的情况下,通过小组研究、讨论得出答案,培养学生小组合作、探究的意识以及应用所学知识解决问题的能力,在获得正确结果的情况下,增强学生学习数学知识的信心.课堂小结1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.2.分母不为0,分式有意义;分母为0,分式无意义.3.分子为0,分母不为0,分式值为0.4.谈谈今天的收获?设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第128,129页练习第1,2,3题.2.七彩作业.15.1.1从分数到分式一、分式的定义.二、分式有意义的条件:三、例题讲解.四、课堂评价.教学反思15.1.2分式的基本性质第1课时分式的基本性质与约分课时目标1.通过类比分数的基本性质归纳得出分式的基本性质,体验类比转化的思想方法,发展学生的推理能力.2.通过类比分数的约分得出分式的约分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.3.经历运用分式的基本性质进行约分的过程,体会运算的原理以及最简分式的内涵,培养学生的运算意识,发展学生的运算能力.学习重点理解并掌握分式的基本性质.学习难点能运用分式的基本性质进行分式的约分. 课时活动设计情境引入有位老爷爷把一块地分给三个儿子,老大分到了这块地的13,老二分到了这块地的26,老三分到了这块地的412.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?13,26,412这三个数相等吗?设计意图:创设故事情境导入新课,激发了学生学习本课的好奇心,同时运用分数的基本性质进行分数变形,复习分数的基本性质,为类比学习分式的基本性质作铺垫.探究新知探究1 分式的基本性质师生活动:以提问的方式回顾分数的基本性质,教师黑板上板书. 由分数的基本性质可知,如果数c ≠0,那么23=2c 3c ,4c 5c =45.一般地,对于任意一个分数ab ,有a b =a·c b·c ,a b =a÷cb÷c (c ≠0),其中a ,b ,c 是数. 问题1:类比分数的基本性质,你能猜想分式有什么性质吗? 学生独立思考,小组讨论,教师引导学生进行归纳总结:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 用式子表示为A B =A·C B·C ,A B =A÷C B÷C(C ≠0),其中A ,B ,C 是整式.探究2 分式的约分与最简分式问题2:联想分数的约分,你能想出如何对分式进行约分吗? 师生活动:教师在黑板上板书:4c 5c =45,让学生观察等式两边的特点.教师引导学生归纳出约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.教师在黑板上板书:4c 5bc =45b ,让学生观察这次约分有什么不同?教师引导学生得出结论:这次约分后是分式的形式,且分子与分母没有公因式.教师归纳出最简分式的概念:分子与分母没有公因式的分式,叫做最简分式. 设计意图:给学生独立思考、自主探究的机会,并在研究思路上加以引导,同时渗透类比的思想方法.这样做一方面可以提高学生对分式基本性质的认识,另一方面可通过师生归纳,进一步加深学生对分式基本性质的理解.典例精讲 例 约分:(1)-25a 2bc 315ab 2c ; (2)x 2-9x 2+6x+9; (3)6x 2-12xy+6y 23x -3y.解:(1)原式=-25a 2bc 3÷(5abc)15ab 2c÷(5abc)=-5ac 23b.(2)原式=(x+3)(x -3)(x+3)2=x -3x+3.(3)原式=6(x -y)23(x -y)=2x -2y.设计意图:通过例题,进一步巩固分式的基本性质的应用条件、基本方法和需要注意的问题,使学生明确:1.找出分子和分母的公因式是约分的第一步,同时公因式应找全,约分要彻底;2.分子与分母没有公因式的分式是最简分式,使学生加深对最简分式的理解.巩固训练1.下列各式中哪一个是最简分式( D ) A.x 2-y 2x 2+y 2 B.a -bb -a C.x 2-1x+1 D.a 2+b 2a+b2.填空: (1)x -yx+y =(x 2-2xy+y 2)x 2-y 2;(2)c -b a =(c 2-bc)ac (c ≠0); (3)x 3xy =( x 2 )y,3x 2+3xy6x 2=x+y( 2x );(4)1ab =( a )a 2b,2a -b a 2=( 2ab -b 2 )a 2b(b ≠0).3.约分:(1)a 2bab 2; (2)x 2-16x 2+8x+16; (3)5x 2-10xy+5y 2x -y.解:(1)原式=a 2b÷(ab)ab 2÷(ab)=ab . (2)原式=(x+4)(x -4)(x+4)2=x -4x+4.(3)原式=5(x -y)2x -y=5x -5y.设计意图:通过巩固训练,及时巩固本节课所学知识,进一步加深学生对分式基本性质的理解.课堂小结1.本节课探究了分式的哪些问题?2.分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 3.把一个分式的分子与分母的公因式约去,叫做分式的约分. 4.分子与分母没有公因式的分式,叫做最简分式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第132页练习第1题,第133页习题15.1第3,5,6题.2.七彩作业.第1课时分式的基本性质与约分一、分式的基本性质.二、分式的变号法则.三、分式的约分→最简分式.四、例题讲解.五、课堂评价.教学反思第2课时分式的通分课时目标1.通过类比分数的通分得出分式的通分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.2.经历用观察、类比、联想的方法探索分式通分方法的过程,体会分式通分运算的原理,培养学生的运算意识.3.理解最简公分母的内涵,能准确确定分式的最简公分母,熟练进行分式的通分.学习重点能运用分式的基本性质进行分式的通分.学习难点分式通分时最简公分母的确定.课时活动设计回顾引入问题:1.把分数78和512通分:78=2124,512=1024.2.利用分式的基本性质,把12ab 和2−b3a2化成分母都是6a2b的分式.解:12ab =1·(3a)2ab·(3a)=(3a)6a2b,2−b3a2=(2-b)·(2b)3a2·(2b)=(4b-2b2)6a2b.设计意图:让学生回忆分数的通分和分式的基本性质,并利用它解决问题,唤醒学生的知识储备,为分式通分的概念的自然引入作好铺垫.同时教学中要贯彻以学生为本的指导思想,通过具体问题,引导学生采用类比推理、合作探究等方法来探究分式通分的概念.探究新知问题:联想分数的通分,由此你能想出如何对分式进行通分吗?师生活动:通过教学活动1中具体的例子,教师引导学生回忆前面学过的分数的通分,再利用类比的方法得出分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.为通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.在教学过程中,教师要引导学生通过观察、思考、类比等方法来总结归纳确定最简公分母的一般步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数;(2)找字母:凡各分母因式中出现的所有字母或含字母的多项式都要选取;(3)找指数:取分母因式中出现的所有字母或含字母的多项式中指数最大的,这样取出的因式的积,就是最简公分母.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲例 找出下列各组分式的最简公分母并通分:(1)32a 2b 与a -b ab 2c ; (2)2x x -5与3x x+5.解:(1)最简公分母是2a 2b 2c ,32a 2b =3·bc 2a 2b·bc =3bc 2a 2b 2c, a -bab 2c =(a -b)·2a ab 2c·2a =2a 2-2ab 2a 2b 2c .(2)最简公分母是(x -5)(x +5), 2x x -5=2x(x+5)(x -5)(x+5)=2x 2+10xx 2-25, 3x x+5=3x(x -5)(x+5)(x -5)=3x 2-15xx 2-25. 设计意图:通过例题,使学生能够准确确定分式的最简公分母,熟练进行分式的通分,提高学生的教学应用能力.巩固训练指出下列分式的最简公分母并通分:(1)26a 3bc 与a -215a 2b 2d ; (2)x -2x 2+2x 与x -1(x+2)2; (3)a -1a 2+2a+1与6a 2-1.解:(1)最简公分母:15a 3b 2cd ,26a 3bc = 13a 3bc= 1·5bd 3a 3bc·5bd = 5bd 15a 3b 2-cd , a -215a 2b 2d= (a -2)·ac 15a 2b 2d·ac = a c -2ac 15a 3b 2cd . (2)最简公分母:x (x +2)2,x -2x 2+2x= x -2x(x+2) = (x -2)·(x+2)x(x+2)·(x+2) = x 2-4x(x+2)2, x -1(x+2)2= (x -1)·x (x+2)2·x = x 2-x x(x+2)2. (3)最简公分母:(a +1)2(a -1),a -1a 2+2a+1 = a -1(a+1)2 = (a -1)·(a -1)(a+1)2·(a -1) = (a -1)2(a+1)2(a -1), 6a 2-1= 6·(a+1)(a+1)(a -1)·(a+1) = 6(a+1)(a+1)2(a -1).设计意图:通过巩固训练,一是使学生注意当分母是多项式时,把分母分解因式后,再确定最简公分母;二是通过解决题目的过程,让学生反思解决问题的方法和结论,形成批判性思维和发散性思维,提高学生的总结概括能力和运算能力.课堂小结1.本节课探究了分式的哪些问题?2.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.3.最简公分母的确定:①找系数;②找字母;③找指数.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第132页练习第2题,第133页习题15.1第7题.2.七彩作业.第2课时分式的通分一、分式的通分.二、最简公分母的确定:最简公分母{1.找系数2.找字母3.找指数三、例题讲解.四、课堂评价.教学反思。
15.1.2_分式的基本性质(1)最新
【跟踪训练1】
化简下列分式:
25a bc (1) 2 15ab c
2
3
2
2
x 9 2 x 6x 9
2
3
6 x 12 xy 6 y 3x 3 y
2
【跟踪训练2】
教科书:P132
练习题1
【作业】
教科书:P133
复习巩固 第6题
通过本课时的学习,需要我们 1.掌握分式的基本性质 2.能利用分式的基本性质对分式进行恒等变形. 3.在对分式进行变形时要注意乘(或除以) 的整式是同 一个并且不等于0. 4.约分(约分的最后的结果必须是最简分式)
1 a (2) 2 ab ab
2a b 2ab b 2 b 0 , 2 2 a ab
3x 3xy x y 2 2x 6x
2
【例题】
例2 下列等式成立吗?右边是怎样从左边得到的? an a b bm ( m 0 ); 1) 2) (n 0). 2 a 2 am bn b 解: 1)成立.因为 m 0
如何用语言和式子表示分式的基本性质? 分式的基本性质
A AC C 0 B B C
用语言表示
A AC C 0 其中A,B,C是整式. B B C
分式的分子与分母乘(或除以)同一个不等于0的整 式 ,分式的值不变.
【例题】
例1 填空
x x (1) xy y
3
2
a a (a b) × (1) 与 a b a b
x x ( x 2 1) × (2) 与 2 3 y 3 y ( x 1)
(4)
x xa (3) 与 (a 0) √ y ya
xy y √ 与 2 x x
15.1.2分式基本性质考点与练习
15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
2020年人教版八年级数学上册 分层练习作业本 《分式的基本性质》(含答案)
15.1.2 分式的基本性质 第1课时 分式的基本性质1.下列分式从左到右变形正确的是( ) A.x y =x 2y 2 B.x y =x 2xy C.x y =x +a y +a D.x y =xc yc(c≠0) 2.若分式2a a +b中a ,b 的值同时扩大到原来的10倍,则此分式的值( ) A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变 3.与分式-a -a +b的值相等的是( ) A.a a +b B .-a a +b C.a a -b D .-a a -b 4.填空:=( 4b )2ab 2; =10x 5x +5y ;( a 2+a )ab= .5.不改变分式的值,使下列分式的分子、分母都不含“-”号:-(x +1)5x +3= ,-3x -5y = ,a -4b= . 6.如果3(2a -1)5(2a -1)=35成立,则a 的取值范围是 . 7.不改变分式的值,使下列分式中分子和分母的最高次项的系数为正数:(1)7x -x 2+102-x2;(2)1-x 23+2x +5x2;(3)-m 3-m 2-m 2+m.8.已知x 2-3x -4=0,则代数式x x 2-x -4的值是( ) A .3 B .2 C.13 D.129.不改变分式的值,把下列各式的分子、分母中各项的系数化为整数.(1)a +13b 25a -2b ; (2)0.03a -0.2b 0.08a +0.5b .10. 某市的生产总值从2016年到2018年持续增长,每年的增长率都为p.求2018年该市的生产总值与2016年、2017年这两年生产总值之和的比.若p =8%,这个比值是多少?(结果精确到0.01)11. 阅读下列解题过程,然后解题.题目:已知x a -b =y b -c =z c -a(a ,b ,c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a=k , 则x =k(a -b),y =k(b -c),z =k(c -a),∴x+y +z =k(a -b +b -c +c -a)=k·0=0,∴x+y +z =0.依照上述方法解答下列问题:已知y +z x =z +x y =x +y z ,其中x ,y ,z 均不为0,且x +y +z≠0,求x +y -z x +y +z的值.参考答案 【知识管理】 1.不等于0 分式2.不变【归类探究】例1 D例2 (1)6a +4b 8a -3b (2)16x +5y 10x -12y例3 (1)2m 5n (2)-3a 2c b (3)-z x 2y 2 (4)-2xz 3y【当堂测评】1. C2.D3.y【分层作业】1.D 2.D 3.C 4.4b x +y a 2+a5.-x +15x +3 3x 5y -a 4b 6.a≠127.(1)x 2-7x -10x 2-2 (2)-x 2-15x 2+2x +3 (3)m 3+m 2m 2-m8.D 9.(1)15a +5b 6a -30b (2)3a -20b 8a +50b10.0.56 11. 13。
人教版八年级数学上册第十五章《分式》教案
第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。
分式的基本性质是什么
分式的基本性质是什么
分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
分式的基本性质
1、分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
2、分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用。
3、分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。
4、在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
这里,分母是指除式而言。
而不是只就分母中某一个字母来说的。
分式方程
分式方程的意义:分母中含有未知数的方程叫做分式方程.
分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
15.1.2_分式的基本性质1
分式中,当A=0且B ≠ 0时,分式 值为零。
A 的 B
复习题:
1. 下列各式中,属于分式的是( B )
x 1 A、 2
2 B、 x 1
2
1 2 C、 x y 2
a D、 2
2x 2. x取何值时,分式 有意义; x 4 x 4 3. x取何值时,分式 x 2 的值为零;
2
a 1 4. 分式 的值为零的条件是 a 1且b 1 . b1
1
2
y x 1 (5).三个分式 2 x , 3 y 2 , 4 xy 的最简公分母是( C )
2 3 y B. C. 12 xy D. 12 x 2 y 2 2-2 2x (6) .分式 2 1 , x 的最简公分母是_________. x x 2( x 1)
A. 4 xy
2
x 4y 其中 x 2,y 3 (7).化简求值: 2 4 x 8 xy
解: (2)最简公分母是 ( x 5)( x 5)
2 x 10 x 2x 2 x( x 5) 2 x 5 ( x 5)( x 5) x 25
3 x 15 x 3x 3 x( x 5) 2 x 5 ( x 5)( x 5) x 25
2 2
当堂检测(参考答案)
填空:
2y ( ) ( 1) xy 2xy 2 3x -3xy ( ) 3x ( 2) 2 x y x y2 30 m 5mn ( 3) 24 n ( ) 4n2 2 ab b a b ( 4) 2 ab b ( ) ab+1
尝试题:(典例)
填空:
3
观察分子分母如何变化
x2
x ( ) (1) xy y
15.1.2分式的基本性质1
分式的值变化吗?
提示:分式的值为原来的10倍.
例 2. 不改变分式的值,把下列各式的分子与分母中 各项的系数都化为整数.
1 a b (1) 4 . 4 1 a b 3 2 0.5x 0.7y (2) . 0.2x 0.6y
【解】(1)分子、分母同时乘以12得:
1 1 a b (a b) 12 12a 3b 4 4 4 1 4 1 16a 6b a b ( a b) 12 3 2 3 2
【方法提示】 分式变形的“三点注意” 1.注意分式变形前后的值要相等. 2.注意分式的分子和分母要同乘或同除,不能只 对分子或只对分母进行变形. 3.所乘(或除以)的整式不能为零.
二.分式的约分
例3.约分: 【思路点拨】
3ab 2c (1) . 27ab
x 2 6x 9 (2) 2 . x y-9y
15.1.2分式的基本性质
基本性质
1.分式的基本性质:
(1)语言叙述:分式的分子与分母乘(或除以)
同一个不等于0 的整式,分式的值不变. (2)字母表示:
A C A B C B
A ,B
A C B C
(C≠0),其中
A,B,C是整式.
2.约分: (1)约分:把分式的分子、分母的 公因式 约去,不改变 分式的值. 没有公因式 的分式. (2)最简分式:分子与分母___________ 3.通分: (1) 通分 : 把几个异分母的分式化成与原来的分式相 同分母 的分式. 等的_______ (2)最简公分母:各分母的所想】
2 2a c 4a bc 约分的结果为 正确吗? 2 8a 16a b 提示 : 不正确 , 约分的结果必须化为最
3
简分式.
15.1.2 分式的基本性质 第1课时 分式的基本性质与约分【课课练】八年级上册人教版数学
15.1
15.1.2
第1课时
分式
分式
分式的基本性质
分式的基本性质与约分
15.1.2 分式的基本性质
第1课时 分式的基本性质与约分
1. 分式的分子与分母乘(或除以)同一个
知识梳理
课时学业质量评价
不等于0 的整式,分式的值
·
÷
不变.用式子表示为 =
, =
( C ≠0),其中 A , B , C 是整式.
=-5.
1
2
3
4
5
6
2
3
4
.
5
6
课时学业质量评价
15.1.2 分式的基本性质
第1课时 分式的基本性质与约分
知识梳理
课时学业质量评价
5. 约分:
(1)
;
解:
−+
(2)
;
−
−
(3)
.
+
·
(1)
=
= .
·
−+
(1)
,其中 a =5;
−
−
(2)
,其中 x =3, y =1.
−−
(−)
−
−
解:(1)原式=
=
.当 a =5时,原式=
= .
(+)(−)
+
+
(2)原式=
(+)(−)
−(+)
=-2 x + y .当 x =3, y =1时,原式=-2×3+1
·
÷
2. 根据分式的基本性质,把一个分式的分子与分母的
15.1.2-- 分式的基本性质 教学案
()cn an +15.1.2 分式的基本性质 教学案主备人:张伟 审核:八年级数学组 姓名: 12月 日 学习目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.重点:理解分式的基本性质. 分式的分子、分母和分式本身符号变号的法则。
难点: 1.灵活应用分式的基本性质将分式变形。
2.利用分式的变号法则,把分子或分母是多项式的变形学习过程一、温故知新,引入新课。
1.请同学们考虑:34与1520相等吗?924与38相等吗?为什么?2.说出变形的过程,并说出变形依据?3.分数的基本性质是: 二、探究新知 知识点1: 分式的基本性质(自学课本129页,并回答以下问题。
)思考:类比分数的基本性质,你能想出分式有什么性质吗?【归纳】:分式的基本性质:分式的分子与分母同乘以(或除以)一个 的整式,分式的值不变。
可用式子表示为:B A =C B C A ∙∙ B A =CB CA ÷÷(A 、B 、C 都是整式,C 0) 知识点2: 分式的基本性质的简单应用学习课本P 129例2【归纳总结】:1、看分子如何变化, 2、看分母如何变化,练习: (1) 32386b b a =()33a (2)ca b ++1= 知识点3:不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- = (2) 2317b a --- = (3) 2135x a -- = (4) m b a 2)(--=三、新知应用【例1】填空:(1)y xyx )(3=, )(63322yx xxy x +=+;(2)b a ab 2)(1=,)0()(222≠=-b ba ab a 。
【例2】不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)b a ba +---2 = (2)y x y x -+--32 = (3)yx x ---63=【例3】 不改变分式的值,将下列各分式中的分子和分母中的各项系数都化为整数.(1)y x y x 02.05.03.02.0-+= (2)y x y yx 324112.0--=四、畅谈收获 说说本节课你有那些收获?五、堂清1.下列变形中错误的是( )A .ab a b a 2= B.1121122-++=-+a a a a a C.2b ab b a = D.211a ab a b +=+ 2.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)n m 25- = (2)ab -4 = (3)b a ba 32+-+= 3. 不改变分式的值,使下列各分式中的分子、分母的最高次项系数为正数.(1)32211a a a a -+-- (2)2332-+-+x x x六、课后反思15.1.2 分式的基本性质(二)教学案主备人:张伟审核:八年级数学组姓名:12月日学习目标:1.会用分式的基本性质将分式约分.2.会用分式的基本性质将分式通分。
人教版八年级数学上册教案-15.1.2分式的基本性质分式通分
在本次教学活动中,我注意到学生在学习分式的基本性质与通分这一章节时,存在一些理解和掌握上的难点。首先,我发现学生在理解分式基本性质时,对于为何乘除同一个数(除数不为0)不会改变分式的值这一点上存在困惑。在今后的教学中,我需要更加形象、具体地解释这一性质的数学原理,以便学生能够更好地理解。
3.重点难点解析:在讲授过程中,我会特别强调分式基本性质和通分方法这两个重点。对于难点部分,如选取公倍数和分解因式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式通分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式通分的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式通分的基本概念。通分是指将分母不相同的分式通过乘以适当的整式,使分母相同,以便进行加减运算。它是分式运算中的重要环节,帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将$\frac{1}{x}$和$\frac{2}{x+1}$通分,以及通分在简化分式运算中的作用。
在授课过程中,我也注意到学生在解决实际问题时构建分式模型的能力较弱。为了提高学生的这一能力,我将在下一节课中增加一些关于建模的讲解和练习,帮助学生学会如何从实际问题中抽象出分式模型。
此外,教学流程的设计方面,导入新课环节的问题设置可能还不够吸引学生的兴趣,今后我需要在这个环节下更多功夫,设计更具趣味性和启发性的问题,激发学生的学习兴趣和好奇心。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质与通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同单位的量进行换算的情况?”比如,将米和厘米的长度进行加减。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式通分的奥秘。
15.1.2分式的基本性质(1)教学设计
15.1.2 分式的基本性质(1) 教学设计教学目标:1.理解并掌握分式的基本性质及分式约分的概念2.会用分式的基本性质将分式进行变形,会进行分式的约分 教学重点:理解并掌握分式的基本性质及分式约分的概念教学难点:会用分式的基本性质将分式进行变形,会进行分式的约分 一、新知探究1问题1 48与12是否相等,依据是什么?相等 理由:分数的分子与分母同时乘 (或除以) 一个不等于零的数,分数的值不变. 问题2:(1) 一列匀速行驶的火车,如果 t (h) 行驶了 s (km),那么火车的速度是多少? s t(2) 如果 2t (h)行驶了 2s (km),那么火车的速度是多少?2s 2t (3) 如果 3t (h)行驶了 3s (km),那么火车的速度是多少?3s 3t (4) 如果 nt (h)(n ≠0)行驶了ns km ,那么火车的速度是多少? nsnt 思考:上述结果有什么发现? st=2s st =3s 3t=nsnt 想一想:类比分数的基本性质,你能猜想分式有什么性质吗? 二、新知讲解1分式的基本性质:分式的分子与分母乘(或除以)同一个不等于 0 的整式,分式的值不变. 上述性质可以用等式表示为:其中 A ,B ,C 是整式(单项式或多项式) 三、例题讲解1例1 下列等式的右边是怎样从左边得到的?解:∵m ≠0 ∴a b =b ∙m 2a ∙m =bm解:∵n ≠0 ∴an bn =a ÷nb ÷n =a )0(22)1(≠=m ambma b ba bn an =)2(例2 填空:练习1:判断下列变形是否正确?如果正确,说出是如何变形的?如果不正确,说明理由.22)1(++=x y x y()b abcac =4练习2、下列等式的右边是怎样从左边得到的?2223321ca ab ac b 2=)()0(≠a)1(32)164)2(-=-a aa b ab (ab a a ab a a )1()1)1)1)3(+=-+-(((练习3 填空()()(1)0m mkk n=≠()()01053)2(≠=a axyxy a ()bbmam 362)3(2=()ba abb a 2)4(=+()()01)5(≠++=-n m nm nm()y x xy xy x -=-3426)6(2 练习4 不改变分式的值,使下列分子与分母都不含“-”号练习5 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数分子分母都分子分母都分子分母都 xxxxx√×a ÷2b ÷(a -1) nk6a 2 am a 2+abm 2-n 2 2y a b −a b a b −a b −abx 22xa2ab -b 204.03.05.001.0)1(+-x x b a aa +-32232)2(xx 221)3(=()222ba b a =()mcnkm n =5()116+=+ax axx x解:原式=(0.01x−0.5)×100(0.3x+0.04)×100四、新知探究2想一想:分数约分关键的是什么?约去分子分母的最大公约数.想一想:类比分数的约分,观察下列等式的变形,你能想出如何对分式进行约分吗?约去分子分母的公因式.注意:分式的约分,一般要约去分子和分母所有的公因式,使所得的结果成为最简分式或整式.五、新知讲解21、根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.2、最简分式:分子与分母没有公因式的式子六、例题讲解2例2 约分:(1)−25a2b 315ab2解:原式练习1 下列分式是最简分式的个数为( B ).A. 1 个B. 2 个C. 3 个D. 4 个练习2. 约分:(1)=x−5030x+4解:原式=(2a−32b)×6(23a+b)×6=12a−9b4a+6b232436=七、课堂总结 1.分式的基本性质:分式的分子与分母同时乘(或除以)同一个不等于 0 的整式的整式,分式的值不变. 2.分式的符号法则:3、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分 4.数学思想:类比思想 八、作业布置 详见《精准作业》九、板书设计1.分式的基本性质:分式的分子与分母同时乘(或除以)同一个不等于 0 的整式的整式,分式的值不变. 2.分式的符号法则:3.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分15.1.2分式的基本性质(1)。
人教版八年级数学上第册15章15.1.2分式的基本性质(教案)
3.培养学生的数学建模意识:学会运用分式知识解决实际问题,培养学生的数学建模能力。
4.培养学生的抽象概括能力:通过对分式基本性质的探究,让学生学会从具体实例中抽象出一般性规律,提升抽象概括能力。
5.培养学生的合作交流意识:在小组讨论和课堂互动中,培养学生的团队协作能力和沟通表达能力。
今天的学习,我们了解了分式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对分式的基本性质的理解程度有所不同。有的学生能够迅速掌握分式的定义和基本性质,但也有一些学生在分式的约分和乘除法运算上遇到了困难。这让我意识到,在接下来的教学中,我需要更加关注学生的个别差异,提供更有针对性的指导。
在导入新课的部分,通过日常生活中的例子引入分式的概念,大多数学生都能积极参与,这表明生活化的教学情境能够激发学生的学习兴趣。然而,我也注意到,这种方法对于一些抽象思维能力较弱的学生来说,可能还不够直观。因此,我考虑在以后的课堂中加入更多的直观教具或动画,帮助他们更好地理解分式的意义。
新课讲授时,我尽量用简洁明了的语言解释分式的基本概念和性质,并通过案例分析和具体运算来强化理解。从学生的反馈来看,这种方法对于大多数学生是有效的。但我也观察到,对于那些在课堂上不太发言的学生,我可能需要更多地鼓励他们参与进来,比如通过提问或小组讨论的方式。
2.教学难点
a.分式基本性质的灵活应用:学生需要能够将基本性质应用到不同的分式运算中,包括在复杂的表达式中识别和运用这些性质。
人教版八年级数学上册15.1.2《分式的基本性质》教学设计
人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
这些性质为后续分式的运算提供了重要的理论基础。
二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。
同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。
三. 教学目标1.理解分式的基本性质,并能灵活运用。
2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。
3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。
4.能运用分式的基本性质解决实际问题。
四. 教学重难点1.重点:分式的基本性质。
2.难点:分式的实际应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。
2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。
同时,结合案例进行讲解,让学生理解并掌握这些性质。
《15.1.2分式的基本性质》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册
《分式的基本性质》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握分式的基本性质,理解分式等价变换的原理,能够运用分式性质解决简单的数学问题。
通过学习,培养学生观察、分析、归纳和解决问题的能力,并激发学生对数学学习的兴趣和热情。
二、教学重难点教学重点:分式的基本性质及其应用。
包括对分式等价变换的理解,以及如何利用分式性质进行简单的计算和证明。
教学难点:学生能够熟练运用分式性质解决实际问题,特别是涉及多个分式运算的复杂问题。
三、教学准备1. 教材与教辅资料准备:初中数学教材、教学课件、练习册等。
2. 教学环境准备:多媒体教室,确保每个学生都能清晰看到屏幕。
3. 学生准备:预习分式的基本概念,准备笔记本和练习本。
4. 教师准备:熟悉教材内容,准备教案和课堂互动环节。
通过并理解课堂所授知识的内涵与实际应用的案例,让每一节课程都能有效地促进学生深入思考。
同时,确保自身教育观念的更新,与时俱进,以适应教育发展的新趋势。
此外,教师还需准备一些教学辅助工具,如多媒体设备、教学软件等,以便在课堂上进行演示和讲解。
这些工具能够有效地增强教学效果,使课堂更加生动有趣。
同时,为了能够及时掌握学生的学习情况,教师还应该设计一套完善的课后作业与评估系统。
这将帮助教师评估学生的知识掌握程度,从而为他们提供更具针对性的指导和帮助。
最后,教师在教学准备过程中还需注意调整自身心态,以积极、热情的态度去面对每一位学生,让每一位学生都能感受到教师的关心与支持。
这样,不仅能够提升教学质量,还能营造一个积极向上的学习氛围。
四、教学过程:一、导入新课在课堂开始之初,教师可以通过回顾之前学习的内容,如整式的性质和运算,来引出分式的基本性质这一新课内容。
教师可以提出一些与分式相关的问题,如“你们还记得整式的基本性质吗?那么分式与整式有哪些异同之处呢?”这样的问题有助于学生将新旧知识联系起来,激发他们的学习兴趣和好奇心。
二、知识讲解1. 概念介绍在讲解分式的基本性质前,教师应首先明确分式的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙生:
分式的基本性质导学案
八年级数学学科 班级姓名
课题:分式的基本性质(1)课型设置:新知课设计人:
一、学习目标:1、能类比分数的基本性质,推出分式的基本性质。
2、理解并掌握分式的基本性质,能进行分式的等值变形。
>
二、定向导学、互动展示:
独 学 环 节
互学环节
展示环节
)
梳 理 环 节
自学指导内容、学法、时间
#
【板块二】探究分式的基本性质
1、你能通过分数的基本性质猜想分式的基本性质吗
"
试一试归纳:分式的基本性质:
用式子表示为
2、根据分式基本性质填空:
(1) 、 (2) 。
…
3、例2、下列分式的变形是否正确为什么
(1) 、 (2) 。
.
【板块三】分式基本性质的运用
1、不改变分式的值,使下列分式的分子与分母都不含“—”号:
(1) =、(2)— =。
2、填空:(1) = (2) 、(3)
3、若把分式 中的x、y都扩大3倍,那么分式的值是。
4、不改变分式的值,使下列分式的分子与分母的最高次项的系数化为正数。
(1) (2) (3) 。
5、下列各式的变形中,正确的是( )
A. B.
C. D.
6、 下面两位同学做的两种变形,请你判断正误,并说明理由.
(1) 、 (2) 、
、
(3) 、
(4)— (5)
(6)—
,
2、不改变分式的值,使分式 的分子
与分母各项的系数化为整数
¥
—
,
¥
交流与分享
两人对子学:
对子间交流自研成果,对红笔标注的不会之处进行探讨;相互提问解疑……。
|
冲刺与挑战
}
小组合作学:
小组长先整理本组的好思路、好方法,再统计本组存在的疑难问题,组长主持对这些疑难问题展开小组交流讨论,争取解决组内疑难;并将小组讨论还不能解决的问题汇总。
互动交流备展内容、
形式、时间
&
展示方案、 内容、
方式、时间
随 堂 笔 记
(成果记录·知识生成·自主演练 )
【
【板块一】温故知新:
1、小学里学过的分数的基本性质的内容是什么
由分数的基本性质可知,如数c≠0,那么 ,
2、分解因式
(1)《
(2)x2-2x =
(2)3x2+3xy=
(3)a2-4=
(4) a2-4ab+b2=
。
自研成果呈现1:【板块三】
1、不改变分式的值,使下列分式中的分子、分母不含负号
(
(1) (2) (3) (4)
(
2、不改变分式的值把分子、分母的系数都化为整数:
;
[
自学等级评定:
知识梳理:
1、错误订正。
2、今天我学习到的数学知识、思想、方法有哪些:
作业:
1、不改变分式的值,使下列分式的分子与分母都不含“—”号:
%
准备与பைடு நூலகம்演
①各学习小组当堂抽签选定展示内容和顺序,组长针对本组抽到的任务,研讨方案,再确定本组展示方案,分配任务,进行组内预展。
—
②组长带领成员将最后定案进行展板或展讲。
③习题展示要求说明题中的关键词、解题思路和解题格式。
展示一预设:
独学中【板块二】探究分式的基本性质
!
展示要求:
1.讲解分式基本性质
2.带领大家理解并记住分式的基本性质
、
3、组内分工明确。
展讲语言表达清楚、准确,思路清晰。
%
预设展示二
【板块三】
分式基本性质的运用
展示要求:
1、讲解分式变形的过程和依据
$
2.强调易错点。
[
}
!
自研成果呈现1:【板块二】
1、填空
(1) (2) (3)
(4)
…
2、下列等式的右边是怎样从左边得到的
(1) = ( ); (2) =