高中数学必修4《向量的加法》说课稿

合集下载

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版第一章:向量的概念回顾1.1 向量的定义:向量是有大小和方向的量,通常用箭头表示。

1.2 向量的表示方法:在坐标系中,向量可以用有序数对表示,即(x, y)。

1.3 向量的模:向量的模是指向量的大小,可以用|v|表示,计算公式为|v| = √(x^2 + y^2)。

第二章:向量的加法运算2.1 向量加法的定义:两个向量a和b的加法运算,记作a + b,结果是一个新的向量,其大小等于a和b大小的和,方向等于a和b方向的矢量和。

2.2 向量加法的表示方法:在坐标系中,向量加法可以通过将两个向量的坐标分别相加得到结果向量的坐标。

2.3 向量加法的性质:向量加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

第三章:向量加法的几何解释3.1 向量加法的几何图形:在坐标系中,向量加法可以通过将两个向量的箭头首尾相接,得到结果向量的箭头。

3.2 平行向量的加法:当两个向量平行时,它们的加法运算结果是它们的模的和(或差,取决于它们的方向是否相同)。

3.3 非平行向量的加法:当两个向量不平行时,它们的加法运算结果是一个新的向量,其大小和方向由平行四边形法则确定。

第四章:向量加法的应用4.1 力的合成:在物理学中,向量加法可以用来计算两个力的合力,即力的合成。

4.2 位移的计算:在物理学中,向量加法可以用来计算物体的位移,即起点到终点的位移向量。

4.3 速度和加速度的合成:在物理学中,向量加法可以用来计算物体的速度和加速度的合成。

第五章:向量加法的练习题第六章:向量加法在坐标系中的运算规则6.1 直角坐标系:在直角坐标系中,向量的加法可以通过对应坐标轴上的坐标值进行运算。

6.2 斜坐标系:在斜坐标系中,向量的加法需要考虑角度和半径的变化。

6.3 空间坐标系:在空间坐标系中,向量的加法涉及到三个坐标轴的运算规则。

第七章:向量加法在实际问题中的应用7.1 力学问题:在力学中,向量加法可以用来计算物体所受多力的合力。

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇

《向量的加法》教案优秀2篇《向量的加法》教案篇一总课题平面向量总课时第18课时分课题向量的加法分课时第1 课时教学目标理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作两个向量的和,掌握加法的交换律和结合律,并会用它们进行向量的运算。

重点难点向量加法的三角形法则和平行四边形法则。

向量加法的交换律和结合律。

引入新课问题1、利用向量的表示,从景点到景点的位移为,从景点到景点的位移为,那么经过这两次位移后游艇的合位移是(如图)这里,向量,,三者之间有什么关系?1、向量加法的定义2、向量加法的三角形法则具体步骤:(1)把两个向量平移后,使两个向量的一个起点与另一个起点相连。

(2)将剩下的起点与终点相连,并指向终点,则该向量为两个向量的和。

简记为“首尾相连,首是首,尾是尾”3、向量加法的平行四边形法则4、对于零向量和任一向量有,对于相反向量有5、向量加法的运算律交换律结合律6、如果平面内有个向量依次首尾连接组成一条封闭折线,那么这个向量的和是什么?例题剖析例1、作出下列向量的和:例2、如图,为正六边形的中心,作出下列向量:(1) (2) (3)例3、在长江南岸某渡口处,江水以的速度向东流,渡船的速度为。

渡船要垂直地渡过长江,其航向应如何确定?巩固练习1、化简。

2、已知点是平行四边形对角线的交点,则下面结论中正确的是( )A、B、C、D、3、在△ 中,求证;4、一质点从点出发,先向北偏东方向运动了,到达点,再从点向正西方向运动了到达点,又从点向西南方向运动了到达点,试画出向量以及。

课堂小结1、向量加法的定义。

2、向量加法的三角形法则和平行四边形法则。

3、向量加法的运算律。

课后训练班级:高一( )班姓名一、基础题1、已知正方形的边长为,则( )A、B、C、D、2、设点是△ 内一点,若,则必有( )A、点是△ 的垂心B、点是△ 的外心C、点是△ 的。

重心D、点是△ 的内心3、当时,; 时,平分之间的夹角。

向量的加法说课稿

向量的加法说课稿

课题:向量的加法教材:苏教版数学必修四《平面向量》授课教师:江苏省邗江中学杨建萍一、教材分析向量既是重要的数学模型又是重要的物理模型,在数学和物理中应用很广。

教材的第一节通过实例引入了向量的概念,介绍了向量的模、相等向量、相反向量、零向量以及平行向量等基本概念。

而本节课是向量的第二节课:向量的加法。

向量的加法是向量的第一运算,是学习向量其他运算的基础。

从数的运算、字母运算到向量运算,是运算的一次飞跃。

二、教学目标(1)知识与技能:理解掌握向量的加法的含义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量;掌握向量加法的交换律和结合律,并会用它们进行向量计算。

(2)过程与方法:经历用数学符号、图形描述现实世界的过程,发展合情推理和演绎推理的能力。

注意领悟数学知识发生与发展过程中的分类思想、形数结合的思想方法。

(3)情感态度与价值观:感受数学与现实世界的联系。

培养学生尊重客观事实的态度,以及独立思考与合作交流的习惯。

三、重点与难点(1)重点:两个向量的和的概念。

两个向量的和的概念是向量加法的基础,而向量的加法是向量运算的基础。

求两个向量的和应突出三角形法则,在使用这个法则时,要强调“首尾顺次相连”。

这既为推导多个向量的加法法则和证明加法的运算律提供方便,同时也为向量减法的学习做铺垫。

(2)难点:向量加法的交换律和结合律。

位移的合成可以作为向量加法的原型,教学中应该以此为依托,探索向量加法的含义及其运算律。

启发学生将向量的加法与数、字母、式的加法进行比较,加深对数学运算的认识和理解。

四、学情分析1、知识结构:学生已经具有一定的数学知识与物理知识,很容易接受本节课的知识内容。

2、能力方面:学生已经具有一定分析问题、解决问题的能力,在教师的启发引导下,能力目标不难达到。

3、情感方面:高一学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。

高中数学《向量的加法》说课稿范文

高中数学《向量的加法》说课稿范文

高中数学《向量的加法》说课稿范文一、基本信息•课程名称:高中数学•课时数:1课时(40分钟)•课型:理论课•主题:向量的加法二、教学目标知识目标•掌握向量的基本概念和性质;•熟练掌握向量的加法运算;•了解向量的几何意义。

能力目标•能够正确运用向量的加法运算解决实际问题;•能够运用向量的几何性质进行证明;•培养学生的逻辑思维和解决问题的能力。

情感目标•激发学生对数学的兴趣;•培养学生的合作精神和自主学习能力;•培养学生的数学思维习惯和创新精神。

三、教学内容与教学步骤1. 教学内容•向量的基本概念与性质回顾;•向量的加法运算;•向量的几何意义。

2. 教学步骤步骤一:导入新知引入向量的概念,回顾向量的基本性质,包括向量的模、方向和共线性。

步骤二:引入向量的加法通过举例向学生展示向量的加法运算方法,让学生通过观察和总结归纳出向量加法的规律。

步骤三:练习与巩固提供一些向量加法的练习题,让学生通过实际操作加深对向量的加法运算的理解。

步骤四:向量的几何意义讲解向量的几何意义,如向量之间的相等、共线关系等,在几何图形中展示向量的加法运算。

步骤五:总结与归纳通过学生的互动讨论,总结向量的加法规律,并引导学生进行思考和思维拓展。

四、教学重点和难点教学重点•向量的加法运算;•向量的几何意义。

教学难点•向量的几何意义的理解和应用;•向量的加法运算规律的总结和归纳。

五、教学方法和学情分析教学方法•情景教学法:通过实际问题引导学生思考和解决问题;•合作学习法:鼓励学生小组合作,共同完成练习和讨论。

学情分析本节课是高中数学向量的加法运算的一堂理论课,学生已经学习过向量的基本概念和性质,对向量的加法运算还不够熟练,对向量的几何意义理解不深。

因此,本节课旨在通过实际问题引导学生主动思考和解决问题,培养他们的逻辑思维和解决问题的能力。

六、教学评价评价方式•学生课堂表现评价;•练习题评价。

评价标准•能够准确运用向量的加法运算解决问题;•能够正确理解和应用向量的几何意义;•能够独立思考和解决问题的能力。

向量的加法(说课稿)

向量的加法(说课稿)

案例4:向量的加法402013120144 陈杰华【教材分析】本节内容位于高中数学教材必修4第二章《平面向量》的第二节第一课(1课时)。

向量的加法是我们在学习完向量的基本概念后首先要掌握的一种运算,本节内容的学习既能够加深对向量概念的深层次理解,也能为以后学习向量减法,数乘向量及平面向量基本定理等知识奠定基础,因此,本节内容起着承上启下的重要作用。

由于之前物理里面也学习过力、速度等矢量的分解,因此学生对向量的加法具有一定的基础,在向量的加法学习过程,学生能够与物理中学习过的内容联系起来,对于新课学习很有帮助。

向量加法的三角形法则和平行四边形法则是一个本节课最重要的内容,讲授时应一次到位。

不仅要讲述清楚、表述规范,还有通过问题的解决加以强调,并要求学生亲自实践以加深理解。

向量加法的运算律也是本节课的重点内容。

其结论不应简单的给出,而应该让学生按照加法法则作图检验。

【学情分析】1.知识方面本节课学习之前,学生学习了向量的概念,对向量的方向性有了一定的认识。

更重要的是学生在物理中的学习过一些矢量的合成概念,这为学习向量的加法作了最好的铺垫。

2.能力方面理解力上,学生能够从生活中的一些实际例子对向量加法有一定的感性认识,在直观上能体会向量的加法与数量的加法之间有明显的不同,能分辨出二者具有很大差异性,但是这种差异在学习本课之前是学生难以表述清楚,如果学生能够将物理中学习过一些矢量的合成分解和这节课的内容联系起来,就完全能够做到实现物理中的矢量和数学中的向量之间的正迁移.【教学目标】(一)知识与技能:理解向量加法的定义;熟练掌握向量加法的三角形法则和平行四边形法则,会求两个向量的和,能准确理解,表述向量加法的交换律和结合律,并熟练运用向量加法的交换律和结合律(二)过程与方法:从学生感兴趣的故事,熟悉的实例出发,学生经过观察、分析、归纳、概括出向量加法的概念。

并且自然地得出向量加法满足三角形法则和平行四边形法则。

人教A版高中数学必修四2.2.1向量的加法及其几何意义说课课件

人教A版高中数学必修四2.2.1向量的加法及其几何意义说课课件

问题探究
实数的加法运算满足交换律,即对任意 a,b∈R,都有a+b=b+a.那么向量的
加法也满足交换律吗?如何检验?
a
b
b a+b
a
向量加法满足交换律和结合律
(1)向量加法交换律:
ab ba
(2)向量加法结合律:
(a+b)+c a (b c)
以上两个运算律可以推广到 任意多个向量.
小结
向量加 法
特例:共线向量
(1) 同向
a
b
(2)反向
a
b
A
B
C
B
CA
用平行四
边形法则求和向量的情况?
探究:
1 当a, b不共线时,
a b <ab< a b
2 当 a, b 同向时,
ab = a b
C
a+b b
A
a
B
a+b
Aa B
b
C
3 当 a, b 异向时,
ab = a b
a+b
C
A
B
结论: a b a b a b
问题探究
向量加 法
如图所示,计算下列各式
(1) (a+b)+c (2) a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
A
a
思考:实数的加法运算满足结合律,那 么向量的加法运算也满足结合律吗?
B
B
A

高三数学《向量加法》说课稿

高三数学《向量加法》说课稿

高三数学《向量加法》说课稿各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢[编辑推荐]下面是中国()为各位老师准备的“数学《向量的加法》说课稿”中国相信只有在课前充分的准备,课上才能传授更多更完善的只是给学生,欢迎老师们参考中国的说课稿!一、教材分析:《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。

本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。

向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。

所以本课在“平面向量”及“空间向量”中有很重要的地位。

二、学情分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。

学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

三、教学目的:1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。

能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。

掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

四、教学重、难点重点:向量的加法法则。

探究向量的加法法则并正确应用是本课的重点。

两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

《向量的加法》说课稿(附教学设计)

《向量的加法》说课稿(附教学设计)

《向量的加法》说课稿《向量的加法》是人教版高一下第五章第二节第一课时《向量的加法》。

下面,我从三个方面来对本节课的设计进行说明:1.教材分析教材的地位和作用向量是近代数学中重要和基本的数学概念,它是沟通代数、几何、三角的一种工具,其工具作用主要体现在向量的运算方面.向量的加法运算是向量运算的基础,它在学生已学物理知识后,以力的合成、位移的合成等物理模型为背景抽象出的一种数学运算.向量的加法不同于数的加法,运算中包含大小与方向两个方面,向量加法的法则––––画图求和法,是一种全新的数学技术,从这个角度来看,研究向量加法是学生学习过程中的一种突破.是学习向量的减法、数乘以及平面向量的坐标运算等内容的知识基础,为进一步理解其他的数学运算(如函数、映射、变换、矩阵的运算等等)创造了条件,因此我认为,向量的加法在这里起着承上启下的作用。

教学目标根据学生已有的知识结构及本节课教材的作用和地位,依据新课程标准的具体要求,我从三方面确定本节课的教学目标:(1)知识与技能方面:使是学生经历从实际问题抽象为数学问题的过程,掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算,养成敢高于探索勇于创新的良好习惯,以及善于用数学方法解决实际问题的能力(2)能力目标在具体的分析过程中,使学生经历向量加法法则的探究和应用过程,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。

(3)情感目标注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。

教学重点和难点重点:向量加法的两个法则及其应用;难点:对向量加法定义的理解。

突破难点的关键是抓住实例,借助多媒体动画演示,不断渗透数形结合的思想,使学生从感性认识升华到理性认识。

2. 学情分析本节内容总体来说比较简单,学生理解接受的难度也不大。

2.2向量的加法运算及其几何意义说课稿高中数学必修四北师大版

2.2向量的加法运算及其几何意义说课稿高中数学必修四北师大版

2.2向量的加法运算及其几何意义说课稿高中数学必修四北师大版《2.2.1向量加法运算及其几何意义》教学设计说明一、教学的本质、地位和作用向量是近代数学中重要和基本的数学概念之一,是沟通代数与几何的桥梁。

在实际生活中应用广泛,如物理学、工程技术中都用到了向量;向量加法运算是学生对向量运算体系所进行的第一次探索和尝试,学好本节课将为后面学习向量的其它知识奠定基础,为用“数”的运算解决“形’的问题提供工具和方法。

二、教学目标设计教学目标的分析与确定是教学设计的起点,它是教师对学生学习内容所达水平程度的期望,基于本节课的特点,我从以下三个方面设定了本节课的教学目标:知识目标:理解向量加法的含义,掌握向量加法的三角形法则和平行四边形法则;会用向量加法的交换律与结合律进行向量运算.能力目标:经历向量加法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.情感目标:经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质.同时,本节课的知识结构层次清晰.重点:向量的加法法则和向量加法的运算律。

探究向量的加法法则并正确应用是本课的重点。

两个加法法则各有特点,联系紧密,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容。

难点:理解向量加法及其几何意义;尤其是方向相反的两个向量的加法。

主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

三、教学过程设计本节课的教学过程就是:提出问题、分析问题、解决问题的过程,通过创设情境,引入课题;独思共议,总结法则;合作交流,探究性质;典例分析,深化认识;课堂小结,拓展延伸等环节进行。

1、创设情境,引入课题情景:原来从浙江的嘉兴到宁波的慈溪,需先从嘉兴到杭州,再从杭州到慈溪,现在建好了杭州湾跨海大桥,可以从嘉兴直接到达慈溪。

这两种方式的位移是一样的,引出向量的加法。

向量的加法说课稿

向量的加法说课稿

向量的加法说课稿我说课的课题是人教版(基础模块)第七章第二节《向量的加法》,下面我从教学内容、教法学法、教学过程这三个方面进行说明:一.教学内容1.教材地位、作用及教材内容处理向量是近代数学中最重要最基础的内容之一,是沟通代数和几何的工具,是数学知识的一个交汇点。

《向量的加法》是学习向量概念后是学习向量运算的第一课时,是学习数乘向量和向量的坐标运算的基础,为后续内容的学习奠定基础。

向量的加法教学内容分为两课时,学生对于向量的三角形法则与向量的平行四边形法则较易混淆,为避免混淆,第一课时为向量的加法的三角形法则及平行四边形法则,第二课时为向量的加法应用和巩固。

本节说课内容为《向量加法》的第一课时。

2.学情分析:大部分职高的学生觉得数学没用,对数学没有兴趣,因此本节课先从实际问题引入,由感性认识上升为理性认识,归纳总结出向量的概念,最后利用向量的加法解决实际问题,让学生体会数学来源于生活,应用于生活,提高学生学习数学的兴趣。

3.教学目标知识目标:理解向量加法的概念,会用向量的加法三角形法则画出两个向量的和,会用向量加法的运算律进行加法的运算,会用向量的加法解决实际问题。

能力目标:从向量加法概念的生成过程培养学生的观察能力、归纳总结能力,从解答应用问题培养学生分析问题、解决问题的能力。

情感目标:将实际问题转化为向量问题体会数学的简洁美。

4.教学重点,难点教学重点:向量的加法的概念及画法教学难点:向量加法的三角形法则的画法关键点:向量加法概念的形成二.教法、学法学生只有通过自己的观察、思考、类比、归纳、总结,体会知识的产生过程才可以将外在的知识变成内在的知识,教师在这一过程中只是充当指导者、组织者的身份。

在向量加法概念的教学中采用问题探究式教学方法,由教师提出问题,学生在教师的引导下观察、思考、类比、归纳生成概念,在概念的巩固、深化阶段采取讲练结合教学方法,学生通过练习,巩固知识,形成技能,从而熟练掌握加法的三角形法则的画法。

全国青年教师数学大赛高中数学优秀教案、教学设计及说课稿《向量的加法》

全国青年教师数学大赛高中数学优秀教案、教学设计及说课稿《向量的加法》

向量的加法授课教师:江苏省盐城中学 侯爱娟教材:普通高中课程标准实验教科书(必修4)(苏教版)一.教学目标知识目标:理解向量加法的含义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和;掌握向量加法的交换律与结合律,并会用它们进行向量运算.能力目标:经历向量加法概念、法则的建构过程,感受和体会将实际问题抽象为数学概念的过程和思想,培养学生发现问题、分析问题、解决问题的能力.情感目标:经历运用数学描述和刻画现实世界的过程,体验探索的乐趣,激发学生的学习热情.培养学生勇于探索、创新的个性品质.二.重点难点重点:向量加法运算的意义和法则. 难点:向量加法法则的理解.三.教学方法采用“启发探究”式教学方法,结合多媒体辅助教学.四.教学过程Ⅰ.创设情境 直观感知A以杭州湾大桥为整体背景,设计两个问题情境如下:问题1:建桥之前如何从嘉兴到达宁波?建桥之后可以从嘉兴直达宁波,此时的位移与前面两次位移的结果有何关系?两次位移的结果可称为两次位移的和,如何用等式来刻画这三个位移的关系?问题2:这是大桥南端的A 型独塔斜拉桥,其中两根拉索对塔柱的拉力分别为、,则它们对塔柱的共同作用效果如何?合力可称为力与1F 2F F 1F 2F的和,如何用等式来刻画这三个力的关系?力与位移都是物理中的矢量,既有大小又有方向,若去掉它们的物理属性,就是数学中的向量.它们的和也就可以抽象成向量与向量之间的一种运算——向量的加法(引出课题)Ⅱ.抽象概括 形成定义 (一)建立数学模型若记则向量OB 叫做向量,OA a AB b ==a 与b 的和,记为a b += OA AB OB += .问题3:如图所示的三个向量,你们能给出它们所满足的等式吗?——AB BO AO +=,即向量AO 为向量与AB BO的和(二)抽象数学概念问题4:由此,你们能概括出一般的两个向量a 与b和的定义吗?学生活动:在平面内任取一点O ,平移a 使其起点为点O ,平移b使其起点与a 向量的终点重合,再连接向量的起点与向量的终点.a b(1)平移的目的是什么?——平移后使得两个向量能在同一个三角形中;(2)平移后两个向量的终点与起点有何关系?——使得第二个向量的终点与第一个向量的起点重合;(3)和向量又是什么?——连接向量a 的起点与向量b 的终点,并指向b 的终点,得到的向量OB 即为向量与的和;a b(4)借助于几何直观,用自然简洁的语言给出两个向量和的定义 .和的定义:已知向量,在平面内任取一点O ,作,a b ,OA a AB b == ,则向量叫做向量的和.记作:.即a .OB,a b a b + b AB OB +=+=OA 向量的加法的定义:求两个向量和的运算叫做向量的加法.向量加法的法则:和的定义给出了求向量和的方法,称为向量加法的三角形法则.问题5:用三角形法则求向量和的过程中要注意什么?——平移两个向量使它们首尾顺次相连. 问题6:还可以用什么方法求两个向量的和呢?——向量加法的平行四边形法则. 问题7:平行四边形法则有何特点?——平移两个向量至共起点.两种方法求和的结果是一样的,可见,向量加法的三角形法则与平行四边形法则在本质上是一致的.在具体求和时,应根据情况灵活地选择.(三)尝试运用法则试一试:如图,已知a 、b ,作出a b +向量加法的三角形法则对共线向量的求和仍然是适用的,反映了三角形法则具有广泛的适用性. Ⅲ.类比猜想 探究性质问题8:加法其实我们并不陌生,从小就开始学习数、字母、式的加法,实数的加法有哪些运算性质?向量的加法是否也满足类似的性质?如果满足,具体形式是什么?实数的加法向量的加法 性 质0a a +=()0a a +-=a b b a +=+()(a b c a b c ++=++)0a a +=()a a 0+-=a b b a +=+()(a b c a b c )++=++交换律的验证让学生通过画图自己验证,结合律的验证师生借助于多媒体共同完成.研究结果表明:向量的加法也满足交换律和结合律,这与数的加法是一致的.有了交换律与结合律,向量的加法就可以按任意的组合与任意的次序进行,从而丰富了向量加法的内涵.Ⅳ.数学运用 深化认识abba abba例1.如图,O为正六边形A 1A 2A 3A 4A 5A 6的中心,作出下列向量:(1) (2) (3)13O A O A +36OA A A + 52365A A A A +(4)134634A A A A A A ++ (5)1223344556A A A A A A A A A A ++++A3推广1:1223341n n 1n AA A A A A A A AA -++++=推广2:12233411n n n A A A A A A A A A A -+++++0=墩的状况,已知艇的速度是25km/h,若艇要沿着与桥平行的方向由南向北航行,则艇的航向如何确定?并以北京08奥运圣火的传递提供了现实原型.最后我们再回到这座宏伟壮观的大桥来解决这样一个实际问题:例2.已知桥是南北方向,受落潮影响,海水以12.5km/h 的速度向东流,现有一艘工作艇,在海面上航行检查桥北东BV 船A DD分析:首先将实际问题数学化,把三个速度分别用向量来表示:如图,设AB 表示水流速度,AD表示游谁度?艇的速度,那是游艇的实际速AC ,三个向量应满足什么关系?AC AB AD =+.,设表示游艇的速度,解:如图B 表示水流速度, A AD AC表示游艇的实际速度,因为,所以四边形为平行四边形.在AC AB AD =+ ABCDRt ACD ∆中,, 5090ACD ∠=|= |||12.5DC AB =||2AD = ,的方向由南向北航行,其航向应为北偏西. 展延伸 一、课时小结:留给你印象最深的是什么?作为课堂的延伸,你课后还想作些什么探究?最后应用到生活实践中去.再一次告诉我们,数学源于生活,又服务于生活.2、马克思说过:一种科学只有在成功地运用数学时,才算达到完善的地步. 我们今天所学习的向量随着对向量研究的逐步深入,向量作为一种新的数学 二、拓展延伸:同学后完成(所以030CAD ∠=30答 若艇要沿着与桥平行Ⅴ.回顾反思 拓1、同学们想一想:本节课你有些什么收获呢?知识内容:向量加法的定义、二个运算法则以及二个运算律.本节课我们从物理原型抽象出数学模型,在此基础上去研究数学模型,的加法为研究物理的相关问题提供了一种数学工具,工具被越来越广泛的应用.(1)作业:P66 习题2.2的1,2,3(2)拓展探究:请们课下面的拓展探究题:向量和的模与模的和之间有什么关系?,a b是任意两个向量,则a b + 与a b 之间有什么关系? 并根据自己感兴趣的话+题进行拓展探究.关于“向量的加法教案”的说明数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态.这是新课程理念中特别强调的,也是我备课过程始终如一的追求.说明一:关于目标定位景抽象出的一种数学运算.在《课程标准》中,对平面向量运算的总的要求是:了解向量丰富的实际背景,算,并理解其几何意义.根据课标的要求结合学生的认知特点,确定了本节课的多元化教学目标(详见教案).说明二:关于地位作用“旧”,一方面,在物理中学生已经学习了力、位移等矢量的合成,并且通过上节课的学习,学生已掌握另一方面,数的加法运算为向量的加法运算提供了可类比的对象,这些都是学习本节内容的基础.矩阵的运算等等)创造了条件,起着承上启下的作用,并加强了代数、几何、三角的联系,体现了近现代向量还是重要的物理模型,体现了数学与物理的完美结合,为解决实际问题提供了有效的工具.说明三:关于学情诊断本节内容总体来说比较简单,学生理解接受的难度也不大.因为学生在物理中已经认识了矢量与标量则.通过与数的加法的类比,学生也能够较容易的猜想出向量加法的交换律与结合律.示不是很规范.有些学生对向量加法法则的运用还停留机械模仿的水平,表现在平移向量时,不能够根据不能在同一个图形中来研究这个问题,这就给说明两个向量的相等带来了困难.对向量式的化简过程中,向量是近代数学中重要和基本的数学概念,它是沟通代数、几何、三角的一种工具.其工具作用主要体现在向量的运算方面.向量的加法运算是向量运算的基础,它以位移的合成、力的合成等物理模型为背理解平面向量及其运算的意义,发展运算能力. 对本节内容的具体要求是通过实例,掌握向量加法的运向量的加法不同于数的加法,运算中包含大小与方向两个方面,向量加法的法则––––图上作业法,是一种全新的数学技术,从这个角度来看,研究向量加法是学生学习过程中的一种突破.但在“新”中又有了向量的相关概念及表示方法,知道向量可以自由移动的;向量的加法运算是继实数运算、集合运算之后,学生学习的另一种形式的运算,是学习向量的减法、数乘以及平面向量的坐标运算等内容的知识基础,为进一步理解其他的数学运算(如函数、映射、变换、数学的一些重要思想.同时,的区别,在生活中对位移与路程也有了一定的体验.所以对数学中向量与数量的概念是比较容易理解接受的.并能够从物理的矢量合成中去感受向量的加法的含义,总结出向量加法的三角形法则和平行四边形法但是由于学生对向量的理解还没有根深蒂固,会有部分学生忽略零向量与数零的区别,以及向量的表情况灵活地选择起点.对交换律与结合律的验证,学生也存在一定的误区,在具体操作过程中,他们往往对交换律、结合律运用不够灵活,不善于抓住向量式的特点来解决问题.这些都需要教师在课堂教学过程中具备灵活的教学机智,给学生以适时的点拨与提醒.说明四:关于教法设计基于以上对教材内容的认识和学生客观情况的分析,结合新课标的教学理念,本课主要采用“启发探究式”教学法,遵循由具体到抽象、由特殊到一般的原则.并结合多媒体手段,为学生营造一个充满着观察、发现、归纳、猜想的可“再创造”环境,使其能够充分实现自主探究、合作交流,生动活泼地获取知识.具体表现为如下几个方面:(1)讲背景、重过程、强调本质本课开始从学生已有的生活经验和物理知识出发,以杭州湾大桥为背景创设问题情境,从而让学生在位移合成、力的合成的基础之上,抽象出向量加法的概念,进而引导学生总结出向量加法的三角形法则和平行四边形法则,以及各自的操作方法与要领,使学生体会到向量加法的实际背景,经历了概念形成的过程,领悟到数学概念的本质,体现了“数学教学是数学思维活动的过程教学”.(2)讲方法、重能力、渗透思想向量加法运算律的教学,是引导学生通过与数的加法进行类比得到的,并让学生自主探索,构图进行验证.这样不仅体现了学生的主体地位,同时还培养了学生科学的探究能力,归纳推理能力,渗透了数形结合、类比等思想.(3)设计问题、加强联系、关注学生的发展教学中采用了“以问题为中心”的讨论式教学模式.把问题作为教学的出发点,精心设计问题情境,组织相关的数学成分,加强相关内容的联系,使问题处于学生思维的最近发展区,以此激发学生的好奇心与求知欲.并能够较好地培养学生数学地发现问题、提出问题、解决问题的能力.总体来说,本课围绕学生的发展进行教学设计,使问题贯穿始终,思想贯穿始终,探究贯穿始终,联系,发展贯穿始终.学生在老师的启发下发现当前所面临的问题,成为探究活动的主线,沿着这条主线带领学生找区别、找联系.关注学生的成长发展的全过程,使他们在过程中形成能力,在过程中掌握方法,在过程中发展基本数学能力,在过程中培养健康向上的情感、态度和价值观.通过本节课教学,可使不同层次的学生都能掌握给定任意两个向量求和的基本方法,能够视具体情况灵活地作出两个或者多个向量的和;能运用向量加法的交换律和结合律解决向量式的化简和计算问题;并能运用向量的加法法则解决了一些实际问题.。

《向量的加法》说课稿doc高中数学

《向量的加法》说课稿doc高中数学

《向量的加法》说课稿doc高中数学一.教材的分析与处理1.教材分析:向量的加法是苏教版«一般高中课程标准实验教科书〔必修〕数学4»的第二章平面向量、第二节向量的线性运算的第一课时,既是对平面向量这一章第一节、向量的概念及其表示的巩固和应用,也是向量运算的起始课,对向量的减法运算的定义,有直截了当的阻碍,同时也对平面向量的后继课程、以及以后将要学习的空间向量的课程,有一定的阻碍。

由以上分析,我得出如此的认识,本节课教学内容应该是关于向量的理论知识体系中,比较靠前的、起到承上启下作用的一个知识环节。

2.教材处理:①依照教材分析,我将在教学过程中详细具体地落实承上启下的作用。

②我将本节课的内容要紧分为差不多理论和初步应用两大部分。

〔详见下表〕二.对教学对象的分析和实际情形的考虑我校属于国有民办学校,全年级160名学生中,入校时530分以上的仅有1 0人;学生的年龄多在16~18,生理上正处在青春期,群体心理上比初中生稳固了许多,但在个体心理上,仍存在专门大差异,思维方式和思维水平也有专门大差异;考虑到以上实际的校情和学情,我认为教学过程的组织、治理和操纵,是对教师的最大考查,在教学中我将更多地利用学生的形象思维、直觉思维和非智力因素,以期顺利完成教学任务。

三.教学目标、重、难点的确定和教法的运用依照以上对教材和教学对象的分析,在«数学课程标准»的指导下确定与之相适应的教学目标、重点和难点如下:1.知识目标:①明白得向量加法的含义,学会用代数符号表示两个向量的和向量;②把握向量加法的三角形法那么和平行四边形法那么,学会求作两个向量的和;③把握向量加法的交换律和结合律,学会运用它们进行向量运算;2.能力目标:①观看能力:学会观看图形中的向量,判定哪些向量相等、相反、平行、共线,哪些向量是向量的和向量等等;②运算能力:学会将两个〔或多个〕向量合成为一个向量,或将一个向量拆分为两个〔或多个〕向量;③应用能力:学会将实际咨询题转化为数学咨询题,并能够运用向量知识解决;3.情感目标:①有意识地爱护和调动好学生情愿学习数学的心情,营造学生喜爱学习数学的情绪氛围,使其产生热爱数学学习的积极心理;②努力运用多种形象、直观和生动的教学方法,通过深入浅出的教学,让学生主动学习数学,体验学习数学的乐趣和成功,使学生产生〝我努力,我能行〞的乐观心态;③通过例2实际应用咨询题的教学,使学生产生理论联系实际的价值取向和理论来源于实践、服务于实践的认识观念;4.教学重点:①求作两个向量和向量的法那么;②向量加法的运算律;为了突出教学重点,我第一将求作两个向量的和向量分成三个层次与学生一起学习,即设计原理运用了由专门到一样的认识、思维过程,其次我设计了学生的动手活动。

说课稿《向量的加法》[1]

说课稿《向量的加法》[1]

《向量的加法》说课稿各位评委老师大家好!我叫…,是…师范学院数学与应用数学专业2012届毕业生。

非常荣幸能有机会站在这里进行我的说课。

我说课的内容是人教版全日制普通高级中学教科书高一数学(下)第五章第2节“向量的加法与减法”的第一课时“向量的加法”。

根据新课标的理念,本节课我将从“教材、教法与学法、教学过程”三个方面加以说明。

一 . 教材方面1.教材的地位和作用本节教材是高一数学第五章第2节的内容,向量是数学的重要概念之一。

向量的加法是在上节课刚认识了向量的基础上对向量的进一步深入和拓展,也为学习平面向量的数量积及运算律等一系列有关向量的知识奠定了基础。

而且向量的有关知识还能有效地解决数学、物理等学科中的许多问题。

所以我认为本节课不仅起着承前启后的作用,而且有着广泛的实际运用价值。

2 .根据上述教材分析,再结合学生的情况,我制定了以下学目标:知识与技能目标为:学生能说出向量加法的定义;能熟练运用三角形法则和平行四边形法则作两个向量的和向量;能准确表述向量加法的交换律和结合律,知道++=。

=过程与方法目标为:在具体的实例中逐步引导学生理解向量加法的定义及掌握三角形法则和平行四边形法则作和向量的过程。

情感态度与价值观目标为:激发学生探究数学的兴趣,养成积极思考的好习惯,并培养学生的数形结合思想,发现生活中的数学问题。

这三个目标是紧密联系在一起的,因此,在教学中我主要以知识与技能目标为主线,渗透情感态度价值观,并把它们充分体现在教学过程与方法中。

3 .基于对上述教材的分析及教学目标的分析,我将本节课的重点确定为:如何作两向量的和向量,掌握向量加法的定义;难点确定为:对向量加法定义的理解及作两向量的和向量的过程。

二 . 教法与学法方面新教学理念认为,在教学中,学生是学习的主体,教师是学习的组织者和引导者。

教学活动要以强调学生的主体性为出发点。

根据这一教学理念,再结合本节课的特点和学生的年龄特征,本节课我主要采用启发式、讨论式及讲练结合的教学方法,通过提出问题,解决问题为主线,逐步引导学生分析问题、得出结论。

向量的加法运算说课稿

向量的加法运算说课稿

《向量的加法运算及其几何意义》说课稿各位专家,您们好!今天我说课的题目是《普通高中课程标准实验教科书人教A版数学必修4》第二章第二单元《平面向量的线性运算》的第一节课《向量的加法运算及其几何意义》。

现在我就教材分析、目标定位、教法与学法分析、教学程序、板书设计五个方面进行说明,恳请各位专家批评指正。

一、教材分析本课选自普通高中课程标准试验教科书北京师范大学出版社出版数学必修5第二章第二节,向量是高中数学的重点内容,也是近代数学中重要的基本数学概念,它不仅沟通了代数与几何的联系,是重要的数学模型,也在描述物理中的平面力场,平面位移等问题中起着重要的作用,因此学好平面向量十分重要。

而本节是在学生建立了向量概念的基础上,开始研究向量的运算,这是后续运用向量解决问题的基础,因此本节的内容起着承上启下的作用。

二、目标定位知识目标:掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量的加法的运算律,并会用它们进行向量计算能力目标:体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识情感目标:注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心学习重点:向量加法的两个法则及其应用学习难点:对向量加法定义的理解为了突出重点、突破难点,在教学中采取以下策略:(1)、创设情境,引发学生认知冲突,激发学生求知欲,使学生对向量加法有一定的感性认识。

(2)、从学生已有知识出发,精心设置一条问题链,引导学生在自主学习与合作探究中经历知识的形成;通过层层深入的例习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“悟”。

三、教法、学法分析1、教法分析本着“以学生为主体,以教师为主导,以问题解决为主线,以能力发展为目标”的指导思想,结合学生实际,主要采用“问题导引,自主探究”式教学方法。

2、学法指导引导学生从实际问题中抽象出数学模型,提高观察、归纳、分析的能力;引导学生自己发现问题、提出问题并予以解决,学会合作交流;引导学生具有“用数学”的意识,尝试着用数学知识解决实际问题。

人教版高中数学A版必修4《向量加法及其几何意义》说课稿

人教版高中数学A版必修4《向量加法及其几何意义》说课稿

人教版高中数学A版必修4《向量加法及其几何意义》说课稿向量加法及其几何意义(说课稿)各位评委~各位老师:大家好:我是来~很高兴有机会参加这次说课比赛~我说课的内容是《向量加法及其几何意义》。

下面我将从教学内容的分析、教学目标的确定、教学方法的选择、教学过程设计四个方面来阐述我对本节课的构思。

【教学内容分析】本节课选自人教版《高中课程标准实验教科书》,A版,必修4第二章第二节在学习平面向量基本概念之后,考察它的运算及运算律是数学研究中的基本问题~类比数的运算~向量是否能够进行运算呢,向量的工具作用如何发挥呢,这是学生认知冲突的地方~这一冲突正使数学建模思想应运而生~也是激发学生进一步探究数学新知的契机。

向量加法运算是平面向量线性运算最基本、最重要的运算~减法运算和数乘运算都可以归结为加法运算~这一节内容掌握程度关系到能否进一步领会和掌握后续内容.教学重点为向量加法的三角形法则和平行四边形法则.教学难点是向量加法意义的理解。

【教学目标】学情分析从心理特征来说~高一学生的逻辑思维从经验型初步向理论型发展~动手操作能力强,勇于创新, 敢于发表自己的见解。

但同时~这一阶段的学生逻辑不够缜密容易进入误区~形成思维定势~所以在教学中应抓住这些特点~一方面运用直观生动的形象~引发学生的兴趣~使他们对知识产生兴趣~形成初步认识,另一方面~要创造条件和机会~让学生发表见解~发挥学生学习的主动性~并充分利用学生已有的物理学知识,结合实际操作探究突破难点,从认知状况来说~通过上一节的学习和已有的物理知识~学生对向量有了初步认识~这为顺利完成本节课的教学任务打下了基础~但对于向量加法的准确理解~学生会产生一定的困难~所以教学中予以简单明白~深入浅出的分析、归纳和总结~帮助学生上升到理性认识的层面.根据教材的特点、教学大纲对本节课的教学要求及以上分析~我确定了以下教学目标:知识与技能目标:通过物理中的位移合成认识、动手操作力的合成实验,了解向量加法不同于一般意义上数量相加,有其遵循的新规则,在此基础上理解向量加法的意义,体验数学知识发生、发展的过程,1过程与方法目标:在学生探究向量加法感性认识的基础上,引导学生理解向量加法遵循的“规则”,即三角形法则和平行四边形法则,切实掌握两个向量加法运算律,情感态度与价值观目标:通过由实例到概念,由具体到抽象的学习过程,培养学生的探究能力,使学生能用数学方法思考问题,用数学方法解决问题.【教法分析和学法指导】结合本节课的教学内容和学生的和认知水平~在教法上~我借助多媒体、几何画板软件及flash动画~采用“启发—探究—讨论”式教学模式~充分发挥教师的主导作用~让学生真正成为教学活动的主体。

《向量的加法》说课稿范文

《向量的加法》说课稿范文

《向量的加法》说课稿范文一、说教材1、《向量的加法》是人教版高中数学必修一第二章第一节的内容。

它是在学生已经学习了向量的定义、坐标表示和数量关系的基础上进行教学的,是高中数学中的重要知识点,而向量的加法在物理、几何和计算机图形等领域有着广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:理解向量的加法的概念和性质,掌握向量的加法的运算法则和坐标表示法。

②能力目标:在解决实际问题中运用向量的加法解决几何和物理问题。

③情感目标:通过向量的加法的学习,培养学生对数学的兴趣和对数学在实际问题中的应用能力。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解向量的加法的概念和性质,能够运用向量的加法解决几何和物理问题。

难点是:掌握向量的坐标表示法和运用向量的加法解决实际问题。

二、说教法学法在教学过程中,我将采用启发式教学法,通过设计问题和情境,引导学生主动探索、发现和构建数学概念和规律;学法是:合作学习法,通过学生之间的互动和合作,促进他们的思维交流和讨论,共同解决问题。

三、说教学准备在教学过程中,我将使用黑板和投影仪等多媒体工具辅助教学,从而更好地呈现教学素材,提高学生的学习效果。

四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”,本着这个教学理念,我设计了如下教学环节。

环节一、引入新知我将通过提问的方式引导学生回忆并思考向量的定义和性质,进而引出向量的加法问题。

我会适时出示几个有关向量的实际应用问题,让学生体验到向量的加法在解决实际问题中的重要性,并激发他们对本节课内容的兴趣。

环节二、探究新知1、向量的定义和性质我会以图形和实例让学生观察和比较,引导学生发现向量的加法满足交换律和结合律的性质,并通过问题引导学生总结向量的加法的运算法则。

2、向量的坐标表示我会以具体的图形和实例,让学生观察向量的坐标表示规律,通过实际操作和计算,引导学生掌握向量的坐标表示法。

《向量的加法》教案完美版

《向量的加法》教案完美版

《向量的加法》教案完美版教案标题:向量的加法教学目标:1.了解向量的基本概念和表示方法;2.掌握向量的加法运算;3.理解和应用向量的加法运算规则;4.能够解决与向量加法相关的问题。

教学内容:1.向量的基本概念和表示方法;2.向量的加法运算;3.向量加法运算规则;4.根据向量加法运算解决相关问题。

教学重难点:1.向量的加法运算规则;2.如何应用向量加法解决问题。

教学准备:1.教学课件;2.讲台黑板;3.学生练习题。

教学过程:Step 1:导入新知(10分钟)1.导入:引导学生回顾前几节课学习的内容,如什么是矢量、如何用数表示向量等。

2.发出问题:向学生提问,什么是向量的加法?为什么需要进行向量的加法运算?Step 2:讲解向量的加法运算(15分钟)1.展示教学课件:通过教学课件,向学生介绍向量的加法运算的基本概念和表示方法。

2.解释向量的加法概念:向学生解释向量的加法是将两个或多个向量相加得到一个新的向量的过程。

并通过示意图展示向量之间的相加关系。

3.讲解向量的表示方法:向学生讲解用坐标表示法和分量表示法表示向量的加法运算。

Step 3:向量加法运算规则(20分钟)1.展示示例:通过教学课件,展示向量加法的运算规则,并通过具体案例演示向量加法运算。

2.揭示规律:通过分析示例,揭示向量加法的几个规律,如交换律、结合律等。

3.引导学生发现规律:指导学生通过讨论和分析,发现向量加法的其他规律。

Step 4:巩固练习(30分钟)1.学生练习题:让学生进行一定数量的练习题,包括计算向量的加法和应用向量加法解决实际问题。

2.收集作业:学生完成练习题后,教师收集作业并进行讲解和订正。

Step 5:拓展应用(15分钟)1.讲解拓展应用:通过示例或者实际问题,介绍如何应用向量的加法解决实际生活或者工作中的问题。

2.练习应用题:让学生进行一定数量的应用题练习,巩固所学知识。

Step 6:作业布置与小结(10分钟)1.作业布置:布置合适的作业,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4《向量的加法》说课稿
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。

本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。

向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。

所以本课在“平面向量”及“空间向量”中有很重要的地位。

二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量能够自由移动,这是学习本节内容的基础。

学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

三、教学目的:
1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。

能准确领会向量加法的平行四边形法则和三角形法则的几何意义,并能使用法则作出两个已知向量的和向量。

2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。

掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的水平。

四、教学重、难点
重点:向量的加法法则。

探究向量的加法法则并准确应用是本课的重点。

两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

难点:对三角形法则的理解;方向相反的两个向量的加法。

主要是让学生理解到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

五、教学方法
本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。

2、探究:由力的合成引入平行四边形法则,在法则的使用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的使用。

3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。

4、多媒体技术的使用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

相关文档
最新文档