2020中考数学第二轮复习专题(10个专题)

合集下载

中考数学第二轮复习专题(14个)

中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

2020年中考二轮复习:反比例函数实际应用题专题复习(含答案解析)

2020年中考二轮复习:反比例函数实际应用题专题复习(含答案解析)

2020年中考二轮复习:实际问题与反比例函数专题复习一.解答题(共20小题)1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?15.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?16.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)17.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?18.如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.19.六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?20.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.2020年中考二轮复习:实际问题与反比例函数专题复习参考答案与试题解析1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?【分析】(1)反比例函数经过点(10,4),代入反比例函数式,即可求得函数解析式.(2)I≤8时,根据反比例函数的单调递减性质,求电阻R的范围.【解答】解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.2.教室时的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想接不低于50℃的水,在一轮开机到关机过程中,请问有多长时间能满足这位同学的水温需求?【分析】(1)根据题意和函数图象可以求得a的值;根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.【解答】解:(1)观察图象,可知:当x=7(min)时,水温y=100(℃)当0≤x≤7时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤7时,y关于x的函数关系式为y=10x+30,当x>7时,设y=,100=,得a=700,即当x>7时,y关于x的函数关系式为y=,∴y与x的函数关系式为:y=;(2)当y=30时,x=,y与x的函数关系式每分钟重复出现一次,将y=50代入y=10x+30,得x=2,将y=50代入y=,得x=14,∵14﹣2=12,﹣12=(分钟),∴怡萱同学想喝高于50℃的水,她最多需要等待min.3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)成正比例;1.5小时后(包括1.5小时)y与x成反比例.根据图中提供的信息,解答下列问题:(1)请求出一般成人喝半斤低度白酒后,y与x之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”不能驾车上路,参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天最早几点驾车去上班?请说明理由.【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出y=20时x的值进而得出答案.【解答】解:(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:y=,则a=150×1.5=225,解得:a=225,故y=(x≥1.5),综上所述:y与x之间的两个函数关系式为:y=;(2)在中令y=20得x=11.25,21+11.25﹣24=8.25(小时),所以第二天最早8点(15分)能驾车去上班.4.某校举行田径运动会,学校准备了某种气球,这些气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气球内的气压大于150kPa时,气球将会爆炸,为了安全起见,气体的体积应至少是多少?【分析】(1)根据温度=气体的气压P×气体体积V,求温度,再确定P与V的函数关系式;(2)依题意P≤150,即P=≤150,解不等式即可.【解答】解:(1)设P=,将A(0.5,120)代入求出k=60,∴P=;(2)当P>150KPa时,气球将爆炸,∴P≤150,即P=≤150,解得V≥=0.4(m3).故为了安全起见,气体的体积应不小于0.4(m3).5.蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,求电流I(A).【分析】(1)根据电流I(A)是电阻R(Ω)的反比例函数,设出I=(k≠0)后把(4,9)代入求得k值即可;(2)将R=10Ω代入上题求得的函数关系式后求得电流的值与4比较即可.【解答】解:(1)由电流I(A)是电阻R(Ω)的反比例函数,设I=(k≠0),把(4,9)代入得:k=4×9=36,∴.(2)当R=10Ω时,I=3.6A.6.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)利用t=2代入进而得出V的值;(3)把V=4 000代入V=,求出答案.【解答】解:(1)设函数表达式为V=,把(6,3000)代入V=,得3000=.解得:k=18000,所以V与t之间的函数表达式为:V=;(2)把t=2代入V=,得V=9000,答:每小时的排水量应该是9 000 m3;(3)把V=4 000代入V=,得t=4.5,根据反比例函数的性质,V随t的增大而减小,因此水池中的水至少要4.5 h才能排完.7.夏天,小明家的饮水机将温控器设置为加热时的温度最高为98℃,保温时的温水最低温度为33℃.接通电源后进入自动程序,加热到98℃时停止加热,水温开始下降,直至水温降至33℃,饮水机即刻自动进入加热程序,重复上述自动程序.若在水温为33℃时小明接通了电源,水温y(℃)与时间x(min)的关系(部分图象)如图所示,依据图象回答下列问题:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)接通电源后,若小明准备用不低于91℃的水沏茶,请问他可用水的时间有多长?(不考虑其它因素)【分析】(1)根据函数图象和题意可以求得y关于x的函数关系式,注意函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题;【解答】解:(1)观察图象,可知:当0≤x≤6.5时,设y关于x的函数关系式为:y=kx+b,,得,即当0≤x≤6.5时,y关于x的函数关系式为y=10x+33,当6.5<x<时,设y=,98=,得a=637,∴6.5<x<时,y关于x的函数关系式为y=;(2)将y=91代入y=10x+33,得x=5.8,将y=91代入y=,得x=7,∵7﹣5.8=1.2,∴若小明准备用不低于91℃的水沏茶,请问他可用水的时间有1.2min;8.某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:(1)写出电流I与电阻R之间的函数解析式;(2)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?【分析】(1)可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值,然后代入R=6求得I的值即可.(2)限制的电流不超过4A,把I=4代入函数解析式求得最小电阻值.【解答】解:(1)设I=,由图中曲线过(3,2)点,所以2=,解得k=6,即函数关系式为I=;(2)由I=可知I=4时,R=1.5Ω,所以电阻应至少1.5Ω.9.某汽车销售商推出分期付款购车促销活动,交付首付款后,余额要在30个月内结清,不计算利息,王先生在活动期间购买了价格为12万元的汽车,交了首付款后平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)王先生若用20个月结清,平均每月应付多少万元?(3)如果打算每月付款不超过4000元,王先生至少要几个月才能结清余额?【分析】(1)从反比例图象上任意找一点向两坐标轴引垂线,形成的矩形面积等于k的绝对值,由图可知1.8×5=9,即可求出解析式.(2)在(1)的基础上,知道自变量,便可求出函数值.(3)知道了自变量的范围,利用解析式即可求出函数的范围.【解答】解:(1)由图象可知y与x成反比例,设y与x的函数关系式为y=,把(5,1.8)代入关系式得1.8=,∴k=9,∴y=,∴12﹣9=3(万元).答:首付款为3万元;(2)当x=20时,y==0.45(万元),答:每月应付0.45万元;(3)当y=0.4时,0.4=,解得:x=,答:他至少23个月才能结清余款.10.某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(分)的关系如下图所示,回答下列问题:(1)当0≤x≤8时,求y与x之间的函数关系式;(2)求出图中a的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y与x的关系式;(2)将y=20代入y=,即可得到a的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;【解答】解:(1)当0≤x≤8时,设y与x之间的函数关系式为y=kx+b(k≠0),将(0,20),(8,100)代入y=kx+b,得:,解得:,∴当0≤x≤8时,y与x之间的函数关系式为y=10x+20;(2)当8≤x≤a时,设y与x之间的函数关系式为:y=(k2≠0),将(8,100)代入y=,得:100=解得:k2=800,∴当8≤x≤a时,y与x之间的函数关系式为:y=;将(a,20)代入y=,得:a=40;(3)依题意,得:≤40,解得:x≥20.∵x≤40,∴20≤x≤40.∴他应在7:40~8:00时间段内接水.11.某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,(1)写出药物燃烧前后,y与x之间的函数表达式;(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?(3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?【分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可,药物燃烧后,设出y与x之间的解析式(k2>0)代入(6,4)即可;(2)把y=1.6代入反比例函数解析式,求出相应的x;(3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,≥9就有效.【解答】解:(1)设药物燃烧时y关于x的函数关系式为:y=k1x(k1>0)代入(6,4)为4=6k1∴k1=,设药物燃烧后y关于x的函数关系式为:(k2>0)代入(6,4)为:4=,∴k2=24,∴药物燃烧时y关于x的函数关系式为:y=x(0≤x≤6),药物燃烧后y关于x的函数关系式为:y=(x>6);(2)令y=中y≤1.6,得:x≥15,即从消毒开始,至少需要15分钟后学生才能进入教室;(3)把y=2代入y=x,得:x=3,把y=2代入y=,得:x=12,∵12﹣3=9,所以这次消毒是有效的.12.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【分析】(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v﹣20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.【解答】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.13.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y 与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.14.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?【分析】(1)药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比;药物释放完毕后,含药量y(毫克)与时间x(小时)成反比,用待定系数法可得函数关系式;(2)根据函数值为0.25,利用反比例函数即可得到自变量x的值.【解答】解:(1)药物释放过程中,y与x成正比,设y=kx(k≠0),∵函数图象经过点A(2,1),∴1=2k,即k=,∴y=x;当药物释放结束后,y与x成反比例,设y=(k'≠0),∵函数图象经过点A(2,1),∴k'=2×1=2,∴y=;(2)当y=0.25时,代入反比例函数y=,可得。

2020年九年级数学中考二轮复习:《二次函数综合》压轴题专题训练(含答案)

2020年九年级数学中考二轮复习:《二次函数综合》压轴题专题训练(含答案)

《二次函数综合》压轴题专题训练1.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y=(x﹣1)2﹣2的“同轴对称抛物线”为y=﹣(x﹣1)2+2.(1)满足什么条件的抛物线与其“同轴对称抛物线”的顶点重合:.(2)求抛物线y=﹣x2+x+1的“同轴对称抛物线”.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′,设四边形BB′C′C的面积为S(S>0).①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.2.已知抛物线C:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛1物线C:y=x2.2(1)直接写出抛物线C的解析式;1与x轴交于A,B两点,点A在点B的左侧,点P(,t)(2)如图1,已知抛物线C1在抛物线C上,QB⊥PB交抛物线于点Q.求点Q的坐标;1上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛(3)已知点E,M在抛物线C2物线C只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段2NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.3.如图1,抛物线y=x2+bx+c过点A(4,﹣1),B(0,﹣),点C为直线AB下方抛物线上一动点,M为抛物线顶点,抛物线对称轴与直线AB交于点N.(1)求抛物线的表达式与顶点M的坐标;(2)在直线AB上是否存在点D,使得以C,D,M,N为顶点的四边形是平行四边形,若存在,请求出D点坐标;(3)在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c与x轴的交点为A(﹣1,0),B(2,0)且与y轴交于点C,OA=OC.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由;(3)已知点P时直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.7.已知抛物线交x轴于A,B两点(A在B右边),A(3,0),B(1,0)交y轴于C点,C(0,3),连接AC;(1)求抛物线的解析式;(2)P为抛物线上的一点,作PE⊥CA于E点,且CE=3PE,求P点坐标;(3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MH,NH,当MH⊥NH时,求MN恒过的定点坐标.:y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B.抛物线8.如图,已知抛物线l1l:y=(x﹣h)2+2﹣h(h≥2)的顶点为D,直线y=﹣x+b经过A,B,D三点,两抛物2线交于点C.(1)求b的值和点B的坐标;(2)设点C的横坐标为m,探究m与h之间的数量关系;(3)当△ABC是直角三角形时,求h的值.9.综合与探究.如图1,抛物线y=x2﹣x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求OAPD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q 为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.11.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S=,求△APE面积的最大值和此动点P的坐标.△ABE12.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.13.已知,抛物线y=ax2,其中a>0.(1)如图1,若点A、B是此抛物线上两点,且分属于y轴两侧,连接AB与y轴相交于点C,且∠AOB=90°.求证:CO=;(2)如图2,若点A是此抛物线上一点,过点A的直线恰好与此抛物线仅有一个交点,且与y轴交于点B,与x轴相交于点C.求证:AC=BC.14.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(1﹣,0),且抛物线经过点D(2,﹣2).(1)求抛物线的解析式;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE =S△ABC,求E的坐标;(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.15.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.解:(1)∵“同轴对称抛物线”的顶点重合,∴顶点关于x轴对称且重合,∴顶点在x轴上,故答案为:顶点在x轴上;(2)∵y=﹣x2+x+1=﹣(x﹣1)2+,∴“同轴对称抛物线”的顶点坐标为(1,﹣),∴y=(x﹣1)2﹣;(3)①由题可知,B(1,1﹣3a),∴C(1,3a﹣1),∵抛物线y=ax2﹣4ax+1的对称轴为x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=CC'=2,∴BC=2﹣6a或BC=6a﹣2,∴2﹣6a=2或6a﹣2=2,∴a=0(舍去)或a=;②函数的对称轴为x=2,函数L的顶点坐标为(2,1﹣4a),∵L与“同轴对称抛物线”是关于x轴对称的,所以整数点也是对称的出现,∵抛物线L与其“同轴对称抛物线”围成的封闭区域内,在x轴上的整数点可以是3个或5个,∴L与x轴围城的区域的整数点为4个或3个;当a>0时,当x=1时,﹣2≤1﹣3a<﹣1,∴<a≤1,当x=2时,1﹣4a<﹣2,∴a>,∴<a≤1;当a<0时,当x=2时,1﹣4a≤2,∴a≥﹣,当x=﹣1时,5a+1<0,∴a<﹣,∴﹣≤a<﹣;综上所述:<a≤1或﹣≤a<﹣.2.解:(1)由已知可知,抛物线C:y=x2向右平移1个单位长度,再向下平移4个单位2:y=ax2+bx+c,长度得到抛物线C1:y=(x﹣1)2﹣4,∴抛物线C1故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),上,∵点P(,t)在抛物线C1∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.3.解:(1)将点A(4,﹣1),B(0,﹣)代入抛物线y=x2+bx+c,得,解得,∴y=x2﹣x﹣,∴M点的坐标为(1,﹣4);(2)设直线AB的表达式为y=mx+n,∴,解得,∴y=x﹣;当x=1时,y=﹣3,∴N(1,﹣3),∴MN=1;①若MN为平行四边形的一边时,则有CD∥MN,且CD=MN,设C(t,t2﹣t﹣),则D(t,t﹣),∴CD=t﹣﹣(t2﹣t﹣)=1,∴t=3或t=1(舍去),∴D(3,﹣);②若MN为平行四边形的对角线,设D(t,t﹣),则C(2﹣t,﹣t﹣),将点C代入抛物线解析式得,(2﹣t)2﹣(2﹣t)﹣=﹣t﹣,∴t=﹣1或t=1(舍去),∴D(﹣1,﹣);综上所述:符合条件的D点坐标为(3,﹣)或(﹣1,﹣);(3)在对称轴上取点P(1,﹣1),∴PA=PM=3,∠APM=90°,以P为圆心,PA为半径作圆交y轴于点Q,∴∠AQM=∠APM=45°,作PE⊥y轴交于点E,∴PE=1,∵PQ=3,∴EQ==2,∴Q点坐标为(0,﹣1+2)或(0,﹣1﹣2).4.解:(1)∵点A (﹣1,0)∴OA =1,∵OA =OC =1,且点C 在y 轴负半轴,∴点C (0,﹣1)∵抛物线y =ax 2+bx +c 与x 轴的交点为A (﹣1,0),B (2,0)且与y 轴交于点C , ∴ 解得:∴抛物线的表达式为:y =x 2﹣x ﹣1;(2)∵点C 关于x 轴的对称点为C 1,∴C 1(0,1),∵点B (2,0),点C 1(0,1),∴直线BC 1的解析式为:y =﹣x +1,∴设点M 坐标为(m ,﹣m +1)∴MF =m ,ME =﹣m +1,∴矩形MFOE 的面积=MF ×ME =m ×(﹣m +1)=﹣m 2+m =﹣(m ﹣1)2+, ∴当m =1时,矩形MFOE 的最大面积为,此时点M 的坐标为(1,),即点M 为线段C 1B 中点时,S 矩形MFOE 最大;(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ ,设P (m ,m +1),Q (m ,m 2﹣m ﹣1),∴|(m 2﹣m ﹣1)﹣(m +1)|=2,解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍),P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0) ②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0),∴PQ 的中点为(0,0),设P (m ,m 2﹣m +1),则Q (﹣m ,m 2+m ﹣1) ∴(m +1)+(m 2+m ﹣1)=0,解得:m 1=0(舍去),m 2=﹣2,∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).5.解:(1)∵直线x =1是抛物线的对称轴,且点C 的坐标为(0,3),∴c =3,﹣=1,∴b =2,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴点M (1,4),∵抛物线的解析式为:y =﹣x 2+2x +3与x 轴相交于A ,B 两点(点A 位于点B 的左侧), ∴0=﹣x 2+2x +3∴x 1=3,x 2=﹣1,∴点A (﹣1,0),点B (3,0),∵点M (1,4),点B (3,0)∴直线BM 解析式为y =﹣2x +6,∵点P 在直线BM 上,且PD ⊥x 轴于点D ,PD =m ,∴点P (3﹣,m ),∴S △PCD =×PD ×OD =m ×(3﹣)=﹣m 2+m ,∵点P 在线段BM 上,且点M (1,4),点B (3,0),∴0<m ≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+b,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△AMD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).7.解:(1)∵抛物线过A(3,0),B(1,0),∴可设抛物线的解析式为y=a(x﹣3)(x﹣1)(a≠0),把c(0,3)代入,得3a=3,∴a=1,∴抛物线的解析式是y=(x﹣3)(x﹣1)=x2﹣4x+3,即y=x2﹣4x+3;(2)过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,如图1,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FG∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,FG=4m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG+DG=3﹣2m,∴P(4m,3﹣2m),把P(4m,3﹣2m)代入y=x2﹣4x+3中得,3﹣2m=16m2﹣16m+3,∴m=,或m=0(舍去),∴P(,);(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3的顶点为(2,﹣1),∵将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,∴H(2,0),由题意知,点H是新抛物线的顶点,∴新抛物线的解析式为y=(x﹣2)2,设M(m,(m﹣2)2),N(n,(n﹣2)2),过M作MK⊥x轴于点K,过点N作NL⊥x轴于点L,则MK=(m﹣2)2,KH=2﹣m,HL=n﹣2,NL=(n﹣2)2,∵MH⊥NH,∴∠MHK+∠HMK=∠MHK+∠NHL=90°,∴∠HMK=∠NHL,∵∠MKH=∠HLN=90°,∴△KHM∽△LNH,∴,,∴,∴,设直线MN的解析式为:y=kx+b(k≠0),则,∴,∴直线MN的解析式为:,当x=2时,y=﹣(m2﹣4m+3)=m2﹣4m+4﹣m2+4m﹣3=1,∴MN恒过的定点(2,1).8.解:(1)∵y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B,∴A(0,1+k),B(1,k),∵y=(x﹣h)2+2﹣h(h≥2)的顶点为D,∴D(h,2﹣h),∵直线y=﹣x+b经过A,D,∴,∴,∴b的值为2,点B的坐标为(1,1);:y=(x﹣1)2+1,(2)由(1)知,抛物线l1∵点C的横坐标为m,两抛物线交于点C.∴(m﹣1)2+1=(m﹣h)2﹣h+2,整理得2mh﹣2m=h2﹣h∵h≥2∴m==;(3)当AC⊥AB时,则直线AC解析式为:y=x+2,∴∴(舍去),,∴点C坐标为(3,5),∴3=∴h=6;当BC⊥AB时,则直线BC解析式为:y=x,∴∴(舍去),∴点C坐标为(2,2),∴2=∴h=4;9.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD =S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN=2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).10.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,又∵抛物线对称轴为直线x =﹣=2,∴x =2时,y =﹣3×2+3=﹣3,故,点M 的坐标为(2,﹣3);(3))∵OB =OC =3,OB ⊥OC ,∴△BOC 是等腰直角三角形,∵EF ∥y 轴,直线BC 的解析式为y =﹣x +3,∴△DEF 只要是直角三角形即可与△BOC 相似,∵D (2,1),A (1,0),B (3,0),∴点D 垂直平分AB 且到点AB 的距离等于AB ,∴△ABD 是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,联立, 解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.11.解:(1)∵抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,与y 轴交于点C ,且OA =OC ,∴a +2a +c =0,点C 的坐标为(0,c ),∴点A 的坐标为(c ,0),∴ac 2+2ac +c =0, ∴, 解得,或,∵函数图象开口向上,∴a >0,∴a =1,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,抛物线与与y 轴交于点C ,顶点为D ,OA =OC ,抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,∴点D 的坐标为(﹣1,﹣4),点C 的坐标为(0,﹣3),点A 的坐标为(﹣3,0), 连接OD ,如右图1所示,由图可知:S △ACD =S △OAD +S △OCD ﹣S △OAC==3;(3)∵A(﹣3,0),点B(1,0),∴AB=4,设点E的纵坐标为t,t<0,∵S△ABE=,∴=,得t=,把y=﹣代入y=x2+2x﹣3,得﹣=x2+2x﹣3,解得,x1=,x2=,∵点E在y轴的右侧,∴点E(,﹣),设直线AE的解析式为y=mx+n(m≠0),∴,得,∴直线AE的解析式为y=﹣x﹣1,过点P作y轴的平行线交AC于点G,如图2所示,设点P的横坐标为x,则P(x,x2+2x﹣3),点G(x,﹣x﹣1),∴PG=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣x+2,又∵A(﹣3,0),E(,﹣),∴S△APE =S△APG+S△PEG=(﹣x2﹣x+2)(x+3)+(﹣x2﹣x+2)(﹣x)=(﹣x2﹣x+2)(3+)=(x+)2+,∴当x=﹣时,S取得最大值,最大值是,△APE把x=﹣代入y=x2+2x﹣3,得y=(﹣)2+2×(﹣)﹣3=﹣,∴此时点P的坐标为(﹣,﹣).12.解:(1)∵抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,∴,得,∴y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的对称轴是直线x=1,即该抛物线的解析式为y=﹣2x2+4x+6,对称轴是直线x=1;(2)分两种情况:设点D的坐标为(1,y)第一种情况是:∠BCD=90°时,则CD2+BC2=BD2,∵点B的坐标为(3,0),抛物线y=﹣2x2+4x+6交y轴于点C,∴点C的坐标为(0,6),∴[12+(y﹣6)2]+(32+62)=(3﹣1)2+y2,解得,y=6.5,∴点D的坐标为(1,6.5);第二种情况:当∠DBC=90°时,BD2+BC2=CD2,即[(3﹣1)2+y2]+(32+62)=12+(6﹣y)2,解得,y=﹣1,∴点D的坐标为(1,﹣1),综上所述,符合条件的点D的坐标为(1,6.5),(1,﹣1);(3)因为点C的坐标为(0,6),点B的坐标为(3,0),设直线BC的解析式为y=kx+6,则3k+6=0,得k=﹣2,即直线BC的解析式为y=﹣2x+6,如右图所示,作点E关于直线BC的对称点E′交BC于点F,过点F作FN⊥y轴于点N,设E(0,m),E′(x,y),则EE′⊥BC,∴∠CFE=∠COB=90°,∴BC==3,∵∠ECF=∠BCO,∴△ECF∽△BCO,∴,即,解得,CF=,又∵∠CNF=∠COB,∠NCF=∠OCB,∴△NCF∽△OCB,∴,即,解得,FN=,∴点F的横坐标为,把x=代入直线BC的解析式,得y=,∴点F的坐标为(,),∵EE′关于直线BC对称,∴点F为EE′的中点,∴,解得,∴E′(,),∵点E′在抛物线y=﹣2x2+4x+6上,∴=﹣2×[]2+4×+6,解得,m1=6,m2=,∴点E的坐标为(0,6)或(0,).13.证明:(1)设A(b,ab2),B(c,ac2),∵∠AOB=90°,∴AB2=AO2+BO2,∴(b﹣c)2+(ab2﹣ac2)2=b2+a2b4+c2+a2c4,﹣2bc﹣2a2b2c2=0,1+a2bc=0,∴bc=﹣,设直线AB的解析式为:y=mx+n,则,解得,∴直线AB的解析式为:y=a(b+c)x﹣abc,当x=0时,y=OC=﹣abc=﹣a•(﹣)=;(2)如图2,过A作AD⊥y轴于D,设直线AB的解析式为:y=kx+b,当y=0时,kx+b=0,∴x=﹣,∴OC=﹣,∵过点A的直线AB恰好与此抛物线仅有一个交点,∴ax2=kx+b,∴ax2﹣kx﹣b=0,△=k2+4ab=0,∴b =﹣,OC =﹣=,∴x =,∵a >0,k >0,∴AD =,∵AD ∥OC , ∴==,∴AB =2BC ,∴AC =BC .14.解:(1)把B (﹣1,0),D (2,﹣2)代入y =ax 2﹣x +c 得, 解得:.故抛物线的解析式为y =x 2﹣x ﹣2;(2)当y =0时,x 2﹣x ﹣2=0,解得x 1=﹣1,x 2=3,∴A (3,0),∴AB =4,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,∴S △ABC =×4×2=4,设AC 的解析式为y =kx +b ,把A (3,0),C (0,﹣2)代入y =kx +b 得, 解得.∴y =x ﹣2,如图1,过点E 作x 轴的垂线交直线AC 于点F ,设点F (a ,a ﹣2),点E (a ,a 2﹣a ﹣2),其中﹣1<a <3,∴S △ACE =EF |x A ﹣x C |=|a 2﹣a |=,∵S △ACE =S △ABC ,∴a 2﹣3a =2或﹣a 2+3a =2,解得a 1=(舍去),a 2=,a 3=1,a 4=2, ∴E 1(,),E 2(1,﹣),E 3(2,﹣2);(3)在y =ax 2+bx ﹣2中,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,如图2,设P (0,m ),则PC =m +2,OA =3,AC ==,①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CA =时,即m +2=,∴m =﹣2, ∴P 2(0,﹣2); ③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC , ∴=,∴P 3C =,∴m =,∴P 3(0,),④当PC =CA =时,m =﹣2﹣,∴P 4(0,﹣2﹣).综上所述,P点的坐标(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣).15.解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD =S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF=×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△PAQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△PAQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。

2020年中考数学二轮复习专题:圆的综合(求阴影部分面积) 附详细答案

2020年中考数学二轮复习专题:圆的综合(求阴影部分面积) 附详细答案

2020年中考数学二轮复习专题:圆的综合(求阴影部分面积)1.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.2.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.3.如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.4.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2,求图中阴影部分的面积.5.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.6.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.7.如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是⊙O的切线;(2)求证:BC2=4CF•AC;(3)若⊙O的半径为4,∠CDF=15°,求阴影部分的面积.9.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E 在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.(1)求证:EM是⊙O的切线;(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).10.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O在AB上,⊙O经过A、D两点,交AC于点E,交AB于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径是2cm,E是的中点,求阴影部分的面积(结果保留π和根号)11.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.12.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.14.如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.17.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.18.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC 于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.19.如图,△P AB内接于⊙O,▱ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD.(1)求证:BC是⊙O的切线.(2)若BC=2,∠PBD=60°,求与弦AP围成的阴影部分的面积.20.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.参考答案一.解答题(共20小题)1.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC﹣S扇形BOC=12﹣=12﹣4π.2.(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.3.(1)证明:∵点C、D为半圆O的三等分点,∴,∴∠BOC=∠A,∴OC∥AD,∵CE⊥AD,∴CE⊥OC,∴CE为⊙O的切线;(2)解:连接OD,OC,∵,∴∠COD=×180°=60°,∵CD∥AB,∴S△ACD=S△COD,∴图中阴影部分的面积=S扇形COD==.4.(1)证明:连接OF,AO,∵AB=AF=EF,∴==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=2,∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积==.5.(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=AOE,∵∠EDA=AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2,∴S扇形AOE==2π,在Rt△OAF中,OF=OA•sin∠EAO=2=3,∴S△AOE=AE•OF=3=3,∴阴影部分的面积=2π﹣3.6.(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.7.(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.8.解:(1)如图所示,连接OD,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接AD,则AD⊥BC,则AB=AC,则DB=DC=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DAC,而∠DFC=∠ADC=90°,∴△CFD∽△CDA,∴CD2=CF•AC,即BC2=4CF•AC;(3)连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=4,S阴影部分=S扇形OAE﹣S△OAE=×π×42﹣4=﹣4.9.解:(1)连接OC,∵OF⊥AB,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A,∵OA=OC,∴∠A=∠ACO,∴∠ACE=90°+∠ACO=∠ACO+∠OCE,∴∠OCE=90°,∴OC⊥CE,∴EM是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE,∵∠A=∠E,∴∠A=∠ACO=∠BCE=∠E,∴∠ABC=∠BCO+∠E=2∠A,∴∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,∴OB=BC=,∴阴影部分的面积=﹣××=﹣.10.解:(1)连接OD.、∵OA=OD,∴∠OAD=∠ODA,∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接OE,OE交AD于K.∵=,∴OE⊥AD,∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE=﹣×22=﹣.11.解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.12.解:(1)证明:①如图1,连接OE,∵⊙O与BC相切于点E,∴∠OEB=90°,∵∠ACB=90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,∵,∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE===3,∴S阴影=S梯形GCEO﹣S扇形OGE=(6+3)×﹣=.13.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.14.解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+∠OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为﹣15.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=.16.解:(1)证明:连接OE.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵FC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.17.(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=6,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.18.解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.19.解:(1)连结OB,∵四边形ABCD是平行四边形,∴∠C=∠BAD,AD∥BC,∵∠APB=∠ADB,∠C=∠APB,∴∠BAD=∠ADB,∴AB=BD,∵OA=OD,∴OB⊥AD,∴∠AOB=90°,∵AD∥BC,∴∠OBC=∠AOB=90°,∴OB⊥BC,∵OB为半径,∴BC是⊙O的切线.(2)连结OP,作OE⊥AP于E,∵∠P AD=∠PBD=60°,OA=OP,∴P A=OA=OP,∠AOP=60°,在▱ABCD中,AD=BC=2,∴AP=OA=1,在Rt△OAE中,OE=OA•sin60°=,与弦AP围成的阴影部分的面积为:﹣×1×=﹣.20.解:(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)连接OE、作OG⊥AC于点G,∴∠OGF=∠DFG=∠ODF=90°,∴四边形OGFD是矩形,∴FG=OD=4,∵OC=OE=OD=OB,且∠COE=∠B=60°,∴△OBD和△OCE均为等边三角形,∴∠BOD=∠COE=60°,CE=OC=4,∴EG=CE=2、DF=OG=OC sin60°=2,∠DOE=60°,∴EF=FG﹣EG=2,则阴影部分面积为S梯形EFDO﹣S扇形DOE=×(2+4)×2﹣=6﹣.。

2020年中考数学二轮复习压轴专题四边形(含解析)

2020年中考数学二轮复习压轴专题四边形(含解析)

《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.4.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点D从点C出发,沿CA方向匀速运动,速度为2cm/s;同时,动点E从点A出发,沿AB方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.设点D,E运动的时间是t(s)(0<t<5).过点D作DF⊥BC于点F,连接DE,EF.(1)t为何值时,DE⊥AC?(2)设四边形AEFC的面积为S,试求出S与t之间的关系式;(3)是否存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,∠ADE=45°?解:(1)∵∠B=90o,AB=6 cm,BC=8 cm,∴AC===10(cm),若DE⊥AC,∴∠EDA=90°,∴∠EDA=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,即:=,∴t=,∴当t=s时,DE⊥AC;(2)∵DF⊥BC,∴∠DFC=90°,∴∠DFC=∠B,∵∠C=∠C,∴△CDF∽△CAB,∴=,即=,∴CF=,∴BF=8﹣,BE=AB﹣AE=6﹣t,∴S=S△ABC﹣S△BEF=×AB•BC﹣×BF•BE=×6×8﹣×(8﹣t)×(6﹣t)=﹣t2+t;(3)若存在某一时刻t,使得S四边形AEFC:S△ABC=17:24,根据题意得:﹣t2+t=××6×8,解得:t1=,t2=(不合题意舍去),∴当t=s时,S四边形AEFC:S△ABC=17:24;(4)过点E作EM⊥AC与点M,如图所示:则∠EMA=∠B=90°,∵∠A=∠A,∴△AEM∽△ACB,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,,∴△AEH≌△BFE(ASA)∴AE=BF.故答案为正方形,AE=BF.(4)利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.8.已知:如图1,在平面直角坐标系中,长方形OABC的顶点B的坐标是(6,4).(1)直接写出A点坐标( 6 ,0 ),C点坐标(0 , 4 );(2)如图2,D为OC中点.连接BD,AD,如果在第二象限内有一点P(m,1),且四边形OADP的面积是△ABC面积的2倍,求满足条件的点P的坐标;(3)如图3,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N 从点A出发.以每秒2个单位的速度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒(t>0),在M,N运动过程中.当MN=5时,直接写出时间t的值.解:(1)∵四边形OABC是长方形,∴AB∥OC,BC∥OA,∵B(6,4),∴A(6,0),C(0,4),故答案为:6,0,0,4;(2)如图2,由(1)知,A(6,0),C(0,4),∴OA=6,OC=4,∵四边形OABC是长方形,∴S长方形OABC=OA•OC=6×4=24,连接AC,∵AC是长方形OABC的对角线,∴S△OAC=S△ABC=S长方形OABC=12,∵点D是OC的中点,∴S△OAD=S△OAC=6,∵四边形OADP的面积是△ABC面积的2倍,∴S四边形OADP=2S△ABC=24,∵S四边形OADP=S△OAD+S△ODP=6+S△ODP=24,∴S△ODP=18,∵点D是OC的中点,且OC=4,∴OD=OC=2,∵P(m,1),∴S△ODP=OD•|m|=×2|m|=18,∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,∴S△AOC=•OA•OC=××2=.故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF=S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

2020年中考数学二轮复习(通用)专题:几何压轴题型含答案

几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =。

2024年中考数学二轮专题复习:+复习线段和差的最大值与最小值(拔高)

2024年中考数学二轮专题复习:+复习线段和差的最大值与最小值(拔高)

中考二轮复习之线段和(差)的最值问题一、两条线段和的最小值。

基本图形解析:一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。

2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。

(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:PmABm A B mA B PmAB n QPnmP'Q'nm Q PnB Q PnmAB A'nm AB(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧:2、两点在直线同侧:(二)动点在圆上运动AB E Dn A BA'B'nAPQ AA'mn Pm nA B m n A Pm nAB点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。

(原理用平移知识解) (1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。

2020年中考数学二轮复习:《三角形》压轴专题训练

2020年中考数学二轮复习:《三角形》压轴专题训练

2020年中考数学二轮复习:《三角形》压轴专题训练1.在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.(1)如图1,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿CB匀速运动.两点同时出发,在B点处首次相遇.设点P的速度为xcm/s.则点Q的速度可以表示为cm/s(用含x的代数式表示);(2)在(1)的条件下,两点在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持原速度不变,沿B→A→C的路径匀速运动,如图2.两点在AC边上点D处再次相遇后停止运动.又知AD=1cm.求点P原来的速度x的值.2.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“广益值”就等于AO2﹣BO2的值,可记为AB∇AC=OA2﹣BO2.(1)在△ABC中,若∠ACB=90°,AB∇AC=81,求AC的值.(2)如图2,在△ABC中,AB=AC=12,∠BAC=120°,求AB∇AC,BA∇BC的值.(3)如图3,在△ABC中,AO是BC边上的中线,S=24,AC=8,AB∇AC=﹣64,△ABC求BC和AB的长.3.如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E.(1)求证:CD=CE;(2)图1中,若OC=3,求OD+OE的长;(3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积.4.如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;=y,求y关于x的函数关系式(不(2)当点D在BC的延长线上时,设AG=x,S△DAF需要写函数的定义域);(3)如果AG=8,求DE的长.5.如图,在△ABC中,AB=BC=AC=20cm.动点P,Q分别从A,B两点同时出发,沿三角形的边匀速运动.已知点P,点Q的速度都是2cm/s,当点P第一次到达B点时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)∠A=度;(2)当0<t<10,且△APQ为直角三角形时,求t的值;(3)当△APQ为等边三角形时,直接写出t的值.6.如图,在平面直角坐标系中,已知点A(8,0),点C(0,6),点B在x轴负半轴上,且AB=AC.(1)求点B的坐标;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的面积为2,求t的值;②如图③,在点M运动的过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的点M的坐标;若不能,请说明理由.7.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC=60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连结CF,已知BD=6,CD=2,求△CDF的面积.8.定义:当点C 在线段AB 上,AC =nAB 时,我们称n 为点C 在线段AB 上的点值,记作d C ﹣AB =n .理解:如点C 是AB 的中点时,即AC =AB ,则d C ﹣AB =;反过来,当d C﹣AB=时,则有AC =AB .因此,我们可以这样理解:d C ﹣AB =n “与“AC =nAB “具有相同的含义.应用:(1)如图1,点C 在线段AB 上,若d C ﹣AB =,则AC = AB ;若AC =3BC ,则d C ﹣AB = ,(2)已知线段AB =10cm ,点P 、Q 分别从点A 和点B 同时出发,相向而行,当点P 到达点B 时,点P 、Q 均停止运动,设运动时间为ts .①若点P 、Q 的运动速度均为1cm /s ,试用含t 的式子表示d P ﹣AB 和d Q ﹣AB ,并判断它们的数量关系;②若点P 、Q 的运动速度分别为1cm /s 和2cm /s ,点Q 到达点A 后立即以原速返回,则当t 为何值时,d P ﹣AB +d Q ﹣AB =?拓展:如图2,在三角形ABC 中,AB =AC =12,BC =8,点P 、Q 同时从点A 出发,点P 沿线段AB 匀速运动到点B ,点Q 沿线段AC ,CB 匀速运动至点B .且点P 、Q 同时到达点B ,设d P ﹣AB =n ,当点Q 运动到线段CB 上时,请用含n 的式子表示d Q ﹣CB .9.数学课上,张老师出示了如下框中的题目.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点,点E和点F分别是边AB和AC上的点,且始终满足DE⊥DF,试确定DE与DF的大小关系.小明与同桌小聪讨论后,进行了如下解答:(1)【特殊情况,探索结论】如图1,若点E与点A重合时,点F与点C重合,容易得到DE与DF的大小关系.请你直接写出结论:DE DF(填“>”,“<”或“=”).(2)【特例启发,解答题目】如图2,若点E不与点A重合时,DE与DF的大小关系是:DE DF(填“>”,“<”或“=”).理由如下:连结AD,(请你完成剩下的解答过程)(3)【拓展结论,设计新题】在△ABC中∠A=90°,AB=AC,点D为BC的中点,点E和点F分别是直线AB和直线AC上的点,且始终满足DE⊥DF,若AB=AC=1,BE =2,求CF的长.(请你直接写出结果)10.问题提出:(1)如图1,点A为线段BC外一动点,且BC=a,AB=b,填空:当∠ABC=时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示).问题探究:(2)点A为线段BC外一动点,且BC=6,AB=3,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.问题解决:(3)如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,求线段AM长的最大值及此时点P的坐标.11.如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作BD⊥AM于D,连接CD并延长BD 至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作BD⊥AM于D,连接CD 并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.12.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD . (1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)13.如图,在△ABC 中,AD 是∠BAC 的平分线,DF ⊥AB 于F ,DM ⊥AC 于M ,并且AF =15cm ,AC =18cm ,动点E 以3cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从点C 向点A 运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t . (1)求证:在运动过程中,不管t 取何值,都有S △AED =3S △DGC ; (2)当t 取何值时,△DFE 与△DMG 全等; (3)若,当t =时S △AED =27cm 2,求此时△BFD 的面积S △BFD .14.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C 重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=20°,则∠DEC=度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.15.已知:等边△ABC中.(1)如图1,点M是BC的中点,点N在AB边上,满足∠AMN=60°,求的值;(2)如图2,点M在AB边上(M为非中点,不与A、B重合),点N在CB的延长线上且∠MNB=∠MCB,求证:AM=BN.(3)如图3,点P为AC边的中点,点E在AB的延长线上,点F在BC的延长线上,满足∠AEP=∠PFC,求的值.参考答案1.解解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC==5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),经检验x=是原方程的根,答:点P原来的速度为cm/s.2.解:(1)如图1,AO是BC边上的中线,∵∠ACB=90°,∴AO2﹣OC2=AC2,∵AB∇AC=81,∴AO2﹣OC2=81,∴AC2=81,∴AC=9;(2)①如图2,取BC的中点O,连接AO,∵AB=AC,∴AO⊥BC,∵∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,∴==6,∴AB∇AC=AO2﹣BO2=36﹣108=﹣72;②如图3,取AC的中点D,连接BD,∴AC=6,过点B作BE⊥AC交CA的延长线于点E,∴∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=12,∴AE=6,∴BE===6.∴DE=AD+AE=12,∴==6,∴BA∇BC=BD2﹣CD2==216;(3)作BD⊥CD,如图4,∵S=24,AC=8,△ABC∴=6,∵AB∇AC=﹣64,AO是BC边上的中线,∴AO2﹣OC2=﹣64,∴OC2﹣AO2=64,又∵AC2=82=64,∴OC2﹣AO2=AC2,∴∠AOC=90°,∴OA=2×=3,∴==.∴,在Rt△BCD中,==16,∴AD=CD﹣AC=16﹣8,∴==10.3.(1)证明:如图1,过点C作CG⊥OA于G,CH⊥OB于H,∵OC平分∠AOB,∴CG=CH∵∠AOB=90°,∠DCE=90°,∴∠CDO+∠CEO=180°,∵∠CDG+∠CDO=180°,∴∠CDG=∠CEO,在△CDG与△CEH中,∴△CDG≌△CEH(AAS),∴CD=CE;(2)解:由(1)得△CDG≌△CEH,∴DG=HE,由题易得△OCG与△OCH是全等的等腰直角三角形,且OG=OH,∴OD+OE=OD+OH+HE=OG+OH=2OH,设OH=CH=x,在Rt△OCH中,由勾股定理,得:OH2+CH2=OC2∴x2+x2=32∴(舍负)∴OH=∴OD+OE=2OH=;(3)解:如图,过点C作CG⊥OA于G,CH⊥OB于H,∵OC平分∠AOB,∴CG=CH,∵∠A0B=120°,∠DCE=60°,∴∠CDO+∠CEO=180°,∵∠CDG+∠CDO=180°,∴∠CDG=∠CEO,在△CDG 与△CEH 中,∴△CDG ≌△CEH (AAS ),∴DG =HE ,由题易得△OCG 与△OCH 是全等的直角三角形,且OG =OH ,∴OD +OE =OD +OH +HE =OG +OH =2OH ,∴S 四边形OECD =S 四边形OHCG =2S △OCG在Rt △OCH 中,有∠COH =60°,OC =3,∴OH =,CH =∴,∴S 四边形OECD =2S △OCG =. 4.解:(1)∵∠ACB =90°,BC =4,sin ∠ABC =,∴设AC =3x ,AB =5x ,∴(3x )2+16=(5x )2,∴x =1,即AC =3,∵BE ⊥AD ,∴∠AEF =90°,∵∠AFE =∠CFB ,∴∠DAC =∠FBC ,∴tan ∠FBC =tan ∠DAC ==;(2)∵AG ∥BD ,∴∠AGF =∠CBF ,∴tan ∠AGF =tan ∠CBF , ∴,,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S==;△DAF(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.5.解:(1)∵AB=BC=AC,∴△ABC为等边三角形,∴∠A=60°,故答案为:60.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°﹣60°=30°.∴QA=2PA.即20﹣2t=2t×2.解得.当∠AQP=90°时,∠APQ=90°﹣60°=30°.∴PA=2QA.即2(20﹣2t)=2t.解得.∴当0<t<10,且△APQ为直角三角形时,t的值为.(3)①由题意得:AP=2t,AQ=20﹣2t,∵∠A=60°,∴当AQ=AP时,△APQ为等边三角形,∴2t=20﹣2t,解得t=5,②当P于B重合,Q与C重合,则所用时间为:4÷2=20,综上,当△APQ为等边三角形时,t=5或20.6.解:(1)∵点A(8,0)、点C(0,6),∴OA=8,OC=6,∴AC===10.∵AB=AC=10,∴OB=2,∴B(﹣2,0).(2)作EH⊥OA于H,∵在Rt△AOC中,点E为边AC的中点,∴EO=EA=5,∵EH⊥OA,∴OH=AH=4,∴EH==3.当点M在点O的左侧时,OM=2﹣2t,∴,∴t=;当点M在点O的右侧时,OM=2t﹣2,∴,∴t=;综上所述,若△OME的面积为2,t的值为或.②当点M在BO上,即0≤t<1时,△OME为钝角三角形不能成为直角三角形;当t=1时,点M运动到点O,△OME不构成三角形,当点M在OA上,即1≤t≤5时,如图3,当∠OME=90°时,∵OE=AE,∴OM=OA,∴2t﹣2=4,∴t=3,M(4,0);如图4,当∠OEM=90°时,作EH⊥OA于H,∵OE2+EM2=OM2,∴52+(2t﹣6)2+32=(2t﹣2)2,∴t=,M(,0);综上所述,符合要求时t=3,M(4,0)或t=,M(,0).7.(1)证明:在BM上取一点E,使AE=AD.∵∠ADB=60°,∴△ADE是等边三角形.∵AB=AC,∠ABC=60°,∴△ABC是正三角形,∴∠BAE=60°﹣∠EAC=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=120°,∴∠BDC=120°﹣60°=60°.(2)①在BD上取一点E,AE=AD,如图2,∵∠ABC=∠ADB=30°,且AB=AC,∴∠ABC=∠ACB=30°,∠AED=∠ADE=30°,∴∠BAC=∠EAD=120°,∴∠BAE=∠CAD,∴△BAE≌△CAD(SAS),∴∠ADC=∠AEB=180°﹣30°=150°,∴∠BDC=150°﹣30°=120°.②会变.如图3.在DB延长线上取一点E,使得AE=AD,同理可得:△BAE≌△CAD,∴∠ADC=∠E=30°,∴∠BDC=∠ADE+∠ADC=30°+30°=60°.(3)如图,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,作CH⊥BM,如图4,∵∠BDC=120°,∴∠CDH=60°,∴∠DCH=30°,∴,∴,∴如图5,∵△BAE≌△CAD,∴BE=CD,且AE=AD,AF⊥DE,∴,,∴.8.解:(1)∵d C﹣AB=,∴AC=AB,∵AC=3BC,∴AC=AB,∴d C﹣AB=,故答案为:,;(2)①∵点P、Q的运动速度均为1cm/s,∴AP=t(cm),AQ=10﹣t(cm),∴d P﹣AB =,d Q﹣AB=,∴d P﹣AB +d Q﹣AB==1;②∵点P、Q的运动速度分别为1cm/s和2cm/s,∴AP=t(cm),AQ=10﹣2t(cm)(t<5),AQ=2t﹣10(cm)(t≥5),∴d P﹣AB =,d Q﹣AB=(t<5),d Q﹣AB=(t≥5)∵d P﹣AB +d Q﹣AB=,∴=,或=∴t=4或;拓展:设运动时间为t,∵点P、Q同时到达点B,∴点P的速度:点Q速度=3:5,设点P的速度为3x,点Q速度为:5x,∴d P﹣AB =n=,d Q﹣CB=,∴d Q﹣CB==.9.解:(1)【特殊情况,探索结论】∵∠A=90°,AB=AC,点D为BC的中点,∴AD=DC,即DE=DF,故答案为:=;(2)【特例启发,解答题目】∵∠A=90°,AB=AC,点D为BC的中点,∴AD=DC,AD⊥CD,∠BAD=∠C=45°,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,且AD=CD,∠BAD=∠C=45°,∴△ADE≌△CDF(ASA)∴DE=DF,故答案为:=;(3)【拓展结论,设计新题】若点E在BA的延长线上,∵AB=AC=1,BE=2,∴AE=1,∵∠A=90°,AB=AC,点D为BC的中点,∴AD=DC,AD⊥CD,∠BAD=∠C=45°,∴∠EDF=∠ADC=90°,∠DAE=∠DCF=135°,∴∠ADE=∠CDF,且AD=CD,∠DAE=∠DCF=135°,∴△ADE≌△CDF(ASA)∴AE=CF=1;若点E在AB的延长线上,∵∠A=90°,AB=AC,点D为BC的中点,∴AD=DB,AD⊥CD,∠CAD=∠ABD=45°,∴∠EDF=∠ADB=90°,∠DBE=∠DAF=135°,∴∠ADF=∠BDE,且AD=BD,∠DBE=∠DAF=135°,∴△ADF≌△BDE(ASA)∴AF=BE=2,∴CF=3.10.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,∴∠ABC=180°,故答案为:180°,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=3+6=9;(3)①如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).11.证明:(1)∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,如图1,将△ABD逆时针方向旋转90°至△ACG,∴BD=CG,延长GC交DE于点H,∵AD⊥BE,∠DAG=∠AGC=90°,AD=AG,∴四边形ADHG为正方形,∴∠DHC=90°,∴AD=GH,∵DE=DC,EF⊥CD,∠EDF=∠CDH,∴△DEF≌△DCH(AAS),∴EF=CH,∴AD=GH=GC+CH=EF+BD;(2)AD+BD=EF,理由如下:作CN⊥AM,∵AD⊥BE,∴∠EDF+∠ADC=90°,∵∠DCN+∠ADC=90°,∴∠EDF=∠DCN,∵∠F=∠DNC=90°,DE=DC,∴△DEF≌△CDN(AAS),∴EF=DN,∵∠BAC=90°,∴∠DAB+∠NAC=90°,又∵∠DAB+∠DBA=90°,∴∠NAC=∠DBA,∵AB=AC,∴△ADB≌△CNA(AAS).∴BD=AN.∴AD+AN=DN=EF.12.证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=AD,∵CD=DE+CE,∴CD=AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=AD,∴DH==AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD=AD+BD,故答案为:CD=AD+BD.13.证明:(1)∵AD平分∠BAC,DF⊥AB,DM⊥AC∴DF=DM,∵动点E以3cm/s的速度从A点向F点运动,动点G以1cm/s的速度从点C向点A运动,∴AE=3t,CG=t,∵S△DGC =×CG×DM=×t×DM,S△ADE=×AE×DF=×3t×DM,∴S △AED =3S △DGC ;(2)∵DF =DM ,AD =AD ,∴Rt △ADF ≌Rt △ADM (HL )∴AF =AG =15,∴CM =3,∵△DFE ≌△DMG ,∴EF =MG ,∴15﹣3t =|3﹣t |,∴t =6舍去),t =,∴当t =时,△DFE 与△DMG 全等;(3)∵t =,∴AE =cm ,∵S △AED =27cm 2, ∴××DF =27,∴DF =4cm ,∵△ABD 和△ACD 是等高的两个三角形, ∴==, ∴=,且AC =18cm ,DF =DM , ∴AB =20cm ,∴BF =AB ﹣AF =5cm ,∴S △BFD =×5×4=10cm 2.14.解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE2=AF2+EF2,∴(AF)2+(EF)2=2AE2,∴EH2+CH2=2AE2.15.解:(1)∵△ABC为等边三角形,∴∠B=∠BAC=60°,AB=AC,∵点M是BC的中点,∴∠MAN=30°,∠AMB=90°,∵∠AMN=60°,∴∠BMN=30°,∴BM=2BN,AB=2BM,设BN=x,则BM=2x,AB=4x,∴AN=3x,∴;(2)证明:如图2,过点M作MG∥NC交AC于点G,∴∠A=∠AMG=∠AGM=60°,∴△AMG为等边三角形,∴AM=AG,∴BM=CG,∵∠AGM=∠ABC=60°,∴∠MGC=∠NBM=120°,∵MG∥BC,∴∠GMC=∠MCB,∵∠MNB=∠MCB,∴∠GMC=∠MNB,∴△MGC≌△NBM(AAS),∴MG=BN,∵△AMG为等边三角形,∴AM=MG,∴AM=BN;(3)如图3,过点P作PM∥CBC交AB于点M,∴△AMP为等边三角形,∴AP=MP,∠AMP=60°,∵P为AC的中点,∴AP=PC,∴MP=PC,∵∠ACB=60°,∴∠EMP=∠PCF=120°,∵∠AEP=∠PFC,∴△PCF≌△PME(AAS),∴CF=ME,∴BF﹣BE=BC+CF﹣ME+MB,又∵P为AC的中点,MP∥BC,∴MB=,∴BF﹣BE=BC+BC=,∴.。

2020年人教版数学中考二轮复习:《圆的综合》压轴题专题训练

2020年人教版数学中考二轮复习:《圆的综合》压轴题专题训练

《圆的综合》压轴题专题训练1.如图,已知AB为⊙O的直径,AC为⊙O的切线,连结CO,过B作BD∥OC交⊙O于D,连结AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=2,DE=4,求CD的长;(3)在(2)的条件下,连结BC交AD于F,求的值.2.如图,AB为⊙O的直径,点C在⊙O上,连接AC、BC,D为AC的中点,过点C作⊙O的切线与射线OD交于点E.(1)求证:∠E=∠A;(2)若延长EC与AB交于点F,若⊙O的半径为3,sin F=,求DE的长.3.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.4.如图,在平面直角坐标系xOy中,A(0,8),B(6,0),C(0,3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.5.如图,AB是⊙O的直径,点C、D在⊙O上,AD与BC相交于点E.连接BD,作∠BDF=∠BAD,DF与AB的延长线相交于点F.(1)求证:DF是⊙O的切线;(2)若DF∥BC,求证:AD平分∠BAC;(3)在(2)的条件下,若AB=10,BD=6,求CE的长.6.如图,平行四边形ABCD中,以B为坐标原点建立如图所示直角坐标系,AB⊥AC,AB=3,AD=5,点P在边AD上运动(点P不与A重合,但可以与D点重合),以P为圆心,PA 为半径的⊙P与对角线AC交于A,E两点.(1)设AP为x,P点坐标为(,)(用含x的代数式表示)(2)当⊙P与边CD相切于点F时,求P点的坐标;(3)随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.7.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB延长线于点F.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若⊙O半径为5,CD=6,求DE的长;(3)求证:BC2=4CE•AB.8.如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D(点D不与点A重合),交边BC于点E,过点E作EF⊥AC,垂足为F.(1)求证:EF是⊙O的切线;(2)连接DE,求证:△DEC是等腰三角形;(3)若CD=2,BE=3,求⊙O的半径.9.如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF.(1)求证:∠BAF=∠CAF;(2)若AC=3,BC=4,求BD和CE的长;(3)在(2)的条件下,若AF与DE交于H,求FH•FA的值.10.如图,已知AB为⊙O的直径,C、D为⊙O上的两点,且BC=CD=2,延长AB与直线CD交于点P,且BP=AB,过点A作AF⊥CD,垂足为F.(1)求证:AD平分∠CAF;(2)求AB的长度;(3)求DF的长度.11.如图,⊙O的直径AB=10,点P为BA的延长线上一点,直线PD切⊙O于点D,过点B 作BH⊥PD,垂足为H,BH交⊙O于点C,BC=6,连接BD.(1)求证:BD平分∠ABH;(2)求PA的长;(3)E是上的一动点,DE交AB于点F,连接AD,AE.是否存在点E,使得△ADE∽△FDB?如果存在,请证明你的结论,并求弧AE的长;如果不存在,请说明理由.12.如图,在平面直角坐标系xOy中,A(8,0)、B(0,6),以AB为直径画圆⊙P,点C 为⊙P上一动点,(1)判断坐标原点O在⊙P的位置关系是.(2)若点C在第一象限,过点C作CD⊥y轴,垂足为D,连接BC,且∠DBC=∠ABC,①求证:CD与⊙P相切;②求线段BC的长(3)若PD∥AO交⊙P于点D,点C在劣弧BD上,Q是劣弧BC的中点,OQ、DC交于点K,当点C在劣弧BD上运动时(不包括B、D两点),线段DK的长度是否发生变化?若变化,请指出其变化范围;若不变化,请求出其值.13.如图,AB为⊙O的直径,D为的中点,AC、BD交于点E,P为BD延长线上一点,且PD=DE.(1)试判断PA与⊙O的位置关系,并说明理由.(2)若E为BD的中点,求tan∠DBC的值.(3)若AB=10,=,求四边形ABCD的面积.14.如图示,AB是⊙O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF 的最大值.15.如图,在Rt△ABC中,∠BAC=90°,点G是BC中点.连接AG.作BD⊥AG,垂足为F,△ABD的外接圆⊙O交BC于点E,连接AE.(1)求证:AB=AE;(2)过点D作圆O的切线,交BC于点M.若,求tan∠ABC的值;(3)在(2)的条件下,当DF=1时,求BG的长.参考答案1.证明:(1)如图,连接OD,∵AC为⊙O的切线,AB为⊙O的直径,∴∠CAB=90°=∠ADB,∵OD=OB,∴∠DBO=∠BDO,∵CO∥BD,∴∠AOC=∠OBD,∠COD=∠ODB,∴∠AOC=∠COD,且AO=OD,CO=CO,∴△AOC≌△DOC(SAS)∴∠CAO=∠CDO=90°,∴OD⊥CD,且OD是半径,∴CD是⊙O的切线;(2)设⊙O半径为r,则OD=OB=r,在Rt△ODE中,∵OD2+DE2=OE2,∴r2+42=(r+2)2,解得r=3,∴OB=3,∵DB∥OC,∴即∴CD=6;(3)由(1)得△CDO≌△CAO,∴AC=CD=6,在Rt△AOC中,OC===3,∵∠AOG=∠COA,∴Rt△OAG∽△OCA,∴,即=,∴OG=,∴CG=OC﹣OG=3﹣=,∵OG∥BD,OA=OB,∴OG为△ABD的中位线,∴BD=2OG=,∵CG∥BD,∴∴=.2.(1)证明:连接OC,∵D为AC的中点,AO=CO,∴OD⊥AC,∠AOD=∠COD,∵根据圆周角定理得:∠CBA=∠AOC,∴∠CBA=∠COD,∵AB为⊙O的直径,EF切⊙O于C,∴∠ECO=∠OCF=∠ACB=90°,∵∠E+∠COD+∠ECO=180°,∠A+∠ACB+∠CBA=180°,∴∠E=∠A;(2)解:过C作CM⊥AB于M,∵⊙O的半径为3,sin F==,∴OF=5,在Rt△OCF中,由勾股定理得:CF==4,=×,由三角形面积公式得:S△OCF即 3×4=5×CM,解得:CM=2.4,由勾股定理得:OM===1.8,∴BM=3﹣1.8=1.2,由勾股定理得:BC===1.2,AC===2.4,∵D为AC的中点,∴CD=AC=1.2,∵∠A=∠E,∴tan A=tan E,∴=,∴=,∴DE=2.4=.3.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,∵S=AB×FH=×BF×AD,△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.4.解:(1)如图1,∵A(0,8),B(6,0),C(0,3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴,∴∴CD的=,∴⊙P的半径为;(2)在Rt△AOB中,OA=8,OB=6,∴==10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,即,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90°,∠PCE=∠ACD,∴△CPE∽△CAD,∴,即,∴,∴,∴△POB的面积==;(3)①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=,∴△PAB的面积=.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90°,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=,则PG为△DCF的中位线,PG=,∴△PAB的面积==.综上所述,在整个运动过程中,△PAB的面积是定值,定值为.5.解:(1)连接OD,CD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∵OA=OD,∴∠BAD=∠ADO,∵∠BDF=∠BAD,∴∠BDF+∠ODB=90°,∴∠ODF=90°,∴OD⊥DF,∴DF是⊙O的切线;(2)∵DF∥BC,∴∠FDB=∠CBD,∵=,∴∠CAD=∠CBD,且∠BDF=∠BAD,∴∠CAD=∠BAD=∠CBD=∠BDF,∴AD平分∠BAC;(3)∵AB=10,BD=6,∴AD===8,∵∠CBD=∠BAD,∠ADB=∠BDE=90°,∴△BDE∽△ADB,∴,∴,∴DE=,∴AE=AD﹣DE=,∵∠CAD=∠BAD,∴sin∠CAD=sin∠BAD∴∴∴CE=6.解:(1)如图,过点A作AN⊥BC于点N,∵AB⊥AC,AB=3,BC=AD=5,∴AC===4,∵S=AB×AC=BC×AN,△ABC∴3×4=5AN,∴AN=,∴BN===,∴点A坐标为(,)∵AP=x,∴点P坐标为(+x,),故答案为:+x,;(2)如图,连接PF∵⊙P与边CD相切于点F∴PF⊥CD∵四边形ABCD是平行四边形∴AB∥CD,且AB⊥AC∴AC⊥CD∴PF∥AC∴△DPF∽△DAC∴,∴,∴AP=,∴点P坐标为(,);(3)当<AP<或AP=时,⊙P与平行四边形ABCD的边有4个公共点,如图所示,7.解:(1)EF与⊙O相切,理由如下:连接AD,OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∴EF与⊙O相切.(2)解:由(1)知∠ADC=90°,AC=AB=10,在Rt△ADC中,由勾股定理得:AD===8.∵S ACD=AD•CD=AC•DE,∴×8×6=×10×DE.∴DE=.(3)证明:由(1)得:CD=BC,AD⊥BC,∴∠ADC=90°,∵EF⊥AC,∴∠DEC=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴CD2=CE•AB,∵AB=AC,∴BC2=CE•AB,∴BC2=4CE•AB.8.证明:(1)连接OE.∵在△ABC中,AB=AC,∴∠B=∠C.∵OB=OE,∴∠OBE=∠OEB.∴∠OEB=∠C,∴OE∥AC.∴∠OEF+∠AFE=180°.∵EF⊥AC于点F,∴∠EFA=90°.∴∠OEF=90°,∴OE⊥EF.∵OE⊥EF于点E,OE是⊙O的半径,∴EF是⊙O的切线;(2)如图2,连接DE,∵四边形ABED是圆内接四边形,∴∠EDF=∠B,且∠B=∠C,∴∠EDF=∠C,∴DE=EC,∴△DEC是等腰三角形;(3)如图3,连接AE,∵AB是直径,∴∠AEB=90°,且AB=AC,∴BE=CE=3,∵EC=DE,EF⊥AC,∴CF=DF=CD=1,∵∠B=∠C,∠AEB=∠EFC=90°,∴△ABE∽△ECF,∴,∴∴AB=9,∴⊙O的半径OA=.9.证明:(1)连结OF,如图,∵⊙O与BC相切于点F,∴OF⊥BC,∵∠ACB=90°,∴OF∥AC,∴∠OFA=∠CAF,而OA=OF,∴∠OAF=∠OFA,∴∠BAF=∠CAF;(2)解:设⊙O的半径为r,OF与DE交于点P,如图,在Rt△ABC中,∵AC=3,BC=4,∴AB===5,∵OF∥AC,∴△BOF∽△BAC,∴∴∴r=∴BD=AB﹣AD=5﹣2×=,∵AD为⊙O的直径,∴∠AED=90°,而∠C=90°,∴DE∥BC,∴,∴∴CE=,(3)∵OF∥AC,∴,∴∴CF=,∴AF===∵DE∥BC,∴,∴∴FH=∴FH•FA==10.证明:(1)连接BD,∵BC=CD,∴,∴∠CBD=∠CDB,且∠CBD=∠CAD,∴∠CDB=∠CAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠CDB+∠FDA=90°,∵∠F=90°,∴∠FDA+∠FAD=90°,∴∠FAD=∠CDB,∴∠FAD=∠CAD,∴AD平分∠CAF;(2)连接OC,∵CO=AO,∴∠OAC=∠OCA,∵∴∠OAC=∠CAD,∴∠OCA=∠DAC,∴OC∥AD,∴△PCO∽△PDA,∴,且BC=CD=2,BP=AB=2BO,∴∴PC=6,∴PD=8,∵四边形BCDA是圆内接四边形,∴∠PCB=∠PAD,且∠P=∠P,∴△PBC∽△PDA,∴,∴,∴PB=4,∴AB=PB=4;(3)∵AB是直径,∴∠ACB=90°,∴AC===2,在Rt△ACF中,AF2=AC2﹣CF2,在Rt△PAF中,AF2=AP2﹣PF2,∴AC2﹣CF2=AP2﹣PF2,∴40﹣(2+DF)2=48×4﹣(8+DF)2,∴DF=.11.(1)证明:连接OD.如图1所示:∵PD是⊙O的切线,∴OD⊥PD.又∵BH⊥PD,∴∠PDO=∠PHB=90°,∴OD∥BH,∴∠ODB=∠DBH.∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠DBH,∴BD平分∠ABH.(2)解:过点O作OG⊥BC,G为垂足,如图2所示:则BG=CG=BC=3,在Rt△OBG中,OG===4.∵∠ODH=∠DHG=∠HGO=90°,∴四边形ODHG是矩形.∴OD=GH=5,DH=OG=4,BH=BG+GH=3+5=8.∵OD∥BH,∴△POD∽△PBH,∴=,即=,解得:PA=;(3)解:存在,当点E为AB弧的中点时,△ADE∽△FDB,理由如下:连接OE,如图3所示:∵E是的中点,∴,∴∠AOE=∠BOE=90°,∠ADE=∠EDB,又∵∠AED=∠ABD,∴△ADE∽△FDB,的长==π.12.解:(1)∵以AB为直径画圆⊙P,∠AOB=90°,∴坐标原点O在⊙P上;故答案为:坐标原点O在⊙P上;(2)如图1,连接BC,过点P作PE⊥OB,∵CD⊥OB,∴∠DCB+∠DBC=90°,∵BP=CP,∴∠ABC=∠PCB,∵∠DBC=∠ABC,∴∠DBC=∠ABC=∠PCB,∴∠DCB+∠PCB=90°,∴∠DCP=90°,且CP为半径,∴DC与⊙P相切;②∵A(8,0)、B(0,6),∴OA=8,OB=6,∴AB===10,∴AP=BP=CP=5,∵PE⊥OB,AO⊥OB,∴PE∥AO,∴△BEP∽△BOA,∴,∴PE=4,BE=3,∵PE⊥BO,CD⊥OB,∠PCD=90°,∴四边形CDEP是矩形,∴CD=PE=4,PC=DE=5,∴DB=2,∴BC===2,(3)线段DK的长度不发生变化,如图2,连接BD,DO,∵PD∥OA,∴∠DEB=∠AOB=90°,,∴BE=3=EO,EP=4,∴DE=9,∴BD===3,∵Q是劣弧BC的中点,∴=,∴∠QDB=∠QDC,∵BE=EO,DE⊥OB,∴BO=DO,∴∠DBO=∠DOB,且∠DBO=∠DQO,∴∠DQO=∠DOB∵四边形BODQ是圆内接四边形,∴∠BOD+∠BQD=180°,且∠DQO+∠KQD=180°,∴∠BQD=∠KQD,且QD=QD,∠QDB=∠QDC,∴△QDB≌△QDK(ASA)∴KD=BD=3,∴线段DK的长度不发生变化.13.解:(1)PA是⊙O的切线,理由如下:如图1,连接AD、BC.∵AB是直径,∴∠ADB=90°,∴AD⊥PE,∵DP=DE,∴AP=AE,∴∠PAD=∠DAE,∵D为的中点,∴,∴∠DAC=∠ABD,∵∠ABD+∠DAB=90°,∴∠PAD+∠DAB=90°,∴∠PAB=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)如图2,连接BC,∵E为BD的中点,∴DE=BE=BD,∵∠ADE=∠ADB,∠DAE=∠DBA,∴△DAE∽△DBA,∴AD2=DE•DB=2DE2,∴AD=DE,∴tan∠DBC=tan∠DAC=;(3)过点C作CF⊥BE于F,∵=,∴设BE=7k,DE=9k,∵∠ADE=∠ADB,∠DAE=∠DBA,∴△DAE∽△DBA,∴AD2=DE•DB=144k2,∴AD=12k,在Rt△ADB中,∵AD2+BD2=AB2,∴144k2+256k2=100,∴k=,∴AD=6,DE=,BE=,BD=BE+DE=8,∴AE===,∵∠ADE=∠ECB,∠DEA=∠CEB,∴△DEA∽△CEB,∴,∴CE==,∵sin∠AED=sin∠CEF=,∴CF==,∴四边形ABCD的面积=S△ABD +S△BCD=×6×8+×8×=30.14.(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE===4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED和△AGD中,,∴△AED≌△AGD(AAS),∴AE=AG,DE=DG,∵∠FAD=∠DAB,∴=,∴DF=DB,在Rt△DEF和Rt△DGB中,,∴Rt△DEF≌Rt△DGB(HL),∴EF=BG,∴AB=AG+BG=AF+EF=AF+EF+EF=AF+2EF,即:x+2y=10,∴y=﹣x+5,∴AE•EF=﹣x2+5x=﹣(x﹣5)2+,∴AF•EF有最大值,当x=5时,AF•EF的最大值为.15.证明:(1)∵∠BAC=90°,点G是BC的中点,∴AG=BG=GC,∴∠ABG=∠BAG,又∵BD⊥AG,∴∠BAG+∠DAF=∠ADF+∠DAF=90°,∴∠ADB=∠BAG,∵,∴∠ADB=∠AEB,∴∠ABE=∠AEB,∴AB=AE,(2)∵⊙O是△ABD的外接圆,且∠BAD=90°,∴BD是直径,∵DM是⊙O切线,∴DM⊥BD,且BD⊥AG,∴DM∥AG,∴∵=,∴,设CD=3k,AC=4k,∴AD=k,∵∠BDA=∠ABC,∠BAD=∠CAB,∴△ABD∽△ACB,∴,∴AB2=AD•AC=4k2,∴AB=2k,∴tan∠ABC=;(3)∵DF=1,tan∠ABC=tan∠ADF=tan∠BAF===2,∴AF=2,BF=4,∴AB===2,∴AC=4,∴BC===10,∴BG=5,。

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。

涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。

一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。

2020年中考数学第二轮复习 第10讲 一元一次不等式(组) 强基训练+真题(后含答案)

2020年中考数学第二轮复习 第10讲 一元一次不等式(组) 强基训练+真题(后含答案)

2020年中考数学第二轮复习 第十讲 一元一次不等式(组)【强基知识】一、不等式的基本概念:1、不等式:用 连接起来的式子叫做不等式2、不等式的解:使不等式成立的 值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的 叫做不等式的解集 注意:1、常用的不等号有 等2、不等式的解与解集是不同的两个概念,不等式的解是单独的未知数的值, 而解集是一个范围的未知数的值组成的集合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。

注意“>”“<”在数轴上表示 为 ,而“≥”“≤”在数轴上表示为 二、不等式的基本性质:基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a -c b -c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )注意:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要 三、一元一次不等式及其解法:1、定义:只含有一个未知数,并且未知数的次数是 且系数 的不等式叫一元一次不等式,其一般形式为 或 。

2、一元一次不 等 式 的 解 法 步 骤 和 一 元一次方程的解法相同,即包含 、 、 、 、 等五个步骤 注意:在最后一步系数化为1时,切记不等号的方向是否要改变 四、一元一次不等式组及其解法:1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中各个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a <b )解集是、⎩⎨⎧>>bx a x 1 口诀:大大取大; 解集是、⎩⎨⎧<<bx a x 2 口诀:小小取小;解集是、⎩⎨⎧<>bx a x 3 口诀:小大大小,取中间; 解集是、⎩⎨⎧><bx a x 4 口诀:大大小小,无解了(无解或空集)。

2020年无锡中考初三数学第二轮专题复习:仅用无刻度直尺作图 1

2020年无锡中考初三数学第二轮专题复习:仅用无刻度直尺作图 1

无锡市**实验学校初三数学(2017级) 日期:2020−5−21 讲义编号: < >初三数学第二轮专题复习:仅用无刻度直尺作图1班级:________ 学生:______________姓名:______________一、格点作图例1:如图1是边长为1的小正方形网格,请用无刻度的直尺在图中作图:(1)画线段AB =17,使得点A ,B 均落在格点上; (2)在线段AB 上画出点P ,使AP =2173,并说明理由.CBA练一练:如图2是边长为1的小正方形网格,请用无刻度的直尺在图中画线段AP =5267.(1)过点C 画直线CD ,使CD ∥AB ,过点C 画直线CF ,使CF ⊥AB ; (2)画线段AB 的垂直平分线MN .例3:如图4,A ,O ,B 均为格点,请用无刻度的直尺作出∠CAB 的平分线。

CBACB ACBA图4 图5 图6练一练:在6×6的正方形网格中,点A 、B 、C 均在格点上,请仅用无刻度的直尺画图: (1)在图5中找出∆ABC 的重心G .(2)在图6中找出∆ABC 的外心O .练一练:如图7,A 、B 、C 、D 均在正方形网格的格点上,D 是边AB 上一点,请用无刻度的直尺在△ABC 的边BC 上找一点E ,使得△BDE ∽△BAC 相似。

图7D CBA思考题:如图8,A、B、C均在正方形网格的格点上,用无刻度的直尺,在线段AC上找一点D,使得AB2=AD•AC。

OA图8 图9例4:如图9,点A、B、O均为6×6的正方形格点图中的格点.(1)tan∠AOB=;(2)请用无刻度的直尺画出∠COB,使得tan∠COB=23.例5:如图10,在10×10的正方形格点图中,点A、B、C均在格点上,请仅用无刻度的直尺:(1)画出∆ABD,使得∆ABD与∆ABC关于AB对称;(2)画出∆ACE,使得∆ACE与∆ACB关于AC对称;图10 图11 图12 练一练:如图11,点A,B,C是边长为1的正方形网格中的格点,点P,Q分别为线段AB,AC上的动点.请仅用无刻度的直尺,画出当PC+PQ取得最小值时的线段PC、PQ.例6:如图12,点A、B、C均为6×8的正方形格点图中的格点.请用无刻度的直尺,画出一个以AB为一边的矩形ABMN,使矩形ABMN的面积等于△ABC的面积.练一练:如图13,点A、B、C均为8×9的正方形格点图中的格点.请用无刻度的直尺,在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2:3,并简要说明点P的位置是如何找到的(不要求证明).- 2 -- 2 -。

2020届中考数学二轮复习专题训练:二次函数与几何(含答案)

2020届中考数学二轮复习专题训练:二次函数与几何(含答案)

2020届中考数学二轮复习专题训练:二次函数与几何1. 如图,抛物线1C :y =ax 2+bx+1的顶点坐标为D (1,0),(1)求抛物线1C 的解析式;(2)如图1,将抛物线1C 向右平移1个单位,向下平移1个单位得到抛物线2C ,直线y x c =+,经过点D 交y 轴于点A ,交抛物线2C 于点B ,抛物线2C 的顶点为P,求△DBP 的面积(3)如图2,连结AP,过点B 作BC ⊥AP 于C,设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.图1yxO P DBA图2QyxO P F E CDB A【解答】(1)∵抛物线顶点为(1,0)P ,经过点(0,1)∴可设抛物线的解析式为:2(1)y a x =-,得: 1a = ∴抛物线的解析式为221y x x =-+(2)根据题意的p (2,-1)∴抛物线的解析式为:2(2)1y x =--,∴A(0,-1),B(4,3)∴△DBP 的面积 =3(3)过点Q 作QM AC ⊥于点M ,过点Q 作QN BC ⊥于点N ,设点Q 的坐标是2(,43)t t t -+,则2(2)QM CN t ==-,4MC QN t ==-.∵//QM CE ∴PQM ∆∽PEC ∆ ∴QM PM EC PC = 即2(2)12t t EC --=,得2(2)EC t =- ∵//QN FC ∴BQN ∆∽BFC ∆ ∴QN BN FC BC = 即243(43)4t t t FC ---+=,得4FC t = 又∵4AC =∴4()[42(2)]8FC AC EC t t+=+-==,即()FC AC EC +为定值8.2. 如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(3分)(2)如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分) (3)如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)(1)由抛物线C 1:()522-+=x a y 得顶点P 的为(-2,-5)∵点B (1,0)在抛物线C 1上∴()52102-+=a ,∴a =59 (2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称,∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG ,∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5),抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到∴抛物线C 3的表达式为()54952+--=x y (3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到∴顶点N 、P 关于点Q 成中心对称由(2)得点N 的纵坐标为5设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G ,作PK ⊥NG 于K ∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6 ∴FG =3,点F 坐标为(m +3,0)H 坐标为(2,0),K 坐标为(m ,-5), 根据勾股定理得 PN 2=NK 2+PK 2=m 2+4m +104PF 2=PH 2+HF 2=m 2+10m +50 NF 2=52+32=34①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0) ③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.3. 已知: 如图1, 二次函数y =a (x -1)2-4的图象交x 轴负半轴于点A , 交x 轴正半轴于点B , 交y 轴负半轴于点C , 且OB =3OA . (1) 求二次函数的解析式;(2) 如图2, M 是抛物线的顶点, P 是抛物线在B 点右侧上一点, Q 是对称轴上一点, 并且AQ ⊥PQ , 是否存在这样的点P , 使得∠P AQ =∠AMQ ? 若存在, 请求出P 点坐标; 若不存在, 请说明理由.(3)如图3, 设(1)中抛物线的顶点为M ,R 为x 轴正半轴上一点,将(1)中抛物线绕R 旋转1800得到抛物线C 1: y =-a (x -h)2+k 交x 轴于D,E 两点,.若tan ∠BME=1,求R 点的坐标。

【优选】2020届数学中考复习讲解课件:专题复习(二) 规律与猜想

【优选】2020届数学中考复习讲解课件:专题复习(二) 规律与猜想

20
14.(2019·玉林)如图,在矩形 ABCD 中,AB=8,BC=4,一发光电 子开始置于 AB 边的点 P 处,并设定此时为发光电子第一次与矩形的边碰 撞,将发光电子沿着 PR 方向发射,碰撞到矩形的边时均反射,每次反射的 反射角和入射角都等于 45°.若发光电子与矩形的边碰撞次数经过 2 019 次 后,则它与 AB 边的碰撞次数是 673 .
12
按照以上规律,解决下列问题:
(1)写出第 6 个等式: 121=61+616 (2)写出你猜想的第 n 个等式:
; 2n2-1=n1+n(2n1-1)
(用含
n
的等
式表示),并证明. 证明:∵n1+n(2n1-1)=n(22nn--11)+n(2n1-1)=n2(n2-n1-+11)=
2n2-1,
22
(2019·鄂州)如图,在平面直角坐标系中,点 A1,A2,A3,…,
An 在
x
轴上,点
B1,B2,B3,…,Bn 在直线
y=
3 3x
上.若
A1(1,0),且
△ A1B1A2,△ A2B2A3,…,△ AnBnAn+1 都是等边三角形,从左到右的小三
角形(阴影部分)的面积分别记为 S1,S2,S3,…,Sn,则 Sn 可表示为( D ) A.22n 3
A.(
22,-
2 2)
B.(1,0)
C.(-
22,-
2 2)
D.(0,-1)
26
17.(2019·广元)如图,过点
A0(0,1)作
y
轴的垂线交直线
l:y=
3 3x

点 A1,过点 A1 作直线 l 的垂线,交 y 轴于点 A2,过点 A2 作 y 轴的垂线交

2020--2021学年九年级数学中考二轮复习 专题 三角形辅助线作法攻略

2020--2021学年九年级数学中考二轮复习 专题 三角形辅助线作法攻略

《三角形辅助线作法攻略》➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。

(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM 上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.【例2】如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于D,过C作CE ⊥BD交BD延长线于E.求证:CE=BD.【例3】如图,AC平分∠BAD,CD=CB,AB>AD,求证:∠B+∠D=180°.考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

【例4】如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.✧考点三:与等腰、等边三角形相关的辅助线(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °【例5】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.✧考点四:与中点有关的辅助线遇到中点,考虑中位线或等腰等边中的三线合一。

【例6】如图1,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N.求证:∠BME=∠CNE;(提示:取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,F是BC边的中点,D是AC边上一点,E是AD的中点,直线FE 交BA的延长线于点G,若AB=DC=2,∠FEC=45°,求FE的长度.考点五:构造一线三垂直(等角)【例7】(1)观察猜想:如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE =90°,AD=AE,则BC、BD、CE之间的数量关系为;(2)问题解决:如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸:如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.考点六:等面积法(1)利用连线将一个大的三角形的面积切割为几个小三角形的面积和;(2)连线后得到等底等高的三角形面积相等。

四川省达县中学2020年九年级数学中考第二轮压轴题复习:统计和概率(包含答案,教师版)

四川省达县中学2020年九年级数学中考第二轮压轴题复习:统计和概率(包含答案,教师版)

四川省达县中学2020年九年级数学中考第二轮压轴题复习:统计和概率1、下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).慧慧116 124 130 126 121 127 126 122 125 123 聪聪122 124 125 128 119 120 121 128 114 119 回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);(2)慧慧成绩的方差 S2= [92+12+52+12+42+22+12+32+02+22]=14.2,聪聪成绩的方差S2= [12+12+22+52+42+32+82+52+92+42]=24.2,(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.(4)画树状图为:共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,所以两名学生分别在初三•二班和初三•三班的概率==.2、某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人(1)本次抽取的学生有人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数.【解答】解:(1)30÷10%=300,故答案为:300;(2)如图,了解很少的人数所占的百分比1﹣30%﹣10%﹣20%=40%,故答案为:40%,(3)1600×30%=480人,该校1600名学生中对垃圾分类不了解的人数480人.3、某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:(1)求本次测试共调查了多少名学生?(2)求本次测试结果为B等级的学生数,并补全条形统计图;(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?【解答】解:(1)设本次测试共调查了x名学生.由题意x•20%=10,x=50.∴本次测试共调查了50名学生.(2)测试结果为B等级的学生数=50﹣10﹣16﹣6=18人.条形统计图如图所示,(3)∵本次测试等级为D所占的百分比为=12%,∴该中学八年级共有900名学生中测试结果为D等级的学生有900×12%=108人.4、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.5、国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B 组:0.5≤t≤1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.【解答】解:(1)60÷20%=300(人)答:此次抽查的学生数为300人,故答案为:300;(2)C组的人数=300×40%=120人,A组的人数=300﹣100﹣120﹣60=20人,补全条形统计图如图所示,(3)该生当天在校体育活动时间低于1小时的概率是=40%;(4)当天达到国家规定体育活动时间的学生有1200×=720人.故答案为:40%,720人.6、深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况[来频数频率源:学|科|网]A.高度关注M 0.1B.一般关注100 0.5C.不关注30 ND.不知道50 0.25(1)根据上述统计图可得此次采访的人数为人,m= ,n= ;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).7、为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.8、为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤6 622≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【解答】解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.9、为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<30 0.1602 60≤x<70450.153 70≤x<8060 n4 80≤x<90m 0.45 90≤x<100450.15请根据以图表信息,解答下列问题:(1)表中m= ,n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.10、某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/ (男,男)(男,男)(男,女)(男,女)男(男,男)/ (男,男)(男,女)(男,女)男(男,男)(男,男)/ (男,女)(男,女)女(女,男)(女,男)(女,男)/ (女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.11、甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:中位数/环众数/环方差平均成绩/环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.12、为了解学生的艺术特长发展情况,某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图。

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:反比例函数(解析版)

2020年中考数学二轮复习压轴专题:《反比例函数》1.如图,在平面直角坐标系中,矩形ABCO的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(4,2),AC的垂直平分线分别交BC,OA于点D,E,过点D的反比例函数的图象交AB于点F.(1)求反比例函数的表示式;(2)判断DF与AC的位置关系,并说明理由;(3)连接OD,在反比例函数图象上存在点G,使∠ODG=90°,直接写出点G的坐标.解:(1)连接AD,∵DE垂直平分AC,∴AD=CD,∵B(4,2),∴AB=2,BC=4.设AD=CD=x,则BD=4﹣x,∵四边形OABC矩形,∴BC∥OA,∠B=90°.在Rt△ABD中,AD2=BD2+AB2.即x2=(4﹣x)2+22.解得.∴点.将点的坐标代入中,解得:.∴所求反比例函数表达式为;(2)DF∥AC.将x=4代入得,,∴点.∵B(4,2),A(4,0),C(0,2),,∴AB=2,,BC=4,.∴,.∴.∵∠B=∠B,∴△BDF∽△BCA,∴∠BDF=∠BCA.∴DF∥AC;(3)存在,∵,∴OC=2,CD=,如图,∵G点在反比例函数图象上,∴设G(m,),过G作GH⊥BC于H,∴GH=﹣2,DH=﹣m,∵∠ODG=90°,∴∠GDH+∠CDO=90°,∵∠CDO+∠COD=90°,∴∠GDH=∠COD,∴△DHG∽△OCD,∴=,∴=,解得:m=,m=(不合题意舍去),∴.2.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6, b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;3.如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x 轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P 的坐标.解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.4.如图,A、D、B、C分别为反比例函数y=与y=(x>0,0<n <x)图象上的点,且AC∥x轴,BD∥y轴,AC与BD相交于点P,连接AD、BC.(1)若点A坐标A(1,2),点B坐标B(2,5),请直接写出点C、点D、点P的坐标;(2)连接AB、CD,若四边形ABCD是菱形,且点P的坐标为(3,2),请直接写出m、n之间的数量关系式;(3)若A、B为动点,△APD与△CPB是否相似?为什么?解:(1)∵点A坐标A(1,2)反比例函数y=上的点,点B坐标B(2,5)反比例函数y=上的点,∴m=1×2=2,n=2×5=10,∵AC∥x轴,BD∥y轴,∴点C的纵坐标为2,点D的横坐标为2,点P坐标(2,2)∴点C(5,2),点D(2,1);(2)∵点P的坐标为(3,2),∴点A,点C纵坐标为2,点B,点D的横坐标为3,∵四边形ABCD是菱形,∴AP=PC,BP=PD,设点A(x,2),则点C(6﹣x,2),∴m=2x,点D(,3),n=12﹣2x,点B(,3),∵BP=PD,∴2﹣=﹣2,∴m+n=12;(3)△APD∽△CPB,理由如下:设点P的坐标为(a,b),则点A的坐标为(,b)、点D的坐标为(a,),点B的坐标为(a,)、点C的坐标为(,b),∴PA=a﹣=,PC=,PD=b﹣=,PB=,∴,,即,且∠APD=∠CPB,∴△APD∽△CPB.5.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n的值和k的值以及点B的坐标;(2)观察反比例函数y=的图象,当y≥﹣3时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(4)在y轴上是否存在点P,使PA+PB的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),(2)当y=﹣3时,﹣3=,解得x=﹣4.故当y≥﹣3时,自变量x的取值范围是x≤﹣4或x>0.(2)如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=B C=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(4)存在,如图2,作点B(2,0)关于y轴的对称点Q的坐标为(﹣2,0),∴直线AQ的关系式为y=x+1,∴直线AQ与y轴的交点为P(0,1).6.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN 是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数y=(x>0)图象上的一个动点,过点C 的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OM sinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴=∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).7.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)a=﹣1 ,b=﹣2 ;(2)求D点的坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:.故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2).∴t=2t﹣4.∴t=4.∴D(1,4);(3)∵D(1,4)在双曲线y=上,∴k=xy=1×4=4.∴反比例函数的解析式为y=,∵点P在双曲线y=上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示:若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示:当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);综上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如图4,连接NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TN H=360°﹣180°﹣90°=90°.∴MN=HT,∴=.即的定值为.8.已知:一次函数y=mx+10(m<0)的图象与反比例函数y=(k >0)的图象相交于A、B两点(A在B的右侧).(1)当A(8,2)时,求这个一次函数和反比例函数的解析式,以及B点的坐标;(2)在(1)的条件下,平面内存在点P,使得以A、B、O、P为顶点的四边形为平行四边形,请直接写出所有符合条件的点P的坐标;(3)当m=﹣2时,设A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.解:(1)把A(8,2)代入y=,得k=8×2=16.∴反比例函数的解析式为y=,把A(8,2)代入y=mx+10,得到m=﹣1,∴一次函数的解析式为y=﹣x+10,解方程组,得或,∴点B的坐标为(2,8)(2)如图1,设P的坐标为(x,y),∵四边形AP1BO是平行四边形,∴AB、OP1互相平分,∵A(8,2),B(2,8),O(0,0),∴=,=,∴x=10,y=10,∴P1(10,10),同理求得,P2(﹣6,6),P3(6,﹣6);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴=,∵=,∴==,∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即b=a.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函数y=的图象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=a(﹣2×a+10).∵a≠0,∴﹣2a+10=(﹣2×a+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).设直线BC的解析式为y=px+q,则有,解得:,∴直线BC的解析式为y=2x+2.当x=0时,y=2,则点D(0,2),OD=2,∴S△COB=S△ODC+S△ODB=OD•CT+OD•BS=×2×3+×2×2=5.∵OA=OC,∴S△AOB=S△COB,∴S△ABC=2S△COB=10.9.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点,点A与点B不重合,直线AB与x轴交于点P(x0,0),与y轴交于点C(1)若A、B两点坐标分别为(1,4),(4,y2),求点P的坐标;(2)若b=y1+1,x0=6,且y1=2y2,求A,B两点的坐标;(3)若将(1)中的点A,B绕原点O顺时针旋转90°,A点对应的点为A′,B点的对应点为B′点,连接AB′,A′B′,动点M 从A点出发沿线段AB′以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB′为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,4)∴k=1×4=4,∴y=,∵B(4,y2)在反比例函数的图象上,∴y2==1,∴B(4,1),∵直线y=ax+b经过A、B两点,∴,解得,∴直线为y=﹣x+5,令y=0,则x=5,∴P(5,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y 轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,y1=2y2,∴=,==,∴B(, y1),∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1);(3)存在,如图2,∵A、B两点坐标分别为(1,4),(4,1),将B绕原点O顺时针旋转90°,∴B′(1,﹣4),∴AB′=8,由题意得:AM=BN=t,∴B′M=8﹣t,∵△MNB′为等腰直角三角形,∴①当∠B′N1M1=90°,即B′M1=B′N1,∴8﹣t=t,解得:t=8﹣8;②当∠B′M2N2=90°,即B′N2=B′M2,∴t=(8﹣t),解得:t=16﹣8;综上所述,t的值为8﹣8或16﹣8.10.平面直角坐标系中,A(,0)、B(,3).(1)如图1,C点在y轴上,AC⊥AB,请直接写出C点的坐标.(2)如图2,以AB为边作矩形ABDE,D、E在第一象限内,且D、E两点均在双曲线的图象上,求k的值.(3)将(2)中求得的线段DE在(2)中的双曲线(x>0)的图象上滑动(D点始终在E点左边),作DM⊥y轴于M,EN⊥x轴于N.若MN=,请直接写出DM•EN的值.解:(1)过B作BD⊥x轴于D,∵A(,0)、B(,3),∴BD=3,AD=2,OA=,∵AC⊥AB,∴∠ADB=∠BAC=∠AOC=90°,∴∠BAD+∠ABD=∠BAD+∠CAO=90°,∴∠ABD=∠CAO,∴△ABD∽△CAO,∴,∴,∴OC=,∴C(0,);(2)∵四边形ABDE是矩形,∵A(,0)、B(,3),设E(m,n),则D(m﹣2,n+3),∵D、E均在双曲线上∴mn=(m﹣2)(n+3),过点B作BF⊥x轴于F,过点E作EG⊥x轴于G,由(1)证得△ABF∽△EAG,∴,∴,得2m+1=3n,联立,解得,∴k=mn=12;(3)∵DE=AB=,∵MN=,∴延长MD,NE交于G,则四边形MONG是矩形,设M(0,m)、N(n,0)∴D(,m)、E(n,)、G(n,m),∴直线MN的解析式为y=﹣x+m;直线DE的解析式为:y=﹣x+m+,∴MN∥DE,∴,∴,得mn=4∴DM•EN=.11.综合与探究:如图所示,在平面直角坐标系中,直线y=x+2与反比例函数y=(k>0)的图象交于A(a,3),B(﹣3,b)两点,过点A作AC ⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的函数表达式;(2)若点P在线段AB上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)小颖在探索中发现:在x轴正半轴上存在点M,使得△MAB是以∠A为顶角的等腰三角形.请你直接写出点M的坐标.解:(1)∵直线y=x+2与反比例函数y=(k>0)的图象交于A (a,3),B(﹣3,b)两点,∴a+2=3,﹣3+2=b,∴a=1,b=﹣1.∴A(1,3),B(﹣3,﹣1),∵点A(1,3)在反比例函数y=上,∴k=1×3=3,∴反比例函数的函数表达式为y=,(2)设点P(x P,y P),∵A(1,3),∴C(1,0).∴AC=3.∵B(﹣3,﹣1),∴D(﹣3,0),∴BD=1,∴AC(1﹣x P)=DB(x P+3),解得:x P=0,∴y P=2,∴点P的坐标为(0,2);(3)∵△MAB是以∠A为顶角的等腰三角形,∴AB=AM,∵AB==4,∵AC⊥x轴,∴CM===,∴OM=1+,∴M(1+,0).12.如图1,在矩形中,OA=4,OC=3,分别以OC,OA所在的直线为x轴、y轴,建立如图所示的平面直角坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=ax+b经过点E和点F.(1)连接OE、OF,求△OEF的面积;(2)如图2,将线段OB绕点O顺时针旋转﹣定角度,使得点B的对应点H好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求的最小值.解:(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,∴B(3,4),∵OD=DB,∴D(,2),∵y=经过D(,2),∴k=3,∴反比例函数的解析式为y=,∴y=4时,x=,∴E(,4),当x=3时,y=1,∴F(3,1),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=3×4﹣×4×﹣×3×1﹣×(3﹣)(4﹣1)=12﹣﹣﹣=;(2)作NJ⊥BO于J,HK⊥BO于K,如图2所示:OB===5,由旋转的性质得:OB=OH=5,∴CH=OH﹣OC=5﹣3=2,∴BH═==2,∴sin∠CBH═==,∵OM⊥BH,∴∠OMH=∠BCH=90°,∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,∴∠MOH=∠CBH,∵OB=OH,OM⊥BH,∴∠MOB=∠MOH=∠CBH,∴sin∠NOJ=,∴NJ=ON•sin∠NOJ=ON,∴NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H三点共线,且与HK重合时,HN+ON 的值最小,最小值为HK的长,∵OB=OH, BC•OH=HK•OB,∴HK=BC=4,∴HN+ON是最小值为4.13.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=14.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函数为y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函数为y=﹣x+5.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,),由一次函数y=﹣x+5可知C(5,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=5,∴|5﹣m|•=5,解得m=或m=﹣(舍去),∴P(,).15.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y=(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.。

2020年中考数学二轮复习压轴专题:三角形(解析版)

2020年中考数学二轮复习压轴专题:三角形(解析版)

2020年中考数学二轮复习压轴专题:《三角形》1.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①(1)求证:∠ACN=∠AMC(2)记△ANC得面积为5,记△ABC得面积为5.求证:(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)解:(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM,∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS)∴NE=CD,CE=DM;∵S1=AC•NE,S2=AB•CD,∴=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM,∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM∴AE=BD+BP=DP,∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS)∴AN=PC.2.如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC.(Ⅰ)求C点的坐标;(Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值.解:(Ⅰ)如图1,过C作CM⊥x轴于M点,如图1所示:∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=6,∴点C的坐标为(﹣6,﹣2),故答案为(﹣6,﹣2);(Ⅱ)如图2,过D作DQ⊥OP于Q点,则四边形OEDQ是矩形,∴DE=OQ,∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP,在△AOP和△PDQ中,,∴△AOP≌△PDQ(AAS),∴AO=PQ=2,∴OP﹣DE=OP﹣OQ=PQ=OA=2;(Ⅲ)如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则∠HSF=∠GTF=90°=∠SOT,∴四边形OSFT是正方形,∴FS=FT=4,∠EFT=90°=∠HFG,∴∠HFS=∠GFT,在△FSH和△FTG中,,∴△FSH≌△FTG(AAS),∴GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣4,﹣4),∴OT═OS=4,∴GT=﹣4﹣m,HS=n﹣(﹣4)=n+4,∴﹣4﹣m=n+4,∴m+n=﹣8.3.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为AE=BD.②∠APC的度数为60°.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为AE=BD,AE⊥BD.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∵∠AOC=∠DOP,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠DPE,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.4.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.解:(1)结论BM+CN=BD成立,理由如下:如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.5.△ABC是等边三角形,P为平面内的一个动点,BP=BA,0°<∠PBC<180°,DB平分∠PBC,且DB=DA.(1)当BP与BA重合时(如图1),求∠BPD的度数;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数.解:(1)∵△ABC是等边三角形,BD平分∠PBC,∴∠PBD=∠CBD=30°,∵DB=DA,∴∠PBD=∠BPD=30°;(2)如图2,连接CD,∵点D在∠PBC的平分线上,∴∠PBD=∠CBD,∵△ABC是等边三角形,∴BA=BC=AC,∠ACB=60°,∵BP=BA,∴BP=BC,∵BD=BD,∴△PBD≌△CBD(SAS),∴∠BPD=∠BCD,∵DB=DA,BC=AC,CD=CD,∴△BCD≌△ACD(SSS),∴∠BCD=∠ACD=∠ACB=30°,∴∠BPD=30°;(3)如图3,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD=30°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=30°,如图4,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD=30°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=30°,如图5,连接CD,∵AD=BD,CD=CD,BC=AC,∴△ACD≌△BCD(SSS)∴∠ACD=∠BCD==150°,∵BD=BD,∠PBD=∠CBD,PB=AB=BC,∴△PBD≌△CBD(SAS)∴∠BPD=∠BCD=150°,6.在△ABC中,AC=BC,∠ACB=90°,D为AB边的中点,以D为直角顶点的Rt△DEF的另两个顶点E,F分别落在边AC,CB(或它们的延长线)上.(1)如图1,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC互相垂直,则S△DEF +S△CEF=S△ABC,求当S△DEF=S△CEF=2时,AC边的长;(2)如图2,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,S△DEF +S△CEF=S△ABC,是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF,S△CEF,S△ABC之间的数量关系;(3)如图3,若Rt△DEF的两条直角边DE,DF与△ABC的两条直角边AC,BC不垂直,且点E在AC的延长线上,点F在CB的延长线上,S△DEF +S△CEF=S△ABC是否成立?若成立,请给予证明;若不成立,请直接写出S△DEF ,S△CEF,S△ABC之间的数量关系.解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形DECF是矩形,∵∠ACB=90°,∴BC⊥AC,∵DE ⊥AC ,∴DE ∥BC ,∵D 为AB 边的中点,∴DE 是△ABC 的中位线,∴DE =BC ,AC =2CE ,同理:DF =AC ,∵AC =BC ,∴DE =DF ,∴四边形DECF 是正方形,∴CE =DF =CF =DE ,∵S △DEF =S △CEF =2=DE •DF =DF 2,∴DF =2,∴CE =2,∴AC =2CE =4;(2)S △DEF +S △CEF =S △ABC 成立,理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°,S △ABC =2S △BCD ,∵∠EDF =90°,∴∠CDE =∠BDF ,在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ),∴DE =DF .S △CDE =S △BDF .∴S △DEF +S △CEF =S △CDE +S △CDF =S △BCD =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD,如图3所示:同(1)得:△DEC≌△DBF,∠DCE=∠DBF=135°,∴S△DEF =S五边形DBFEC,=S△CFE +S△DBC,=S△CFE +S△ABC,∴S△DEF ﹣S△CFE=S△ABC.∴S△DEF 、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.7.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°, AC=15,则DE的长为 5 .解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.8.如图,在△ABC中,AB=AC,以BC为直角边作等腰Rt△BCD,∠CBD=90°,斜边CD交AB于点E.(1)如图1,若∠ABC=60°,BE=4,作EH⊥BC于H,求线段BC的长;(2)如图2,作CF⊥AC,且CF=AC,连接BF,且E为AB中点,求证:CD=2BF.解:(1)∵∠ABC=60°,EH⊥BC,∴∠BEH=30°,∴BE=2BH=4,EH=BH,∴BH=2,EH=2,∵∠CBD=90°,BD=BC,∴∠BCD=45°,且EH⊥BC,∴∠BCD=∠BEC=45°,∴EH=CH=2,∴BC=BH+HC=2+2;(2)如图,过点A作AM⊥BC,∵AB=AC,AM⊥BC,∴BM=MC=BC=DB,∵∠DCB=45°,AM⊥BC,∴∠DCB=∠MNC=45°,∴MN=MC=BD,∵AM∥DB,∴△CNM∽△CBD∴,∴CD=2CN,AN=BD,∵CF⊥AC,∠BCD=45°,∴∠ACD+∠BCF=45°,且∠ACD+∠MAC=45°,∴∠BCF=∠MAC,且AC=CF,BC=AN,∴△ACN≌△CFB(SAS)∴BF=CN,∴CD=2BF9.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.【探究发现】证明:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DP=DB;【数学思考】证明:(2)∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,在△CDP和△GDB中,,∴△CDP≌△GDB(ASA)∴DP=DB.10.已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m﹣n)2+|m﹣5|=0.C 为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为AB=2PE(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由!(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.解:(1)∵(m﹣n)2+|m﹣5|=0,∴m﹣n=0,m﹣5=0,∴m=n=5,∴A(5,0)、B(0,5),∴AC=BC=5,∴△AOB为等腰直角三角形,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是x轴正半轴上一点,∴点P在BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∵C为AB的中点,∴AB=2OC,∴AB=2PE.故答案为:AB=2PE.(2)成立,理由如下:∵点C为AB中点,∴∠AO C=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵∠POD=45°﹣∠POC,∠PDO=45°﹣∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,又∠AOC=∠BAO=45°∴OC=AC=AB∴AB=2PE;(3)∵AB=5,∴OA=OB=5,∵OP=PD,∴∠POD=∠PDO==67.5°,∴∠APD=∠PDO﹣∠A=22.5°,∠BOP=90°﹣∠POD=22.5°,∴∠APD=∠BOP,在△POB和△DPA中,,∴△POB≌△DPA(SAS),∴PA=OB=5,DA=PB,∴DA=PB=5﹣5,∴OD=OA﹣DA=5﹣(5﹣5)=10﹣5,∴点D的坐标为(10﹣5,0).11.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.解:(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).12.在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)若点D在线段AM上时(如图1),则AD=BE(填“>”、“<”或“=”),∠CAM =30 度;(2)设直线BE与直线AM的交点为O.①当动点D在线段AM的延长线上时(如图2),试判断AD与BE的数量关系,并说明理由;②当动点D在直线AM上时,试判断∠AOB是否为定值?若是,请直接写出∠AOB的度数;若不是,请说明理由.解:(1))∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS),∴AD=BE;∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:=,30;(2)①AD=BE,理由如下:∵△ABC和△CDE都是等边三角形∴AB=BC,DC=EC,∠ACB=∠DCE=60°,∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS)∴AD=BE.②∠AOB是定值,∠AOB=60°,理由如下:当点D在线段AM上时,如图1,由①知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即,∴∠BOA=90°﹣30°=60°.当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.13.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30°角所对的直角边等于斜边的一半.小明同学对以上结论作了进一步探究.如图1,在Rt△ABC中,∠ACB=90°,AC=AB,则:∠ABC=30°.探究结论:(1)如图1,CE是AB边上的中线,易得结论:△ACE为等边三角形.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=AB,CP是AB边上的中线,点D是边CB上任意一点,连接AD,在AB边上方作等边△ADE,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想加以证明.拓展应用:如图3,在平面直角坐标系中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当点C在第一象内,且B(2,0)时,求点C 的坐标.解:探究结论(1)∵CE是AB边上的中线,∴CE=AE=AB,∵AC=AB,∴AC=CE=AE,∴△ACE是等边三角形.故答案为:等边;(2)如图2中,结论:ED=EB.理由:取AB的中点P,连接CP、PE.∵△ACP,△ADE都是等边三角形,∴AC=AP=PC,AD=AE=DE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE(SAS),∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).14.如图,等边△ABC外有一点D,连接DA,DB,DC.(1)如图1,若∠DAB+∠DCB=180°,求证:BD平分∠ADC;(2)如图2,若∠BDC=60°,求证:BD﹣CD=AD;(3)如图3,延长AD交BC的延长线于点F,以BF为边向下作等边△BEF,若点D,C,E 在同一直线上,且∠ABD=α,直接写出∠CEF的度数为60°﹣α(结果用含α的式子表示).(1)证明:过点B作BM⊥CD于点M,BN⊥AD于点N,∴∠ANB=∠CMB=90°,∵△ABC为等边三角形,∴AB=BC,∵∠DAB+∠DCB=180°,∠DCB+∠BCM=180°,∴∠OAB=∠BCM,∴△ABN≌△CBM(AAS),∴BM=BN,∴BD平分∠ADC;(2)证明:在BD上取点E,使DE=CD,∵∠BD C=60°∴△CDE为等边三角形,∴∠DCE=∠ACB=60°,∴∠ACD=∠BCE,∵AC=BC,∴△ADC≌△BEC(SAS),∴AD=BE,∴BD﹣CD=AD;(3)解:∵△ABC,△BEF为等边三角形,∴AB=CB,BF=BE,∠ABF=∠CBE∴△ABF≌CBE(SAS),∴∠DFB=∠CEB,∵∠CEB+∠CEF=60°,∠EFB=60°∴∠FDE=180°﹣∠DFB﹣∠EFB﹣∠CEF=60°∴∠ADC=120°,∴∠ADC+∠ABC=180°,由(1)得BD平分∠ADC∴∠BDE=60°,∴∠FDB=120°,∴∠FDB+∠FEB=180°,∴F,E,B,D四点共圆,∴∠CEF=∠DBF∵∠DBF=60°﹣α.∴∠CEF=60°﹣α.故答案为:60°﹣α.15.已知,在平面直角坐标系中,点A(0,2),B(﹣2,m),过B点作直线a与x轴互相垂直,C为x轴上的一个动点,且∠BAC=90°.(1)如图1,若点B是第二象限内的一个点,且m>2时,求点C的坐标;(用m的代数式表示)(2)如图2,若点B是第三象限内的一个点,设C点的坐标(x,0),求x的取值范围:(3)如图3,连接BC,作∠ABC的平分线BD,点E、F分别是射线BD与边BC上的两个动点,连接CE、EF,当m=3时,试求CE+EF的最小值.解:(1)如图1,过B点作BH⊥y轴于点H,∴∠BHA=90°,∠ABH+∠BAH=90°,∴∠BHA=∠AOC=90°,∵∠BAC=90°,∴∠BAH+∠CAO=90°,∴∠ABH=∠CAO,∵点A(0,2),B(﹣2,m),∴AO=BH=2,OH=m,∵AO=BH,∠ABH=∠CAO,∠BHA=∠AOC=90°,∴△BHA≌△AOC(ASA)∴CO=AH=OH﹣AO=m﹣2,∵m>2,点C在x轴负半轴,∴点C(2﹣m,0);(2)如图2,过B点作BK⊥y轴于点K,则∠AKB=90°,∵∠BAC=90°,∴∠BAK+∠CAK=90°,且∠BAK+∠ABK=90°,∴∠CAK=∠ABK,∵点A(0,2),B(﹣2,m),∴AO=BK=2,OH=m,∵AO=BK,∠CAK=∠ABK,∠AOC=∠AKB=90°,∴△ABK≌△CAO(AAS)∴CO=AK=2﹣m,∵C点的坐标(x,0),∴CO=x=2﹣m,∵点B是第三象限内的一个点,∴m<0,∴2﹣m>2,∴x>2;(3)如图3,在AB上截取BN=BF,∵BD是∠ABC的平分线,∴∠ABE=∠CBE,且BE=BE,BF=BN,∴△BEF≌△BEN(SAS)∴EF=EN,∴CE+EF=CE+EN,∴当C,E,F三点共线,且N与点A重合时,CE+EF有最小值,此时最小值为AC,由(1)可知:点C(2﹣m,0);且m=3,∴点C(﹣1,0),∴CO=1,∴AC===,∴CE+EF的最小值为.。

新人教版2020年中考数学二轮复习专题练习下因动点产生的将军饮马问题

新人教版2020年中考数学二轮复习专题练习下因动点产生的将军饮马问题

4.因动点产生的将军饮马问题1.如图,一次函数112y x b =+的图象l 与二次函数22y x mx b =-++的图象 C '都经过点01B (,)和点C ,且图象 C '过点20A -(). (1)求二次函数的最大值; (2)设使21y y >成立的x 取值的所有整数和为S ,若S 是关于x 的方程13(1)013x a x ++=--的根,求a 的值; (3)若点F G 、在图象 C '上,长度为5的线段DE 在线段BC 上移动,EF 与DG 都始终平行于y 轴.当四边形DEFG 的面积最大时,在x 轴上求一点P ,使PD PE +最小,求出点P 的坐标.解析:(1)把2001A B -(,)、(,)代入22y x mx b =-++ 解得41m b =,=∴二次函数的解析式为2241y x x =-++22241(25)y x x x Q =-++=--+∴二次函数的最大值为5(2)11112b y x ∴Q =,=+ 由1211y x =+与2241y x x =-++联立,求得711()24C , 使21y y >成立的x 取值范围是702x <<所有整数和1236S =++=,代入方程13(1)013x a x ++=-- 得13(1)60163a +⨯+=--,解得17a = (3)作EH DG ⊥于H 设111212D x x E t t (,+),(,+),其中702x t <<< 则1111()()2221DH t x t x =+-+=-,EH t x =- 在Rt DEH V 中,222DH EH DE +=即2221()()4t x t x -+-=22t x t x ∴∴-=,=+21412()212G x x x E x x ∴(,-++),(+,++), 2()2221(4)F x x x (+,-++++)由题意,四边形DEFG 为梯形,要使面积最大,则DG EF +最大 而2211()41124212()()[1()]22DG EF x x x x x x +=-++-+-++++-++ 223323323(8)4x x x =-++=--+ ∴当34x =时,四边形DEFG 的面积最大 3111119(),()4848D E ∴,, 作点D 关于x 轴的对称点 D ',连接D E '交x 轴于点P ,则点P 为所求311()48D '∴-,,易求直线D E '的解析式为1589832y x =- 令0y =,解得8960x = 89(0)60P ∴,2.已知:直线2l y :=-,抛物线2y ax bx c =++的对称轴是y 轴,且经过点0120(,-),(,).(1)求抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q .求证:PO PQ =.(3)请你参考(2)中结论解决下列问题:①如图②,过原点作任意直线AB ,交抛物线于点A B 、.分别过A B 、两点作直线l 的垂线,垂足分别为M N 、,连接OM ON 、,求证:OM ON ⊥;②如图③,点11D (,),试探究在抛物线上是否存在点F ,使得FD FO +取得最小值.若存在,求出点F 的坐标;若不存在,请说明理由.解析:(1)∵抛物线2y ax bx c =++的对称轴是y 轴2y ax c ∴=+,把0120(,-),(,)代入,得: 140c a c =-⎧⎨+=⎩解得141a c ⎧=⎪⎨⎪=-⎩∴抛物线的解析式为2114y x =- (2)设21(1)4P m m -,,则2141OE m PE m =,=- 221211144PQ m m ∴=-+=+2114PO m ==+ PO PQ ∴=(3)AM l BN l AM BN OC ⊥⊥∴Q P P ①,,AMO MOC BNO NOC ∴∠∠∠∠=,=由(2)知,AM AO BN BO =,=AOM AMO BON BNO ∴∠∠∠∠=,=AOM MOC BON NOC ∴∠∠∠∠=,=180AOM MOC BON NOC ∠∠∠∠︒Q +++=90MOC NOC ∴∠∠︒+=OM ON ∴⊥②作FH l H ⊥于,则FD FO FD FH +=+当D F H 、、三点在同一条直线上时,FD FO +取得最小值把1x =代入2114y x =-,得34y =- ∴满足条件的点F 的坐标为314(,-)3.已知平面直角坐标系中两定点1040A B (-,)、(,),抛物线220y ax bx a ≠=+-()过点A B 、,顶点为C ,点0P m n n (,)(<)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当APB ∠为钝角时,求m 的取值范围;(3)若32m >,当APB ∠为直角时,将该抛物线向左或向右平移502t t (<<)个单位,点C P 、平移后对应的点分别记为C P ''、,是否存在t ,使得首尾依次连接A B P C ''、、、所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.解析:(1)∵抛物线22y ax bx =+-过点1040AB (-,)、(,) 2016420a b a b --=⎧∴⎨+-=⎩解得1232k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴抛物线的解析式为221322y x x =-- 22132213252()228y x x x =--Q =-- ∴顶点C 的坐标为325()28-, (2)若P 点在x 轴上方,显然PAB ∠或PBA ∠为钝角,则APB ∠必为锐角,不合题意若P 点在x 轴下方,当P 点与抛物线和y 轴交点02D (,-)时2225AD OA OD =+=,22222025BD OB OD AB =+=,=22290AD BD AB ADB ∴∴∠︒+=,=由抛物线的对称性可知,点D 关于抛物线对称轴的对称点32E(,-)也满足90AEB ∠︒=以AB 为直径作圆,则D E 、均在圆上,抛物线上点A 到D 及E 到B 之间的部分在圆内 当P 点在这两个范围内运动时,满足APB ∠为钝角10m ∴-<<或34m <<(3)32m Q >,APB ∠为直角 ∴由(2)知P 点坐标为32(,-)由平移的性质知P C PC ''=AB Q 与PC 均为定值,∴要使A B P C ''、、、所构成的 多边形的周长最短,只 AC BP ''+最短过点A 作 AF P C ''∥且AF P C ''=,连接FP '则四边形 AFP C ''为平行四边形连接DP ',作点F 关于直线 DP '的对称点F ',连接P F ''则 AC P F P F AC BP BP P F BF '''''''''≥'==,+=+当 P '落在线段 BF '上时, AC BP ''+最短∴抛物线应该向左平移 325()28C -Q ,,3210P A (,-),(-,)19()28F ∴,,141()28F '-, 设直线 BF '的解析式为y kx n =+4014128k n k n +=⎧⎪∴⎨+=-⎪⎩解得4128417k n ⎧=⎪⎪⎨⎪=-⎪⎩ 4141287y x ∴=-,把2y =-代入 解得10841x = 1081534141t ∴=-=,抛物线应该向左平移1541个单位4.如图,在平面直角坐标系中,M e 过原点O ,与x 轴交于40A (,),与y 轴交于03B (,),点C 为劣弧AO 的中点,连接AC 并延长到D ,使4DC CA =,连接BD .(1)求M e 的半径;(2)证明:BD 为M e的切线; (3)在直线MC 上找一点P ,使||DP AP -最大,求出这个最大值及此时P 点坐标.解析:(1)90AOB AB ∠∴Q =,为M e 的直径 400343A B OA OB ∴Q (,),(,),=,=5AB ∴=== M ∴e 的半径为52(2)过D 作DF y ⊥轴于F ,交直线MC 于G ∵点C 为劣弧AO 的中点,MC ∴垂直平分OA122ON AN OA ∴===,1322MN OB ==53212NC MC MN ∴=-=-= 由DCG ACN V V ∽,得4CG DG DC NC AN AC=== 4448CG NC DG AN ∴==,==826145DF DG FG NG NC CG ∴=-=-=,=+=+=358BF BO OF ∴=+=+=43BF AO DF BO ∴== 又90BFD AOB BDF ABO ∠∠︒∴V V ==,∽DBF BAO ∴∠∠=9090OBA BAO OBA DBF ∠∠︒∴∠∠︒Q +=,+=90ABD BD ∴∠︒∴=,为M e 的切线(3)Q 点P 在直线MC 上,O A 、两点关于直线MC 对称OP AP ∴=||||DP AP DP OP OD ∴≤-=-当P O D 、、三点在同一直线上时,||DP AP -最大,即等于线段OD 的长 由(2)知,65DF OF =,=65D ∴(-,-),OD ===即||DP AP -设直线OD 的解析式为y kx =,把D 点坐标代入,得:56k -=-,56k =,56y x ∴= 当2x =时,53y = ∴此时P 点坐标为523(,)5.如图,在直角坐标系中,抛物线220y axx c a ≠=-+()经过3003A C (-,),(,)两点.(1)填空:a =________,c =________;抛物线的对称轴是直线x =________; (2)若点B 的坐标是01(,),点P 是抛物线对称轴上的一个动点,请探究解决以下问题:Ⅰ.当点P 运动到何处时,BPC V 的周长最小?求此最小值和点P 的坐标;Ⅱ.当BPC V 的周长最小时,抛物线上是否存在点M ,使得由点P B C M ,,,围成的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由;Ⅲ.若点Q 是x 轴上的一个动点,是否存在点P Q ,,使得由点B C P Q ,,,围成的四边形的周长最小?若存在,求此最小值和点P Q ,的坐标;若不存在,请说明理由.解析:(1)-1,3,-1(2)①过C 作CD x ∥轴交抛物线于D连接BD 交抛物线的对称轴于P ,连接PC则BPC V 的周长最小03C Q (,),抛物线的对称轴是直线1x =-(2,3)D ∴-,2CD ∴=012B BC ∴Q (,),=,BD ∴=BPC ∴V 的周长BC PB PC =++2BC PB PD BC BD =++=+=+P 是BD 中点,12P∴(-,) ②存在,14M (-,)③作点B 关于x 轴的对称点B ',连接B D '交抛物线的对称轴于P ,交x 轴于Q ,连接PC BQ ,,则四边形BCPQ 的周长最小21B D y x '=-- ,1(0)2Q -, ,(11)P -, 14OB OB B C OB OC '''==,=+=B D '==四边形BCPQ 的周长BC CP PQ QB =+++BC PD PQ QB BC B D ''=+++=+2=+6.如图,在平面直角坐标系中,二次函数22y x bx c =++的图象与x 轴交于1030A B (-,)、(,)两点,顶点为C .(1)求这个二次函数的解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线:33l y x =+交BD 于点E ,过点B 作直线BK AD ∥交直线l 于点K .问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M N 、分别为直线AD 和直线l 上的两个动点,连结DN NM MK 、、,求DN NM MK ++和的最小值.解析:(1)把1030A B (-,)、(,)代入22y x bx c =++得02302b c b c -+=⎪⎪⎨⎪++=⎪⎩解得2b c ⎧=⎪⎨=-⎪⎩∴二次函数的解析式为222y x =-- (2)存在22(1)222y x x=--=--Q∴顶点C的坐标为(1-,∵点D为点C关于x轴的对称点,∴点D的坐标为(1设直线AD的解析式为y mx n=+得m nm n-+=⎧⎪⎨+=⎪⎩mn⎧=⎪⎨=⎪⎩∴直线AD的解析式为y=+BK AD∴Q∥,设直线BK的解析式为y t+则0t=,t∴=-∴直线BK的解析式为y=-由33yy x⎧=-⎪⎨=+⎪⎩解得5xy=⎧⎪⎨=⎪⎩∴点K 的坐标为(5,DK AB ∴∥又BK AD ∴Q ∥,四边形ABKD 是平行四边形过K 作KFx ⊥轴于F则KF =532BF OF OB =-=-=4BK ∴==又134AB OA OB BK AB ∴Q =+=+=,=∴四边形ABKD 是菱形∵菱形的中心到四边的距离相等∴当点P 与菱形的中心重合时,即是满足题意的点1052A K P ∴Q (-,)、(( (3)∵四边形ABKD 是菱形∴点D B 、关于直线AK 对称DN NM ∴+的最小值是BM过K 作直线AD 的对称点G ,连接GK 交直线AD 于点H则GK AD GH KH ⊥,=AK Q 是DAB ∠的角平分线,KH KF ∴=GH KH KF ∴===BM MK ∴+的最小值是BG即BG 的长是DN NM MK ++的最小值BK AD BK GK ∴⊥Q ∥,在Rt BKG V 中,42BK GK GH =,==8BG ∴==DN NM MK ∴++的最小值为87.如图,抛物线2y ax bx c =++关于y 轴对称,它的顶点在坐标原点O ,点423B (,-)和点33C (-,-)两点均在抛物线上,点304F (,-)在y 轴上,过点304(,)作直线l 与x 轴平行. (1)求抛物线的解析式和直线BC 的解析式.(2)设点D x y (,)是线段BC 上的一个动点(点D 不与B C 、重合),过点D 作x 轴的垂线,与抛物线交于点G .设线段GD 的长度为h ,求h 与x 之间的函数关系式,并求出当x 为何值时,h 的值最大,最大值是多少?(3)若点P m n (,)是抛物线上位于第三象限的一个动点,连接PF 并延长,交抛物线于另一点Q ,过点Q 作QS l ⊥,垂足为点S ,过点P 作PN l ⊥,垂足为点N ,试判断FNS V 的形状,并说明理由;(4)若点2A t (-,)在线段BC 上,点M 为抛物线上的一个动点,连接,AM FM ,当点M 在何位置时,MF MA +的值最小,请直接..写出此时点M 的坐标与MF MA +的最小值.解析:(1)2y ax bx c Q =++关于y 轴对称,它的顶点在坐标原点O∴抛物线的解析式为2y ax =∵点33C (-,-)在抛物线上39a ∴,-=,13a ∴=-∴抛物线的解析式为213yx =- 设直线BC 的解析式为y kx m =+,把4(2)3B -,、33C (-,-)代入,得: 42333k m k m ⎧+=-⎪⎨⎪-+=-⎩解得132k m ⎧=⎪⎨⎪=-⎩ ∴直线BC 的解析式为321y x =- (2)∵点D x y (,)是线段BC 上的一个动点211(2)()33D x x G x x ∴--,,, 2211211()23333h x x x x -∴=---=-+即21133232h x x x =--+(-<<) 2211252311()32123h x x x Q =--+=-++ ∴当12x =-时,h 的值最大,最大值是2512(3)FNS V 是直角三角形理由如下:∵点P m n (,)是抛物线213y x =-上位于第三象限的一个动点 213n m ∴=-,21()(0,0)3P m m m n ∴-<<, 21334PN m ∴=+3(0,)4F -Q ,21334PF m ∴==+ PN PF PFN PNF ∴∴∠∠=,=PN l OF l PN OF ⊥⊥∴Q ,,∥PNF OFN PFN OFN ∴∠∠∴∠∠=,=同理,QFS OFS ∠∠=180PFN OFN OFS QFS ∠∠∠∠︒Q +++=90OFN OFS ∴∠∠︒+=,即90NFS ∠︒=NFS ∴V 是直角三角形(4)4(2)3M --,,MF MA +的最小值为4112提示:过点M 作MH l ⊥于H由(3)知,MF MH MF MA MH MA ∴=,+=+ 当A M H 、、三点共线(即AM l ⊥)时,MH MA +(即MF MA +)最小,等于线段AH 的长当2x =-时,18233y x =-=- MF MA ∴+的最小值38414312=+=8.在平面直角坐标系xOy 中(O 为坐标原点),抛物线2y x bx c =++过点4013A B (,),(,-).(1)求b c ,的值,并写出该抛物线的对称轴和顶点坐标;(2)设该抛物线的对称轴为直线l ,点P m n (,)是抛物线上在第一象限的点,点E 与点P关于直线l 对称,点E 与点F 关于y 轴对称.若四边形OAPF 的面积为48,求点P 的坐标;(3)在(2)的条件下,设M 是直线l 上任意一点,试判断MP MA +是否存在最小值.若存在,求出这个最小值及相应的点M 的坐标;若不存在,请说明理由.解析:(1)∵抛物线2y x bx c =++过点4013AB (,),(,-) 164013b c b c ++=⎧∴⎨++=-⎩解得40b c =-⎧⎨=⎩ 22)4(42y x x x ∴=-=--∴抛物线的对称轴为2x =,顶点为24(,-)(2)Q 点E 与点P m n (,)关于直线2l x :=对称∴点E 的坐标为4m n (-,)∵点E 与点F 关于y 轴对称∴点F 的坐标为4m n (-,)(4)4PF m m ∴=--=4PF OA ∴==PF OA Q ∥,∴四边形OAPF 是平行四边形·44812OAPF S OA n n n ∴Y Q ===,=由2412m m -=,解得1262m m =,=-∵点P 是抛物线上在第一象限的点,6m ∴=∴点P 的坐标为612(,) (3)MP MA +存在最小值∵点O 与点A 关于直线l 对称∴连接OP 交直线l 于点M ,则点M 为所求MP MA +的最小值即等于线段OP 的长612P Q (,),OP ∴==即MP MA +的最小值为易得直线OP 的解析式为2y x =当2x =时,4y =∴点M 的坐标为24(,)9.如图1,抛物线223y x bx c =-++与x 轴相交于点A C ,,与y 轴相交于点B ,连接AB BC ,,点A 的坐标为20tan 2BAO ∠(,),=.以线段BC 为直径作M e交AB 于点D .过点B 作直线l AC ∥,与抛物线和M e的另一个交点分别是E F ,.(1)求该抛物线的函数表达式;(2)求点C 的坐标和线段EF 的长; (3)如图2,连接CD 并延长,交直线l 于点N .点P Q ,为射线NB 上的两个动点(点P 在点Q 的右侧,且不与N 重合),线段PQ 与EF 的长度相等,连接DP CQ ,,四边形CDPQ 的周长是否有最小值?若有,请求出..此时点P 的坐标并直接写出....四边形CDPQ 周长的最小值;若没有,请说明理由.解析:(1)∵点A 的坐标为20tan 2BAO ∠(,),= 24OA BO ∴=,=,∴点B 的坐标为04(,) ∵抛物线223y x bx c =-++过点A B , 82034b c c ⎧-++=⎪∴⎨⎪=⎩解得234b c ⎧=-⎪⎨⎪=⎩ ∴该抛物线的解析式为22323y x x -=-+4 (2)令22323x x --+4=0,解得1232x x =-,= ∴点C 坐标为303CO (-,),= 令22323x x --+4=4,解得1201x x =,=- ∴点E 的坐标为141BE ∴(-,),=连接CFBC Q 为M e 直径,90BFC ∴∠︒=BO AC ⊥Q ,直线l AC ∥,BO l ∴⊥90FBO BOC ∴∠∠︒==,∴四边形BFCO 为矩形3BF CO ∴==312EF BF BE ∴=-=-=(3)四边形CDPQ 的周长有最小值5BC ==Q ,325AC =+=AC BC ∴=BC Q 是M e 的直径,90BDC ∴∠︒=D ∴为AB 中点,∴点12D(,) CD PQ Q ,的长为定值∴要使四边形CDPQ 的周长最小,只需DP QC +的值最小作点D 关于直线l 的对称点D ',作D G l '∥直线且D G PQ '=,连接GQ QC ,则四边形PD GQ '是平行四边形,GQ D P DP '==DP QC GQ QC ∴+=+QG QC GC ≥Q +,∴当G Q C ,,三点共线时QG QC +的值最小,即为线段GC 的长易得1616D G '∴(,),(-,)设直线GC 的函数表达式为y kx m =+则630k m k m -+=⎧⎨-+=⎩解得39k m =⎧⎨=⎩39y x ∴=+令4y =,得53x =-,5(4)3Q ∴-, ∴点P 的坐标为1(4)3,四边形CDPQ 周长的最小值为2++10.在平面直角坐标系xOy 中,抛物线2y x bx c =++经过(2,0)(4,0)A B 、两点,直线122y x =+交y 轴于点,C 且过点(8,).D m (1)求抛物线的解析式;(2)在x 轴上找一点,P 使CP DP +的值最小,求出点P 的坐标;(3)将抛物线2y x bx c =++左右平移,记平移后点A 的对应点为,A '点B 的对应点为,B '当四边形A B DC ''的周长最小时,求抛物线的解析式及此时四边形A B DC ''周长的最小值.解析:(1)由于抛物线经过(2,0)(4,0),A B 、则有:2(2)(4)68;y x x x x =---=+(2)易知(0,2),(8,6);C D作C 关于x 轴的对称点(0,2),C '-连接,C D '点P 即为直线C D '与x 轴的交点;设直线C D '的解析式为:2,y kx =-则有:826,1;k k -==∴直线C D '的解析式为2;y x =-则P 点坐标为:(2,0);P(3)当抛物线向右平移时,,A C B D AC BD '+'>+显然不存在符合条件的抛物线; 当抛物线向左平移时,设平移后(,0),(2,0);A x B x ''+若平移后四边形A B DC ''的周长最小,那么A C B D '+'就应该最小;将D 向左平移2个单位,得:(6,6);D '若四边形A B DC ''的周长最小,那么C A D ''、、′就应该在同一直线上,设直线C D ''的解析式为:2,y k x ='-则有:4626,;3k k '-='= ∴直线C D ''的解析式为42,3y x =-则37(,0),,0);22A B ''( ∴此时抛物线的解析式为:23721()()5;224y x x x x =--=-+此时四边形A B DC ''的周长为:21012A B AC B D CD AB CD C D ''+'+'+=++''=+=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学第二轮专题复习专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2017年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础.A.1 B.-1 C.3 D.-3对应训练1.若y=(a+1)x a2-2是反比例函数,则a的取值为()A.1 B.-l C.±l D.任意实数考点二:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。

使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例2如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为()A.B.C.D.对应训练2.如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.考点三:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例3下列四个点中,在反比例函数y=−6x的图象上的是()A.(3,-2)B.(3,2)C.(2,3)D.(-2,-3)对应训练3.已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为()A.y=2x B.y=-2x C.y=12x D.y=−12x考点四:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。

这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例4一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A.B.C.D.对应训练4.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.考点五:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例5 如图,已知直线y=mx与双曲线kyx的一个交点坐标为(3,4),则它们的另一个交点坐标是()A.(-3,4)B.(-4,-3)C.(-3,-4)D.(4,3)对应训练5.已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为.考点六:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例 6 下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是()A.B.C.D.对应训练6.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°四、中考真题演练1.下列四个图形中,不是轴对称图形的是( ) A . B . C . D .2.若正比例函数y=kx 的图象经过点(1,2),则k 的值为( )A .-12B .-2C .12D .23.下列事件中,是必然事件的为( )A .抛掷一枚质地均匀的硬币,落地后正面朝上B .江汉平原7月份某一天的最低气温是-2℃C .通常加热到100℃时,水沸腾D .打开电视,正在播放节目《男生女生向前冲》4.(2013•徐州)下列函数中,y 随x 的增大而减少的函数是( )A .y=2x+8B .y=-2+4xC .y=-2x+8D .y=4x5.下面的几何体中,主视图不是矩形的是( )A .B .C .D .6.下列说法正确的是( )A .一个游戏中奖的概率是 1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差2S 甲=,乙组数据的方差2S 乙=,则乙组数据比甲组数据稳定7.一个几何体的三视图如图所示,则这个几何体的位置是( )A .B .C .D .8.如图,已知直线y=mx与双曲线y= kx的一个交点坐标为(3,4),则它们的另一个交点坐标是()A.(-3,4)B.(-4,-3)C.(-3,-4)D.(4,3)9.下列标志中,可以看作是中心对称图形的是()A.B.C.D.10.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2,这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A.12B.14C.16D.1811.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形12.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.有一篮球如图放置,其主视图为()A.B.C.D.4.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A.B.C.D.15.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)16.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A.B.C.D.17.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格18.若∠α=30°,则∠α的补角是()A.30°B.60°C.120°D.150°19.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°20.某几何体的三种视图如图所示,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥20.C21.已知反比例函数kyx的图象经过点(2,-2),则k的值为()A.4 B.-12C.-4 D.-222.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.23.为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.,8 C.,D.8,24.(2013•恩施州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B. C.D.25.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的26.如图,在方格纸上上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为()A.(3,1)B.(3,-1)C.(1,-3)D.(1,3)27.如图,点B在反比例函数y=2x(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为()A.1 B.2 C.3 D.428.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22 B.24 C.25 D.2729.如图,爸爸从家(点O)出发,沿着扇形AOB上OA→AB→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.30.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m31.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O 逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)32.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种33.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.1732B.12C.1736D.173834.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.12B.32C.22D.3335.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.36.如图,点P(a,a)是反比例函数y=16x在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3 B.4 C.12433-D.12833-37.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=338.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是()A.25°或155°B.50°或155°C.25°或130°D.50°或130°39.下列说法错误的是()A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.2+3与2-3互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半40.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7 B.7、8 C.6、7、8 D.6、8、941.下列图形中,∠2>∠1的是()A.B. C.D.42.在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈B.2圈C.3圈D.4圈43.如图,图1、图2、图3分别表示甲、乙、丙三人由甲A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙44.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为()A.B.C.D.45.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C.5D.746.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=3003米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米47.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.748.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.AD DCC.∠ADB=∠ACB D.∠DAB=∠CBA49.一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=33:4π,以上结论正确的有()A.1个B.2个C.3个D.4个50.如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额602824231416155下列结论不正确的是()A.2009年恩施州固定资产投资总额为200亿元B.2009年恩施州各单位固定资产投资额的中位数是16亿元C.2009年来凤县固定资产投资额为15亿元D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°专题二新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=32,则sin230°+cos230°= ;①sin45°=22,cos45°=22,则sin245°+cos245°= ;②sin60°=32,cos60°=12,则sin260°+cos260°= .③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.对应训练1.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O 是△ABC 的重心(如图1),连结AO 并延长交BC 于D ,证明:23AO AD =; (2)若AD 是△ABC 的一条中线(如图2),O 是AD 上一点,且满足23AO AD =,试判断O 是△ABC的重心吗如果是,请证明;如果不是,请说明理由;(3)若O 是△ABC 的重心,过O 的一条直线分别与AB 、AC 相交于G 、H (均不与△ABC 的顶点重合)(如图3),S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,试探究BCHGAGHS S 四边形的最大值.考点二:运算题型中的新定义例2 定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5。

相关文档
最新文档