二维形式的柯西不等式.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:由于 a, b R ,根据柯西不等式,得
(a b)( 1 1 )≥ ( a 1 b 1 )2 4
ab
a
b
又 a b 1,∴ 1 1 ≥ 4 ab
补全a,b,c,d
变式1:若2x 3y 1,求4x2 9y2的最小值.
解 :由柯西不等式(4x2 9 y2 )(12 12 ) (2x 3y)2 1,
证明:由于 a, b R ,根据柯西不等式,得
(a b)( 1 1 )≥ ( a 1
ab
a
又a b 1,
∴1 1≥4 ab
b 1 )2 4 b
可以体会到,运用柯西不等式,思路一步到 位,简洁明了!解答漂亮!
定理 1(二维形式的柯西不等式) 若 a,b,c,d 都 是实数,则 (a2 b2)(c2 d 2)≥(ac bd)2 .
1 a2
a
ab 1 a2 1 b2 ,
a2b2 1 a2 1 b2 ,
于是 a2 b2 1 。 注:这里是利用其取等号的充分必要条件来达到目的
4.一般形式的柯西不等式
定理 设 a1,a2,…,an,b1,b2,…,bn 是实数, 则 (_a_21_+__a_22+__…__+__a_2n_)_(b_21_+__b_22+__…__+__b_2n_)_≥__(a_1_b_1_+__a_2b_2_+__…__+__a_n_b_n)2 ,当且仅当 bi=0(i=1,2,…,n)或存在一个实数 k,使 得 ai=kbi(i=1,2,…,n)时,等号成立.
2.1 二维形式的柯西不等式
有些不等式不仅形式优美而且具有重要的应用价值,
人们称它们为经典Baidu Nhomakorabea等式.
如均值不等式:
a1
a2
L n
an
≥n
a1a2 L
an (ai
R ,i
1, 2 ,L
, n) .
本节,我们来学习数学上一个有名的经典不等式:柯 西不等式,了解它的意义、背景、证明方法及其应用,感 受数学的美妙,提高数学素养.
11
思考 3.求函数 y 5 x 1 10 2 x 的最大值.
课堂练习:P36 第1,3,4
课外思考:
已知 a 1 b2 b 1 a2 1, 求证: a2 b2 1 .
证明:由柯西不等式,得
a 1 b2 b 1 a2 ≤ a2 1 a2 b2 1 b2 1
当且仅当 b 1 b2 时,上式取等号,
练习2 设a 0,b 0,且a b 1,求证:2a 1 b 1 22
32
变形,使之出现
条件中的表达式或表达式的倍数
例3.设x 0, y 0,且x y 2, x2 y2 的最小值。 2x 2 y
运用这个定理,我们可以解决以前感觉棘手的问题.
思考 1:设 a, b R , a b 1, 求证: 1 1 ≥ 4 . ab
4x2 9y2 1 . 2
当且仅当2x 1 3y 1,即2x 3y时取等号.
由22xx
3y 3y
得 1
x y
1 4 1 6
4x2 9 y2的最小值为 1 2
例2.求函数 y 5 x 1 10 2x 的最大值
ac bd (a2 b2 ) c2 d 2
变形,使之出现常数
当且仅当 ad bc 时,等号成立.
变变形……,可得下面两个不等式:
⑴ 若 a,b,c,d 都 是实数 ,则 (a2 b2 ) (c2 d 2 ) ≥ ac bd . 当且仅当 ad bc 时,等号成立. ⑵若 a,b,c,d 都是实数,则 (a2 b2 ) (c2 d 2 ) ≥ ac bd . 当且仅当 ad bc 时,等号成立.
这两个结论也是非常有用的.
柯西不等式的应用举例: 思考 2.已知 4x2 9 y2 36 ,求 x 2 y 的最大值.2 5 变式 1.已知 4 x2 9 y2 36 ,求 x 2 y 的最大值.2 5 变式 2.已知 3x 2 y 6 ,求 x2 y2 的最小值. 2 变式 3.已知 3x 2 y 6 ,求 x2 2 y2 的最小值. 36
发现定理: 定理 1(二维形式的柯西不等式)
若 a,b,c,d 都是 实数,则 (a2 b2)(c2 d 2)≥(ac bd)2 . 当且仅当 ad bc 时,等号成立.
你能简明地写出这个定理的证明吗?
思考解答
变形
二维形式的柯西不等式
二维形式的柯西不等式定理: 若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2 当且仅当ad=bc时,等号成立.
仔细观察上述定理,概括它的特点 平方的和的乘积不小于乘积的和的平方
例1:已知a,b为实数,求证
(a4 b4 )(a2 b2 ) (a3 b3)2
分清(找准)a,b,c,d
练习 1:设 a, b R , a b 1, 求证: 1 1 ≥ 4 . ab