旋转法构造全等三角形.ppt
《全等三角形》ppt课件人教版初中数学3
(4):时刻注意图形中的隐含条件,如 “公共角” 、 “公共边”、“对顶角”
二.角的平分线:
1.角平分线的性质: 角的平分线上的点到角的两边的距离相等.
用法:∵ QD⊥OA,QE⊥OB, 点Q在∠AOB的平分线上 ∴ QD=QE
用法:∵ QD⊥OA,QE⊥OB, ∴ △EBC≌△EBD (AAS)
(可简写成“ASA”) 如图,在R△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且
平分DE. 用法:∵ QD⊥OA,QE⊥OB,
(1):要正确区分“对应边”与“对边”,“对应角”与
“对角”的不同含义;
如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。
D AC=DF
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
∴ △ABC≌△ABD (SAS)
(1)全等三角形的对应边相等、对应角相等。
2.角平分线的判定:
角的内部到角的两边的距离相等的点 在角的平分线上。
用法: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
三.练习:
1、如图:在△ABC中,∠C =900,AD 平分∠ BAC,DE⊥AB交AB于E, BC=30,BD:CD=3:2,则 DE= 12 。
c
第12章全等三角形复习 课
全章知识结构图
三角形全等 (全等的判定)
S.S.S. S.A.S. A.S.A. A.A.S. H.L.(RtΔ)
12-1 全等三角形 课件(共26张PPT)
知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
构造全等三角形的六种常用方法课件
构造方法简介
01
02
03
04
尺规作图法
利用尺规作图工具,通过已知 条件构造全等三角形。
翻折法
将已知三角形沿某条直线翻折, 得到与原三角形全等的三角形。
平移法
将已知三角形沿某方向平移一 定距离,得到与原三角形全等
的三角形。
旋转法
将已知三角形绕某点旋转一定 角度,得到与原三角形全等的
三角形。
02 方法一:SSS全 等法
感谢观看
拓展延伸:其他构造方法及应用场景
构造中位线
利用三角形中位线性质构 造全等三角形,常用于证 明线段相等或倍长中线等 问题。
构造角平分线
利用角平分线性质构造全 等三角形,常用于证明角 相等或线段成比例等问题。
构造垂直平分线
利用垂直平分线性质构造 全等三角形,常用于证明 线段相等或点共圆等问题。
THANKS
判定条件
两个三角形中,两个角及这两个角的夹边分别相等,则这两个三角形全等。
构造步骤这两个角的夹边相等,最后根据ASA判定条件证明两个三角形全等。
示例
在△ABC和△ADE中,∠BAC=∠DAE,∠B=∠D,AB=AD。根据ASA全等法,可以判定△ABC≌△ADE。
应用场景分析
1 2 3
解决角度和边长问题 当题目中给出两个角和它们的夹边相等时,可以 利用ASA全等法证明两个三角形全等,从而解决 与角度和边长相关的问题。
构造全等三角形 在几何证明题中,有时需要构造全等三角形以证 明某些线段或角度相等。ASA全等法是构造全等 三角形的常用方法之一。
辅助线策略 当遇到复杂的几何问题时,可以通过作辅助线构 造全等三角形,将问题转化为已知的全等三角形 问题,从而简化解题过程。
1三角形全等的判定(第4课时)PPT课件(华师大版)
当堂检测
1.为班级中每名同学准备了长分别为a、b、c三根木条,所有同学都
用三根木条,首尾顺次拼接组成三角形,这时小陈同学说:“我们所
有人的三角形,形状和大小是完全一样的”小陈同学的说法根据
_______.
SSS
根据:三个木条长度a,b,c,无论怎么摆放,长度不变,利用三
角形全等的判定理由:SSS
当堂检测
(简写为“边边边”或“S.S.S.”)
A
几何语言:
在△ABC和△ DEF中,
AB=DE,
B
C
D
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(S.S.S.).
E
F
讲授新课
典例精析
【例1】如图,在四边形 ABCD 中,AD = CB,AB = CD.
求证: ∠B = ∠D.
证明:在△ABC 和△CDA 中,
=,
= ,
=.
∴△ABC≌△DFC(SSS).
讲授新课
变式1 若将上题中右边的三角形向左平移(如图),若AB=DF,
AC=DE,BE=CF.问:△ABC和△DFE全等吗?
解:全等.
A
B
E
D
C
F
∵ BE=CF ,
∴BE+EC=CF+EC.
即BC=FE .
在△ABC和△DFE中,
在△ABD和△CDB中,
=(已知),
= (已知),
=(公共边).
∴△ABD≌△CDB(SSS),
∴∠A=∠C.(全等三角形的对应角相等).
②证明:∵ △ABD≌△CDB(已证) ,
∴∠ABD=∠CDB, ∠ADB=∠CBD .
(全等三角形的对应角相等)
旋转型的全等三角形ppt课件
是△BCD的中线,求证:CM= CM⊥AE
1 2
AE且
变式二:已知△ACD和△CBE都是等边三 角形,AB和DE有什么关系吗?
旋转前后的三角形位置有什么特点?特征?
全等的三角形有什么特点?
探究的两条线段有什么关系?你还有什
位置
大小
么猜想?
两个呢 有兴趣的同学利用几何 画板进一步探索
如图,E、F分别是正方形ABCD的边BC、 CD上的点,且∠EAF= 45° 求证:BE+DF=EF
A EF
D
C
B
猜想DE ⊥AB,DE=AB.请给出证明
延长DE交AB于F
证明:延长DE交AB于F
在DCE和ACB中
DC=AC(已知)
A EF
ECB ACD已知
D
EC=CB(已知)
C
B
DCE ACB(SAS ) DE AB(全等三角形对应边相等 )
A D(全等三角形对应角相等 )
在RtACB中,ACB 90 A B 90
D B 90 (等量代换)
在BDF中,
B D BFD 180 D
BFD 90
即DE AB
A EF
C
B
探究二
A
F E
D
C
B
图中有特殊的直角三角形吗? 连接AB、DE
F G
H
请问:AB、DE有什么关系?
变式一:DE和AB又有怎样的关系呢? F
变式二:已知△ACD和△CBE都是等边三 角形,AB和DE有什么关系吗?
专题探究
旋转型的全等三角形
探究一 E
D
C
(1)已知线段DC ⊥ EC,将∠DCE绕点C 顺时针旋转90°得到∠ACB. 请作出∠ACB
三角形全等(旋转与截长补短专题)
向量与矩阵是高等数学中的重要概念,它们在解决几何问 题,特别是涉及旋转、平移等变换的问题时具有广泛的应 用。
THANKS FOR WATCHING
感谢您的观看
全等三角形的性质
对应边相等
对应角相等 面积相等
周长相等
判定三角形全等条件
01
02
03
04
SSS(边边边)
三边分别相等的两个三角形全 等。
SAS(边角边)
两边和它们之间的夹角分别相 等的两个三角形全等。
ASA(角边角)
两角和它们之间的夹边分别相 等的两个三角形全等。
AAS(角角边)
两角和一角的对边分别相等的 两个三角形全等。
04 复杂图形中三角形全等问 题解决方法
分析复杂图形中隐藏信息
观察图形特点
挖掘隐藏条件
注意图形的对称性、角的度数、边的 长度等,这些可能是解决问题的关键。
根据已知信息和图形特点,挖掘出可 能对解决问题有帮助的隐藏条件。
寻找潜在的全等三角形
通过观察和分析,尝试找出可能的全 等三角形,以便利用全等三角形的性 质解决问题。
应注意准确理解和运用各种判定定理。
02
旋转操作中的误区
在运用旋转证明三角形全等时,学生可能忽略旋转前后的图形关系,导
致证明失败。应注意保持旋转前后的图形对应关系。
03
截长补短法的使用不当
学生可能在不适当的场合使用截长补短法,或者在使用时未能正确构造
出全等三角形。应注意分析问题的具体条件,合理运用截长补短法。
截取法
通过截取线段,使得两个三角形在对应边上相等。例如,在证明两三角形全等 时,可以截取其中一个三角形的一条边,使得这条边与另一个三角形的一条边 相等。
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
专训2 构造全等三角形的五种常用方法 公开课一等奖课件
图中所作辅助线,相当于将△ADF绕点A顺时针 旋转90°,使AD边与AB边重合,得到△ABH.
方应法4 倍长中线法
4.如图,在△ABC中,D为BC的中点. (1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.
(1)证明:延长AD至点E,使DE=AD,连接BE. ∵D为BC的中点, ∴CD=BD. 又∵AD=ED,∠ADC=∠EDB, ∴△ADC≌△EDB. ∴AC=EB. ∵AB+BE>AE, ∴AB+AC>2AD.
5.如图,在四边形ABCD中,AB=AD,∠BAD =120°,∠B=∠ADC=90°.E,F分别是 BC,CD上的点,且∠EAF=60°.探究图中 线段BE,EF,FD之间的数量关系并证明.
解: EF=BE+FD.
证明:如图,延长FD到点G,使DG=BE,连 接AG. ∵∠B=∠ADC=90°, ∴∠B=∠ADG=90°. 在△ABE与△ADG中,
∴△ABH≌△ADF. ∴AH=AF,∠BAH=∠DAF. ∴∠BAH+∠BAF=∠DAF+∠BAF, 即∠HAF=∠BAD=90°. ∵BE+DF=EF, ∴BE+BH=EF,即HE=EF. 在△AEH和△AEF中,
AH=AF, AE=AE, EH=EF, ∴△AEH≌△AEF. ∴∠EAH=∠EAF. ∴∠EAF= 1 ∠HAF=45°.
•
蔡琰(作者有待考证)的《胡笳十八拍》
郭璞的《游仙诗》
鲍照的《拟行路难》
庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
三角形全等证明的解题思路课件PPT
∴∠MOP=∠NOP
OP=OP
O
BN
∴△AOP≌△BOP(AAS)
∴AO = BO
典例精解
类型一:全等三角形的基本模型(平移型、翻折型、旋转型)
如图,已知四边形ABCD中,AB=CD且AB∥CD,连接BD,在BD上截取BE=
DF,连接AE,CF. 求证:AE=CF
A
B 证明:
AB=CD
F D
E
∵AB∥CD
03
的短文来进行群读,训练自己一次扫视3~5个字或词。
经常进行这样训练,快速阅读速度就能大大提高。
变式题
以跳读的方式翻阅全书
优翼微课
当拿到一本书时,我们不要一页一页地去翻,要先看书的
初中数学知识点精讲课程 标题和副标题、作者和出版者、编者的话和关于作者的说
明;然后浏览目录,阅读内容提要、前言或后记;最后,以跳读
CP),分别过B、C作BE⊥AP于E,CF⊥AP于F.
A
求证:EF=CF-BE; F
B
P
C
E
如图,已知△ABC中,∠BAC=90°,AB=AC,点P为BC边上一动点(BP<
CP),分别过B、C作BE⊥AP于E,CF⊥AP于F.
A
求证:EF=CF-BE; F
证明:∵∠BAC=90°
∴∠BAE+∠CAF=90° ∵BE⊥AE ∴∠BAE+∠ABE=90° ∴∠CAF=∠ABE ∵CF⊥AP,BE⊥AE ∴∠AEB=∠CFA
B
P
C
在△ABE和△CAF中
E ∴△ABE≌△CAF
∠ABE=∠CAF
∴CF=AE,AF=BE
∠AEB=∠CFA
∴EF=AE-AF=CF-BE
《全等三角形》PPT优质课件
O
C B
AD
O
B
C
A
B D
E C
A
E
D
B
C
1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
探究新知
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 21 4
B E
CF
B
D CF
A
D
1
23 4
B
C
探究新知
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
A
F
B
CD
E
△ABC≌△FDE
记两个三角形全等时,通常把表示对应顶点的字母写在 对应的位置上.
探究新知
全等的性质
全等三角形的对应边相等,对应角相等.
A
D
B
C
E
∠A=∠F,∠B=∠D,∠C=∠E. (全等三角形对应角相等)
探究新知
素养考点 1 识别全等三角形的对应元素
例1 如图,若△BOD≌△COE,∠B=∠C,指出这两个全 等三角形的对应边;若△ADO≌△AEO,指出这两个三角 形的对应角.
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为:
课堂检测
拼接的图形展示
课堂小结
全等 三角形
定 义 能够完全重合的两个三角形叫做全等三角形
基本 性质
全等三角形 PPT优秀课件
• 能够完全重合的两个三角形叫做 全等三角形
全等形包括规则图形和不规 则图形全等
下面三组图形,它们是不 是全等图形?为什么?
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
F
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角.
5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
找出下列全等三角形的对应边、对应角
∠ACB与∠DBC是对应角
例题讲解,掌握新知
图中△ABO≌△DCO, A 试写出这两个三角形中 相等的边和相等的角。
D O
B
C
解:∵△ABO≌△DCO
∴AB=DC,BO=CO,AO=DO
∠A=∠ D,∠ABO=∠DCO,
∠AOB=∠DOC
先写出全等式,再指出
它们的对应边和对应角
A
D
C
E
B
F
三角形全等的判定ppt课件
追问2:根据前面的操作,你能探究到什么结论?
例1. 如图,有一池塘,要测池塘两端A、B的距离,可先在平 Nhomakorabea上取一个可以
直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,
使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两
个木桩上,两个木桩离旗杆底部的距离相等吗?
解:BD=CD
在Rt△ABD 和 Rt△ACD 中,
AB=AC
AD=AD
∴Rt△ABD≌Rt△ACD(HL)
∴ BD=CD
例1.如图,AC⊥BC,BD⊥AD,AC =BD.求证:BC =AD.
(1)
AD = BC
( HL );
(2)
AC = BD
( HL );
(3) ∠DAB = ∠CBA
( AAS );
(4) ∠DBA = ∠CAB
( AAS ).
D
A
C
B
对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个三
特殊方法
角形就全等了?
HL定理
SSS
一
般
方
法
SAS
AAS
AAS
直角三角形全等
问题:三角分别相等的两个三角形全等吗?
追问:证明两个三角形全等的方法有哪些?
评价3.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.
求证:AB=AD.
∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
在△ABC和△ADC中,
全等三角形ppt课件
∴ △ABD≌△ACD(全__等__三__角__形__的__定__义__)_________
解:∵∠A=50°,∠B=48°, ∴∠C=180°-50°-48°=82°. 又∵△ABC≌△DEF, ∴∠C=∠F,∴∠F=82°. ∵DE的对应边为AB,所以DE=AB, ∴AB=10 cm.
【点悟】利用全等三角形的对应角相等、对应边相等解决问 题时,应注意不要将对应边(对应角)弄错,也就是要求在表 示两个三角形全等时书写规范.
寻找对应边、角的规律:
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,最小的边是对应边; (5)两个全等三角形最大的角是对应角,最小的角是对应角;
例2 如图,AD平分∠BAC,AB=AC.△ABD与△ACD全等吗?
起可以重合
能够完全重合的 两个图形叫做全
等图形
A
B′
A′
B
C
C′
1.它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A′、B和 B′、C和C′; 2.互相重合的边叫做全等三角形的对应边:如AB和A′B′、BC和B′C′、CA和C′A′; 3.互相重合的角叫做全等三角形的对应角:如∠A和∠A′、 ∠B和∠B′、 ∠C和 ∠C′.
怎样判断两个图形是不是全等图形?
确定两个图形全等要符合两个条件: ①形状相同,②大小相同; 是否是全等图形与位置无关. 判断两个图形是否全等还可以通过平移、旋转、翻折等方法把两 个图形叠合在一起,看它们能否完全重合,即用叠合法判断.
全等三角形的判定ppt课件完整版
注意事项
在证明过程中,需要注意两边和所夹 的角分别相等的条件必须同时满足, 且所夹的角必须是两边的夹角,否则 不能得出全等的结论。
角边角(ASA)判定定理证明
基本思路
证明方法
注意事项
如果两个三角形有两个角和它们的夹边 分别相等,则这两个三角形全等。
可以通过构造法或者余弦定理来证明。 构造法可以构造出两个三角形,然后通 过证明它们有两个角和夹边分别相等来 得出它们全等的结论。余弦定理可以通 过三角形的边角关系来证明两个三角形 有两个角和夹边分别相等,从而得出它 们全等的结论。
注意事项
在证明过程中,需要注意两个角和其 中一个角的对边分别相等的条件必须 同时满足,否则不能得出全等的结论。 同时,AAS和ASA的区别在于所给的条 件不同,但都可以用来判定两个三角 形是否全等。
04
全等三角形的应用举例
Chapter
在几何证明中的应用
证明线段相等
通过证明两个三角形全等,可以推出它们对应的边相等,从而证 明线段相等。
全等三角形的判定ppt课件完整版
目录
• 引言 • 全等三角形的判定方法 • 全等三角形判定定理的证明 • 全等三角形的应用举例 • 实验操作与探究 • 全等三角形判定的拓展与延伸
01
引言
Chapter
三角形的定义与性质回顾
三角形的定义
由不在同一直线上的三条线段首尾顺 次相接所组成的图形。
三角形的分类
在证明过程中,需要注意两个角和夹边 分别相等的条件必须同时满足,且所夹 的边必须是两个角的夹边,否则不能得 出全等的结论。
角角边(AAS)判定定理证明
基本思路
证明方法
如果两个三角形有两个角和其中一个 角的对边分别相等,则这两个三角形 全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作 为已知条件,另一个作为结论,推出一个正确的命题。(只写 出一种情况)①AB=AC ②DE=DF ③BE=CF
已知: EG∥AF 求证:AE NhomakorabeaB
G
D
C F
高
构造辅助线的方法:
倍长中线法:题中条件若有中线,可延长 一倍,以构造全等三角形,从而将分散条件集 中在一个三角形内。
▪ 例1、如图1,AD是△ABC的中线,求证:AB+AC>2AD
证明:延长AD至E,使DE=AD,连接BE,CE
∵AD为△ABC的中线 (已知)
A
∴BD=CD (中线定义)
在△ACD和△EBD中
BD=CD (已证) ∠1=∠2 (对顶角相等)
D
B
C
AD=ED (辅助线作法)
∴△ACD≌△EBD (SAS)
E
∴BE=CA(全等三角形对应边相等) 图5 1
∵在△ABE中有:AB+BE>AE(三角形两边之和大
于第三边)
∴AB+AC>2AD。
(常延长中线加倍,构造全等三角形)
▪ 2,练习;如图1,AD是△ABC的中线,AB=3,AC=5,求中 线AD的取值范围。
旋转法构造全等三角形
知识要点:
▪ 判断三角形全等公理有SAS、ASA、AAS、 SSS和HL
▪ 如果题目给出的条件不全,就需要根据已知的 条件结合相应的公理来进行分析,先推导出所 缺的条件然后再证明。
▪ 一些较难的证明题要添加适当的辅助线构造合 适的全等三角形,把条件相对集中起来,再进 行等量代换,就可以化难为易了。
▪ 例2、如图,AD为△ABC的中线,∠ADB、∠ADC的 平分线交AB、AC于E、F。求证:BE+CF>EF
分析:本题中已知D为BC的中点,要证BE、CF、EF间的不等关系,可利用点D 将BE旋转,使这三条线段在同一个三角形内。
练习4:如图,AD为三角形ABC 的中线,AE=EF ,求证:BF=AC