23.幂的运算(基础)巩固练习
幂的运算实数练习题
幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。
17. 一个数的平方是64,求这个数。
18. 一个数的立方是216,求这个数。
19. 如果一个数的平方根是4,求这个数的平方。
20. 如果一个数的立方根是3,求这个数的立方。
五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。
沪教版数学初一上册23.幂的运算(基础)知识讲解
沪教版初一数学上册知识点梳理重点题型(常考知识点)巩固练习幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【396573 幂的运算 知识要点】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 【答案与解析】解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.举一反三:【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n ⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-. (2)原式22122151()p p p p p p p x x x x x +++++=⋅⋅-=-=-.(3)原式525216222(2)22n n n +++=⋅⋅-=-=-.2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】解:由2220x +=得22220x ⋅=.∴ 25x =.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-.【答案与解析】解:(1)2()m a 2m a =. (2)34[()]m -1212()m m =-=. (3)32()m a -2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、已知25m x =,求6155m x -的值. 【答案与解析】 解:∵ 25m x =,∴ 62331115()55520555m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn m n n m aa a ==.(2)本题培养了学生的整体思想和逆向思维能力.举一反三:【变式1】已知2a x =,3b x =.求32a b x +的值.【答案】解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=.【396573 幂的运算 例3】【变式2】已知84=m ,85=n ,求328+m n 的值. 【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂运算练习题大全
幂运算练习题大全幂运算,是数学领域中一种常见的运算方式。
它用于表示一个数的某个指数次幂,例如2的3次幂就是2×2×2,通常表示为2^3。
幂运算在数学、物理、计算机科学等领域有着重要的应用。
在本文中,我们将提供一系列幂运算的练习题,帮助读者更好地掌握幂运算的概念和运用。
1. 简化以下幂运算:a) 2^4b) 3^2c) 5^3d) 10^02. 计算以下幂运算的结果:a) 2^5b) 4^3c) 6^2d) 8^43. 给定以下幂运算,求未知数的值:a) 2^x = 16b) 3^x = 27c) 4^x = 256d) 5^x = 6254. 简化以下幂运算的结果,使用负指数:a) 2^-3b) 3^-2c) 5^-4d) 10^-15. 简化以下幂运算的结果,使用幂与根相互抵消的关系:a) √(4^3)b) ∛(8^2)c) ∜(16^2)d) ⁵√(32^3)6. 简化以下幂运算的结果,使用幂运算的运算法则:a) (2^3) × (2^4)b) (3^2) ÷ (3^5)c) (5^6)^2d) (10^4)^07. 计算以下复合幂运算的结果:a) (2^3)^2b) (4^2)^3c) (6^4)^2d) (8^5)^08. 解决以下问题,应用幂运算的概念:a) 一台计算机每秒钟可以执行10^9次运算,那么1分钟内可以执行多少次运算?b) 一辆汽车每小时行驶80公里,那么2小时内可以行驶多远?c) 一块土地的面积为5^2平方米,如果将其分割成边长为1米的小方块,可以得到多少个小方块?9. 解决以下问题,应用幂运算的运算法则:a) 简化表达式:(2^3 × 2^4) ÷ 2^2b) 简化表达式:(3^5)^2 ÷ (3^2)c) 简化表达式:(5^3 ÷ 5^2) × 5^4d) 简化表达式:(10^6)^2 ÷ 10^3通过以上的练习题,可以帮助读者巩固幂运算的知识点和运用技巧。
(家教培优专用)人教版数学八年级上册--幂的运算(基础)巩固练习
【巩固练习】一.选择题1.(2015•杭州模拟)计算的x 3×x 2结果是( )A .x 6B .6xC . x 5D .5x 2.2n n a a +⋅的值是( ).A. 3n a +B. ()2n n a +C. 22n a +D. 8a 3.下列计算正确的是( ).A.224x x x +=B.347x x x x ⋅⋅=C. 4416a a a ⋅=D.23a a a ⋅=4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310B. 1000×1010=3010C. 100×310=510D. 100×1000=4105.下列计算正确的是( ).A.()33xy xy =B.()222455xyx y -=- C.()22439x x -=- D.()323628xy x y -=- 6.若()391528m n a b a b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7.(2015春•西安校级月考)已知5x =6,5y =3,则5x+2y = .8. 若()319x a a a ⋅=,则x =_______.9. 已知35n a =,那么6n a =______.10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______. 11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______. 12.若n 是正整数,且210n a=,则3222()8()n n a a --=__________.三.解答题 13.(2015春•莱芜校级期中)计算:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2.14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;(5)()()2363353a a a -+-⋅; 15.(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b ba b ⋅⋅=,求m 、n 的值.【答案与解析】一.选择题1. 【答案】C ; 【解析】解:原式=x 3+2=x 5,故选C .2. 【答案】C ;【解析】2222n n n n n a aa a ++++⋅==. 3. 【答案】D ;【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.4. 【答案】C ;【解析】100×210=410;1000×1010=1310;100×1000=510.5. 【答案】D ;【解析】()333xy x y =;()2224525xy x y -=;()22439x x -=. 6. 【答案】C ;【解析】()333915288,39,315m n m n a ba b a b m n ====,解得m =3,n =5. 二.填空题7. 【答案】54;【解析】解:5x+2y =5x 5y 5y =6×3×3=54.8. 【答案】6;【解析】3119,3119,6x a a x x +=+==.9. 【答案】25;【解析】()2632525n n a a ===.10.【答案】5;1;【解析】338,38,5m m a a aa m m +⋅==+==;3143813,314,1x x x +==+==. 11.【答案】64;9n -;103-;12.【答案】200;【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=. 三.解答题13.【解析】 解:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2=﹣x 2n+2+x 2n+2=0.14.【解析】 解:(1)3843241237()()x x x x x xx ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;(4)()()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272aa a a a a a -+-⋅=-⋅=-. 15.【解析】解:(1)∵3335n n x xx +⋅= ∴ 4335n x x +=∴4n +3=35∴n =8(2)m =4,n =3解:∵()3915n m a b ba b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=∴3n =9且3m +3=15∴n =3且m =4。
幂的运算综合专项练习题(有答案过程)ok
幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。
(完整版)幂的运算练习题
8.计算:(x -y )2·(x -y )3-(x -y )4·(y -x )幂的运算练习题(每日一页)基础能力训练】 、同底数幂相乘1.下列语句正确的是( )A .同底数的幂相加,底数不变,指数相乘;B .同底数的幂相乘,底数合并,指数相加;C .同底数的幂相乘,指数不变,底数相加;D .同底数的幂相乘,底数不变,指数相加 2. a 4·a m ·a n =( )A .a4mB . a4(m+n )C . a m+n+4D .am+n+47.计算: a 5·(- a )2·(-a )33.(- x )·(-x )8·(- x )3=( ) A .(- x )11 B .(- x )24 C .x 12 4.下列运算正确的是( ) A .a 2· a 3=a 6 B . a 3+a 3=2a 6 C .a 3a 2=a 65.a ·a 3x 可以写成( ) A .( a 3)x+1 B .(a x )3+1 C .a 3x+16.计算: 100×100m -1×100m+1D.D .-x 12a8-a 4=a D .(a x )2x+1、幂的乘方9.填空:(1)(a8)7= ____ ;(2)(105)m= ___ ;(3)(a m)3= ___ ;(4)(b2m)5= _______ ;(5)(a4)2·(a3)3= ____ .10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a 的m 次幂的n 次方等于 a 的m+n 次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6 B.(-a3)4·a7=a7·a2=a9 2 3 3 2 6 6 12C.(-a )·(-a )=(-a )·(-a )=aD.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x 的值.、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x· y n()(3)(3xy)n=3(xy )n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1222.已知 2×8n ×16n =222,求 n 的值.16.(- a 2b 3c )3=( )A .a 6b 9c 3B .-a 5b 6c 3C .-a 6b 9c 3D .- a 2b 3c 317.(- a m+1b 2n )3=( ) A .a 3m+3b 6nB .- a 3m +b 6nC .-a 3m+3b 6nD .-a 3m+1b 8m318.如果( a n b m b )3=a 9b 15,那么 m ,n 的值等于( ) A .m=9,n=- 4 B . m=3,n=4n=6【综合创新训练】 一、综合测试 19.计算:11 m+1 12-m n -1 (- x · y )·(- x y )33、创新应用20.下列计算结果为 m 14 的是( )A .m 2·m 7B .m 7+m 7C .m ·m 6·m 721.若 5m+n =56·5n -m ,求 m 的值.3)(-a m b n c )2·(a m -1b n+1c n )24)[( 12)2] 4·(-23)C . m=4,n=3D .m=9,2)10× 102× 1 000×10n -3D .m ·m 8·m 623.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c 的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想1 2 227.(1)( 2 )2× 42412)[(12)2] 3×(23)23)(-0.125)12×(- 1 2)7×(-8)13×3-35)4)-82003×(0.125)2002+(0.25)17×417计宜¢-2) i∞+ (-2)鈴所得的结果是( )A> -2" , -2C、产DK 22、当M是正整数时,下列等式咸立的有( )(1) a2fτ= (a ra) 2; <2) a2m= (a2) m; (3) a2m= ( -a m) 2; ( 4> a lm= (-a2> m.4 4个3个C、2个D* 1个3、下列运尊正确的是( >A S 2x+3γ=5xy B、(■ 3x2y)'二-9χδy3C、4χ3y2∙ ( -py2) χ-2x4y4DS(X-V) 5√-/4、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是(A、J与b” B^a2n⅛b2nC、严⅞b2n*tD、孑2⅛-b2n^15、下列等戒中正确的个数是( )O5+a5=a ic∣②(- B ) δ∙ ( - a) 3∙a=a1°J Φ-a4∙ C -3 ) 5≡a2°J Φ5+25≡2δ.AZ个3、1个5 2个D・3个6 、计真;χ2∙χi≡ _____________ ; ( - a") 3+ ( - a2) 2=__________________ ・7 .若2π⅛,2'6,则2决叫_______________ •8、BftI 3κ (χπ+5 ) ≡3χ,Hl+45,求X 的值•9χ ≡ T3+2"求代数式(X ft Y) (χn*1v2) CX n V> - <x2yπ'1) (√)的值•10、已知2x+5y3 √*32v的值・11、已知25πn∙2∙10⅛7∙24≡ 求m、n∙12、EJD a x=5> a x4v=25> 求齐2的值.13、若严叫询χf⅛b求严「的值•14、e⅜ ID a=3» 10p=5> ICi7,试把105写咸底数是IO的幕的形式15、比较下列一组数的大小.8产,2产,95-16、如果a2+a=0 C a?O)J求a2005÷a2c°4+l2 的値.17 > B⅛ 9Γ*∙-32Γ=72^求n 的值.18、若< aπb m k>) 3=a5b15∙求2* 的值・19、计勒厂'<a r V2) 2+ (a n∙V z) 3 ( -b3m*2>迹若心T严, 当a=2 y n=3时,求一ay的值.21 > SJffls 2κ=4v*1> 27y≡3x'1 * 求X-Y 的值.22、i⅛M ≡ Ce e b)"」・(b β a ) J 〈匕―b) Cb-匕)23、若 C a rn*I b IH2) Ca2r∙1b2fl) =a⅛3则求m+n 的值•24用简便方法计算:Cl)(2丄)2χ424(2)( 一0.25〉12×41Z答案:【基础能力训练】1.D 2.D 3.C 4.C 5. C 6. 1002m+1 7.- a 10 8.原式 =(x -y )5-(x -y )4·[-(x -y )]=2(x -y )5 9.(1)a 56 (2) 105m(3)a 3m (4)b 10m (5)a 1710. D 11.B 12.D13.左边 =(82)2×83=84×83=87=(23)7=22115. D 16.C 17.C 18.20.C 解析: A 应为 m 9,B 应为 2m 7,D 应为 m 15.21.由 5m+n =56·5n -m =56+m -n 得 m+n=6+n -m ,即 2m=6,所以 m=3.22.式子 2×8n × 16n 可化简为: 2×23n ×24n =21+7n , 而右边为 222 比较后发现 1+7n=22,n=3.23.x 6n +x 4n ·x 5n =x 6n +x 9n =(x 3n )2+(x 3n )3把x 3n =2 代入可得答案为 12.而右边 =2x ,所以 x=21. 14.(1)× (2)× (3)× ( 4)×5)∨综合创新运用】1119.原式 =(- )×( )·33 y 1+n -1= 1 x 3y n9 原式 =10×102×103×10n -3=101+2+3+n -3=103+n 原式=(-1)2(a m )2·(b n )2·c 2·(a m -1) b 2n ·c 2·a 2m-2b 2n+2c 2n =a 4m -2b 4n+2c 2n+2xm+1·x 2-m·y ·y n -11 m+1+2-m=x 9(2)(3) 2m=a2·(b n+1)2(c n )2 4)原式=(21)2×4·(-1)3·23×3=-(21)829 29=-228=-224.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2× 6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(9)2×42=814(2)原式=(1)6×29=(1×2)6×23=23=8223)原式= -1)12×(-5)7×(-8)13×(-3)98 3 5=-(1)12×813×(5 )7×(3)98 3 5=-(1 ×8)12×8×(5×3)7×(3)2=-8×9728 3 5 5 25 254)原式= 82003×(1 )20 02+(-1)17×4178 4=-(8× 1)2002×8+(-1×4)17=-8+(-1)=-9 84探究学习】设拉面师傅拉n 次就可以变成一碗面条,则2n=256,由于256=28,∴ n=8.。
《幂的运算》练习题及答案
《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
幂的运算习题及答案
幂的运算提高练习题一、选择题1、计算﹣2100+﹣299所得的结果是A、﹣299B、﹣2C、299D、22、当m是正整数时;下列等式成立的有1a2m=a m2;2a2m=a2m;3a2m=﹣a m2;4a2m=﹣a2m.A、4个B、3个C、2个D、1个3、下列运算正确的是A、2x+3y=5xyB、﹣3x2y3=﹣9x6y3C 、D、x﹣y3=x3﹣y3 4、a与b互为相反数;且都不等于0;n为正整数;则下列各组中一定互为相反数的是A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是①a5+a5=a10;②﹣a6•﹣a3•a=a10;③﹣a4•﹣a5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;﹣a23+﹣a32= _________ .7、若2m=5;2n=6;则2m+2n= _________ .三、解答题8、已知3xx n+5=3x n+1+45;求x的值..9、若1+2+3+…+n=a;求代数式x n yx n﹣1y2x n﹣2y3…x2y n﹣1xy n的值.10、已知2x+5y=3;求4x•32y的值.11、已知25m•2•10n=57•24;求m、n.12、已知a x=5;a x+y=25;求a x+a y的值.13、若x m+2n=16;x n=2;求x m+n的值.14、比较下列一组数的大小.8131;2741;96115、如果a2+a=0a≠0;求a2005+a2004+12的值.16、已知9n+1﹣32n=72;求n的值.18、若a n b m b3=a9b15;求2m+n的值.19、计算:a n﹣5a n+1b3m﹣22+a n﹣1b m﹣23﹣b3m+220、若x=3a n;y=﹣;当a=2;n=3时;求a n x﹣ay的值.21、已知:2x=4y+1;27y=3x﹣1;求x﹣y的值.22、计算:a﹣b m+3•b﹣a2•a﹣b m•b﹣a523、若a m+1b n+2a2n﹣1b2n=a5b3;则求m+n的值.24、用简便方法计算:423×233 122×422﹣0.2512×41230.52×25×0.125答案与评分标准一、选择题共5小题;每小题4分;满分20分1、计算﹣2100+﹣299所得的结果是A、﹣299B、﹣2C、299D、2考点:有理数的乘方..分析:本题考查有理数的乘方运算;﹣2100表示100个﹣2的乘积;所以﹣2100=﹣299×﹣2.解答:解:﹣2100+﹣299=﹣299﹣2+1=299.故选C.点评:乘方是乘法的特例;乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数;负数的偶数次幂是正数;﹣1的奇数次幂是﹣1;﹣1的偶数次幂是1.2、当m是正整数时;下列等式成立的有1a2m=a m2;2a2m=a2m;3a2m=﹣a m2;4a2m=﹣a2m.A、4个B、3个C、2个D、1个考点:幂的乘方与积的乘方..分析:根据幂的乘方的运算法则计算即可;同时要注意m的奇偶性.解答:解:根据幂的乘方的运算法则可判断12都正确;因为负数的偶数次方是正数;所以3a2m=﹣a m2正确;4a2m=﹣a2m只有m为偶数时才正确;当m为奇数时不正确;所以123正确.故选B.点评:本题主要考查幂的乘方的性质;需要注意负数的奇数次幂是负数;偶数次幂是正数.3、下列运算正确的是A、2x+3y=5xyB、﹣3x2y3=﹣9x6y3C 、D、x﹣y3=x3﹣y3考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式..分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可.解答:解:A、2x与3y不是同类项;不能合并;故本选项错误;B、应为﹣3x2y3=﹣27x6y3;故本选项错误;C、;正确;D、应为x﹣y3=x3﹣3x2y+3xy2﹣y3;故本选项错误.故选C.点评:1本题综合考查了整式运算的多个考点;包括合并同类项;积的乘方、单项式的乘法;需要熟练掌握性质和法则;2同类项的概念是所含字母相同;相同字母的指数也相同的项是同类项;不是同类项的一定不能合并.4、a与b互为相反数;且都不等于0;n为正整数;则下列各组中一定互为相反数的是A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣1考点:有理数的乘方;相反数..分析:两数互为相反数;和为0;所以a+b=0.本题只要把选项中的两个数相加;看和是否为0;若为0;则两数必定互为相反数.解答:解:依题意;得a+b=0;即a=﹣b.A中;n为奇数;a n+b n=0;n为偶数;a n+b n=2a n;错误;B中;a2n+b2n=2a2n;错误;C中;a2n+1+b2n+1=0;正确;D中;a2n﹣1﹣b2n﹣1=2a2n﹣1;错误.故选C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次幂相等;奇次幂互为相反数.5、下列等式中正确的个数是①a5+a5=a10;②﹣a6•﹣a3•a=a10;③﹣a4•﹣a5=a20;④25+25=26.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法.. 分析:①利用合并同类项来做;②③都是利用同底数幂的乘法公式做注意一个负数的偶次幂是正数;奇次幂是负数;④利用乘法分配律的逆运算.解答:解:①∵a5+a5=2a5;;故①的答案不正确;②∵﹣a6•﹣a3=﹣a9=﹣a9;故②的答案不正确;③∵﹣a4•﹣a5=a9;;故③的答案不正确;④25+25=2×25=26.所以正确的个数是1; 故选B.点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识;注意指数的变化.二、填空题共2小题;每小题5分;满分10分6、计算:x2•x3= x5;﹣a23+﹣a32= 0 .考点:幂的乘方与积的乘方;同底数幂的乘法..分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题.解答:解:x2•x3=x5;﹣a23+﹣a32=﹣a6+a6=0.点评:此题主要考查了同底数幂的乘法和幂的乘方法则;利用两个法则容易求出结果.7、若2m=5;2n=6;则2m+2n= 180 .考点:幂的乘方与积的乘方..分析:先逆用同底数幂的乘法法则把2m+2n=化成2m•2n•2n的形式;再把2m=5;2n=6代入计算即可.解答:解:∴2m=5;2n=6;∴2m+2n=2m•2n2=5×62=180.点评:本题考查的是同底数幂的乘法法则的逆运算;比较简单.三、解答题共17小题;满分0分8、已知3xx n+5=3x n+1+45;求x的值.考点:同底数幂的乘法..专题:计算题..分析:先化简;再按同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:3x1+n+15x=3x n+1+45;∴15x=45;∴x=3.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.9、若1+2+3+…+n=a;求代数式x n yx n﹣1y2x n﹣2y3…x2y n﹣1xy n的值.考点:同底数幂的乘法..专题:计算题..分析:根据同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:原式=x n y•x n﹣1y2•x n﹣2y3…x2y n﹣1•xy n=x n•x n﹣1•x n﹣2•…•x2•x•y•y2•y3•…•y n﹣1•y n=x a y a.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.10、已知2x+5y=3;求4x•32y的值.考点:幂的乘方与积的乘方;同底数幂的乘法..分析:根据同底数幂相乘和幂的乘方的逆运算计算.解答:解:∵2x+5y=3;∴4x•32y=22x•25y=22x+5y=23=8.点评:本题考查了同底数幂相乘;底数不变指数相加;幂的乘方;底数不变指数相乘的性质;整体代入求解也比较关键.11、已知25m•2•10n=57•24;求m、n.考点:幂的乘方与积的乘方;同底数幂的乘法..专题:计算题..分析:先把原式化简成5的指数幂和2的指数幂;然后利用等量关系列出方程组;在求解即可.解答:解:原式=52m•2•2n•5n=52m+n•21+n=57•24;∴;解得m=2;n=3.点评:本题考查了幂的乘方和积的乘方;熟练掌握运算性质和法则是解题的关键.12、已知a x=5;a x+y=25;求a x+a y的值.考点:同底数幂的乘法..专题:计算题..分析:由a x+y=25;得a x•a y=25;从而求得a y;相加即可.解答:解:∵a x+y=25;∴a x•a y=25;∵a x=5;∴a y;=5;∴a x+a y=5+5=10.点评:本题考查同底数幂的乘法的性质;熟练掌握性质的逆用是解题的关键.13、若x m+2n=16;x n=2;求x m+n的值.考点:同底数幂的除法..专题:计算题..分析:根据同底数幂的除法;底数不变指数相减得出x m+2n÷x n=x m+n=16÷2=8.解答:解:x m+2n÷x n=x m+n=16÷2=8;∴x m+n的值为8.点评:本题考查同底数幂的除法法则;底数不变指数相减;一定要记准法则才能做题.14、已知10a=3;10β=5;10γ=7;试把105写成底数是10的幂的形式10α+β+γ.考点:同底数幂的乘法..分析:把105进行分解因数;转化为3和5和7的积的形式;然后用10a、10β、10γ表示出来.解答:解:105=3×5×7;而3=10a;5=10β;7γ=10;∴105=10γ•10β•10α=10α+β+γ;故应填10α+β+γ.点评:正确利用分解因数;根据同底数的幂的乘法的运算性质的逆用是解题的关键.15、比较下列一组数的大小.8131;2741;961考点:幂的乘方与积的乘方..专题:计算题.. 分析:先对这三个数变形;都化成底数是3的幂的形式;再比较大小.解答:解:∵8131=3431=3124;2741=3341=3123;961=3261=3122;∴8131>2741>961.点评:本题利用了幂的乘方的计算;注意指数的变化.底数是正整数;指数越大幂就越大16、如果a2+a=0a≠0;求a2005+a2004+12的值.考点:因式分解的应用;代数式求值..专题:因式分解..分析:观察a2+a=0a≠0;求a2005+a2004+12的值.只要将a2005+a2004+12转化为因式中含有a2+a的形式;又因为a2005+a2004+12=a2003a2+a+12;因而将a2+a=0代入即可求出值.解答:解:原式=a2003a2+a+12=a2003×0+12=12点评:本题考查因式分解的应用、代数式的求值.解决本题的关键是a2005+a2004将提取公因式转化为a2003a2+a;至此问题的得解.17、已知9n+1﹣32n=72;求n的值.考点:幂的乘方与积的乘方..分析:由于72=9×8;而9n+1﹣32n=9n×8;所以9n=9;从而得出n 的值.解答:解:∵9n+1﹣32n=9n+1﹣9n=9n9﹣1=9n×8;而72=9×8;∴当9n+1﹣32n=72时;9n×8=9×8;∴9n=9;∴n=1.点评:主要考查了幂的乘方的性质以及代数式的恒等变形.本题能够根据已知条件;结合72=9×8;将9n+1﹣32n变形为9n×8;是解决问题的关键.18、若a n b m b3=a9b15;求2m+n的值.考点:幂的乘方与积的乘方.. 分析:根据a n b m b3=a9b15;比较相同字母的指数可知;3n=9;3m+3=15;先求m、n;再求2m+n的值.解答:解:∵a n b m b3=a n3b m3b3=a3n b3m+3;∴3n=9;3m+3=15;解得:m=4;n=3;∴2m+n=27=128.点评:本题考查了积的乘方的性质和幂的乘方的性质;根据相同字母的次数相同列式是解题的关键.19、计算:a n﹣5a n+1b3m﹣22+a n﹣1b m﹣23﹣b3m+2考点:幂的乘方与积的乘方;同底数幂的乘法..分析:先利用积的乘方;去掉括号;再利用同底数幂的乘法计算;最后合并同类项即可.解答:解:原式=a n﹣5a2n+2b6m﹣4+a3n﹣3b3m﹣6﹣b3m+2;=a3n﹣3b6m﹣4+a3n﹣3﹣b6m﹣4;=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4;=0.点评:本题考查了合并同类项;同底数幂的乘法;幂的乘方;积的乘方;理清指数的变化是解题的关键.20、若x=3a n;y=﹣;当a=2;n=3时;求a n x﹣ay的值.考点:同底数幂的乘法..分析:把x=3a n;y=﹣;代入a n x﹣ay;利用同底数幂的乘法法则;求出结果.解答:解:a n x﹣ay=a n×3a n﹣a×﹣=3a2n+a2n∵a=2;n=3;∴3a2n+a2n=3×26+×26=224.点评:本题主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.21、已知:2x=4y+1;27y=3x﹣1;求x﹣y的值.考点:幂的乘方与积的乘方..分析:先都转化为同指数的幂;根据指数相等列出方程;解方程求出x、y的值;然后代入x﹣y计算即可.解答:解:∵2x=4y+1;∴2x=22y+2;∴x=2y+2 ①又∵27x=3x﹣1;∴33y=3x﹣1;∴3y=x﹣1②联立①②组成方程组并求解得;∴x﹣y=3.点评:本题主要考查幂的乘方的性质的逆用:a mn=a mn a≠0;m;n为正整数;根据指数相等列出方程是解题的关键.22、计算:a﹣b m+3•b﹣a2•a﹣b m•b﹣a5考点:同底数幂的乘法..分析:根据同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:a﹣b m+3•b﹣a2•a﹣b m•b﹣a5;=a﹣b m+3•a﹣b2•a﹣b m•﹣a﹣b5;=﹣a﹣b2m+10.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.23、若a m+1b n+2a2n﹣1b2n=a5b3;则求m+n的值.考点:同底数幂的乘法..专题:计算题.. 分析:首先合并同类项;根据同底数幂相乘;底数不变;指数相加的法则即可得出答案.解答:解:a m+1b n+2a2n﹣1b2n=a m+1×a2n﹣1×b n+2×b2n=a m+1+2n﹣1×b n+2+2n=a m+2n b3n+2=a5b3.∴m+2n=5;3n+2=3;解得:n=;m=;m+n=.点评:本题考查了同底数幂的乘法;难度不大;关键是掌握同底数幂相乘;底数不变;指数相加.24、用简便方法计算:122×422﹣0.2512×41230.52×25×0.125法则:把每一个因式分别乘方;再把所得的幂相乘.423×233考点:幂的乘方与积的乘方;同底数幂的乘法..专题:计算题..分析:根据幂的乘方法则:底数不变指数相乘;积的乘方法则:把每一个因式分别乘方;再把所得的幂相乘去做.解答:解:1原式=×42=92=81;2原式=﹣12×412=×412=1;3原式=2×25×=;4原式=3×83=×83=8.点评:本题考查幂的乘方;底数不变指数相乘;以及积的乘方。
幂的运算基础练习题
幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。
幂的运算练习题及答案
《幂的运算》提咼练习题一、选择题1计算(-2) 100+ (- 2) 99所得的结果是( )A、- 299B、- 2C、299D、22、当m是正整数时,下列等式成立的有( )(1) a2m= (a m) 2; (2) a2m= (a2) m; (3) a2m= (-a m) 2;2m / 2、m(4) a = (- a ).A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(- 3x2y) 3= - 9x6y3.321 2、n 4 44x y • ( -^xy ) = -2x yC、/D、(x-、3 3 3y) =x - y 各组中一定互为相反数的是( )n n 2n 2nA、a 与bB、a 与b2n+1 2n+1 2n -1 2n -1C、a 与bD、a 与-b5、下列等式中正确的个数是( )①a5+a5=a10;②(-a) 6? (- a) 3?a=a10;③-a4?(-④ 25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2?x3= _______ ; (—a2)3+ (- a3) 2= __7、若2m=5 , 2n=6,贝U 2m+2n= _______ .三、解答题、5 20a) =a ;4、a与b互为相反数,且都不等于 0, n为正整数,则下列9、若 1+2+3+ …+n=a ,求代数式(x n y) (x n1y2) (x n 2y3)…(x2y n1) (xy n)的值. 12、已知 a x=5 , a x+y=25,求 a x+a y的值.m+2n n m+n13、若 x =16 , x =2,求 x 的值.10、已知 2x+5y=3,求 4x?32y的值.14、比较下列一组数的大小. 8131, 2741, 961 11、已知25m210n=57?24,求m、n.n - 5 / n+1 3m - 2、 2 / n -1. m - 2、 319、计算:a (a b ,15、如果 a 2+a=0 (a^ 0),求 a 2005+a 2004+12 的值.1 2n -1 n 尹 20、若 x=3a , y=- ,当 a=2, n=3 时,求 的值.16、已知 9n+1 - 32n =72,求 n的值. 21、已知:2=^1,27=3 1,求 x-y 的值. 18、若(a n b m b) 3=a 9b 15,求 2m+n 的值./ n+i.3m - 2、 2 / n T.m - 2、 3 , . 3m+2 (ab ) + (a b ) (-b n a x- ay22、计算: (a-b) m+3? (b - a) 2? (a- b) m? (b - a)23、若(a m+1b n+2) (a2n- 1b2n) =a5b3,则求 m+n 的值.12 12(2) (- 0.25) X 424、用简便方法计算:1(1) (2 b 2X42(3) 0.52X 25 X 0.125。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299B。
-2C。
299D。
22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。
4个B。
3个C。
2个D。
1个3.下列运算正确的是()A。
2x+3y=5xyB。
(-3x^2y)^3=-9x^6y^3C。
(x-y)^3=x^3-y^3D。
无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXXB。
a^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1)D。
a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。
0个B。
1个C。
2个D。
3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。
10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。
初中数学幂的运算专题讲解及典型题练习(含答案)
初中数学幂的运算专题讲解及典型题练习【知识点梳理】1.有理数的乘方定义求个相同因数的积的运算,叫做乘方.乘方运算的结果叫幂.n 一般地,,叫做底数,叫做指数,叫做幂。
n n a a a a a ⋅⋅⋅= 个a n n a 读作“的次幂”或读作“的次方”.n a a n a n 【注意】(1)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方运算的结果.(2)一个数可以看作是这个数本身的一次方,例如5就是,就是,指数是1通常省略15a 1a 不写.2.有理数幂的符号法则(1)正数的任何次幂都是正数.(2)负数的奇数次幂是负数,负数的偶数次幂是正数.(3)特别地,.()11,00n n n ==为正整数【注意】“负幂”与“负数的幂”区别:“负幂”例如表示的相反数,其结果为负数.“负51()2-51()2数的幂”例如,结果要看指数,即负数的奇次幂为负数,负数的偶次幂为正数.1()2n -3.有理数的混合运算一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算,称为有理数的混合运算.【注意】加法、减法、乘法、除法有各自的运算法则,也有各自的运算技巧,减法可以统一成加法,除法可以统一成乘法,加法与乘法还有各自的运算律,乘方是乘法的特例,也有自己的符号法则,同时也要考虑整体的符号关系以及简便算法.4.有理数的混合运算顺序(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右依次进行.(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【注意】(1)在加、减、乘、除、乘方这几种运算基本掌握的前提下,学习混含运算,首先应注意的就是运算顺序的问题.(2)通常把六种基本的代数运算分成三级:第一级运算是加和减,第二级运算是乘和除,第三级运算是乘方和开方(以后学习).运算顺序的规定是先算高级运算,再算低级运算,同级运算在一起,按从左到右的顺序计算.对于含有多重括号的运算,一般先算小括号内的,再算中括号内的,最后算大括号内的.(3)括号前带负号,去括号后要将括号内的各项都要变号,即.()(),a b a b a b a b -+=----=-+5.科学记数法把一个数写成(其中,是正整数)的形式,这种记数法称为科学记数10n a ⨯110a <≤n 法.【注意】(1)科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构,即要掌握形式的结构特征: ,为正整数,且值等于原数的整数位数减1.10n a ⨯110a <≤n n (2)在把用科学记数法表示的数还原为原数时,根据其基本原理和结构,把的小数点向右a 移动位,中数字不够时,用补足.n a 0【典型例题讲解】【例1】计算:.2007200812()2⨯-【分析】直接进行各自的乘方运算非常困难,但根据乘方的意义可得.共200722222=⨯⨯⨯⋅⋅⋅⨯2007个2相乘,2008200811()()22-=2007112008200722111111111222222222=⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯⨯=⨯个个()利用乘法交换律和结合律,把2007个2与结合在一起相乘,利用互为倒数即可求出数12值.【解析】2007200812()2⨯-20072008122=⨯().20072007200711111222222=⨯⨯⨯⨯=()()=(2)【方法总结】此题主要应用互为倒数、乘法运算律及乘方的意义进行计算,事实上我们不难发现,当与互为倒数时,其值为1.计算时要注意符号的问题.多加理解与练()m m m a b ab = a b 习,最好能达到一看题目就可以得出结果的程度.【借题发挥】计算:、.2010201115()5⨯-200920102 2.55⎛⎫-⨯ ⎪⎝⎭【解析】.20102010201111115()55555⎡⎤⎛⎫⎛⎫⨯-=⨯-⨯-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.200920092009201020102252552.5 2.5552522⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-⨯=-⨯=-⨯⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦【例2】计算:.22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦【分析】根据有理数的混合运算法则进行计算,分清计算的先后顺序,还要注意去括号的时候要注意符号.【解析】22135(13)(2)0.2⎡⎤---+-⨯÷-⎢⎥⎣⎦[]135(13)435(1253)40.04⎡⎤=---+-⨯÷=---+-⨯÷⎢⎥⎣⎦[][]35(175)435(74)4=---+-÷=---+-÷.[]35(18.5)3(23.5)20.5=---+-=---=【借题发挥】计算:()()[]2243225.02115.01--⨯⎪⎭⎫ ⎝⎛-÷-+-【解析】原式=()[]()()2411110.52910.571167554162⎛⎫⎛⎫-+-÷⨯-=-+-÷⨯-=-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭【例3】已知,,求的值.12x =-13y =-432231x y x --【分析】把,的值分别代入要求的式子,按有理数混合运算顺序进行计算.x y 【解析】把,代入,得12x =-13y =-432231x y x -- 原式43211112()3()23()231627111()124⨯--⨯-⨯-⨯-==---11114141789()3893627544-==+⨯=+=【方法总结】此类题一方面代入要准确,即负数或分数代入时一般加上小括号,另一方面代入后计算必须准确,最后结果是分数时一定是最简分数.【借题发挥】求当时,代数式的值.2,1x y =-=-2222222x y x xy y x y x y--+++-【解析】将带入,得2,1x y =-=-2222222x y x xy y x y x y --+++-原式=.()()()()()()()()()()2222221222113114221531521⨯-----⨯-⨯-+--+=+=⨯-+-----【例4】(1)补充完整下表:1323334353637383392781(2)从表中你发现3的方幂的个位数有何规律?(3)3251的个位数是什么数字?为什么?【分析】幂的个位上的数字3、9、7、l 交错重复出现,即每隔四个数,个位数字就重复一次,所以用251除以4所得的余数来确定.【解析】(1)132333435363738339278124372921876561(2)个位上的数字为3、9、7、1交错重复出现.(3)的个位数是7,因为除以4的余数是3.是重复出现时的第三个数.2513251【方法总结】此类题一般都是通过写出一些简单的幂,通过这些幂的结果总结出末位出现数字的种类及循环规律,进一步把指数按循环数进行分解,通过剩余指数求得最后答案.【借题发挥】的个位数是 ,的个位数是 ,253263的个位数是 ,的个位数是 .273283【解析】3,9,7,1.【例5】怎样比较,,的大小呢?553444335【解析】本题如果通过硬算,数字太大,不可能,因此要观察此三个数的特点,经观察,我们发现55、44、33存在着最大公因数11,不妨利用这一点以及乘方的定义来入手解题.具体过程如下:5511115533333(33333)243=⋅⋅⋅=⨯⨯⨯⨯= 个344111144444444(4444)256=⋅⋅⋅=⨯⨯⨯= 个.33111133555555(555)125=⋅⋅⋅=⨯⨯= 个因为,所以256243125>>111111256243125>>即.445533435>>【借题发挥】1.试比较的大小.443322234、、【解析】因为:,则,即()()()111111444113331122211221633274416======,,11111627<.442233243<=2.你能比较和的大小吗?2004200320032004 为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较和1n n +(1)n n +的大小(是自然数).然后,我们从分析…这些简单情形人手,从中发现规n 1,2,3,n n n ===律,经过归纳,猜想出结论.(1)通过计算.比较下列各组中两个数的大小(填“>”,“<”或“”).- ①___;②____;③ ;④____;⑤ ;…21123223433454456556 (2)从第(1)题的结果经过归纳,可以猜想出和的大小关系是 .1n n +(1)n n + (3)根据上面归纳猜想后得到的一般结论,试比较下面两个数的大小:.2004200320032004【解析】经计算与分析可推出结论:当时,<;当时,>.3n <1n n +(1)n n +3n ≥1n n +(1)n n +(1)①<;②<;③>;④>;⑤> (2) 当时,<;当时,>3n <1n n +(1)n n +3n ≥1n n +(1)n n +(3)>.(2)【借题发挥】比较下面各对数的大小:___; ; .211243342010200920092010【解析】<;>;>.【例6】比较与的大小.109.99810⨯111.00110⨯【分析】二者是用科学记数法表示的数,一方面可以把它们化成原数,通过比较原数大小来比较这两个数的大小;另一方面也可以把它化为相同指数,通过比较前面数(即)的大小来比a 较二者大小.【解析】解法一:,109.9981099980000000⨯=.111.00110100100000000⨯= 又,100100000000>99980000000.∴10119.99810 1.00110⨯<⨯ 解法二:,1110101.001l01. 0011010 10.0110⨯=⨯⨯=⨯ 又,10.019.998> .∴10119.99810 1.00110⨯<⨯【方法总结】解法一是常规方法,但书写起来很麻烦,易出现错误;方法二较巧妙地转化了,容易比较大小.11101.0011010.0110⨯=⨯【借题发挥】试比较:和.20099.9810⨯20101.0510⨯【解析】.2010200920091.051010.5109.9810⨯=⨯>⨯【例7】 定义“”“”两种运算,对于任意的两个数、,都有,○+○-a b a ○+b 1a b =+-a ○-b 1ab =-.求[()()]的值.4○-3○+5○+6○-2【分解】按规定的“”与“”进行各自的运算,运算时先算士括号里的,再算中括号里的.○+○-【解析】由,,得a ○+b 1a b =+-a ○-b 1ab =-[()()]4○-3○+5○+6○-2[()()]4=○-351+-○+621⨯-()()4=○-7○+114=○-7111+-.4=○-174=⨯171-67=【方法总结】此类题按规定的运算关系进行计算,首先要读懂表达式的含义,会套用公式,计算时注意符号关系及准确性外,还要注意运算的先后顺序.【借题发挥】“△”表示一种新的运算符号,其意义是对于任意,都存在△,如果△△a b a b 2a b =-x (1,则 .3)2=x =【解析】由△,得△△,即,则,所a b 2a b =-x (13)2=()()21312x x ⨯-=-=△△()212x --=以.12x =【例8】若尺布可做件上衣,则尺布能做多少件这样的上衣?619【解析】第题按计算件,但实际情况是只能做件,所以只能舍,不能入;961.5÷=105.【借题发挥】若每条船能载个人,则个人需要几条船?310【解析】按计算,但实际情况是条船不够,需要4条船,所以在这里应该入,取1103=33÷3134.【方法总结】在实际问题中,经常对药对一些数位上的数进行取舍,有的要求进行四舍五入,有的则按生活及生产实际进行取舍,千万不能遇及以上的数就入,遇以下的数就舍.555【随堂练习】1.计算: .2008(1)-=【答案】1.2.计算: .20102010201020104(0.25)(1)1-+-+= 【答案】原式=.201020102010201014()(1)111114-+-+=-++= 3.若,则 .21(2)0a b ++-=20102009()a b a ++=【答案】由题意知 得,代入原式可求结果为:0.1020a b +=⎧⎨-=⎩12a b =-⎧⎨=⎩4.如果那么的值为 .214,,2x y ==222x y -【答案】.222112243122x y -=⨯-=5.现有一根长为1米的木条,第一次截去一半,第二次截去剩下的一半,照此截下去,那么六次后剩下的木条为 米.【答案】第一次截后剩下米,第二次后剩下米,第三次后剩下米,由此推下1221142⎛⎫= ⎪⎝⎭312⎛⎫ ⎪⎝⎭去,第次后剩下米.所以六次后剩下的木条为(米).n 12n ⎛⎫ ⎪⎝⎭611264⎛⎫= ⎪⎝⎭6.计算:(1); (2); (3)321()(1)33-÷-232(3)-⨯-32221(0.2)(1).3(0.3)-⨯÷-【答案】(1);(2)108;(3).290.002-7.(1). (2).451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯()1452515213⨯-÷+-(3). (4).()3432322⎪⎭⎫ ⎝⎛-⨯-÷-()()()3428102-⨯---÷+-(5).()[]2345.0813231325.01-----⨯÷⎪⎭⎫ ⎝⎛---(6).()54436183242113÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-【答案】(1) (2) (3) (4) (5) (6)225-347-1111620-11147224-8.利用乘方的有关知识确定的末两位数字.20076【答案】9.已知“三角”表示运算“”,“正方形”表示的运算是“” ,试计a b c -+d f g e -+-算的值.【答案】原式=.()()()199649551996281474116-+⨯-+-=-⨯=-9.计算:.111111111248163264128256512++++++++【答案】原式=11111111111122448816128256256512⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+⋅⋅⋅+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.151********-=10.光年是天文学中使用的距离单位,指的是光在真空中经历一年所走的距离,若真空中光的速度为千米/秒,用科学记数法表示l 光年是多少?(1年按天计算)300000365【答案】已知:千米/秒,(秒).300000v =365243600t =⨯⨯ 由(千米).300000365243600s vt ==⨯⨯⨯9460800000000=129.460810=⨯所以,l 光年是千米.129.460810⨯11.阅读下列解题过程:计算:()632113115⨯⎪⎭⎫ ⎝⎛--÷-解:()632113115⨯⎪⎭⎫ ⎝⎛--÷-(第一步)()662515⨯⎪⎭⎫ ⎝⎛-÷-=(第二步)()()2515-÷-=(第三步)53-=回答:(1)上面的解题过程中有两个错误,第一处是第 步,错误的原因是 ;第二处是第 步,错误原因是 .(2)正确的结果是 .【答案】(1)二,乘除为同一等级的计算,没有按照从前往后的顺序求解;(2)三,负数乘以负数得到正数,题中为负数. (2).3215【课堂总结】【课后作业】一、填空题1. .=---3232. .()22533235-⨯-⨯+=3. .()()()()()=-⨯---⨯---⨯++n n n 212211111014. .()()=-÷⎪⎭⎫ ⎝⎛-+-⨯-5214387165. .()()()=-⨯-+⨯-03.716.016.4003.76. .()()=-⨯+-÷-2333227.若、互为倒数,、互为相反数,,则 .a b c d 2=m ()=-+⋅+23m ab ba d c 8.一个数用科学记数法表示为,则它是 位整数.10n a ⨯二、选择题9.下列公式计算正确的是( )A .B .()527527⨯--=⨯--31354453=÷=⨯÷C . D .⎪⎭⎫ ⎝⎛÷÷=÷÷5454354543()932=--10.计算的值是( )()()2007200822-+-A .1 B . C . D .2-20072-2007211.下列各组数中,相等的一组是( ).A .与B .与23-2(3)-2(3)--3(2)-- C .与 D .与3(3)-33-223-⨯332-⨯12.用合理的方法计算:(1) ; (2) ;515635236767---1544 3.87 4.253495-+-+(3) ; (4) ; 1511342461832⎛⎫⎛⎫--+--+ ⎪ ⎪⎝⎭⎝⎭()110.5678111-----+⎡⎤⎣⎦13.计算:(1); (2);63221⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷2131521(3); (4).⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛--838712787431⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯1811351121961365514.用科学计数法表示下列计算结果:(1)一昼夜小时是多少秒?24 (2)50251002⨯15.(1)阅读短文《拆项计算》:拆项计算下面带分数的计算申,常把整数部分和分数部分拆开,以简化计算过程,举例如下:5231591736342⎛⎫⎛⎫-+++- ⎪ ⎪⎝⎭⎝⎭()5231591736342523159173634252315917363425213063241235644⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=----++--⎛⎫=--+-+--+- ⎪⎝⎭⎛⎫=-+++ ⎪⎝⎭=-+=-(2)仿照第(1)小题的计算方法计算:5211200620054000116332⎛⎫⎛⎫⎛⎫-+-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】1.-11 2.21 3.1 4.2 5.-281.2 6.-7 7.-1 8.1n +9.D 10.D 11.C12.(1) 515655163523325319867676677⎡⎤⎛⎫⎛⎫⎛⎫---=-+-+-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2) 1541451454 3.87 4.253437437495459459-+-+=-+-+=(3) 151153424146183218⎛⎫⎛⎫--+--+=- ⎪ ⎪⎝⎭⎝⎭ (4) ()110.56781110.4321-----+=-⎡⎤⎣⎦13.(1) 121266612323⎛⎫⎛⎫-⨯=⨯+-⨯=- ⎪ ⎪⎝⎭⎝⎭(2) ()2117216853255⎛⎫÷-=⨯-=- ⎪⎝⎭(3) 377733114812888⎛⎫⎛⎫⎛⎫--÷-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4).51111351936361853911366623518633519⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯-÷-=⨯-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭14.(1) 一昼夜小时是(秒)244246060864008.6410⨯⨯==⨯(2) =50251002⨯50505010025410010⨯==15.原式=()5211352200620054000110.6332263⎛⎫⎛⎫--+++--++=+-+=- ⎪ ⎪⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一.选择题
1. ()()35c c -⋅-的值是( ).
A. 8c -
B. ()15c -
C. 15c
D.8
c 2.2n n a a +⋅的值是( ).
A. 3n a +
B. ()2n n a +
C. 22n a +
D.
8a 3.下列计算正确的是( ).
A.224x x x +=
B.347x x x x ⋅⋅=
C. 4416a a a ⋅=
D.23a a a ⋅=
4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).
A. 100×210=310
B. 1000×1010=3010
C. 100×310=510
D. 100×1000=410
5.下列计算正确的是( ).
A.()33xy xy =
B.()222455xy x y -=-
C.()22439x x -=-
D.()323628xy x y -=-
6.若()391528m n a b a b =成立,则( ).
A. m =6,n =12
B. m =3,n =12
C. m =3,n =5
D. m =6,n =5
二.填空题
7. 若26,25m n ==,则2m n +=____________.
8. 若()319x a a a ⋅=,则x =_______.
9. 已知35n a =,那么6n a =______.
10.若38m a a a ⋅=,则m =______;若31381x +=,则x =______.
11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦ ______; ()5
23-=______.
12.若n 是正整数,且210n a =,则3222()8()n n a a --=__________.
三.解答题
13. 判断下列计算的正误.
(1)336x x x += ( ) (2) 325()y y -=- ( )
(3)2224(2)2ab a b -=- ( ) (4) 224()xy xy = ( )
14.(1) 3843()()x x x ⋅-⋅-; (2)2333221()()3a b a b -+-;
(3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()
()3522b a a b --; (5)()()2
363353a a a -+-⋅; 15.(1)若3335n n x x x +⋅=,求n 的值.
(2)若()3915n m a b b
a b ⋅⋅=,求m 、n 的值.
【答案与解析】
一.选择题
1. 【答案】D ; 【解析】()()()
()353588c c c c c +-⋅-=-=-=. 2. 【答案】C ; 【解析】2222n n n n n a a
a a ++++⋅==.
3. 【答案】D ; 【解析】2222x x x +=;348x x x x ⋅⋅=;448a a a ⋅=.
4. 【答案】C ;
【解析】100×210=410;1000×1010=1310;100×1000=510.
5. 【答案】D ;
【解析】()333xy x y =;()2224525xy x y -=;()2
2439x x -=. 6. 【答案】C ;
【解析】()333915288,39,315m n m n a b
a b a b m n ====,解得m =3,n =5. 二.填空题
7. 【答案】30;
【解析】2226530m n m n +==⨯= .
8. 【答案】6;
【解析】3119,3119,6x a a x x +=+==.
9. 【答案】25;
【解析】()2
632525n n a a ===. 10.【答案】5;1;
【解析】338,38,5m m a a a a m m +⋅==+==;3143813,314,1x x x +==+==.
11.【答案】64;9n -;103-;
12.【答案】200;
【解析】()()32322222()8()81000800200n n n n a a a a --=-=-=.
三.解答题
13.【解析】
解:(1)×;(2)×;(3)×;(4)×
14.【解析】
解:(1)3843241237()()x x x x x x x ⋅-⋅-=-⋅⋅=-;
(2)23332269641
1()()327
a b a b a b a b -+-=-+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;
(4)()
()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272a
a a a a a a -+-⋅=-⋅=-. 15.【解析】
解:(1)∵3335n n x x
x +⋅= ∴ 4335n x x +=
∴4n +3=35
∴n =8
(2)m =4,n =3
解:∵()3915n m a b b
a b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=
∴3n =9且3m +3=15
∴n =3且m =4。