高二文科数学下学期期末考试卷
下学期高二期末数学试卷文科含答案
下学期高二期末数学试卷文科含答案The document was prepared on January 2, 20212017年下学期期末调研试卷高二数学(文科)(考试时量:120分钟 满分120分)一、单选题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题“x ∀∈R ,20x ≥”的否定为A . x ∃∈R ,20x <B .x ∃∈R , 20x ≥C . x ∀∈R ,20x <D . x ∀∈R , 20x ≤2. 双曲线2219y x -=的实轴长为 A . 4 B . 3C . 2D . 1 3. 已知P 为椭圆221259x y +=上一点, 12,F F 为椭圆的两个焦点,且13PF =, 则2PF =A .2B . 5C .7D .84. 若抛物线的准线方程为7x =-,则抛物线的标准方程为A .228x y =-B .228x y =C .228y x =-D .228y x =5. 函数sin y x x =-,,2x ππ⎡⎤∈⎢⎥⎣⎦的最大值是 A .1π- B . 12π- C .π D .1π+6. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A . 138B .135C .95D .237. 在△ABC 中,若sin sin()sin 2C B A A +-=,则△ABC 的形状为A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8. 已知数列{}n a 的前n 项和为n S ,若321n n S n =++,则n a =A . 16,123,2n n n a n -=⎧=⎨⨯≥⎩ B .123n n a -=⨯ C .1232n n a -=⨯+ D . 16,1232,2n n n a n -=⎧=⎨⨯+≥⎩ 9. 已知变量x 、y 满足约束条件1031010y x y x y x +-≤⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为A .4B .2C .1D .4-10. 若不等式()(1)1x a x a ---<对任意实数x 成立,则A . 11a -<<B .02a <<C .2123<<-aD .2321<<-a 11. 若函数322()3(1)1f x kx k x k =+--+在区间()0,4上是减函数,则k 的取值范围是A . 1,3⎛⎫-∞ ⎪⎝⎭B .10,3⎛⎤⎥⎝⎦C .10,3⎡⎫⎪⎢⎣⎭D .1,3⎛⎤-∞ ⎥⎝⎦ 12. 设1e 、2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则2212212()e e e e +的值为 A . 12B .1C .2D .4二、填空题:本题共4小题,每小题4分,共16分。
(完整版)高二下期末文科数学试题及答案,推荐文档
(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.
2021-2022学年河南省郑州市高二(下)期末数学试卷(文科)
2021-2022学年河南省郑州市高二(下)期末数学试卷(文科)试题数:26,总分:1501.(单选题,5分)复数z满足(√3 +i)z=|1- √3 i|,其中i为虚数单位,则z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(单选题,5分)下面几种推理过程中属于类比推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.科学家对比了火星和地球之间的某些相似特征,已知地球上有生命存在,所以猜测火星上也可能有生命存在C.由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个质数的和D.在数列{a n}中,a1=1,a n= 12(a n-1+ 1a n−1)(n≥2),由此归纳出{a n}的通项公式3.(单选题,5分)如图所示的是一个结构图,在框① ② ③ 中应分别填入()A.虚数,整数,分数B.复数,虚数,整数C.虚数,复数,纯虚数D.复数,虚数,纯虚数4.(单选题,5分)已知x,y,z∈R,且a=x2+2y,b=y2+2z,c=z2+2x,则a,b,c三个数()A.都小于-1B.至少有一个不小于-1C.都大于-1D.至少有一个不大于-15.(单选题,5分)在同一平面直角坐标系中,由曲线x 2+y 2=1得到曲线4x 2+y 2=16,则对应的伸缩变换为( ) A. {x′=12xy′=4yB. {x′=2xy′=14y C. {x′=2x y′=4y D. {x′=12x y′=14y6.(单选题,0分)已知x ,y ,z∈R +,且x+y+z=30,则lgx+lgy+lgz 的最大值为( ) A.1 B.2 C.3 D.47.(单选题,5分)下列四个命题:① 在回归模型中,预报变量y 的值不能由解释变量x 唯一确定;② 若变量x ,y 满足关系y=-2x+1,且变量y 与z 正相关,则x 与z 也正相关; ③ 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; ④ 样本点可能全部不在回归直线 y ̂ = b ̂ x+ a ̂ 上. 其中真命题的个数为( ) A.1个 B.2个 C.3个 D.4个8.(单选题,5分)已知i-1是关于x 的方程2x 2+px+q=0的一个根,其中p ,q∈R ,则p+q=( ) A.6 B.8 C.10D.129.(单选题,5分)用模型y=me nx+2(m >0)拟合一组数据时,设z=lny ,将其变换后得到回归方程为 ẑ =3x+2,则n-m=( ) A.-1 B.1 C.-2 D.210.(单选题,5分)我们知道;在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=|Ax 0+By 0+C|√A 2+B 2,通过类比的方法,则在空间中,点(1,2,4)到平面2x+2y+z+2=0的距离为( ) A.4 B.5 C.6 D.711.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图1所示的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到如图2所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为S n ,如S 1=1,S 2=2,S 4=4,⋯,则S 32等于( )A.16B.32C.64D.12812.(单选题,5分)已知曲线 {x =cosαy =−1+√3sinα ,(α为参数)上任一点P (x 0,y 0),使得不等式a≤x 0+y 0成立,则实数a 的取值范围是( ) A.(-∞,-3]B.[-3,+∞)C.[1,+∞)D.(-∞,1]13.(单选题,0分)若不等式|x-1|+| 4x+1|≤a有解,则实数a的取值范围是()A.a≥4B.a<4C.a≥2D.a<214.(单选题,5分)计算器是如何计算sinx,cosx,πx,lnx,√x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sinx=x- x 33!+x55!−x77!+…,cosx=1- x22!+x44!−x66!+…,其中n!=1×2×3×…×n,英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的sinx和cosx的值也就越精确.运用上述思想,可得到sin(π2 +1)的近似值为()A.0.50B.0.52C.0.54D.0.5615.(填空题,5分)复数1−i20221+i的共轭复数为 ___ .16.(填空题,5分)用最小二乘法得到一组数据(x i,y i)(其中i=1、2、3、4、5)的线性回归方程为ŷ = b̂ x+3,若∑5i=1 x i=25、∑5i=1 y i=65,则当x=10时,y的预报值为 ___ .17.(填空题,5分)将正奇数数列1,3,5,7,9,…依次按两项,三项分组.得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),….称(1,3)为第1组,(5,7,9)为第2组,以此类推,则原数列中的2021位于分组序列中第 ___ 组.18.(填空题,5分)已知a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,则a,b,c的大小关系是 ___ .19.(问答题,10分)已知复数z=a+i(a>0,a∈R),且z+ 2z∈R,其中i为虚数单位.(Ⅰ)求复数z;(Ⅱ)已知复平面上的四个点A,B,C,D构成平行四边形ABCD,复数z+z2,z+1,z2在复平面内对应的点分别为A,B,C,求点D对应的复数.20.(问答题,12分)某从事智能教育技术研发的科技公司开发了一个智慧课堂项目,并且在甲、乙两个学校的高一学生中做用户测试,经过一个阶段的试用,为了解智慧课堂对学生学习的促进情况该公司随机抽取了200名学生,对他们“任意角和弧度制”知识点掌握情况进行调查,样本调查结果如表:(Ⅰ)从两校高一学生中随机抽取1人,估计该学生对“任意角和弧度制”知识点基本掌握的概率;(Ⅱ)完成下面2×2列联表,并分析是否有99%的把握认为基本掌握“任意角和弧度制”知识点与使用智慧课堂有关?21.(问答题,12分)在直角坐标系xOy 中,曲线C 1的参数方程为 {x =2+2cosθy =2sinθ (θ为参数),曲线C 2的方程为x+y-6=0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)若射线α= π4 分别交C 1,C 2于A ,B 两点(点A 异于极点),求|AB|.22.(问答题,0分)已知函数f (x )=|x+1|-m ,m∈R ,且f (x )≤0的解集为[-2,0]. (Ⅰ)求m 的值;(Ⅱ)设a ,b ,c 为正数,且a+2b+3c=m ,求a 2+b 2+c 2的最小值.23.(问答题,12分)用分析法证明:对于任意a 、b∈[-2,2],都有|ab+4|≥2|a+b|.24.(问答题,12分)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2(1+3sin 2θ)=4.在直角坐标系xOy 中,直线l 的方程为x+2y-4=0. (Ⅰ)若点M 为曲线C 1上的动点,求点M 到直线l 的距离的最小值;(Ⅱ)倾斜角为 π3 的曲线C 2过点P (-1,0),交曲线C 1于A ,B 两点,求 1|PA| + 1|PB| .25.(问答题,0分)已知函数f (x )=|x+a|+|x+1|. (Ⅰ)当a=-1时,求f (x )<3x 的解集;(Ⅱ)g (x )=x 2-2x+2+a 2,若对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,求实数a 的取值范围.26.(问答题,12分)目前,新冠病毒引起的疫情仍在全球肆虐在党中央的正确领导下,全国人民团结一心,使我国疫情得到了有效的控制.其中,各大药物企业积极投身到新药的研发中.汕头某药企为评估一款新药的药效和安全性,组织一批志愿者进行临床用药实验,结果显示临床疗效评价指标A 的数量y 与连续用药天数x 具有相关关系.刚开始用药时,指标A 的数量y 变化明显,随着天数增加,y 的变化趋缓.根据志愿者的临床试验情况,得到了一组数据(x i ,y i ),i=1,2,3,4,5,…,10,x i 表示连续用药i 天,y i 表示相应的临床疗效评价指标A 的数值.该药企为了进一步研究药物的临床效果,建立了y 关于x 的两个回归模型: 模型 ① :由最小二乘公式可求得y 与x 的线性回归方程: y ̂=2.50x −2.50 ;模型 ② :由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a 的附近,令t=lnx ,则有 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 , ∑t i 10i=1y i =569.00 , ∑t i 210i=1=50.92 .(1)根据所给的统计量,求模型 ② 中y 关于x 的回归方程;(2)根据下列表格中的数据,说明哪个模型的预测值精度更高、更可靠.(3)根据(2)中精确度更高的模型,预测用药一个月后,疗效评价指标相对于用药半个月的变化情况(一个月以30天计,结果保留两位小数).附:样本(t i i i i=1i ∑(t i −t)2ni=1 y t 相关指数 R 2=1−i2n i=1∑(y −y )2n ,参考数据:ln2≈0.6931.2021-2022学年河南省郑州市高二(下)期末数学试卷(文科)参考答案与试题解析试题数:26,总分:1501.(单选题,5分)复数z满足(√3 +i)z=|1- √3 i|,其中i为虚数单位,则z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:D【解析】:结合复数模公式,先求出z,再结合复数的几何意义,即可求解.【解答】:解:∵(√3 +i)z=|1- √3 i|= √12+(−√3)2=2,∴ z=√3−i)(√3+i)(√3−i)=√32−12i,∴z在复平面内所对应的点(√32,−12)在第四象限.故选:D.【点评】:本题主要考查复数模公式,以及复数的几何意义,属于基础题.2.(单选题,5分)下面几种推理过程中属于类比推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.科学家对比了火星和地球之间的某些相似特征,已知地球上有生命存在,所以猜测火星上也可能有生命存在C.由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个质数的和D.在数列{a n}中,a1=1,a n= 12(a n-1+ 1a n−1)(n≥2),由此归纳出{a n}的通项公式【正确答案】:B【解析】:根据演绎推理、类比推理、归纳推理的定义即可求解.【解答】:解:A选项是演绎推理,B选项是类比推理,C选项是归纳推理,D选项是归纳推理,故选:B.【点评】:本题考查演绎推理、类比推理、归纳推理的定义,属基础题.3.(单选题,5分)如图所示的是一个结构图,在框① ② ③ 中应分别填入()A.虚数,整数,分数B.复数,虚数,整数C.虚数,复数,纯虚数D.复数,虚数,纯虚数【正确答案】:D【解析】:根据复数包含实数和虚数,虚数包含纯虚数和非纯虚数,即可求解.【解答】:解:复数包含实数和虚数,虚数包含纯虚数和非纯虚数,故① 为复数,② 为虚数,③ 为纯虚数.故选:D.【点评】:本题主要考查结构图的应用,属于基础题.4.(单选题,5分)已知x,y,z∈R,且a=x2+2y,b=y2+2z,c=z2+2x,则a,b,c三个数()A.都小于-1B.至少有一个不小于-1C.都大于-1D.至少有一个不大于-1 【正确答案】:B【解析】:求出a+b+c 的范围,再结合选项判断即可.【解答】:解:a+b+c=x 2+y 2+z 2+2x+2y+2z =(x+1)2+(y+1)2+(z+1)2-3≥-3, ∴a ,b ,c 三个数中至少有一个不小于-1. 故选:B .【点评】:本题考查不等式的性质,考查逻辑推理能力及运算求解能力,属于基础题. 5.(单选题,5分)在同一平面直角坐标系中,由曲线x 2+y 2=1得到曲线4x 2+y 2=16,则对应的伸缩变换为( ) A. {x′=12xy′=4yB. {x′=2xy′=14yC. {x′=2x y′=4yD. {x′=12x y′=14y【正确答案】:C【解析】:直接利用关系式的变换的应用求出结果.【解答】:解:设伸缩变换为 {x′=λxy′=μy (λ>0,μ>0),由曲线x 2+y 2=1得到曲线4x 2+y 2=16,即有 {4λ2=16μ2=16,故λ=2,μ=4. 故选:C .【点评】:本题考查了圆变换为椭圆的伸缩变换,考查了变形能力与计算能力,属于中档题. 6.(单选题,0分)已知x ,y ,z∈R +,且x+y+z=30,则lgx+lgy+lgz 的最大值为( ) A.1 B.2 C.3D.4【正确答案】:C【解析】:由已知结合基本不等式及对数的运算性质即可求解.【解答】:解:因为x,y,z∈R+,且x+y+z=30,所以xyz ≤(x+y+z3)3=1000,当且仅当x=y=z=10时取等号,则lgx+lgy+lgz=lg(xyz)≤lg1000=3.故选:C.【点评】:本题主要考查了基本不等式及对数的运算性质在求解最值中的应用,属于基础题.7.(单选题,5分)下列四个命题:① 在回归模型中,预报变量y的值不能由解释变量x唯一确定;② 若变量x,y满足关系y=-2x+1,且变量y与z正相关,则x与z也正相关;③ 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;④ 样本点可能全部不在回归直线ŷ = b̂ x+ â上.其中真命题的个数为()A.1个B.2个C.3个D.4个【正确答案】:C【解析】:根据已知条件,结合线性回归方程的性质,以及残差的定义,即可依次求解.【解答】:解:对于① ,在回归模型中,预报变量y的值不能由解释变量x确定,还受随机误差的影响,故① 正确,对于② ,变量x,y满足关系y=-2x+1,则y与x负相关,由变量y与z正相关,则x与z负相关,故② 错误,对于③ ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合效果较好,模型拟合的精度越高,故③ 正确,对于④ ,样本中心恒在回归直线方程上,样本点可能全部不在回归直线ŷ = b̂ x+ â上,故④ 正确.故选:C.【点评】:本题主要考查线性回归方程的性质,以及残差的定义,属于基础题.8.(单选题,5分)已知i-1是关于x的方程2x2+px+q=0的一个根,其中p,q∈R,则p+q=()A.6B.8C.10D.12【正确答案】:B【解析】:结合实系数方程虚根成对独立,结合韦达定理,求解即可.【解答】:解:i-1是关于x的方程2x2+px+q=0的一个根,所以-i-1也是方程的根,可得- p2 =i-1-i-1=-2,所以p=4,q=(i-1)(-i-1)=2,可得q=4,2所以.p+q=8.故选:B.【点评】:本题考查实系数方程虚根成对独立的应用,是基础题.9.(单选题,5分)用模型y=me nx+2(m>0)拟合一组数据时,设z=lny,将其变换后得到回归方程为ẑ=3x+2,则n-m=()A.-1B.1C.-2D.2【正确答案】:D【解析】:对y=me nx+2两边取对数,再结合回归方程为ẑ=3x+2,即可求解【解答】:解:∵y=me nx+2,∴lny=nx+2+lnm,∵z=lny,ẑ=3x+2,∴n=3,2+lnm=2,解得m=1,∴n-m=3-1=2.故选:D.【点评】:本题主要考查线性回归方程的应用,属于基础题.10.(单选题,5分)我们知道;在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为,通过类比的方法,则在空间中,点(1,2,4)到平面2x+2y+z+2=0的距d= |Ax0+By0+C|√A2+B2离为()A.4B.5C.6D.7【正确答案】:A【解析】:类比平面内点到直线的距离求解.【解答】:解:点(1,2,4)到平面2x+2y+z+2=0的距离为:=4,d=|2×1+2×2+4+2|√22+22+12故选:A.【点评】:本题考查了点到直线的距离计算,属于基础题.11.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图1所示的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到如图2所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为S n,如S1=1,S2=2,S4=4,⋯,则S32等于()A.16B.32C.64D.128【正确答案】:B【解析】:由图分析得第2n-1-1行且n∈N *所有项均为奇数,判断S 32对应第31行是还存在n∈N *,使2n-1-1=31,由此能求出S 32.【解答】:解:由杨辉三角几何排列分析得: 第2n-1-1行且n∈N *所有项均为奇数,S 32对应第31行,令2n-1-1=31,可得n=6∈N *, 所有第31行数字均为奇数,∴S 32=32. 故选:B .【点评】:本题考查简单的归纳推理、杨辉三角几何排列等基础知识,考查运算求解能力,是基础题.12.(单选题,5分)已知曲线 {x =cosαy =−1+√3sinα ,(α为参数)上任一点P (x 0,y 0),使得不等式a≤x 0+y 0成立,则实数a 的取值范围是( ) A.(-∞,-3] B.[-3,+∞) C.[1,+∞) D.(-∞,1] 【正确答案】:A【解析】:设 {x 0=cosαy 0=−1+√3sinα ,利用三角恒等变换及正弦型函数的性质求x 0+y 0范围,根据恒成立求参数范围.【解答】:解:由题设,令 {x 0=cosαy 0=−1+√3sinα,则 x 0+y 0=cosα+√3sinα−1=2sin (α+π6)−1 ,所以x 0+y 0∈[-3,1],又a≤x 0+y 0对任一点p (x 0,y 0)都成立,故a≤-3. 故选:A .【点评】:本题考查了三角恒等变换及正弦型函数的性质,属于中档题.13.(单选题,0分)若不等式|x-1|+| 4x+1|≤a有解,则实数a的取值范围是()A.a≥4B.a<4C.a≥2D.a<2【正确答案】:A【解析】:令f(x)=|x-1|+| 4x+1|,问题转化为a≥f(x)能成立,通过讨论x的范围,求出f(x)的最小值,即可得到a的范围.【解答】:解:不等式|x-1|+| 4x +1|≤a有解,即a≥|x-1|+| 4x+1|能成立,令f(x)=|x-1|+| 4x+1|,则a≥f(x)能成立,显然,x≠0,下面求f(x)的最小值.当x<-4时,f(x)=1-x+ 4x +1=2-x+ 4x单调递减,此时,f(x)>5.当-4≤x<0,f(x)=1-x- 4x -1=-x- 4x≥2 √(−x)•(−4x) =4,当且仅当x=-2时,取等号,此时,f(x)最小值为4.当0<x<1时,f(x)=1-x+ 4x +1=2-x+ 4x单调递减,f(x)>5.当x≥1时,f(x)=x-1+ 4x +1=x+ 4x≥2 √x•4x=4,当且仅x=2时,取等号,f(x)最小值为4.综上可得,f(x)最小值为4,∴a≥4,故选:A.【点评】:本题考查了函数的单调性、最值问题,考查转化思想,分类讨论思想,是一道中档题.14.(单选题,5分)计算器是如何计算sinx,cosx,πx,lnx,√x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sinx=x- x 33!+x55!−x77!+…,cosx=1- x22!+x44!−x66!+…,其中n!=1×2×3×…×n,英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的sinx和cosx的值也就越精确.运用上述思想,可得到sin(π2 +1)的近似值为()A.0.50B.0.52C.0.54D.0.56【正确答案】:C【解析】:根据新定义,取x=1代入公式sin(π2 +1)= cosx=1−x22!+x44!−x66!+⋅⋅⋅中,直接计算取近似值即可.【解答】:解:由题意可得,sin(π2 +1)= cos1=1−122!+144!−166!+⋯=1−12+124−1720+⋯=1-0.5+0.041-0.001+…≈0.54,故选:C.【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可.15.(填空题,5分)复数1−i20221+i的共轭复数为 ___ .【正确答案】:[1]1+i【解析】:根据已知条件,结合共轭复数的概念,以及复数代数形式的乘除法运算,即可求解.【解答】:解:∵i2022=(i4)505•i2=-1,∴ 1−i20221+i = 21+i=2(1−i)(1+i)(1−i)=1−i,∴复数1−i20221+i的共轭复数为1+i.故答案为:1+i.【点评】:本题考查了共轭复数的概念,以及复数代数形式的乘除法运算,需要学生熟练掌握公式,属于基础题.16.(填空题,5分)用最小二乘法得到一组数据(x i,y i)(其中i=1、2、3、4、5)的线性回归方程为ŷ = b̂ x+3,若∑5i=1 x i=25、∑5i=1 y i=65,则当x=10时,y的预报值为 ___ .【正确答案】:[1]23【解析】:根据已知条件,求出x,y的平均值,再结合线性回归方程过样本中心,即可求解线性回归方程,再将x=10代入,即可求解.【解答】:解:x=15∑x i5i=1=15×25=5,y=15∑y i5i=1=15×65=13,∵线性回归方程为ŷ = b̂ x+3,∴13= 5b̂+3,解得b̂=2,∴线性回归方程为y=2x+3,∵当x=10时,y=2×10+3=23.故答案为:23.【点评】:本题主要考查了线性回归方程的性质,以及平均值的求解,属于基础题.17.(填空题,5分)将正奇数数列1,3,5,7,9,…依次按两项,三项分组.得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),….称(1,3)为第1组,(5,7,9)为第2组,以此类推,则原数列中的2021位于分组序列中第 ___ 组.【正确答案】:[1]405【解析】:将2个括号作为一组,则每组中有5个数,先找出2019所在的位置,然后确定2021所在的位置.【解答】:解:由题意可知,将2个括号作为一组,则每组中有5个数,由于2019是第1010个奇数,在第1010÷5=202组中,是第2个括号内最后一个数,又每组2个括号,所以,2019是第202×2=404个括号内的数,而2021是第1011个奇数,所以在第405个括号内,即第405组.故答案为:405.【点评】:本题考查归纳推理,考查学生的逻辑推理能力和运算能力,属于基础题.18.(填空题,5分)已知a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,则a,b,c的大小关系是 ___ .【正确答案】:[1]c>b>a【解析】:在同一坐标系中,作出函数y=lna,y=x+2ln2-4,y=1+x-e,y=x+ln2-2的图象求解.【解答】:解:a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,在同一坐标系中作出y=lna,y=x+2lnx-4,y=1+x-e,y=x+ln2-2的图象,如图,由图象知a,b,c的大小关系是c>b>a.故答案为:c>b>a.【点评】:本题考查三个数的大小的判断,考查函数的图象与性质等基础知识,考查运算求解能力,是基础题.19.(问答题,10分)已知复数z=a+i(a>0,a∈R),且z+ 2z∈R,其中i为虚数单位.(Ⅰ)求复数z;(Ⅱ)已知复平面上的四个点A,B,C,D构成平行四边形ABCD,复数z+z2,z+1,z2在复平面内对应的点分别为A,B,C,求点D对应的复数.【正确答案】:【解析】:(I)根据已知条件,结合复数的四则运算,以及实数的定义,即可求解.(II)根据已知条件,结合复数的四则运算,以及平行四边形的性质,即可求解【解答】:解:(I)∵z=a+i,∴ z+2z =a+i+2a+i= a+i+2(a−i)(a+i)(a−i)= a+2aa2+1+(1−2a2+1)i∈R,∴ 1−2a2+1=0,解得a=±1,∵a>0,∴a=1,∴z=1+i.(2)∵z 2=(1+i )2=2i ,z+z 2=1+3i ,z+1=2+i , ∴A (1,3),B (2,1),C (0,2), 设D (x ,y ), ∵ABCD 为平行四边形, ∴ AD⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ , 设D (x ,y ),则 AD ⃗⃗⃗⃗⃗ =(x −1,y −3) , BC ⃗⃗⃗⃗⃗ =(−2,1) , ∴ {x −1=−2y −3=1 ,解得x=-1,y=4,即D (-1,4), 故点D 对应的复数为-1+4i .【点评】:本题主要考查复数的运算法则,以及平行四边形的性质,属于中档题.20.(问答题,12分)某从事智能教育技术研发的科技公司开发了一个智慧课堂项目,并且在甲、乙两个学校的高一学生中做用户测试,经过一个阶段的试用,为了解智慧课堂对学生学习的促进情况该公司随机抽取了200名学生,对他们“任意角和弧度制”知识点掌握情况进行调查,样本调查结果如表:(Ⅰ)从两校高一学生中随机抽取1人,估计该学生对“任意角和弧度制”知识点基本掌握的概率;(Ⅱ)完成下面2×2列联表,并分析是否有99%的把握认为基本掌握“任意角和弧度制”知识点与使用智慧课堂有关?【正确答案】:【解析】:(I )根据已知条件,结合古典概型的概率公式,即可求解. (II )结合独立性检验公式,即可求解.【解答】:解:(I )在两所学校被调查的200名学生中,对“任意角和弧度制”知识点基本掌握的学生有140人,所以估计从两校高一学生中随机抽取1人,该学生对“任意角和弧度制”知识点基本掌握的概率为 140200=0.7 . (II )2×2列联表如下:∵ K 2=100×100×140×60≈ 9.524>6.635,∴有99%的把握认为基本掌握“任意角和弧度制“知识点与使用智慧课堂有关.【点评】:本题主要考查独立性检验公式,考查计算能力,属于基础题.21.(问答题,12分)在直角坐标系xOy 中,曲线C 1的参数方程为 {x =2+2cosθy =2sinθ (θ为参数),曲线C 2的方程为x+y-6=0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)若射线α= π4分别交C 1,C 2于A ,B 两点(点A 异于极点),求|AB|.【正确答案】:【解析】:(Ⅰ)根据参数方程,直角坐标方程及极坐标方程的转化关系,直接求解即可; (Ⅱ)利用参数的几何意义直接求解即可.【解答】:解:(Ⅰ)曲线C 1的直角坐标方程为(x-2)2+y 2=4,……………………………(2分) 曲线C 1的极坐标方程为:ρ=4cosθ,……………………………(4分)曲线C 2的极坐标方程为:ρsinθ+ρcosθ=6,即 ρsin (θ+π4)=3√2 ;………(6分) (Ⅱ)由题意可知, |OA |=ρA =2√2,|OB |=3√2 ,……………………………(9分)∴ |AB|=|OB|−|OA|=ρB−ρA=√2.……………………………(12分)【点评】:本题考查参数方程,直角坐标方程及极坐标方程的互化,以及参数的几何意义,考查运算求解能力,属于中档题.22.(问答题,0分)已知函数f(x)=|x+1|-m,m∈R,且f(x)≤0的解集为[-2,0].(Ⅰ)求m的值;(Ⅱ)设a,b,c为正数,且a+2b+3c=m,求a2+b2+c2的最小值.【正确答案】:【解析】:(Ⅰ)求解不等式f(x)≤0,结合f(x)≤0的解集为[-2,0],可得关于m的方程组,则m值可求;(Ⅱ)由(Ⅰ)可得a+2b+3c=1,再由柯西不等式求a2+b2+c2的最小值.【解答】:解:(Ⅰ)由f(x)=|x+1|-m≤0,得|x+1|≤m,∴ {m>0−m−1≤x≤m−1,∵f(x)≤0的解集为[-2,0],∴ {−m−1=−2m−1=0,解得m=1;(Ⅱ)由(Ⅰ)知a+2b+3c=1,由柯西不等式得(a2+b2+c2)(12+22+32)≥(a+2b+3c)2,∴ a2+b2+c2≥1212+22+32=114.当且仅当a=114,b= 214=17,c= 314时等号成立,∴a2+b2+c2的最小值为114.【点评】:本题考查函数的最值及其几何意义,考查柯西不等式的应用,是中档题.23.(问答题,12分)用分析法证明:对于任意a、b∈[-2,2],都有|ab+4|≥2|a+b|.【正确答案】:【解析】:要证|ab+4|≥2|a+b|,即证(ab+4)2≥4(a+b )2,再结合作差法和不等式的基本性质,即可求证.【解答】:证明:要证|ab+4|≥2|a+b|,即证(ab+4)2≥4(a+b )2, ∵a ,b∈[-2,2],∴0≤a+2≤4,-4≤a -2≤0,0≤b+2≤4,-4≤b -2≤0, ∵(ab+4)2-4(a+b )2=(a 2b 2+8ab+16)-4(a 2+2ab+b 2) =a 2b 2+16-4a 2-4b 2=(a 2-4)(b 2-4)=(a-2)(a+2)(b-2)(b+2)≥0, 故|ab+4|≥2|a+b|,即得证【点评】:本题主要考查不等式的证明,掌握分析法和综合法是解本题的关键,属于中档题. 24.(问答题,12分)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2(1+3sin 2θ)=4.在直角坐标系xOy 中,直线l 的方程为x+2y-4=0. (Ⅰ)若点M 为曲线C 1上的动点,求点M 到直线l 的距离的最小值;(Ⅱ)倾斜角为 π3 的曲线C 2过点P (-1,0),交曲线C 1于A ,B 两点,求 1|PA| + 1|PB| .【正确答案】:【解析】:(Ⅰ)求出C 1的参数方程,设出点M 的坐标,利用点到直线的距离公式以及三角函数的性质求解即可;(Ⅱ)利用参数的几何意义直接求解即可.【解答】:解:(Ⅰ)由 {x =ρcosθy =ρsinθ 得,曲线C 1的普通方程为x 2+4y 2=4,………………………(2分)可知曲线C 1的参数方程为 {x =2cosαy =sinα ,(α为参数)……………………………(3分)设点M 的坐标为(2cosα,sinα),…………………………(4分)所以点M 到直线l 的距离为 d =√5=|2√2sin(α+π4)−4|√5,……………………………(5分)当 sin (α+π4)=1 时, d min =√2√5=4√5−2√105, ∴点M 到直线l 的距离的最小值为 4√5−2√105;……………………………(6分)(Ⅱ)曲线C 2的参数方程为 {x =−1+12t y =√32t (t 为参数),……………………………(7分)代入曲线C 1得:13t 2-4t-12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则 t 1+t 2=413,t 1t 2=−1213,t 1,t 2异号,……………………………(9分)∴ 1|PA|+1|PB|=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1−t 2||t 1t 2| = √(t 1+t 2)2−4t 1t 2|t 1t 2|=2√103.………………(12分)【点评】:本题考查参数方程,普通方程以及极坐标方程的互化,考查点到直线的距离以及参数的几何意义,考查运算求解能力,属于中档题. 25.(问答题,0分)已知函数f (x )=|x+a|+|x+1|. (Ⅰ)当a=-1时,求f (x )<3x 的解集;(Ⅱ)g (x )=x 2-2x+2+a 2,若对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,求实数a 的取值范围.【正确答案】:【解析】:(Ⅰ)代入a 的值,将函数f (x )化为分段函数的形式,然后再分类讨论解不等式即可;(Ⅱ)依题意,f (x )min ≤g (x )min ,求出函数f (x )和g (x )在定义域上的最小值,解不等式即可.【解答】:解:(Ⅰ)当a=-1时, f (x )={−2x ,x <−12,−1≤x ≤12x ,x >1,当x <-1时,-2x <3x ,解得x∈∅,……………………………(3分) 当-1≤x≤1时,2<3x ,解得 23<x ≤1,……………………………(4分) 当x >1时,2x <3x ,解得x >1,……………………………(5分)综上,原不等式的解集为 {x|x >23} ;.……………………………(5分) (Ⅱ)因为x∈R 时,f (x )=|x+a|+|x+1|≥|x+a -x-1|=|a-1|,当且仅当(x+a )(x+1)≤0时等号成立,即f (x )min =|a-1|,……………………………(7分) 因为g (x )=x 2-2x+2+a 2,所以 g (x )min =g (1)=a 2+1 ,……………………………(8分) 因为对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,等价于f (x )min ≤g (x )min ,所以|a-1|≤a 2+1,……………………………(10分) 因为a 2+1>0,所以-a 2-1≤a -1≤a 2+1,解得a≤-1或a≥0,所以实数a 的取值范围为(-∞,-1]∪[0,+∞).……………………………(12分)【点评】:本题考查绝对值不等式的解法及其性质,考查分类讨论思想及运算求解能力,属于中档题.26.(问答题,12分)目前,新冠病毒引起的疫情仍在全球肆虐在党中央的正确领导下,全国人民团结一心,使我国疫情得到了有效的控制.其中,各大药物企业积极投身到新药的研发中.汕头某药企为评估一款新药的药效和安全性,组织一批志愿者进行临床用药实验,结果显示临床疗效评价指标A 的数量y 与连续用药天数x 具有相关关系.刚开始用药时,指标A 的数量y 变化明显,随着天数增加,y 的变化趋缓.根据志愿者的临床试验情况,得到了一组数据(x i ,y i ),i=1,2,3,4,5,…,10,x i 表示连续用药i 天,y i 表示相应的临床疗效评价指标A 的数值.该药企为了进一步研究药物的临床效果,建立了y 关于x 的两个回归模型: 模型 ① :由最小二乘公式可求得y 与x 的线性回归方程: y ̂=2.50x −2.50 ;模型 ② :由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a 的附近,令t=lnx ,则有 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 , ∑t i 10i=1y i =569.00 , ∑t i 210i=1=50.92 .(1)根据所给的统计量,求模型 ② 中y 关于x 的回归方程;(2)根据下列表格中的数据,说明哪个模型的预测值精度更高、更可靠.(3)根据(2)中精确度更高的模型,预测用药一个月后,疗效评价指标相对于用药半个月的变化情况(一个月以30天计,结果保留两位小数). 附:样本(t i i i i=1i ∑(t i −t)2ni=1 y t 相关指数 R 2=1−i 2n i=1∑(y −y )2n ,参考数据:ln2≈0.6931.【正确答案】:【解析】:(1)根据已知条件,结合最小二乘法公式,即可求解. (2)通过比较二者的相关系数,即可求解.(3)分别求出连续用药30天后,连续用药15天后的y 值,再对二者作差,即可求解.【解答】:解:(1)由题意可知 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 ,可得 t =2.20 , y =23 , b ̂=∑(t i −t)ni=1(y i −y )∑(t i −t)2n i=1 = ∑t i ni=1y i −10t•y ∑t i 2n i=1−10t2 = 569−10×2.2×2350.92−10×2.2×2.2=25 , 则 a ̂=y −b̂t =23−25×2.20=−32 , 所以模型 ② 中y 关于x 的回归方程 y ̂=25lnx −32 . (2)由表格中的数据,可得102.28>36.19,即102.28∑(y i −y )10i=1236.19∑(y −y )210所以模型 ① 的R 2小于模型 ② ,说明回归模型 ② 刻画的拟合效果更好, (3)根据模型 ② ,当连续用药30天后, y ̂30=25ln30−32 , 连续用药15天后, y ̂15=25ln15−32 , ∵ y ̂30−y ̂15=25ln2=17.3275≈17.33 ,∴用药一个月后,疗效评价指标相对于用药半个月提高17.33.【点评】:本题主要考查线性回归方程的求解,考查转化能力,属于中档题.。
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)
2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)已知集合A={﹣1,0,1,2},B={x|(x+1)(x﹣2)<0},则A∩B=()A.{0,1}B.{﹣1,0}C.{﹣1,0,1}D.{0,1,2}2.(4分)与命题“若a∈M,则b∈M”等价的命题是()A.若a∈M,则b∉M B.若b∈M,则a∉M C.若b∉M,则a∈M D.若b∉M,则a∉M3.(4分)已知a>b,则下列不等式恒成立的是()A.a2>b2B.<C.a2>ab D.a2+b2>2ab4.(4分)设f(x)=,则f(f(4))=()A.﹣1 B.C.D.5.(4分)设a=0.91.1,b=1.10.9,c=log0.91.1,则a,b,c的大小关系正确的是()A.b>a>c B.a>b>c C.c>a>b D.a>c>b6.(4分)函数f(x)=﹣log3x的零点所在的区间为()A.(0,)B.(,1)C.(1,3) D.(3,4)7.(4分)设p:x2﹣x﹣20≤0,q:≥1,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(4分)若变量x,y满足,则2x﹣y的最大值是()A.﹣2 B.3 C.7 D.99.(4分)设f(x)=sinx﹣x,则下列说法正确的是()A.f(x)是有零点的偶函数B.f(x)是没有零点的奇函数C.f(x)既是奇函数又是R上的增函数D.f(x)既是奇函数又是R上的减函数10.(4分)已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()A.B. C. D.11.(4分)当x∈(0,3)时,关于x的不等式e x﹣x﹣2mx>0恒成立,则实数m的取值范围是()A.(﹣∞,)B.(,+∞)C.(﹣∞,e+1)D.(e+1,+∞)12.(4分)定义在R上的奇函数f(x)满足f(﹣1)=0,且当x>0时,f(x)>xf′(x),则下列关系式中成立的是()A.4f()>f(2)B.4f()<f(2)C.f()>4f(2)D.f ()f(2)>0二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)lg+lg6=.14.(3分)已知i是虚数单位,复数z满足zi=1+i,则z=.15.(3分)已知关于x的不等式tx2﹣5x﹣t2+5<0的解集为{x|1<x<m},则m+t=.16.(3分)过原点作曲线y=e x(其中e为自然对数的底数)的切线l,若点M(,a+2b))(a≥0,b≥0)在切线l上,则a+b的最小值为.三、解答题17.(10分)设二次函数f(x)=mx2﹣nx(m≠0),已知f(x)的图象的对称轴为x=﹣1,且f(x)的图象与直线y=x只有一个公共点.(1)求f(x)的解析式;(2)若关于x的不等式e f(x)>在x∈R时恒成立(其中e为自然对数的底数),求实数t的取值范围.18.(10分)为了减少能源损耗,某工厂需要给生产车间建造可使用20年的隔热层.已知建造该隔热层每厘米厚的建造成本为3万元.该生产车间每年的能源消耗费用M(单位:万元)与隔热层厚度x(单位:厘米)满足关系:M(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为7.5万元,设f(x)为隔热层建造费用与20年的能源消耗费用只和.(1)求k的值及f(x)的表达式;(2)试问当隔热层修建多厚时,总费用f(x)达到最少?并求出最少费用.19.(10分)已知函数f(x)=(1﹣2a)lnx+ax+,其中a∈R.(1)当a=1时,求f(x)的极值;(2)记函数g(x)=f(x)+(2a﹣3)lnx﹣,若g(x)在区间[1,4]上单调递减,求实数a的取值范围.四、选修4-4:坐标系与参数方程20.(10分)在直角坐标系xOy中,设直线l:(t为参数)与曲线C:(φ为参数)相交于A、B两点.(1)若以坐标原点为极点,x轴的正半轴为极轴,求直线l的极坐标方程;(2)设点P(2,),求|PA|+|PB|的值.五、选修4-5:不等式选讲21.已知函数f(x)=|x+1|+|x﹣5|的最小值为m(1)求m的值;(2)若a,b,c为正实数,且a+b+c=m,求证:a2+b2+c2≥12.2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)已知集合A={﹣1,0,1,2},B={x|(x+1)(x﹣2)<0},则A∩B=()A.{0,1}B.{﹣1,0}C.{﹣1,0,1}D.{0,1,2}【分析】求出集合B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣1<x<2,即B={x|﹣1<x<2},∵A={﹣1,0,1,2},∴A∩B={0,1},故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)与命题“若a∈M,则b∈M”等价的命题是()A.若a∈M,则b∉M B.若b∈M,则a∉M C.若b∉M,则a∈M D.若b∉M,则a∉M【分析】求出命题“若a∈M,则b∈M”的逆否命题,由此能求出命题“若a∈M,则b∈M”等价的命题.【解答】解:命题“若a∈M,则b∈M”的逆否命题是:“若b∉M,则a∉M”,原命题与逆否命题是等价命题,∴命题“若a∈M,则b∈M”等价的命题是“若b∉M,则a∉M”.故选:D.【点评】本题考查命题的等价命题的求法,是基础题,解题时要认真审题,注意原命题与逆否命题是等价命题的合理运用.3.(4分)已知a>b,则下列不等式恒成立的是()A.a2>b2B.<C.a2>ab D.a2+b2>2ab【分析】通过取值,利用不等式的基本性质即可判断出结论.【解答】解:A.取a=1,b=﹣2,满足a>b,可得a2<b2,因此A不正确;B.取a=1,b=﹣2,满足a>b,可得>,因此B不正确;C.取a=﹣1,b=﹣2,满足a>b,可得a2<ab,因此C不正确;D.∵a>b,∴a2+b2﹣2ab=(a﹣b)2>0,∴a2+b2>2ab,因此D正确.故选:D.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4.(4分)设f(x)=,则f(f(4))=()A.﹣1 B.C.D.【分析】先求出f(4)=1﹣=﹣1,从而f(f(4))=f(﹣1)=2﹣1,由此能求出结果.【解答】解:∵f(x)=,∴f(4)=1﹣=﹣1,f(f(4))=f(﹣1)=2﹣1=.故选:C.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.5.(4分)设a=0.91.1,b=1.10.9,c=log0.91.1,则a,b,c的大小关系正确的是()A.b>a>c B.a>b>c C.c>a>b D.a>c>b【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=0.91.1∈(0,1),b=1.10.9>1,c=log0.91.1<0,则b>a>c,故选:A.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.6.(4分)函数f(x)=﹣log3x的零点所在的区间为()A.(0,)B.(,1)C.(1,3) D.(3,4)【分析】根据零点的判定定理,对选项逐一验证即可.【解答】解:∵f()=4>0,f(1)=2>0,f(3)=<0,f(1)f(3)<0,一定有零点,故选:C.【点评】本题主要考查零点的判定定理.属基础题.7.(4分)设p:x2﹣x﹣20≤0,q:≥1,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】分别解出不等式,即可判断出结论.【解答】解:p:x2﹣x﹣20≤0,解得﹣4≤x≤5,∴x∈[﹣4,5]=A.q:≥1,解得﹣4<x≤5.∴x∈(﹣4,5].则p是q的必要不充分条件.故选:B.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(4分)若变量x,y满足,则2x﹣y的最大值是()A.﹣2 B.3 C.7 D.9【分析】由约束条件作出可行域,然后结合2x﹣y的几何意义,求得2x﹣y的最大值.【解答】解:由约束条件,作出可行域如图,设z=2x﹣y,则y=2x﹣z,当此直线经过图中B时,在y轴的截距最小,z最大,由得到B(3,﹣1),∴2x﹣y的最大值为6+1=7;故选C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.9.(4分)设f(x)=sinx﹣x,则下列说法正确的是()A.f(x)是有零点的偶函数B.f(x)是没有零点的奇函数C.f(x)既是奇函数又是R上的增函数D.f(x)既是奇函数又是R上的减函数【分析】根据题意,由函数f(x)的解析式,求出f(﹣x)并分析与f(x)的关系,可得f(x)为奇函数,对其求导可得f′(x)≤0,可得函数f(x)为减函数,由奇函数的性质分析可得f(0)=0,即函数f(x)存在零点;由此分析选项即可得答案.【解答】解:根据题意,对于函数f(x)=sinx﹣x,有f(﹣x)=sin(﹣x)﹣(﹣x)=﹣(sinx﹣x)=﹣f (x),则函数f(x)为奇函数,其导数f′(x)=cosx﹣1≤0,即函数f(x)为减函数,对于函数f(x)=sinx﹣x,有f(0)=0﹣0=0,则函数f(x)存在零点;分析选项可得:D符合;故选:D.【点评】本题考查函数的奇偶性、单调性的判定,涉及函数零点的判定,注意掌握函数的奇偶性、单调性以及零点的判定方法.10.(4分)已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()A.B. C. D.【分析】根据题意,设函数y=xf′(x)与x轴负半轴交于点M(m,0),且﹣2<m<﹣1;与x轴正半轴交于点N(1,0),结合函数y=xf′(x)的图象分段讨论y=f′(x)的符号,进而分析函数y=f(x)的单调性,分析选项即可得答案.【解答】解:根据题意,设函数y=xf′(x)与x轴负半轴交于点M(m,0),且﹣2<m<﹣1;与x轴正半轴交于点N(1,0),当x<m时,x<0而y=xf′(x)<0,则有y=f′(x)>0,函数y=f(x)在(﹣∞,m)上为增函数;当m<x<0时,x<0而y=xf′(x)>0,则有y=f′(x)<0,函数y=f(x)在(m,0)上为减函数;当0<x<1时,x>0而y=xf′(x)<0,则有y=f′(x)<0,函数y=f(x)在(0,1)上为减函数;当x>1时,x>0而y=xf′(x)>0,则有y=f′(x)>0,函数y=f(x)在(1,+∞)上为增函数;分析选项可得:C符合;故选:C.【点评】本题考查函数的导数与函数单调性的关系,涉及函数的图象以及单调性,关键是分析出导数的符号.11.(4分)当x∈(0,3)时,关于x的不等式e x﹣x﹣2mx>0恒成立,则实数m的取值范围是()A.(﹣∞,)B.(,+∞)C.(﹣∞,e+1)D.(e+1,+∞)【分析】由题意可得2m+1<在(0,3)的最小值,求出f(x)=的导数和单调区间,可得f(x)的最小值,解不等式即可得到m的范围.【解答】解:当x∈(0,3)时,关于x的不等式e x﹣x﹣2mx>0恒成立,即为2m+1<在(0,3)的最小值,由f(x)=的导数为f′(x)=,当0<x<1时,f′(x)<0,f(x)递减;当1<x<3时,f′(x)>0,f(x)递增.可得f(x)在x=1处取得最小值e,即有2m+1<e,可得m<.故选:A.【点评】本题考查不等式恒成立问题的解法,注意运用参数分离和构造函数法,运用导数求出单调区间和最值,考查运算能力,属于中档题.12.(4分)定义在R上的奇函数f(x)满足f(﹣1)=0,且当x>0时,f(x)>xf′(x),则下列关系式中成立的是()A.4f()>f(2)B.4f()<f(2)C.f()>4f(2)D.f ()f(2)>0【分析】先根据f(x)>xf′(x),判断函数的单调性,可得到答案.【解答】解:当x>0时,f(x)>xf′(x),[]′=<0,即x>0时是减函数,所以,即:4f()<f(2).故选:B.【点评】本题主要考查了函数单调性与导数的关系,考查构造法的应用.在判断函数的单调性时,常可利用导函数来判断.二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)lg+lg6=1.【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg+lg6=lg5﹣lg3+lg2+lg3=lg5+lg2=lg10=1.故答案为:1.【点评】本题考查对数的应用,考查计算能力.14.(3分)已知i是虚数单位,复数z满足zi=1+i,则z=1﹣i.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由zi=1+i,得.故答案为:1﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.15.(3分)已知关于x的不等式tx2﹣5x﹣t2+5<0的解集为{x|1<x<m},则m+t=5.【分析】由题意,不等式为一元二次不等式并且t>0,对应方程的根为1,m,根据韦达定理得到m.t即可.【解答】解:由题意,方程tx2﹣5x﹣t2+5=0的两根为1,m,所以,解得,所以m+t=5;故答案为:5.【点评】本题关键是明确一元二次不等式的解集与对应二次方程的关系;利用韦达定理得到关于m,t的方程组解之.16.(3分)过原点作曲线y=e x(其中e为自然对数的底数)的切线l,若点M(,a+2b))(a≥0,b≥0)在切线l上,则a+b的最小值为1.【分析】设出切点坐标,利用导数可得切线方程,再由切线过原点可得切点坐标,进一步得到切线方程,把M坐标代入,可得a,b关系式,求出b的取值范围,把a+b化为关于b的函数,利用导数求得a+b的最小值.【解答】解:设切点为P(),则,∴过切点的切线方程为y﹣=.把原点坐标代入,可得,则x0=1.∴切线方程为y=ex.∵点M(,a+2b))(a≥0,b≥0)在切线l上,∴a+2b=e•=2﹣ab.则a+2b=2﹣ab,即a=.∴a+b=.令g(b)=(0≤b≤1).则g′(b)=≤0在[0,1]上恒成立.∴g(b)=(0≤b≤1)为减函数.则g(b)min=g(1)=1.故答案为:1.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用导数求函数在闭区间上的最值,是中档题.三、解答题17.(10分)设二次函数f(x)=mx2﹣nx(m≠0),已知f(x)的图象的对称轴为x=﹣1,且f(x)的图象与直线y=x只有一个公共点.(1)求f(x)的解析式;(2)若关于x的不等式e f(x)>在x∈R时恒成立(其中e为自然对数的底数),求实数t的取值范围.【分析】(1)先利用对称轴方程求得n=﹣2m;再利用条件求出m和n之间的另一关系式,联立即可求f(x)的解析式;(2)先利用e>1把原不等式转化为x2+x>tx﹣2在x∈R时恒成立(其中e为自然对数的底数),再分类讨论,根据基本不等式即可求出t的范围.【解答】解:(1)∵由f(x)=mx2﹣nx(a≠0)的对称轴方程是x=﹣1,∴n=﹣2m;∵函数f(x)的图象与直线y=x只有一个公共点,∴有且只有一解,即mx2﹣(n+1)x=0有两个相同的实根;故△=(n+1)2=0,解得n=﹣1,m=∴f(x)=x2+x.(2)∵e>1,不等式e f(x)>在x∈R时恒成立∴f(x)>tx﹣2.∵x2+x>tx﹣2在x∈R时恒成立,∴tx<x2+x+2,当x>0时,t<++1,∵++1≥2+1=3,当且仅当x=2时取等号,∴t<3,当x<0,t>++1,∵++1=﹣(﹣﹣)+1≤﹣2+1=﹣1,当且仅当x=﹣2时取等号,∴t>﹣1,当x=0时,恒成立,综上所述t的取值范围为(﹣1,3).【点评】本题考查了二次函数解析式的求法以及函数恒成立问题.二次函数解析式的确定,应视具体问题,灵活的选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移,对称,函数的周期性,奇偶性等知识有机的结合在一起.18.(10分)为了减少能源损耗,某工厂需要给生产车间建造可使用20年的隔热层.已知建造该隔热层每厘米厚的建造成本为3万元.该生产车间每年的能源消耗费用M(单位:万元)与隔热层厚度x(单位:厘米)满足关系:M(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为7.5万元,设f(x)为隔热层建造费用与20年的能源消耗费用只和.(1)求k的值及f(x)的表达式;(2)试问当隔热层修建多厚时,总费用f(x)达到最少?并求出最少费用.【分析】(1)由建筑物每年的能源消耗费用M(单位:万元)与隔热层厚度x(单位:cm)满足关系:M(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为7.5万元.可得M(0)=7.5,得k=15,进而得到M(x)=.建造费用为M1(x)=3x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),即可得到f(x)的表达式;(2)由(1)中所求的f(x)的表达式,利用导数法,求出函数f(x)的单调性,然后根据函数单调性求出总费用f(x)的最小值.【解答】解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为M(x)=(0≤x≤10),再由M(0)=7.5,得k=15,因此M(x)=.而建造费用为M1(x)=3x,最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20M(x)+M1(x)=20×+3x=+3x(0≤x≤10);(2)f′(x)=3﹣,令f'(x)=0,解得x=8,或x=﹣12(舍去).当0<x<8时,f′(x)<0,当8<x<10时,f′(x)>0,故x=8是f(x)的最小值点,对应的最小值为f(8)=.故当隔热层修建8cm厚时,总费用达到最小值为54万元.【点评】本题考查函数模型的选择及应用,考查了简单的数学建模思想方法,训练了利用导数求函数的最值,是中档题.19.(10分)已知函数f(x)=(1﹣2a)lnx+ax+,其中a∈R.(1)当a=1时,求f(x)的极值;(2)记函数g(x)=f(x)+(2a﹣3)lnx﹣,若g(x)在区间[1,4]上单调递减,求实数a的取值范围.【分析】(1)先求导,再根据导数和极值的关系即可求出;(2)先求导,再构造函数,得到h(x)=ax2﹣2x+(3a﹣2)≤0在[1,4]上恒成立,根据方程根的关系即可求出a的取值范围.【解答】解:(1):当a=1时,f(x)=﹣lnx+x+,x>0,∴f′(x)=﹣+1﹣==,令f′(x)=0,解得x=2,当x∈(2,+∞)时,f′(x)>0,函数f(x)单调递增,当x∈(0,2)时,f′(x)<0,函数f(x)单调递减,当x=2时,函数f(x)有极小值,即为f(1)=3,无极大值;(2)函数g(x)=f(x)+(2a﹣3)lnx﹣=(1﹣2a)lnx+ax++(2a﹣3)lnx﹣=﹣2lnx+ax﹣,∴g′(x)=﹣+a+=,设h(x)=ax2﹣2x+(3a﹣2)∵g(x)在区间[1,4]上单调递减,∴h(x)≤0,在[1,4]上恒成立,当a=0时,h(x)=﹣2x﹣2<0在[1,4]上恒成立,满足题意,当a≠0时,∴或即,解得a≤﹣或0<a≤,综上所述a的取值范围为(﹣∞,﹣]∪[0,]【点评】本题考查了导数和函数的极值和单调性的关系,以及函数与方程根的关系,考查了转化思想,以及分类讨论的思想,属于中档题.四、选修4-4:坐标系与参数方程20.(10分)在直角坐标系xOy中,设直线l:(t为参数)与曲线C:(φ为参数)相交于A、B两点.(1)若以坐标原点为极点,x轴的正半轴为极轴,求直线l的极坐标方程;(2)设点P(2,),求|PA|+|PB|的值.【分析】(1)直线l:(t为参数),消去参数可得普通方程,利用互化公式可得极坐标方程.(2)曲线C:(φ为参数),利用平方关系化为普通方程.把直线l:(t为参数)代入椭圆方程可得:13t2+56t+48=0,利用根与系数的关系可得|PA|+|PB|=|t1|+|t2|=|t1+t2|.【解答】解:(1)直线l:(t为参数),可得:x﹣y﹣=0,可得极坐标方程:﹣ρsinθ﹣=0;(2)曲线C:(φ为参数),化为普通方程:=1.把直线l:(t为参数)代入椭圆方程可得:13t2+56t+48=0,可得:t1+t2=﹣,t1t2=,∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与椭圆相交关系、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲21.已知函数f(x)=|x+1|+|x﹣5|的最小值为m(1)求m的值;(2)若a,b,c为正实数,且a+b+c=m,求证:a2+b2+c2≥12.【分析】(1)通过讨论x的范围,求出f(x)的最小值即m的值即可;(2)根据(a2+b2+c2)(12+12+12)≥(a+b+c)2=36,可得a2+b2+c2 的最小值为12.【解答】解:(1)f(x)=|x+1|+|x﹣5|,x≥5时,f(x)=x+1+x﹣5=2x﹣4,此时f(x)的最小值是6,﹣1≤x≤5时,f(x)=x+1﹣x+5=6,x≤﹣1时,f(x)=﹣x﹣1﹣x+5=﹣2x+4,此时f(x)的最小值是6,故f(x)的最小值是6,故m=6;(2)由(1)得a+b+c=6,因为a,b,c 均为正实数,由柯西不等式得,(a2+b2+c2)(12+12+12)≥(a+b+c)2=36,当且仅当a=b=c=2时等号成立,∴a2+b2+c2 的最小值为12.【点评】本题考查了解绝对值不等式问题,考查柯西不等式的应用,是一道中档题.。
高二下学期文科数学期末复习试题含答案
高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。
高二下学期数学期末试卷及答案(文科)
下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。
1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。
高二(下)期末数学复习试卷三(文科)
高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。
高二数学文科期末测试题
高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
高二数学(文科)第二学期期末考试试题(含参考答案)
A.
或
B.
或
C.
或
D.
或
【答案】 C 【解析】设 A(x 1,y1),B(x 2,y2), 又 F(1,0), 则 =(1-x 1,-y1), =(x 2-1,y 2), 由题意知 =3 ,
因此
即
又由 A 、B 均在抛物线上知
解得
直线 l 的斜率为
=± ,
因此直线 l 的方程为 y= (x-1) 或 y=- (x-1). 故选 C.
【答案】 D
【解析】因为特称命题的否定是全称命题,
为奇函数 不为偶函数
所以 , 命题 p: ? a∈R,f(x) 为偶函数 , 则¬ p 为: ? a∈R,f(x) 不为偶函数
故选: D
7. 某种产品的广告费支出与校舍(单位元)之间有下表关系(
)
2
4
5
6
) 8
30
40
60
50
70
与 的线性回归方程为
2016-2017 学年第二学期期末检测
高二数学(文科)试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分, 共 60 分 . 在每小题给出的四个选项中,只有一 项是符合题目要求的 .
1. 若复数
,则
()
A.
B.
C.
D.
【答案】 C
【解析】由题意得,
,故选 C.
2. 点 极坐标为
区分
与
.
5. 已知双曲线
的离心率为 2,则双曲线 的渐近线的方程为(
)
A.
B.
C.
D.
【答案】 B
【解析】根据题意 , 双曲线的方程为:
2021年高二下学期期末考试文科数学试卷纯word版含解析
绝密★启用前2021年高二下学期期末考试文科数学试卷纯word 版含解析【解析】试题分析:i i i i i i z --=--=--+---=-=25)2(5)2)(2()2(525 ,,故选B. 考点:复数的除法、共轭复数.2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( ).A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B.【解析】试题分析:“三角形的内角中至少有一个不大于60度”的假设是“三角形的内角中没有一个不大于60度”,即“三内角都大于60度”.考点:反证法.3.函数f (x )=2x ﹣sinx 在(﹣∞,+∞)上( ).A .有最小值B .是减函数C .有最大值D .是增函数【答案】D.【解析】试题分析:,;因为恒成立,所以在上是增函数.考点:利用导数判断函数的单调性.4.若f (x )=x 3,f′(x 0)=3,则x 0的值是( ).A .1B .﹣1C .±1 D.3【答案】C.【解析】试题分析:,;则,解得.考点:导数的计算.5.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是().A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确【答案】C.【解析】试题分析:若k>6.635,我们有99%的把握认为吸烟与患肺病有关系,但不表示有99%的可能患有肺病,故A错误;也不表示在100个吸烟的人中必有99人患有肺病,故B错误;若从统计量中求出有95%的是吸烟与患肺病的比例,不表示有5%的可能性使得推断出现错误,故C错误;因此选D.考点:独立性检验的基本思想.6.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1 B.y=﹣2x+1 C.y=2x﹣1 D.y=2x+1【答案】D.【解析】试题分析:,,则切线斜率,切线方程为,即.考点:导数的几何意义.7.已知函数f(x)的导函数为f′(x),满足f(x)=2xf′(2)+x3,则f′(2)等于(). A.﹣8 B.﹣12 C.8 D.12【答案】B.【解析】试题分析:,;令,则,得.考点:导数的计算.8.下列推理中属于归纳推理且结论正确的是()A.由a n=2n﹣1,求出S1=12,S2=22,S3=32,…,推断:数列{a n}的前n项和S n=n2B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对都成立,推断:f(x)=xcosx为奇函数C.由圆x2+y2=r2的面积S=πr2,推断:椭圆=1的面积S=πabD.由,…,推断:对一切,(n+1)2>2n【答案】A.【解析】试题分析:选项A:为归纳推理,且,是等差数列,首项,公差,则,故A正确;选项B:为演绎推理;选项C:为类比推理;选项D:为归纳推理,当时,,故结论错误;故选A.考点:推理.9.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;③线性回归方程必过();④在一个2×2列联中,由计算得K 2=13.079则有99%的把握确认这两个变量间有关系;其中错误 的个数是( ).A .0B .1C .2D .3【答案】B.【解析】试题分析:①将一组数据中的每个数据都加上或减去同一个常数后,因为,其稳定性不变,所以方差恒不变;②设有一个回归方程,变量x 增加一个单位时,y 平均减少5个单位,而不是增加5个单位; ③线性回归方程必过();④在一个2×2列联中,由计算得K 2=13.079,,且,所以有99%的把握确认这两个变量间有关系;因此,①③④正确,②错误,故选B.考点:命题真假的判定.10.已知,则导函数f ′(x )是( ).A .仅有最小值的奇函数B .既有最大值,又有最小值的偶函数C .仅有最大值的偶函数D .既有最大值,又有最小值的奇函数【答案】D.【解析】试题分析:,; )()sin ()sin()(''x f x x x x x f -=+-=-+-=- ,即是奇函数,且在上单调递增,则有最大值,也有最小值;故选D考点:函数的性质.11.按边对三角形进行分类的结构图,则①处应填入 .【答案】等边三角形.【解析】试题分析:按三角形的三边将三角形进行分类:⎪⎩⎪⎨⎧⎩⎨⎧非等腰三角形角形腰与底边不等的等腰三等边三角形等腰三角形三角形,因此,①填底边三角形. 考点:框图.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)12.由下列事实:(a ﹣b )(a+b )=a 2﹣b 2(a ﹣b )(a 2+ab+b 2)=a 3﹣b 3,(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4﹣b 4,(a ﹣b )(a 4+a 3b+a 2b 2+ab 3+b 4)=a 5﹣b 5,可得到合理的猜想是 .【答案】111221))((++----=++⋅⋅⋅+++-n n n n n n n b a b ab b a b a a b a .【解析】试题分析:由所给等式可以发现:等式左边由两个因式相乘;第一个因式相同,是;第二个因式是和的形式,每一项为的形式,且按降次排列,按升次排列,且;等式右边为差的形式,次数比左边第二个因式的第一项次数大1,;因此,我们可得到合理的猜想是111221))((++----=++⋅⋅⋅+++-n n n n n n n b a b ab b a b a a b a . 考点:归纳推理.13.已知物体的运动方程为s=t 2+(t 是时间,s 是位移),则物体在时刻t=2时的速度为 .【答案】.【解析】试题分析:,,;即物体在时刻t=2时的速度为.考点:导数的物理意义.14.有一段“三段论”推理是这样的:“对于可导函数f (x ),如果f′(x 0)=0,那么x=x 0是函数f (x )的极值点;因为函数f (x )=x 3在x=0处的导数值f′(0)=0,所以x=0是函数f (x )=x 3的极值点.”以上推理中(1)大前提错误;(2)小前提错误;(3)推理形式正确;(4)结论正确你认为正确的序号为 .【答案】(1)(3).【解析】试题分析:该“三段论”的推理形式符合“S 是P ,M 是S ,M 是P ”的推理形式,所以推理形式是正确的;对于可导函数f (x ),如果f′(x 0)=0,且在的两侧,的符号相反,那么x=x 0是函数f (x )的极值点,所以题中所给的大前提是错误的;而小前提是正确的,结论是错误的.考点:演绎推理.15.已知函数f (x )=ax 3+bx 2+cx+d 的图象与x 轴有三个不同交点(0,0),(x 1,0),(x 2,0),且f (x )在x=1,x=2时取得极值,则x 1•x 2的值为 .【答案】6.【解析】试题分析:因为的图像过,所以,即;因为f (x )在x=1,x=2时取得极值,所以的两根为1,2,则,即; 则)629(629)(223+-=+-=x x ax ax x a ax x f ,所以. 考点:三次函数的零点、函数的极值.三、解答题(题型注释)16.已知复数z=1﹣i (i 是虚数单位)(Ⅰ)计算z 2;(Ⅱ)若z 2+a ,求实数a ,b 的值.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:解题思路:(Ⅰ)利用两数差的完全平方公式求解即可;(Ⅱ)先代入化简等式的左边,再利用复数相等的定义列出关于的方程组即可.规律总结:复数的考查,以复数的代数形式运算(加、减、乘、除)为主,灵活正确利用有关公式和复数相等的定义进行求解.试题解析:(Ⅰ);(Ⅱ)由得,即,所以,解得,.考点:1.复数的运算;2.复数相等的定义.17.(Ⅰ)求证:+<2(Ⅱ)已知a >0,b >0且a+b >2,求证:,中至少有一个小于2.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】试题分析:解题思路:(Ⅰ)用分析法进行证明;(Ⅱ)用反证法进行证明.规律总结:证明方法主要有:综合法、分析法、反证法,要根据所证明题目的类型,灵活选择.试题解析:(Ⅰ)证明:因为和都是正数,所以为了证明,只要证 ,只需证:,即证: ,即证: ,即证: 21,因为21<25显然成立,所以原不等式成立.(Ⅱ)证明:假设都不小于2,则, 即这与已知矛盾,故假设不成立,从而原结论成立.考点:1.分析法;2.反证法.18.某公司近年来科研费用支出x 万元与公司所获得利润y 万元之间有如下的统计数据:(Ⅰ)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程=x+;(Ⅱ)试根据(2)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.参考公式:若变量x 和y 用最小二乘法求出y 关于x 的线性回归方程为:=x+,其中:=,=﹣,参考数值:2×18+3×27+4×32+5×35=420.【答案】(Ⅰ);(Ⅱ)预测该公司科研费用支出为10万元时公司所获得的利润为64.4万元.【解析】试题分析:解题思路:(Ⅰ)利用所给公式与参考数值求解即可;(Ⅱ)利用第一问的回归方程进行求值,预测即可.规律总结:回归直线方程刻画了两个变量之间的线性相关关系,可以变量的误差来衡量其拟合效果.试题解析:(Ⅰ)2345182732353.5,2844x y ++=+++====, ,,412242144204 3.528420392 5.6,5449544 3.54i i i i i x y x yb xx --∧=-=--⨯⨯-====--⨯-∑∑所求线性回归方程为: ;(Ⅱ)当时,(万元),故预测该公司科研费用支出为10万元时公司所获得的利润为64.4万元.考点:线性回归方程.19.设函数f (x )=ax 3+bx 2+c ,其中a+b=0,a ,b ,c 均为常数,曲线y=f (x )在(1,f (1))处的切线方程为x+y ﹣1=0.(Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数f (x )的单调区间.【答案】(Ⅰ);(Ⅱ)增区间为,减区间为.【解析】试题分析:解题思路:(Ⅰ)求导,利用导数的几何意义求切线斜率,进而求切线方程;(Ⅱ)求导,解不等式求单调递增区间,解不等式求单调递减区间.规律总结:1.导数的几何意义求切线方程:;2.求函数的单调区间的步骤:①求导函数;②解;③得到区间即为所求单调区间.试题解析:(Ⅰ)因为 ,所以,又因为切线x+y=1的斜率为,所以,解得,,由点(1,c)在直线x+y=1上,可得1+c=1,即c=0,;(Ⅱ)由(Ⅰ)由,解得,当时;当时;当时,所以的增区间为,减区间为.考点:1.导数的几何意义;2.利用导数求函数的单调区间.20.某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为[80,90)、[90,100)、[100,110)、[110,120)、[120,130),由此得到两个班测试成绩的频率分布直方图:(Ⅰ)完成下面2×2列联表,你能有97.5%的把握认为“这两个班在这次测试中成绩的差成绩小于100分成绩不小于100分合计甲班a= _________b= _________50乙班c=24d=2650合计e= _________f= _________100P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.204 6.6357.87910.828【答案】(Ⅰ)有97.5%的把握认为这两个班在这次测试中成绩的差异与实施课题实验有关;【解析】试题分析:解题思路:(Ⅰ)补充完整列联表,利用公式求值,结合临界值表进行判断.规律总结:独立性检验的基本思想.试题解析:(Ⅰ)由题意求得:,,有97.5%的把握认为这两个班在这次测试中成绩的差异与实施课题实验有关考点:1.独立性检验的基本思想;2.频率分布直方图.21.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】试题分析:解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-,所以a≤-.故实数a的取值范围为{a|a≤-}.考点:1.利用导数求函数的单调区间;2.根据函数的单调性求参数.29069 718D 熍40594 9E92 麒\ 40509 9E3D 鸽32195 7DC3 緃26921 6929 椩w/23796 5CF4 峴G36937 9049 遉20947 51D3 凓23349 5B35 嬵。
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={-1,1,2},B={x| (x+1)(x-2)<0 },则A∩B=()A。
{-1}B。
{1}C。
{-1,1}D。
{1,2}2.与命题“若a∈M,则b∈M”等价的命题是()A。
若a∈M,则XXXB。
若b∈M,则a∉MC。
若b∉M,则a∈MD。
b∉M,则a∉M3.已知a>b,则下列不等式恒成立的是()A。
a^2>b^2B。
a^2<b^2C。
a^2>abD。
a^2+b^2>2ab4.设f(x)= 1/(x-3),则f(f(4))=()A。
-1B。
1/13C。
1/11D。
1/75.设a=0.9^1.1,b=1.1^0.9,c=log0.9 1.1,则a,b,c的大小关系正确的是()A。
b>a>cB。
a>b>cC。
c>a>bD。
a>c>b6.函数f(x)= -log3x的零点所在的区间为()A。
(-∞,0)B。
(0,1)C。
(1,3)D。
(3,∞)7.设p:x^2-x-20≤0,q:x≥1,则p是q的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件8.若变量x,y满足x+y=3,则2x-y的最大值是()A。
-2B。
3C。
7D。
99.设f(x)=sinx-x,则下列说法正确的是()A。
f(x)是有零点的偶函数B。
f(x)是没有零点的奇函数C。
f(x)既是奇函数又是R上的增函数D。
f(x)既是奇函数又是R上的减函数10.已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()11.当x∈(0,3)时,关于x的不等式e^x-x-2mx>XXX成立,则实数m的取值范围是()A。
高二下学期(文科)数学期末考试试卷(含答案)
江西省南昌市2021学年高二下学期(文科)数学期末考试试卷一、选择题(本大题共12小题,共60.0分)1.设复数z满足,则A. 1B.C.D. 22.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图两坐标轴单位长度相同,用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是A. 线性相关关系较强,b的值为B. 线性相关关系较强,b的值为C. 线性相关关系较强,b的值为D. 线性相关关系太弱,无研究价值3.若m,n是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题是A. 若,,则B. 若,,则C. 若,,则D. 若,,,则4.在正方体中,如图,M,N分别是正方形ABCD,的中心.则过点,M,N的截面是()5. A. 正三角形 B. 正方形 C. 梯形 D. 直角三角形6.九章算术是中国古代张苍,耿寿昌所撰写的一部数学专著,成书于公元一世纪左右,内容十分丰富.书中有如下问题:“今有圆堢瑽,周四丈八尺,高一丈一尺,问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一.”这里所说的圆堢瑽就是圆柱体,它的体积底面的圆周长的平方高,则该问题中的体积为估算值,其实际体积单位:立方尺,一丈=10尺应为A. B. C. D.7.从11,12,13,14,15中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则等于A. B. C. D.8. 函数的图象大致为A. B.C. D.9. 如图,在正方体中,P ,Q ,M ,N ,H ,R 是各条棱的中点.直线平面MNP ;;,Q ,H ,R 四点共面;平面其中正确的个数为10.A. 1B. 2C. 3D. 411. 已知正三棱锥的四个顶点都在球O 的球面上,且球心O 在三棱锥的内部.若该三棱锥的侧面积为,,则球O 的表面积为 A.B.C.D.10. 如图,四棱锥P ABCD -中,PAB ∆与PBC ∆是正三角形,平面PAB ⊥平面PBC ,AC BD ⊥,则下列结论不一定成立的是A .PB AC ⊥ B .PD ⊥平面ABCD C . AC PD ⊥ D .平面PBD ⊥平面ABCD 11.如图,四棱锥中,底面为直角梯形,,,E 为PC 上靠近点C 的三等分点,则三棱锥与四棱锥的体积比为A. B. C. D.12.已知P为双曲线C:左支上一点,,分别为C的左、右焦点,M为虚轴的一个端点,若的最小值为,则C的离心率为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知x,y取值如表:x0 1 3 5 6y 1 m3m画散点图分析可知:y与x线性相关,且求得回归方程为,则__________.14.若一个圆台的母线长为l,上、下底面半径,满足,且圆台的侧面积为,则.15.甲乙两人练习射击,命中目标的概率分别为1/2和1/3,甲乙两人各射击一次,目标被命中的概率是__________.16.在平面上,我们如果用一条直线去截正方形的一个角,那么截下一个直角三角形,由勾股定理有:设想将正方形换成正方体,把截线换成截面.这时从正方体上截下一个角,那么截下一个三棱锥如果该三棱锥的三个侧面面积分别为1,2,4,则该三棱锥的底面EFG的面积是________.三、解答题(本大题共6小题,共70.0分)17在直角坐标系xOy中,曲线的参数方程为:为参数,曲线:.Ⅰ在以O为极点,x轴的正半轴为极轴的极坐标系中,求,的极坐标方程;Ⅱ射线与的异于极点的交点为A,与的交点为B,求.18.在直三棱柱中,,,D是AB的中点.求证:平面;若点P在线段上,且,求证:平面.19.BMI指数身体质量指数,英文为BodyMassIndex,简称是衡量人体胖瘦程度的一个标准,体重身高的平方.根据中国肥胖问题工作组标准,当时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如图:Ⅰ求被调查者中肥胖人群的BMI平均值;Ⅱ填写下面列联表,并判断是否有的把握认为35岁以上成人患高血压与肥胖有关.肥胖不肥胖合计高血压非高血压合计k附:,其中.20.四棱锥如图所示,其中四边形ABCD是直角梯形,,,平面ABCD,,AC与BD交于点G,COS,点M线段SA上.若直线平面MBD,求的值;若,求点A到平面SCD的距离.21.如图所示的几何体中,四边形是正方形,四边形是梯形,,且,平面平面ABC.Ⅰ求证:平面平面;Ⅱ若,,求几何体的体积.22.已知函数,.若,恒成立,求实数m的取值范围;设函数,若在上有零点,求实数a的取值范围.参考答案一选择题1-12、ABBAB BDCDB BC二填空题(13)3/2 (14)2 (15)(16)三解答题17.解:Ⅰ曲线为参数可化为普通方程:,由可得曲线的极坐标方程为,曲线的极坐标方程为.Ⅱ射线与曲线的交点A的极径为,射线与曲线的交点B的极径满足,解得,所以.18.证明:连结,设交于点O,连结OD.四边形是矩形是的中点.在中,OD分别是,AB的中点,又平面,平面,平面;,D是AB的中点,又在直三棱柱中,底面侧面,交线为AB,平面ABC,平面平面,.,,,又,∽,从而,所以,.又,平面,平面平面.19.解:Ⅰ被调查者中肥胖人群的BMI平均值;Ⅱ高血压人群中肥胖的人数为:人,不肥胖的人数为:人,非高血压人群中肥胖的人数为:,不肥胖的人数为:人,所以列联表如下:肥胖不肥胖合计高血压70 130 200非高血压230 770 1000合计300 900 1200则K 的观测值:,有的把握认为35岁以上成人患高血压与肥胖有关.20.【答案】解:连接MG.,,且AB,CD在同一平面内,,设,,得,平面MBD,平面平面,平面SAC,,故;在平面SAD内作于点N 平面ABCD ,又,,得平面SAD.平面SAD,.又,平面SCD.角SCA的余弦值为,即,又,,则,而,,求得,,即点A到平面SCD的距离为.21.证明:取BC的中点D,连接AD,D.四边形是正方形,,又平面平面ABC,平面平面.平面ABC,平面ABC .中,,,,又,平面.四边形是梯形,,且.,四边形是平行四边形,,又,,四边形是平行四边形.,平面.又平面,平面平面.Ⅱ解:由可得:三棱柱是直三棱柱,四边形是矩形,底面.直三棱柱的体积,四棱锥的体积.几何体的体积.22.解:由题意得的定义域为,.,、随x的变化情况如下表:x 3单调递减极小值单调递增由表格可知:.在上恒成立,.函数在上有零点,等价于方程在上有解.化简,得.设.则,,、随x的变化情况如下表:x 1 30 0单调递增单调递减单调递增且,,,.作出在上的大致图象如图所示当时,在上有解.故实数a的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期高二期末联考数学(文科)测试卷(本试卷满分:150分 完卷时间:120分钟)第I 卷(选择题 共50分)一、选择题1、函数12y x =-的定义域为集合A ,函数()ln 21y x =+的定义域为集合B ,则A .11,22⎛⎤- ⎥⎝⎦ B .11,22⎛⎫- ⎪⎝⎭ C .1,2⎛⎫-∞- ⎪⎝⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭2、已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为( )A .2B .4C .2±D .4±3、已知i 为虚数单位, 若复数11z =-i ,22z =+i ,则12z z =g ( )A .3-i B. 22-i C. 1+i D .22+i4、已知椭圆()222109x y a a +=>与双曲线22143x y -=有相同的焦点,则a 的值为( )A .2 B. 10 C. 4 D .105.按照程序框图(如右图)执行,第3个输出的数是( )A .7B .6C .5D .46.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A. 2B. 1+2C. 221+ D. 1+227、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x yx y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是( )A .6B .8C .10D .128、已知ABC ∆的面积2224a b c S +-=,则角C 的大小为( )A. 030 B .045 C. 060 D. 0759.如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A . 84,4.8B . 84,1.6C . 85,4D . 85,1.610.已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a =( )A .1B .21C . 14D .18第II 卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在答题的相应位置)11、已知x 与y 之间的一组数据:则y 与x 的线性回归方程为a bx y+=ˆ必过点 的坐标为 12.已知向量a 和b 的夹角为60°,| a | = 3,| b | = 4,则(2a – b )•a 等于________13. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为_____14. 函数()ln (0)f x x x x =>的单调递增区间是____15.对于函数()cos )f x x x =+, 给出下列四个命题:① 存在(,0)2πα∈-, 使()f α=② 存在)2,0(πα∈, 使()()f x f x αα-=+恒成立; ③ 存在R ϕ∈, 使函数)(ϕ+x f 的图象关于坐标原点成中心对称;④ 函数f (x )的图象关于直线34x π=-对称; ⑤ 函数f (x )的图象向左平移4π就能得到2cos y x =-的图象 其中正确命题的序号是 .三.解答题16.(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
17.(本小题满分12分)根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线b x A y ++=)12sin(ϕπ拟合(240<≤x ,单位为小时,y 表示气温,单位为摄氏度,πϕ<||,)0>A ,现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。
(1)求这条曲线的函数表达式;(2)求这一天19时整的气温。
18.(本题满分12分)如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M 是BD 关数据如图所示.(Ⅰ)求出该几何体的体积。
(Ⅱ)若N 是BC 的中点,求证://AN 平面CME ;(Ⅲ)求证:平面BDE ⊥平面BCD .19.(本小题满分13分)已知函数()22ln f x x x =-(Ⅰ)求函数在点(1, ()1f )处的切线方程(Ⅱ)求函数()f x 的极值(Ⅲ)对于曲线上的不同两点111222(,),(,)P x y P x y ,如果存在曲线上的点00(,)Q x y ,且MDE BA C N102x x x <<,使得曲线在点Q 处的切线12//l P P ,则称l 为弦12P P 的陪伴切线. 已知两点()()()()1,1,,A f B e f e ,试求弦AB 的陪伴切线l 的方程;20. (本小题满分13分)已知圆C :22()5(3)x m y m -+=<过点A (3,1),且过点P (4,4)的直线PF 与圆C 相切并和x 轴的负半轴相交于点F .(1)求切线PF 的方程;(2)若抛物线E 的焦点为F,顶点在原点,求抛物线E 的方程。
(3)若Q 为抛物线E 上的一个动点,求AP AQ ⋅u u u r u u u r 的取值范围.21、(本小题共13分)设数列{}n a 的前n 项和32n n S a =-(1,2,)n =L .(Ⅰ)证明数列{}n a 是等比数列;(Ⅱ)若1(1,2,)n n n b a b n +=+=L ,且13b =-,求数列{}n b 的前n 项和n T高二数学(文科)联考试卷参考答案及评分标准一、选择题:本大题共12小题,每小题5分,总计50分,二、填空题:本大题共5小题,每小题5分,共25分,11.(1.5, 4),12. 12,13. 116 , 14、1(,)e+∞, 15. ③④ 16.解:(Ⅰ)用(),x y (x 表示甲摸到的数字,y 表示乙摸到的数字)表示甲、乙各摸一球构成的基本事件,则基本事件有:()1,1、()1,2、()1,3、()1,4、()2,1、()2,2、()2,3、()2,4、()3,1、()3,2、()3,3、()3,4、()4,1、()4,2、()4,3、()4,4,共16个;……3分设:甲获胜的的事件为A ,则事件A 包含的基本事件有:()2,1、()3,1、()3,2、()4,1、()4,2、()4,3,共有6个;则 63()168P A == …………………………6分 (Ⅱ)设:甲获胜的的事件为B ,乙获胜的的事件为C;事件B 所包含的基本事件有:()1,1、()2,2、()3,3、()4,4,共有4个;则41()164P B == 13()1()144P C P B ∴=-=-= …………………………10分 ()()P B P C ≠,所以这样规定不公平. …………………11分答:(Ⅰ)甲获胜的概率为38;(Ⅱ)这样规定不公平. ………… 17.(1)b=(4+12)÷2=8 …………2分A=12-8=4 …………4分2112πϕπ-=+⨯,127πϕ-= …………6分 所以这条曲线的函数表达式为:8)12712sin(4+-=ππx y …………8分 (2)19=x所以下午19时整的气温为8摄氏度。
(12)18. (本小题满分12分)解:(Ⅰ)由题意可知:四棱锥ACDE B -中,平面ABC ⊥平面ACDE ,AC AB ⊥所以,⊥AB 平面ACDE ………………………2分 又4,2====CD AE AB AC ,则四棱锥ACDE B -的体积为:4222)24(3131=⨯⨯+⨯=⋅=AB S V ACDE …………4分 (Ⅱ)连接MN ,则,//,//CD AE CD MN 又CD AE MN 21==,所以四边形ANME 为平行四边形,EM AN //∴ …………6分 ⊄AN Θ平面CME ,⊂EM 平面CME ,所以,//AN 平面CME ; ……………8分 (Ⅲ)AB AC =Θ ,N 是BC 的中点,BC AN ⊥又平面⊥ABC 平面BCD⊥∴AN 平面BCD ……………………10分 由(Ⅱ)知:EM AN //⊥∴EM 平面BCD又⊂EM 平面BDE所以,平面BDE ⊥平面BCD . ………………………12分19.解:(I )y=2…………………………………(4分) (Ⅱ)2'()2,0f x x x=->. '()0,f x =得1x =. 当x 变化时,'()f x 与()f x 变化情况如下表:∴当x=1时,()f x 取得极小值(1)2f =. 没有极大值. ……………………(9分)(Ⅲ)设切点00(,)Q x y ,则切线l 的斜率为()0002'()2,1,f x x e x =-∈. 弦AB 的斜率为()()()()12121022111AB f e f e k e e e ----===----. …(10分) 由已知得,//l AB ,则022x -=221e --,解得01x e =-,…………(12分) 所以,弦AB 的伴随切线l 的方程为:()2422ln 11e y x e e -=+---.……(13分) 20. 解:(1)点A 代入圆C 方程,得2(3)15m -+=.∵m<3,∴m=1.圆C :22(1)5x y -+=.设直线PF 的斜率为k ,则PF :(4)4y k x =-+,即440kx y k --+=.∵直线PF 与圆C=111,22k k ==或. 当k =112时,直线PF 与x 轴的交点横坐标为3611,不合题意,舍去. 当k =12时,直线PF 与x 轴的交点横坐标为-4,∴符合题意,∴直线PF 的方程为y=12x+2 …………6分 (2)设抛物线标准方程为y 2=-2px, ∵F(-4,0), ∴p=8, ∴抛物线标准方程为y 2=-16x …………8分(3) (1,3)AP =u u u r ,设Q (x ,y ),(3,1)AQ x y =--u u u r ,(3)3(1)36AP AQ x y x y ⋅=-+-=+-u u u r u u u r .∵y 2=-16x, ∴22113636(24)301616AP AQ x y y y y ⋅=+-=-+-=--+u u u r u u u r . ∴36AP AQ x y ⋅=+-u u u r u u u r 的取值范围是(-∞,30].…………13分21.(本小题共13分(Ⅰ)证:因为 32n n S a =-(1,2,)n =L ,1132n n S a --=-(2,3,)n =L ,所以当2n ≥时,1133n n n n n a S S a a --=-=-,整理得132n n a a -=. 由32n n S a =-,令1n =,得1132a a =-,解得11a =. 所以{}n a 是首项为1,公比是32的等比数列.…………6分 (Ⅱ)解:由1(1,2,)n n n b a b n +=+=L ,得1(1,2,)n n n b b a n +-==L . 所以从而 1111213132[]3253212n n n n b b a a a ---⎛⎫- ⎪⎛⎫⎝⎭=++++=-+=- ⎪⎝⎭-L .2133332[1()......()]54()542222n n n T n n -=++++-=⨯--.…………13分。