常用逻辑用语小结.ppt
合集下载
集合与常用逻辑用语PPT优秀课件
1
1
∵q≠1,∴q=-2 .综上所述,q=-2 .
2.(1)若集合P={x|x2+x-6=0},S={x|ax+1=0},且SP ,
求a
(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
且B
A,求由m的可取值组成的集合.
解 (1)P={-3,2}.当a=0时,S= ,满足S P
的集合,而后根据已知条件求参数.
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3.
1分
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件;
失误与防范 1.解答集合题目,认清集合元素的属性(是点集、数集或其他
情形)和化简集合是正确求解的两个先决条件. 2.韦恩图示法和数轴图示法是进行集合交、并、补运算的常
用方法,其中运用数轴图示法要特别注意端点是实心还是 空心.
3.要注意A B、A∩B=A、A∪B=B、UAUB、A∩( UB) =
1
当a≠0时,方程ax+1=0的解为x=-a
1
1
为满足S P,可使- a =-3或- a =2
1
1
即a=
3
2
或a=-
.
1
1
故所求集合为{0,3 ,- 2 }.
(2)当m+1>2m-1,即m<2时,B = ,满足 B A
若B≠ ,且满足B A,如图所示,
m+1≤2m-1
常用逻辑用语课件PPT
解析答案
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.
常用逻辑用语课件
模态逻辑的应用
哲学领域
模态逻辑被广泛应用于哲学推理和论证,特别是关于必然性和可 能性的问题。
人工智能领域
模态逻辑在人工智能领域也有广泛的应用,用于表示和推理不确定 性,例如在专家系统和决策支持系统中。
法律领域
模态逻辑在法律领域的应用主要涉及法律论证和法律解释,例如在 法律推理和法律解释中需要考虑必然性和可能性等问题。
危害
导致思维混乱、判断失误、决策失误 等。
如何避免逻辑错误
01
02
03
04
明确概念
准确理解概念的含义,避免混 淆和偷换概念。
全面分析
对问题进行分析时,要全面考 虑各种可能性,避免以偏概全
。
充分论证
在进行推断时要充分论证,避 免基于不充分的信息做出错误
判断。
客观分析
对信息进行客观分析,不带有 个人偏见和情感色彩。
模态推理规则
必然推理规则
如果p是必然的,那么¬p是不可能的。例如:如果明天必然下雨,那么明天不可能不下雨 。
可能推理规则
如果p是可能的,那么¬p是不确定的。例如:如果明天可能下雨,那么明天不确定不下雨 。
互为对偶的模态命题推理规则
如果p是必然的,那么¬p是不可能的;如果p是不可能的,那么¬p是必然的。例如:如果 明天必然下雨,那么明天不可能不下雨;如果明天不可能不下雨,那么明天必然下雨。
归纳方法及其应用
01
02
归纳方法:包括简单枚 举归纳、排除归纳、概 率归纳等。
归纳方法的应用
03
04
05
科学发现:科学家通过 观察实验数据,运用归 纳方法得出科学规律。
数据分析:在商业、社 会科学等领域,归纳方 法用于分析数据,发现 潜在规律。
人教版1-1第一章常用逻辑用语小结
,5
3.若命题“对x R, kx2 kx 1 0 ”是真命题,则k 的取值范围是 4,0
4.已知函数
f
x
x
4 x
,
gx
2x
a
,若 x1
1 2
,1,x 2
2,3,
使得 f x1 gx2 ,则实数 a 的取值范围是
,1
课后作业
1.选修 1-1. P28 A 组 4、5、6
2 补充作业
从而有 A B 。
回顾与思考
设 p , q 为含有变量 x 的语句,我们引入如下两个集合
A x p成立 B x q成立
如果 A B ,那么每个使 p 成立的变量 x 也使得 q 成立。也就是说,若 p 成立, 则 q 也成立,即 p q ,从而 p 是 q 成立的充分条件, q 是 p 成立的必要条件。 反过来,如果 p 是 q 的充分条件,那么由 p 成立可以推出 q 成立, 也就是说,若 x A ,则一定有 x B ,从而集合 A B 。
回顾与思考
2.充分条件、必要条件和充要条件与集合之间 的关系
若 p q ,则 p 是 q 的充分条件, q 是 p 的必要条件;
若 p q ,则 p 是 q 的充要条件。
回顾与思考
设 A 、 B 是两个集合,集合 A B 是指: x A x B
(*)
这就是说,“ x A”是“ x B ”的充分条件,“ x B ”是“ x A ”的必要条件。
学习目标
1.了解命题及其逆命题、否命题与逆否命题, 会分析四种命题的相互关系;理解必要条件、 充分条件与充要条件。
2.了解逻辑连接词“或”“且”“非”的含义。 3.理解全称量词与存在量词的意义,能正确地 对含有一个量词的命题进行否定。
高中数学集合与常用逻辑用语知识点总结PPT课件
【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.
第一章常用逻辑用语复习小结课件人教新课标1
从概念的角度去理解
若p q,则称p是q的充分条件,q是p的必要条件.
知 p q且q p p是q的充分不必要条件 识 p q且q p p是q的必要不充分条件
回 顾 p q且q p p是q的充要条件
p q且q p p是q的既不充分不必要条件
回顾二 充分条件与必要条件
从集合的角度去理解
数形结合思想
分类讨论思想
作业:
1、习题1.1第2.3题 2、能力培养与测试1.1
例题 4 含逻辑连结词的命题的真假的判断
已知 p : 2 2 5, q : 3 2 ,则下列判断中,错误的是( C )
(A) p 为假
(B) q 为真
基 础
(C) p 或 q 为假
(D) p 且 q 为假
练
习 方法 判断命题p,q的真假;
归纳
确定命题的构成情势;
根据真值表确定命题的真假。
例题5 含有一个量词的命题的否定
至少有一个 一个都没有 至少有n个 至多有(n-1)个
例题 1 四种命题及其关系
基 础 练 习
1 两个命题互为逆否命题,同真假; 2 四个命题中,正确的个数一定为偶数;
例题 2 充分条件与必要条件的判断
B 例题: 在数列{an} 中,“ an 2an1(n 2, 3, 4,) ”是“{an} 是公比为2的等比数列”的( )
A =B
4)
A
B
回顾三 简单的逻辑连结词
逻辑连 命题情势 结词
集合运算
p q p q p q p
知
且
识 (and)
pq
回 顾
或 (or)
pq
A B x A且x B
A B x x A或x B
若p q,则称p是q的充分条件,q是p的必要条件.
知 p q且q p p是q的充分不必要条件 识 p q且q p p是q的必要不充分条件
回 顾 p q且q p p是q的充要条件
p q且q p p是q的既不充分不必要条件
回顾二 充分条件与必要条件
从集合的角度去理解
数形结合思想
分类讨论思想
作业:
1、习题1.1第2.3题 2、能力培养与测试1.1
例题 4 含逻辑连结词的命题的真假的判断
已知 p : 2 2 5, q : 3 2 ,则下列判断中,错误的是( C )
(A) p 为假
(B) q 为真
基 础
(C) p 或 q 为假
(D) p 且 q 为假
练
习 方法 判断命题p,q的真假;
归纳
确定命题的构成情势;
根据真值表确定命题的真假。
例题5 含有一个量词的命题的否定
至少有一个 一个都没有 至少有n个 至多有(n-1)个
例题 1 四种命题及其关系
基 础 练 习
1 两个命题互为逆否命题,同真假; 2 四个命题中,正确的个数一定为偶数;
例题 2 充分条件与必要条件的判断
B 例题: 在数列{an} 中,“ an 2an1(n 2, 3, 4,) ”是“{an} 是公比为2的等比数列”的( )
A =B
4)
A
B
回顾三 简单的逻辑连结词
逻辑连 命题情势 结词
集合运算
p q p q p q p
知
且
识 (and)
pq
回 顾
或 (or)
pq
A B x A且x B
A B x x A或x B
常用逻辑用语ppt课件
最新课件
28
变式训练 3 (2010·辽宁)为了比较注射 A,B 两种 药物后产生的皮肤疱疹的面积,选 200 只家兔做 试验,将这 200 只家兔随机地分成两组,每组 100 只,其中一组注射药物 A,另一组注射药物 B.表 1 和表 2 分别是注射药物 A 和药物 B 后的试验结 果.(疱疹面积单位:mm2)
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
最新课件
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析 若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关,
x 增大时,y 相应减小,故②错误;|r|越接近 1,表示
两个变量相关性越高,|r|=1 表示两个变量有确定的关
系(即函数关系),故③正确.
最新课件
24
题型分类 深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
最新课件
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小
2014年人教A版选修1-1课件 第一章小结(常用逻辑用语)
特称命题 p: ∃ xM, p(x).
特称命题的否定 ¬ p: ∀ xM, ¬ p(x). 全称命题否定后为特称命题. 特称命题否定后为全称命题. 否定前后的真假性相反.
复习参考题
返回目录
A组 1. 设原命题是 “等边三角形的三内角相等”. 把原命题写成 “若 p, 则 q” 的形式, 并写出它的逆 命题,否命题和逆否命题, 然后指出它们的真假. 解: 若三角形是等边三角形, 则三内角相等. 逆命题: 若三角形三内角相等, 则三角形是等边 三角形. 否命题: 若三角形不是等边三角形, 则它的三内 角不相等. 逆否命题: 若三角形的三内角不相等, 则三角形 不是等边三角形. 此题的四种命题都是真命题.
否命题: “若 p, 则 q”.
逆否命题: “若 q, 则 p”.
原命题
否命题
互逆 互逆
逆命题
逆否命题
互否 互为逆否 互否
3. 充要条件 p q, p 是 q 的充分不必要条件. p ⇍ q, p ⇏ q, p q, p q. p 是 q 的必要不充分条件. p 是 q 的充要条件; q 也是 p 的充要条件.
6. 存在量词与特称命题 “存在”, “存在一个”, “有些”, “对某个”, “至少有一个” 等. 符号 “∃”. 特称命题: ∃xM, p(x).
ቤተ መጻሕፍቲ ባይዱ
在 M 中只要有一个 x0, 使 p(x0) 成立, 命题为真; 若一个都没有, 则命题为假.
7. 全称命题与特称命题的否定
全称命题 p: ∀xM, p(x). 全称命题的否定 ¬ p: ∃xM, ¬ p(x).
本章内容
1.1 命题及其关系 1.2 充分条件与必要条件
1.3 简单的逻辑联结词
1.4 全称量词与存在量词 第一章 小结
特称命题的否定 ¬ p: ∀ xM, ¬ p(x). 全称命题否定后为特称命题. 特称命题否定后为全称命题. 否定前后的真假性相反.
复习参考题
返回目录
A组 1. 设原命题是 “等边三角形的三内角相等”. 把原命题写成 “若 p, 则 q” 的形式, 并写出它的逆 命题,否命题和逆否命题, 然后指出它们的真假. 解: 若三角形是等边三角形, 则三内角相等. 逆命题: 若三角形三内角相等, 则三角形是等边 三角形. 否命题: 若三角形不是等边三角形, 则它的三内 角不相等. 逆否命题: 若三角形的三内角不相等, 则三角形 不是等边三角形. 此题的四种命题都是真命题.
否命题: “若 p, 则 q”.
逆否命题: “若 q, 则 p”.
原命题
否命题
互逆 互逆
逆命题
逆否命题
互否 互为逆否 互否
3. 充要条件 p q, p 是 q 的充分不必要条件. p ⇍ q, p ⇏ q, p q, p q. p 是 q 的必要不充分条件. p 是 q 的充要条件; q 也是 p 的充要条件.
6. 存在量词与特称命题 “存在”, “存在一个”, “有些”, “对某个”, “至少有一个” 等. 符号 “∃”. 特称命题: ∃xM, p(x).
ቤተ መጻሕፍቲ ባይዱ
在 M 中只要有一个 x0, 使 p(x0) 成立, 命题为真; 若一个都没有, 则命题为假.
7. 全称命题与特称命题的否定
全称命题 p: ∀xM, p(x). 全称命题的否定 ¬ p: ∃xM, ¬ p(x).
本章内容
1.1 命题及其关系 1.2 充分条件与必要条件
1.3 简单的逻辑联结词
1.4 全称量词与存在量词 第一章 小结
常用逻辑用语PPT课件
考点二:全称量词与存在量词 1.全称量词与存在量词 (1)全称量词:对应日常语言中的“一切”、 “任意的”、“所有的”、“凡是”、“任给”、 “对每一个”等词,用符号“”表示。 (2)存在量词:对应日常语言中的“存在一个”、 “至少有一个”、“有个”、“某个”、“有 些”、“有的”等词,用符号“”表示。 2.全称命题与特称命题 (1)全称命题:含有全称量词的命题。“对xM, 有p(x)成立”简记成“xM,p(x)”。 (2)特称命题:含有存在量词的命题。“xM,有 p(x)成立” 简记成“xM,p(x)”。
2.条件p: |x|>1,条件q:x < 2,则p是q的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
。
.
∵p:x < 1或x >1,q:x < 2, ∴q p但p q, 即p q,但q p, ∴p是q的必要不充分条件.
4.常见词语的否定如下表所示
词语 是 一定是 都是 大于
大于
。
词语的否定 不是 一定不是 不都是 小于或等于 大于或等于
词语
且
必有一个
至少有n个 至多有一个
所有x成立
词语的否定
或
一个也没有 至多有n-1个 至少有两个 存在一个x不成立
考点5、充分条件与必要条件 1、定义:对命题“若p则q”而言,当它是真命题时, 2 、在判断充分条件及必要条件时,首先要分 p是q的充分条件,q是p的必要条件,当它的逆命题 清哪个命题是条件,哪个命题是结论,其 为真时, q是p的充分条件,p是q的必要条件,两种 次,结论要分四种情况说明:充分不必要 命题均为真时,称 p是q的充要条件;
)
(二)、知识要点归纳
常用逻辑用语 逻辑联结词“且”“或”“非”PPT共53页
常用逻辑用语 逻辑联结词 “且”“或”“非”
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
《常用逻辑用语》集合与常用逻辑用语PPT-完美版
栏目 导引
第一章 集合与常用逻辑用语
1.以下四个命题既是存在量词命题又是真命题的是( ) A.锐角三角形的内角是锐角或钝角 B.至少有一个实数 x,使 x2≤0 C.两个无理数的和必是无理数 D.存在一个负数 x,使1x>2 答案:B
栏目 导引
第一章 集合与常用逻辑用语
2.下列命题是“∀x∈R,x2>3”的另一种表述方式的是( ) A.有一个 x∈R,使得 x2>3 B.对有些 x∈R,使得 x2>3 C.任选一个 x∈R,使得 x2>3 D.至少有一个 x∈R,使得 x2>3 答案:C
栏目 导引
第一章 集合与常用逻辑用语
于 D,∃x,y∈R,x2+y2<0 是存在量词命题,是假命题,不合
题意.故选 B.
栏目 导引
第一章 集合与常用逻辑用语
全称量词命题与存在量词命题的否定 写出下列命题的否定,并判断其真假. (1)p:所有的方程都有实数解; (2)q:∀x∈R,4x2-4x+1≥0; (3)r:∃x∈R,x2+2x+2≤0; (4)s:某些平行四边形是菱形.
栏目 导引
第一章 集合与常用逻辑用语
写全称量词命题与存在量词命题的否定的思路 在书写全称量词命题与存在量词命题的否定时,一定要抓住决 定命题性质的量词,从量词入手,书写命题的否定.全称量词 命题的否定是存在量词命题,存在量词命题的否定是全称量词 命题.
栏目 导引
第一章 集合与常用逻辑用语
1.命题“存在一个无理数,它的平方是有理数”的否定是 () A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 解析:选 B.量词“存在 ”否定后为“任意”,结论“它的平 方是有理数”否定后为“它的平方不是有理数”.故选 B.
第一章 集合与常用逻辑用语
1.以下四个命题既是存在量词命题又是真命题的是( ) A.锐角三角形的内角是锐角或钝角 B.至少有一个实数 x,使 x2≤0 C.两个无理数的和必是无理数 D.存在一个负数 x,使1x>2 答案:B
栏目 导引
第一章 集合与常用逻辑用语
2.下列命题是“∀x∈R,x2>3”的另一种表述方式的是( ) A.有一个 x∈R,使得 x2>3 B.对有些 x∈R,使得 x2>3 C.任选一个 x∈R,使得 x2>3 D.至少有一个 x∈R,使得 x2>3 答案:C
栏目 导引
第一章 集合与常用逻辑用语
于 D,∃x,y∈R,x2+y2<0 是存在量词命题,是假命题,不合
题意.故选 B.
栏目 导引
第一章 集合与常用逻辑用语
全称量词命题与存在量词命题的否定 写出下列命题的否定,并判断其真假. (1)p:所有的方程都有实数解; (2)q:∀x∈R,4x2-4x+1≥0; (3)r:∃x∈R,x2+2x+2≤0; (4)s:某些平行四边形是菱形.
栏目 导引
第一章 集合与常用逻辑用语
写全称量词命题与存在量词命题的否定的思路 在书写全称量词命题与存在量词命题的否定时,一定要抓住决 定命题性质的量词,从量词入手,书写命题的否定.全称量词 命题的否定是存在量词命题,存在量词命题的否定是全称量词 命题.
栏目 导引
第一章 集合与常用逻辑用语
1.命题“存在一个无理数,它的平方是有理数”的否定是 () A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 解析:选 B.量词“存在 ”否定后为“任意”,结论“它的平 方是有理数”否定后为“它的平方不是有理数”.故选 B.
相关主题