常用逻辑用语PPT课件
合集下载
《集合的基本运算》集合与常用逻辑用语PPT(第1课时并集与交集)
设集合 A={1,3,5,7},B={x|2≤x≤5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
解析:选 B.因为 A={1,3,5,7},B={x|2≤x≤5},所以 A∩B ={3,5}.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 M={x|-1<x<3},N={x|-2<x<1},则 M∩N= ________. 解析:在数轴上表示出集合,如图所示,
并集与交集 掌握并集与交集的相关 逻辑推理、数学运算、
的性质
性质,并会应用
数学抽象
第一章 集合与常用逻辑用语
问题导学 预习教材 P10-P12,并思考以下问题: 1.两个集合的并集与交集的含义是什么? 2.如何用 Venn 图表示集合的并集和交集? 3.并集和交集有哪些性质?
栏目 导引
1.并集
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
2.已知集合 A={x|-3≤x<4},B={x|-2≤x≤5},则 A∩B=
() A.{x|-3≤x≤5} C.{x|-2≤x≤5}
B.{x|-2≤x<4} D.{x|-3≤x<4}
解析:选 B.因为集合 A={x|-3≤x<4},集合 B={x|-2≤x≤5}, 所以 A∩B={x|-2≤x<4}.
1.若集合 A={x|-2<x<1},B={x|0<x<2},则集合 A∩B=( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 解析:选 D.如图,
集合与常用逻辑用语PPT优秀课件
1
1
∵q≠1,∴q=-2 .综上所述,q=-2 .
2.(1)若集合P={x|x2+x-6=0},S={x|ax+1=0},且SP ,
求a
(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
且B
A,求由m的可取值组成的集合.
解 (1)P={-3,2}.当a=0时,S= ,满足S P
的集合,而后根据已知条件求参数.
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3.
1分
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件;
失误与防范 1.解答集合题目,认清集合元素的属性(是点集、数集或其他
情形)和化简集合是正确求解的两个先决条件. 2.韦恩图示法和数轴图示法是进行集合交、并、补运算的常
用方法,其中运用数轴图示法要特别注意端点是实心还是 空心.
3.要注意A B、A∩B=A、A∪B=B、UAUB、A∩( UB) =
1
当a≠0时,方程ax+1=0的解为x=-a
1
1
为满足S P,可使- a =-3或- a =2
1
1
即a=
3
2
或a=-
.
1
1
故所求集合为{0,3 ,- 2 }.
(2)当m+1>2m-1,即m<2时,B = ,满足 B A
若B≠ ,且满足B A,如图所示,
m+1≤2m-1
常用逻辑用语课件PPT
解析答案
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.
常用逻辑用语课件
模态逻辑的应用
哲学领域
模态逻辑被广泛应用于哲学推理和论证,特别是关于必然性和可 能性的问题。
人工智能领域
模态逻辑在人工智能领域也有广泛的应用,用于表示和推理不确定 性,例如在专家系统和决策支持系统中。
法律领域
模态逻辑在法律领域的应用主要涉及法律论证和法律解释,例如在 法律推理和法律解释中需要考虑必然性和可能性等问题。
危害
导致思维混乱、判断失误、决策失误 等。
如何避免逻辑错误
01
02
03
04
明确概念
准确理解概念的含义,避免混 淆和偷换概念。
全面分析
对问题进行分析时,要全面考 虑各种可能性,避免以偏概全
。
充分论证
在进行推断时要充分论证,避 免基于不充分的信息做出错误
判断。
客观分析
对信息进行客观分析,不带有 个人偏见和情感色彩。
模态推理规则
必然推理规则
如果p是必然的,那么¬p是不可能的。例如:如果明天必然下雨,那么明天不可能不下雨 。
可能推理规则
如果p是可能的,那么¬p是不确定的。例如:如果明天可能下雨,那么明天不确定不下雨 。
互为对偶的模态命题推理规则
如果p是必然的,那么¬p是不可能的;如果p是不可能的,那么¬p是必然的。例如:如果 明天必然下雨,那么明天不可能不下雨;如果明天不可能不下雨,那么明天必然下雨。
归纳方法及其应用
01
02
归纳方法:包括简单枚 举归纳、排除归纳、概 率归纳等。
归纳方法的应用
03
04
05
科学发现:科学家通过 观察实验数据,运用归 纳方法得出科学规律。
数据分析:在商业、社 会科学等领域,归纳方 法用于分析数据,发现 潜在规律。
高中数学 常用逻辑用语 PPT课件 图文
分析 先求出每个命题为真时对应的参数的范围,再由复合 命题的真假区分简单命题的真假.
解析 p:0<c<1. 设 f(x)=x+|x-2c|=22xc-,2x<c,2xc≥,2c, ∴f(x)的最小值为 2c. ∵f(x)>1 的解集为 R,∴2c>1,∴c>12,∴q:c>12. ∵“p∨q”为真且“p∧q”为假, ∴p 真 q 假或 p 假 q 真.
分析全称命题的否定是特称命题;特称命题的否定是全称 命题.
解析 (1)否定形式是:对任意 x∈R,使得 x2+2x+5≠0.真命题. (2)否定形式是:∃x∈R,关于 x 的不等式 x2-ax+2a2<0 成立.假命题. (3)否定形式是:所有四边形都有外接圆.假命题.
【点评】解题的关键在于抓住关键的量词,并改为否定形 式.特称命题的否定为全称命题,“存在”对应“任意”.
Hale Waihona Puke 特称命题:“存在 M 中的一个 x,使 p(x)成立”可用符号 简记为∃x∈M,p(x).
全称命题 p:∀x∈M,p(x),它的否定綈 p:∃__x_∈__M__,__綈___p_(x_)_,
是_特__称__命题. 特称命题 p:∃x∈M,p(x),它的否定綈 p:∀__x_∈__M__,__綈___p_(x_)_,
是全__称__命题.
考点一 复合命题及其真假判断
示范1 已知命题p:若x2+y2=0,x,y∈R,则x=y=0,
q:若a>b,则
1 a
>
1 b
.给出下列四个复合命题:①p∧q;
②p∨q;③綈p;④綈q.其中真命题的个数为______.
分析 要判断复合命题的真假,首先要判断简单命题的真 假,然后根据复合命题的真假特点来判断.
A.“p∧q”为真 B.“p∨q”为假
解析 p:0<c<1. 设 f(x)=x+|x-2c|=22xc-,2x<c,2xc≥,2c, ∴f(x)的最小值为 2c. ∵f(x)>1 的解集为 R,∴2c>1,∴c>12,∴q:c>12. ∵“p∨q”为真且“p∧q”为假, ∴p 真 q 假或 p 假 q 真.
分析全称命题的否定是特称命题;特称命题的否定是全称 命题.
解析 (1)否定形式是:对任意 x∈R,使得 x2+2x+5≠0.真命题. (2)否定形式是:∃x∈R,关于 x 的不等式 x2-ax+2a2<0 成立.假命题. (3)否定形式是:所有四边形都有外接圆.假命题.
【点评】解题的关键在于抓住关键的量词,并改为否定形 式.特称命题的否定为全称命题,“存在”对应“任意”.
Hale Waihona Puke 特称命题:“存在 M 中的一个 x,使 p(x)成立”可用符号 简记为∃x∈M,p(x).
全称命题 p:∀x∈M,p(x),它的否定綈 p:∃__x_∈__M__,__綈___p_(x_)_,
是_特__称__命题. 特称命题 p:∃x∈M,p(x),它的否定綈 p:∀__x_∈__M__,__綈___p_(x_)_,
是全__称__命题.
考点一 复合命题及其真假判断
示范1 已知命题p:若x2+y2=0,x,y∈R,则x=y=0,
q:若a>b,则
1 a
>
1 b
.给出下列四个复合命题:①p∧q;
②p∨q;③綈p;④綈q.其中真命题的个数为______.
分析 要判断复合命题的真假,首先要判断简单命题的真 假,然后根据复合命题的真假特点来判断.
A.“p∧q”为真 B.“p∨q”为假
《集合的概念》集合与常用逻辑用语PPT(第二课时集合的表示)
由①②知 m=0 或 m≥13.
栏目 导引
第一章 集合与常用逻辑用语
1.(变条件)若将本例中的“至多只有一个”改为“恰有一 个”,如何求解? 解:当 m=0 时,A=32,即集合 A 中只有一个元素32,符合题 意;
当 m≠0 时,Δ=4-12m=0,
即 m=13. 综上可知,m=0 或 m=13.
素时,m 的取值范围为mm≤13.
栏目 导引
第一章 集合与常用逻辑用语
此题容易漏解 m=0,漏解的原因是默认所给的方程一定是一元 二次方程.其实,当 m=0 时,所给的方程是一个一元一次方 程;当 m≠0 时,所给的方程才是一个一元二次方程,求解时 要注意对 m 进行分类讨论.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 A={x|x2+px+q=x},B={x|(x-1)2
+p(x-1)+q=x+3},当 A={2}时,集合 B=( )
A.{1}
B.{1,2}
C.{2,5}
D.{1,5}
解析:选 D.由 A={x|x2+px+q=x}={2}知,22+2p+q=2,且 Δ=(p-1)2-4q=0.计算得出,p=-3,q=4.
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5} D.{1,2,3,4,5}
解析:选 B.因为 x-3<2,x∈N*,
所以 x<5,x∈N*,所以 x=1,2,3,4.
栏目 导引
第一章 集合与常用逻辑用语
由大于-1 小于 5 的自然数组成的集合用列举法表示为 ________,用描述法表示为________. 解析:大于-1 小于 5 的自然数有 0,1,2,3,4.故用列举法 表示集合为{0,1,2,3,4},用描述法表示可用 x 表示代表元 素,其满足的条件是 x∈N 且-1<x<5.故用描述法表示集合为 {x∈N|-1<x<5}. 答案:{0,1,2,3,4} {x∈N|-1<x<5}
栏目 导引
第一章 集合与常用逻辑用语
1.(变条件)若将本例中的“至多只有一个”改为“恰有一 个”,如何求解? 解:当 m=0 时,A=32,即集合 A 中只有一个元素32,符合题 意;
当 m≠0 时,Δ=4-12m=0,
即 m=13. 综上可知,m=0 或 m=13.
素时,m 的取值范围为mm≤13.
栏目 导引
第一章 集合与常用逻辑用语
此题容易漏解 m=0,漏解的原因是默认所给的方程一定是一元 二次方程.其实,当 m=0 时,所给的方程是一个一元一次方 程;当 m≠0 时,所给的方程才是一个一元二次方程,求解时 要注意对 m 进行分类讨论.
栏目 导引
第一章 集合与常用逻辑用语
已知集合 A={x|x2+px+q=x},B={x|(x-1)2
+p(x-1)+q=x+3},当 A={2}时,集合 B=( )
A.{1}
B.{1,2}
C.{2,5}
D.{1,5}
解析:选 D.由 A={x|x2+px+q=x}={2}知,22+2p+q=2,且 Δ=(p-1)2-4q=0.计算得出,p=-3,q=4.
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5} D.{1,2,3,4,5}
解析:选 B.因为 x-3<2,x∈N*,
所以 x<5,x∈N*,所以 x=1,2,3,4.
栏目 导引
第一章 集合与常用逻辑用语
由大于-1 小于 5 的自然数组成的集合用列举法表示为 ________,用描述法表示为________. 解析:大于-1 小于 5 的自然数有 0,1,2,3,4.故用列举法 表示集合为{0,1,2,3,4},用描述法表示可用 x 表示代表元 素,其满足的条件是 x∈N 且-1<x<5.故用描述法表示集合为 {x∈N|-1<x<5}. 答案:{0,1,2,3,4} {x∈N|-1<x<5}
常用逻辑用语ppt课件
最新课件
28
变式训练 3 (2010·辽宁)为了比较注射 A,B 两种 药物后产生的皮肤疱疹的面积,选 200 只家兔做 试验,将这 200 只家兔随机地分成两组,每组 100 只,其中一组注射药物 A,另一组注射药物 B.表 1 和表 2 分别是注射药物 A 和药物 B 后的试验结 果.(疱疹面积单位:mm2)
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
最新课件
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析 若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关,
x 增大时,y 相应减小,故②错误;|r|越接近 1,表示
两个变量相关性越高,|r|=1 表示两个变量有确定的关
系(即函数关系),故③正确.
最新课件
24
题型分类 深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
最新课件
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小
数学常用逻辑用语(高中数学课件)
常用逻辑用语
用常 语用
逻 辑
知识网络
命题及其关 系
简单的逻辑联结 词
四种命题
充分条件与必要条件
或
并集
且
交集 运算
非或 补集
全称量词与存在 量词
量词
全称表达的,可以判断真假 的陈述句称为命题. 其中判断为真的语句称为真命题,判断为假 的语句称为假命题.
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
逆否命题:若 q 则 p
结论1:要写出一个命题的另外三个命 题关键是分清命题的题设和结论(即 把原命题写成“若P则Q”的形式)
注意:三种命题中最难写 的是否命题。
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不
都”。
三、四种命题之间的 关系
原命题
若p则q
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
用常 语用
逻 辑
知识网络
命题及其关 系
简单的逻辑联结 词
四种命题
充分条件与必要条件
或
并集
且
交集 运算
非或 补集
全称量词与存在 量词
量词
全称表达的,可以判断真假 的陈述句称为命题. 其中判断为真的语句称为真命题,判断为假 的语句称为假命题.
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
逆否命题:若 q 则 p
结论1:要写出一个命题的另外三个命 题关键是分清命题的题设和结论(即 把原命题写成“若P则Q”的形式)
注意:三种命题中最难写 的是否命题。
结论2:(1)“或”的否定为“且”, (2)“且”的否定为“或”, (3)“都”的否定为“不
都”。
三、四种命题之间的 关系
原命题
若p则q
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
《充分条件、必要条件》集合与常用逻辑用语课件 图文
若 A B,则 p 是 q 的必要不充分条件.
栏目 导引
第一章 集合与常用逻辑用语
1.(2019·潮州期末)已知命题 p:-1<x<1,命题 q:x≥-2,
则 p 是 q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选 A.依题意可知 p⇒q 成立,反之不成立.即 p 是 q 的充
=-1,则由 x>-1,不一定推出 x>|-1|,即充分性不成立,则
“x>a”是“x>|a|”的必要不充分条件,故选 B.
栏目 导引
第一章 集合与常用逻辑用语
3.“x<2”是“x-1 2<0”的(
)
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
ቤተ መጻሕፍቲ ባይዱ
解析:选 A.由x-1 2<0 得 x-2<0 得 x<2,即“x<2”是“x-1 2<0” 的充要条件,故选 A.
条件关系
p 是 q 的__充__分__条件 q 是 p 的_必__要___条件
“如果 p,那么 q” 是假命题 p__⇒/__q
p 不是 q 的__充__分__条件 q 不是 p 的__必__要__条件
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 对于“p⇒q”,蕴含以下多种解释 (1)“如果 p,那么 q”形式的命题为真命题. (2)由条件 p 可以得到结论 q. (3)p 是 q 的充分条件或 q 的充分条件是 p. (4)只要有条件 p,就一定有结论 q,即 p 对于 q 是充分的. (5)q 是 p 的必要条件或 p 的必要条件是 q. (6)为得到结论 q,具备条件 p 就可以推出. 显然,“p 是 q 的充分条件”与“q 是 p 的必要条件”表述的是 同一个逻辑关系,即 p⇒q,只是说法不同.
栏目 导引
第一章 集合与常用逻辑用语
1.(2019·潮州期末)已知命题 p:-1<x<1,命题 q:x≥-2,
则 p 是 q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选 A.依题意可知 p⇒q 成立,反之不成立.即 p 是 q 的充
=-1,则由 x>-1,不一定推出 x>|-1|,即充分性不成立,则
“x>a”是“x>|a|”的必要不充分条件,故选 B.
栏目 导引
第一章 集合与常用逻辑用语
3.“x<2”是“x-1 2<0”的(
)
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
ቤተ መጻሕፍቲ ባይዱ
解析:选 A.由x-1 2<0 得 x-2<0 得 x<2,即“x<2”是“x-1 2<0” 的充要条件,故选 A.
条件关系
p 是 q 的__充__分__条件 q 是 p 的_必__要___条件
“如果 p,那么 q” 是假命题 p__⇒/__q
p 不是 q 的__充__分__条件 q 不是 p 的__必__要__条件
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 对于“p⇒q”,蕴含以下多种解释 (1)“如果 p,那么 q”形式的命题为真命题. (2)由条件 p 可以得到结论 q. (3)p 是 q 的充分条件或 q 的充分条件是 p. (4)只要有条件 p,就一定有结论 q,即 p 对于 q 是充分的. (5)q 是 p 的必要条件或 p 的必要条件是 q. (6)为得到结论 q,具备条件 p 就可以推出. 显然,“p 是 q 的充分条件”与“q 是 p 的必要条件”表述的是 同一个逻辑关系,即 p⇒q,只是说法不同.
集合与常用逻辑用语复习PPT精品课件
-f(x1))(x2-x1)≥0的否定为(f(x2)-f(x1))(x2-x1)<0.故选C.
答案:C
2.(2012·福建卷)下列命题中,真命题是
A.∃x∈R,ex≤0
B.∀x∈R,2x>x2
C.a+b=0的充要条件是 a =-1 b
D.a>1,b>1是ab>1的充分条件
()
答案:C
变式探究
2.(2012·东北三校联考)已知命题 p:∃x∈0,π2,sin x=12,则
p 为
()
A.∀x∈0,π2,sin x≠12
B.∀x∈0,π2,sin x=12
C.∃x∈0,π2,sin x≠12
D.∃x∈0,π2,sin
1 x>2
解析:根据特称命题的否定的概念可知,p 为:∀x∈0,π2,sin x≠12.
3.(2012·黄冈中学模拟)命题“∀x∈[1,2],x2-a≤0”为真命
题的一个充分不必要条件是
()
A.a≥4 B.a≤4 C.a≥5 D.a≤5
解析:因为∀x∈[1,2],x2-a≤0是真命题,所以a≥(x2)max =4,因为{a|a≥5}⊇{a|a≥4},所以“a≥5”是“∀x∈[1,2], x2-a≤0为真命题”的充分不必要条件.故选C. 答案:C
1.(2011·佛山市二模)
已知命题p:函数y=sin
x
2
的图象关于
原点对称,q:幂函数恒过定点(1,1),则
( B)
A.p∨q为假命题
B.( p)∨q为真命题
C.p∧( q)为真命题
D.( p)∧(q)为真命题
考点二 特(全)称命题的否定
【例2】 (2012·福州市检测) 命题“对任意的x∈R,x3- x2+1≤0”的否定是( )
常用逻辑用语课件高三数学一轮复习
主干知识·回顾
核心题型·突破
课时分层检测
AC [由题设知 4m-1=1,可得 m=12 ,故 f(x)= x ,
所以,要使 f(a)>f(b),则 a > b ,即 a>b≥0.
1 0<a
1 <b
⇔a>b>0,A 符合题意;
ln a>ln b⇔a>b>0,C 符合题意;
B,D 选项中 a,b 均有可能为负数,B,D 不符合题意.]
第一章 集合、常用逻辑用语、不等式
主干知识·回顾
核心题型·突破
课时分层检测
解析 若{an}为等差数列,设其公差为 d,则 an=a1+(n-1)d,所以 Sn=na1+n(n- 2 1) d,所以Snn =a1+(n-1)·d2 ,所以nS+n+11 -Snn =a1+(n +1-1)·d2 -[a1+(n-1)·d2 ]=d2 ,为常数,所以{Snn }为等差数列,即甲⇒ 乙;若{Snn }为等差数列,设其公差为 t,则Snn =S11 +(n-1)t=a1+(n-1)t, 所以 Sn=na1+n(n-1)t,所以当 n≥2 时,an=Sn-Sn-1=na1+n(n-1)t-[(n -1)a1+(n-1)(n-2)t]=a1+2(n-1)t,当 n=1 时,S1=a1 也满足上式,所
主干知识·回顾
核心题型·突破
课时分层检测
跟踪训练 1 (1)(2023·全国甲卷·理,5 分)设甲:sin2α+sin2β=1,乙: sinα+cos β=0,则( )
A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
第一章 集合、常用逻辑用语、不等式
常用逻辑用语PPT课件
考点二:全称量词与存在量词 1.全称量词与存在量词 (1)全称量词:对应日常语言中的“一切”、 “任意的”、“所有的”、“凡是”、“任给”、 “对每一个”等词,用符号“”表示。 (2)存在量词:对应日常语言中的“存在一个”、 “至少有一个”、“有个”、“某个”、“有 些”、“有的”等词,用符号“”表示。 2.全称命题与特称命题 (1)全称命题:含有全称量词的命题。“对xM, 有p(x)成立”简记成“xM,p(x)”。 (2)特称命题:含有存在量词的命题。“xM,有 p(x)成立” 简记成“xM,p(x)”。
2.条件p: |x|>1,条件q:x < 2,则p是q的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
。
.
∵p:x < 1或x >1,q:x < 2, ∴q p但p q, 即p q,但q p, ∴p是q的必要不充分条件.
4.常见词语的否定如下表所示
词语 是 一定是 都是 大于
大于
。
词语的否定 不是 一定不是 不都是 小于或等于 大于或等于
词语
且
必有一个
至少有n个 至多有一个
所有x成立
词语的否定
或
一个也没有 至多有n-1个 至少有两个 存在一个x不成立
考点5、充分条件与必要条件 1、定义:对命题“若p则q”而言,当它是真命题时, 2 、在判断充分条件及必要条件时,首先要分 p是q的充分条件,q是p的必要条件,当它的逆命题 清哪个命题是条件,哪个命题是结论,其 为真时, q是p的充分条件,p是q的必要条件,两种 次,结论要分四种情况说明:充分不必要 命题均为真时,称 p是q的充要条件;
)
(二)、知识要点归纳
《集合的概念》集合与常用逻辑用语PPT课件
= {|2 − (3 − ) − + − 2 = 0},若 = {2},求集合.
【跟踪训练】
5.(变式练)本例中集合不变,已知集合中有两个元素,其中一个元素是1,
求的值,并求出集合.
【跟踪训练】
6.(同类练)已知集合{|2 + = 0}有两个元素,求的取值范围,并把这
两个元素写出来.
【跟踪训练】
7.(拔高练)已知集合 = 2 + − 1 + = 0 ,
(2)立德中学今年入学的全体高一学生;
(3)地球上的四大洋.
(4)所有的正方形;
(5)到直线的距离等于定长的所有点;
(6)方程 2 − 3 + 2 = 0的所有实数根;
自
然
语
言
问题4:
我们可以用自然语言描述一个集合.除此之
外,还可以用什么方式来表示集合呢?
“地球上的四大洋”组成的集合;
列
举
共同特征
描
述
法
∈ |()
课堂练习:
教材 P4 例2
3.
教材 P5 练习3
注:(1)先看竖线前的代表元素,明确研究的对象;再看竖线后的共同特征;
(2)若需要多层次描述属性,可选用“且”“或”连接;
(3)若描述部分出现元素记号以外的参数,则要说明参数的含义或指出取值范围.
课堂练习:
教材 P6
思
概念生成
一般地,我们把研究对象统称为元素,把一些元素组成的总体
叫做集合(简称为集).
我们通常用大写拉丁字母, , ,…表示集合
用小写拉丁字母, , ,…表示元素.
同时,元素可以是点,可以是人,也可以是问题!
追问:集合
【跟踪训练】
5.(变式练)本例中集合不变,已知集合中有两个元素,其中一个元素是1,
求的值,并求出集合.
【跟踪训练】
6.(同类练)已知集合{|2 + = 0}有两个元素,求的取值范围,并把这
两个元素写出来.
【跟踪训练】
7.(拔高练)已知集合 = 2 + − 1 + = 0 ,
(2)立德中学今年入学的全体高一学生;
(3)地球上的四大洋.
(4)所有的正方形;
(5)到直线的距离等于定长的所有点;
(6)方程 2 − 3 + 2 = 0的所有实数根;
自
然
语
言
问题4:
我们可以用自然语言描述一个集合.除此之
外,还可以用什么方式来表示集合呢?
“地球上的四大洋”组成的集合;
列
举
共同特征
描
述
法
∈ |()
课堂练习:
教材 P4 例2
3.
教材 P5 练习3
注:(1)先看竖线前的代表元素,明确研究的对象;再看竖线后的共同特征;
(2)若需要多层次描述属性,可选用“且”“或”连接;
(3)若描述部分出现元素记号以外的参数,则要说明参数的含义或指出取值范围.
课堂练习:
教材 P6
思
概念生成
一般地,我们把研究对象统称为元素,把一些元素组成的总体
叫做集合(简称为集).
我们通常用大写拉丁字母, , ,…表示集合
用小写拉丁字母, , ,…表示元素.
同时,元素可以是点,可以是人,也可以是问题!
追问:集合
16《充分条件、必要条件》集合与常用逻辑用语 PPT教学课件 (第1课时充分条件与必要条件)
29
栏目导航
30
1.Байду номын сангаас分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)等价法:“p⇔q”表示 p 等价于 q,等价命题可以进行转换, 当我们要证明 p 成立时,就可以去证明 q 成立.
栏目导航
31
(3)利用集合间的包含关系进行判断:如果条件 p 和结论 q 相应 的集合分别为 A 和 B,那么若 A⊆B,则 p 是 q 的充分条件;若 A⊇B, 则 p 是 q 的必要条件;若 A=B,则 p 既是 q 的充分条件,也是 q 的 必要条件.
第一章 集合与常用逻辑用语
1.2 常用逻辑用语 1.2.3 充分条件、必要条件 第1课时 充分条件与必要条件
2
学习目标
核心素养
1.通过充分条件、必要条件 1.理解充分条件、必要条件的定义.(难
的判断,提升逻辑推理素 点)
养. 2.会判断充分条件、必要条件.(重点)
2.通过充分条件、必要条 3.会根据充分不必要条件、必要不充分
[答案] C
33
栏目导航
2.使 x>3 成立的一个充分条件是( )
A.x>4
B.x>0
C.x>2
D.x<2
A [只有x>4⇒x>3,其他选项均不可推出x>3.]
34
栏目导航
35
3.设 x,y∈R,则“x≥2 且 y≥2”是“x2+y2≥4”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
栏目导航
5
思考 1:(1)p 是 q 的充分条件与 q 是 p 的必要条件所表示的推出 关系是否相同?
(2)以下五种表述形式:①p⇒q;②p 是 q 的充分条件;③q 的充 分条件是 p;④q 是 p 的必要条件;⑤p 的必要条件是 q.这五种表述 形式等价吗?
常用逻辑用语(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
索引
当x∈(2,4)时,2x<x2,故C为真命题; 当 x=13时,1313∈(0,1),log113=1,
3
所以1313<log113,故 D 为假命题. 3
索引
角度3 含量词命题的应用 例5 (2023·长春调研)已知命题“∃x∈R,mx2-mx+1≤0”是假命题,则实数m
的取值范围是__[0_,__4_)__. 解析 由题意得“∀x∈R,mx2-mx+1>0”为真命题. 当m=0时,1>0,符合题意; 当 m≠0 时,有m(>-0m,)2-4m<0, 解得0<m<4. 综上,0≤m<4.
分层精练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p叫作q的__充__分__条件,q叫作p的_必__要___条件
p是q的_充__分__不__必__要___条件 p是q的__必__要__不__充__分__条件
A.∃a∈R,使函数 y=2x+a·2-x 在 R 上为偶函数 B.∀x∈R,函数 y=sin x+cos x+ 2的值恒为正数 C.∃x∈R,2x<x2 D.∀x∈(0,+∞),13x>log1x
3
解析 当 a=1 时,y=2x+2-x 为偶函数,故 A 为真命题; y=sin x+cos x+ 2= 2sinx+π4+ 2, 当 sinx+π4=-1 时,y=0,故 B 为假命题;
索引
考点三 全称量词与存在量词
角度1 含量词命题的否定
例3 (1)(2023·天津模拟)已知命题p:∀x∈R,sin x≤1,则( C )
A.綈p:∃x∈R,sin x≥1
B.綈p:∀x∈R,sin x≥1
当x∈(2,4)时,2x<x2,故C为真命题; 当 x=13时,1313∈(0,1),log113=1,
3
所以1313<log113,故 D 为假命题. 3
索引
角度3 含量词命题的应用 例5 (2023·长春调研)已知命题“∃x∈R,mx2-mx+1≤0”是假命题,则实数m
的取值范围是__[0_,__4_)__. 解析 由题意得“∀x∈R,mx2-mx+1>0”为真命题. 当m=0时,1>0,符合题意; 当 m≠0 时,有m(>-0m,)2-4m<0, 解得0<m<4. 综上,0≤m<4.
分层精练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p叫作q的__充__分__条件,q叫作p的_必__要___条件
p是q的_充__分__不__必__要___条件 p是q的__必__要__不__充__分__条件
A.∃a∈R,使函数 y=2x+a·2-x 在 R 上为偶函数 B.∀x∈R,函数 y=sin x+cos x+ 2的值恒为正数 C.∃x∈R,2x<x2 D.∀x∈(0,+∞),13x>log1x
3
解析 当 a=1 时,y=2x+2-x 为偶函数,故 A 为真命题; y=sin x+cos x+ 2= 2sinx+π4+ 2, 当 sinx+π4=-1 时,y=0,故 B 为假命题;
索引
考点三 全称量词与存在量词
角度1 含量词命题的否定
例3 (1)(2023·天津模拟)已知命题p:∀x∈R,sin x≤1,则( C )
A.綈p:∃x∈R,sin x≥1
B.綈p:∀x∈R,sin x≥1
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确,产生矛盾的原因只能是“假设为 真”,由此假设不成立,即“为真”.
.
8
题型分类 深度剖析
题型一 四种命题及其关系
例 1 设原命题是“当 c>0 时,若 a>b,则 ac>bc”, 写出它的逆命题、否命题与逆否命题,并分别判断它
们的真假.
思维启迪 先分清原命题的大前提,命题的条件和结
论;再写其他命题.
解 (1)p 为假命题,q 为真命题.
p∨q:1 是质数或是方程 x2+2x-3=0 的根,真命题.
p∧q:1 既是质数又是方程 x2+2x-3=0 的根,假命题.
綈 p:1 不是质数,真命题.
.
12
(2)p 为假命题,q 为假命题. p∨q:平行四边形的对角线相等或互相垂直,假命题. p∧q:平行四边形的对角线相等且互相垂直,假命题. 綈 p:有些平行四边形的对角线不相等,真命题. (3)p 为真命题,q 为真命题, ∴p∨q:5≤5 或 27 不是质数,真命题. p∧q:5≤5 且 27 不是质数,真命题. 綈 p:5>5,假命题.
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
.
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
思维启迪 首先分清条件和结论,然后根据充要条件的 定义进行判断.
.
10
解 (1)在△ABC 中,∠A=∠B⇒sin A=sin B,反之,
若 sin A=sin B,因为 A 与 B 不可能互补(因为三角形三
个内角和为 180°),所以只有 A=B.故 p 是 q 的充要条
件.
(2)易知,綈 p:x+y=8,綈 q:x=2 且 y=6,显然
.
5
概念与规律总结
• (4)“或”、“且”、“非”的真值判断 • “﹃p”形式复合命题的真假与P的真假相反; • “p∧q”形式复合命题当P与q同为真时为真,
其他情况时为假; • “p∨q”形式复合命题当p与q同为假时为假,
其他情况时为真.
.
6
概念与规律总结
• (5)全称量词与存在量词 • 全称量词:所有的,一切,全部,都,任意一个,
綈 q⇒綈 p,但綈 p⇒綈 q,即綈 q 是綈 p 的充分不必要
条件,根据原命题和逆否命题的等价性知,p 是 q 的充
分不必要条件.
(3)显然 x∈A∪B 不一定有 x∈B,但 x∈B 一定有
x∈A∪B,所以 p 是 q 的必要不充分条件.
(4)条件 p:x=1 且 y=2,条件 q:x=1 或 y=2,
第一部分 常用逻辑 用语
.
1
知识网络
用常 语用
逻 辑
命题及其关系
四种命题
充分条件与必要条件
简单的逻辑联结词
或 并集 且 交集
运算
非 补集
全称量词与存在量词
量词
全称量词 存在量词
含有一个量词的否定
.
2
概念与规律总结
• (1)命题的结构 • 命题的定义:可以判断真假的语句叫做命题。 • “或”、“且”、“非”这些词叫做逻辑联
每一个等; • 存在量词:存在一个,至少有一个,有个,某个,
有的,有些等; • 全称命题P:M, p(x) 否定为 P: M, P(x) • 特称命题P:M, p(x) 否定为 P: M, P(x)
.
7
概念与规律总结
• (6)反证法是间接证法的一种 • 假设为真,即不成立,并根据有关公理、
定理、公式进行逻辑推理,得出矛盾. • 因为公理、定理、公式正确,推理过程也
.
9
题型二 充分、必要、充要条件的概念与判断 例 2 指出下列命题中,p 是 q 的什么条件(在“充分不
必要条件”、“必要不充分条件”、“充要条件”、 “既不充分也不必要条件”中选出一种作答).
(1)在△ABC 中,p:∠A=∠B,q:sin A=sin B; (2)对于实数 x、y,p:x+y≠8,q:x≠2 或 y≠6; (3)非空集合 A、B 中,p:x∈A∪B,q:x∈B; (4)已知 x、y∈R,p:(x-1)2+(y-2)2=0, q:(x-1)(y-2)=0.
.
13
第二部分 统计案例
➢ 内容 (1)独立性检验;(2)回归分析。
➢ 结构
背景
独立性检验 抽取样本 提出统计假设
运 用 2 检 验
线性回归分析 抽取样本 提出统计假设 运 用r检 验
作出.统计推断
14
➢ 重点
(1)用2统计量判断两个分类变量之间是否存在一定的关系; (2)两个数值型变量之间线性回归方程的建立及模型的可靠性。
.
4
概念与规律总结
• (3)命题的条件与结论间的属性
• 若p q,则p是q 的充分条件,q是p的必要条 件,即“推出人者为充分,被人推出者为必 要” 。
• 若p q,且qp,则p是q的充分不必要条件。 • 若p q,且qp,则p是q的必要不充分条件。 • 若p q,且q p,则p是q的充要条件。
结词;不含有逻辑联结词的命题是简单命题; 由简单命题和逻辑联结词“或”、“且”、 “非”构成的命题是复合命题 • 构成复合命题的形式:p或q(记作p∨q);p且 q(记作p∧q);非p(记作┑q)
.
3
概念与规律总结
• (2)命题的四种形式与相互关系 • 原命题:若P则q; • 逆命题:若q则p; • 否命题:若┑P则┑q; • 逆否命题:若┑q则┑p • 原命题与逆否命题互为逆否,同真假; • 逆命题与否命题互为逆否,同真假;
解 “当 c>0 时”是大前提,写其他命题时应该保留,
原命题的条件是 a>b,结论是 ac>bc.因此它gt;bc,则 a>b.它是真命题;
否命题:当 c>0 时,若 a≤b,则 ac≤bc.它是真命题;
逆否命题:当 c>0 时,若 ac≤bc,则 a≤b.它是真命题.
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
.
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小
.
8
题型分类 深度剖析
题型一 四种命题及其关系
例 1 设原命题是“当 c>0 时,若 a>b,则 ac>bc”, 写出它的逆命题、否命题与逆否命题,并分别判断它
们的真假.
思维启迪 先分清原命题的大前提,命题的条件和结
论;再写其他命题.
解 (1)p 为假命题,q 为真命题.
p∨q:1 是质数或是方程 x2+2x-3=0 的根,真命题.
p∧q:1 既是质数又是方程 x2+2x-3=0 的根,假命题.
綈 p:1 不是质数,真命题.
.
12
(2)p 为假命题,q 为假命题. p∨q:平行四边形的对角线相等或互相垂直,假命题. p∧q:平行四边形的对角线相等且互相垂直,假命题. 綈 p:有些平行四边形的对角线不相等,真命题. (3)p 为真命题,q 为真命题, ∴p∨q:5≤5 或 27 不是质数,真命题. p∧q:5≤5 且 27 不是质数,真命题. 綈 p:5>5,假命题.
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
.
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
思维启迪 首先分清条件和结论,然后根据充要条件的 定义进行判断.
.
10
解 (1)在△ABC 中,∠A=∠B⇒sin A=sin B,反之,
若 sin A=sin B,因为 A 与 B 不可能互补(因为三角形三
个内角和为 180°),所以只有 A=B.故 p 是 q 的充要条
件.
(2)易知,綈 p:x+y=8,綈 q:x=2 且 y=6,显然
.
5
概念与规律总结
• (4)“或”、“且”、“非”的真值判断 • “﹃p”形式复合命题的真假与P的真假相反; • “p∧q”形式复合命题当P与q同为真时为真,
其他情况时为假; • “p∨q”形式复合命题当p与q同为假时为假,
其他情况时为真.
.
6
概念与规律总结
• (5)全称量词与存在量词 • 全称量词:所有的,一切,全部,都,任意一个,
綈 q⇒綈 p,但綈 p⇒綈 q,即綈 q 是綈 p 的充分不必要
条件,根据原命题和逆否命题的等价性知,p 是 q 的充
分不必要条件.
(3)显然 x∈A∪B 不一定有 x∈B,但 x∈B 一定有
x∈A∪B,所以 p 是 q 的必要不充分条件.
(4)条件 p:x=1 且 y=2,条件 q:x=1 或 y=2,
第一部分 常用逻辑 用语
.
1
知识网络
用常 语用
逻 辑
命题及其关系
四种命题
充分条件与必要条件
简单的逻辑联结词
或 并集 且 交集
运算
非 补集
全称量词与存在量词
量词
全称量词 存在量词
含有一个量词的否定
.
2
概念与规律总结
• (1)命题的结构 • 命题的定义:可以判断真假的语句叫做命题。 • “或”、“且”、“非”这些词叫做逻辑联
每一个等; • 存在量词:存在一个,至少有一个,有个,某个,
有的,有些等; • 全称命题P:M, p(x) 否定为 P: M, P(x) • 特称命题P:M, p(x) 否定为 P: M, P(x)
.
7
概念与规律总结
• (6)反证法是间接证法的一种 • 假设为真,即不成立,并根据有关公理、
定理、公式进行逻辑推理,得出矛盾. • 因为公理、定理、公式正确,推理过程也
.
9
题型二 充分、必要、充要条件的概念与判断 例 2 指出下列命题中,p 是 q 的什么条件(在“充分不
必要条件”、“必要不充分条件”、“充要条件”、 “既不充分也不必要条件”中选出一种作答).
(1)在△ABC 中,p:∠A=∠B,q:sin A=sin B; (2)对于实数 x、y,p:x+y≠8,q:x≠2 或 y≠6; (3)非空集合 A、B 中,p:x∈A∪B,q:x∈B; (4)已知 x、y∈R,p:(x-1)2+(y-2)2=0, q:(x-1)(y-2)=0.
.
13
第二部分 统计案例
➢ 内容 (1)独立性检验;(2)回归分析。
➢ 结构
背景
独立性检验 抽取样本 提出统计假设
运 用 2 检 验
线性回归分析 抽取样本 提出统计假设 运 用r检 验
作出.统计推断
14
➢ 重点
(1)用2统计量判断两个分类变量之间是否存在一定的关系; (2)两个数值型变量之间线性回归方程的建立及模型的可靠性。
.
4
概念与规律总结
• (3)命题的条件与结论间的属性
• 若p q,则p是q 的充分条件,q是p的必要条 件,即“推出人者为充分,被人推出者为必 要” 。
• 若p q,且qp,则p是q的充分不必要条件。 • 若p q,且qp,则p是q的必要不充分条件。 • 若p q,且q p,则p是q的充要条件。
结词;不含有逻辑联结词的命题是简单命题; 由简单命题和逻辑联结词“或”、“且”、 “非”构成的命题是复合命题 • 构成复合命题的形式:p或q(记作p∨q);p且 q(记作p∧q);非p(记作┑q)
.
3
概念与规律总结
• (2)命题的四种形式与相互关系 • 原命题:若P则q; • 逆命题:若q则p; • 否命题:若┑P则┑q; • 逆否命题:若┑q则┑p • 原命题与逆否命题互为逆否,同真假; • 逆命题与否命题互为逆否,同真假;
解 “当 c>0 时”是大前提,写其他命题时应该保留,
原命题的条件是 a>b,结论是 ac>bc.因此它gt;bc,则 a>b.它是真命题;
否命题:当 c>0 时,若 a≤b,则 ac≤bc.它是真命题;
逆否命题:当 c>0 时,若 ac≤bc,则 a≤b.它是真命题.
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
.
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小