绝对收敛与一致收敛

合集下载

函数项级数一致收敛判别(Word)

函数项级数一致收敛判别(Word)

1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。

高等数学:一致收敛

高等数学:一致收敛
n 1
2n

2
xe
n2 x 2
2(n 1) xe
2
( n 1) 2 x 2
证: 只需证明 x0 [a, b] , lim S ( x) S ( x0 ) .
由于
S ( x) S ( x0 )
x x0
[Sn ( x) rn ( x)] [Sn ( x0 ) rn ( x0 )] Sn ( x) Sn ( x0 ) rn ( x) rn ( x0 )
n 1
un ( x) 一致收敛于和函数S(x)
部分和序列 S n ( x) 一致收敛于S(x)

余项 rn ( x) 一致收敛于 0
机动 目录 上页 下页 返回 结束
几何解释 : (如图)
0, N Z , 当n > N 时, S ( x) S n ( x) 表示 曲线 y S n ( x) 总位于曲线 y S ( x) 与 y S ( x)
之间.
y S ( x)
y S ( x)

y S ( x)
y S n ( x)
I
机动 目录 上页 下页
x
返回 结束
例1. 研究级数 1 1 1 ( x 1)( x 2) ( x 2)( x 3) ( x n)( x n 1)
在区间 [0, +∞) 上的收敛性. 1 1 1 解: (k 1,2,) ( x k )( x k 1) x k x k 1 1 1 1 1 S n ( x) ( )( ) x 1 x 2 x2 x3 1 1 ( ) x n x n 1 1 1 x 1 x n 1

函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。

3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。

(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。

使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。

若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。

函数项级数的一致收敛性及基本性质

函数项级数的一致收敛性及基本性质

sn(xn)xnn
1, 2
但 s(xn)0, 从rn (而 x n )s(x n ) sn (x n ) 1 2 .
ppt课件
只 要 取 1, 不 论 n多 么 大 , 在 (0 ,1 )总 存 在
2
点 x n , 使rn 得 (xn),
因此级数在( 0, 1 )内不一致连续.
说明: 虽然函数序列 sn(x)xn在( 0, 1 )内处处 收敛于 s(x)0,但 sn(x)在( 0, 1 )内各点处收
即nnaxn1与anxn的 收 敛 半 径 相 同 .
n1
n1
ppt课件
四、小结
1、函数项级数一致收敛的定义; 2、一致收敛级数的判别法——魏尔斯特拉斯 判别法; 3、一致收敛级数的基本性质; 4、幂级数的一致收敛性.
ppt课件
练习题
一、已知函数s序 n 列 sinnx(n1,2,3,)在(,) 上收敛0于 .
证 设 x0,x为 a,b上 任 意 点 . 由
s(x)sn(x)rn(x),s(x0)sn(x0)rn(x0)
ppt课件
s (x ) s (x 0 ) s n (x ) s n (x 0 ) r n (x ) r n (x 0 )
s n ( x ) s n ( x 0 ) r n ( x ) r n ( x 0 )(1)
余项的绝对值
11 r n s (x ) s n (x ) x n n(0 x )
ppt课件
对 于 任 给 0 , 取 自 然 数 N 1,
则当n N时,对于区间[0,]上的一切x,
有rn(x),
根据定义,
所给级数在区间[0, ]上一致收敛于s(x)0.
ppt课件
例3 研究例1中的级数

一致收敛的魏尔斯特拉斯定理

一致收敛的魏尔斯特拉斯定理

一致收敛的魏尔斯特拉斯定理1.引言1.1 概述引言是一篇长文中至关重要的部分,它旨在向读者引入文章的主题和背景,为后续内容的阐述提供一个整体的框架。

在本文中,引言将首先概述魏尔斯特拉斯定理的背景和定义,然后介绍一致收敛的概念,并说明本文的目的。

魏尔斯特拉斯定理是数学分析中的一个重要定理,它给出了一种判断函数序列是否在一个给定区间上一致收敛的方法。

在讲述魏尔斯特拉斯定理之前,我们先来了解一下它的背景。

在实际问题中,我们经常会遇到需要研究函数序列的情况。

函数序列是指由一系列函数组成的序列,每个函数都有自己的定义域和取值范围。

对于一个函数序列,我们希望能够找到一种方法来确定它是否在整个定义域上收敛,并且确保收敛的速度足够快。

为了解决这个问题,数学家魏尔斯特拉斯提出了一种判断函数序列是否一致收敛的定理。

一致收敛是指函数序列在整个定义域上以相同的速度收敛到同一个极限值。

魏尔斯特拉斯定理给出了一种条件,只要函数序列满足这一条件,就可以判断它们在整个定义域上一致收敛。

本文的目的就是详细介绍魏尔斯特拉斯定理的定义和证明过程,以及一致收敛的应用领域。

我们将首先解释魏尔斯特拉斯定理的概念和定义,然后给出其证明过程。

接着,我们将讨论一致收敛的应用,包括在数学分析、物理学和工程学等领域中的具体例子。

通过本文的阅读,读者将能够全面了解魏尔斯特拉斯定理和一致收敛的概念,并且理解其在实际问题中的应用价值。

本文的结构将按照上述目的和内容进行安排,以便读者可以系统地学习和理解这一重要数学定理。

1.2文章结构文章结构主要包括以下几个部分:1. 引言:介绍本篇文章的主题和背景,引起读者的兴趣。

同时简要介绍魏尔斯特拉斯定理和一致收敛的概念。

2. 正文:详细阐述魏尔斯特拉斯定理的定义和背景。

魏尔斯特拉斯定理是数学分析中一条重要的极限定理,它说明了对任意一组逐点有界的实数函数序列,可以找到一个一致收敛的子序列。

在此部分,可以介绍该定理的历史背景和被提出的原因,以及相关的数学概念和术语的定义,为后续的证明和应用做准备。

函数项级数的一致收敛

函数项级数的一致收敛

∑x
n =0
n
在区间 ( −1 , 1 ) 内闭一致收敛 .
Ex
[1]P44—45
1 ⑹⑺, 4,6.
四. 函数项级数一致收敛判别法:
1.
M Th 4
判别法: ( Weierstrass 判别法 ) 设级数
∑u
n
( x)
定义在区间 D 上,
∑M
n
是收敛
的正项级数.若当 n 充分大时, 对 ∀x ∈ D 有|
f ( x) =
lim
n→∞
⎛ 1 ⎞ max | f n ( x) − f ( x) |= f n ⎜ ⎟ = n → / 0 f n ( x) = 0 . 但 由 于 x∈[ 0,1] ⎝ 2n ⎠ ,
(n→∞),
因此 , 该函数列在 [ 0 , 1 ] 上不一致收敛.
例8
f n ( x) =

∑u
n
( x)
, 前 n 项部分和函数列
{S n ( x)} ,收敛
例 9 定义在 ( − ∞ , + ∞ ) 内的函数项级数( 称为几何级数 )
∑x
n=0

n
= 1+ x + x2 + L + xn +L
1− xn S n ( x) = ( x ≠ 1) 1− x 的部分和函数列为 , 收敛域为 ( − 1 , 1 ) .
lim
n→∞
f n ( x) = f ( x ) , … … , 有
| f m ( x) − f n ( x) | <
ε
2.
| f n ( x) − f ( x) | ≤
ε
2
令m → ∞, ⇒

函数的连续性和函数级数的收敛性(1)

函数的连续性和函数级数的收敛性(1)

函数2010级数学与应用数学四班 徐邦摘 要 :函数的连续性和函数级数的收敛性是数学分析中一块重要的内容。

因此,理解连续性和收敛性之间的关系至关重要,包括连续与一致连续,收敛与一致收敛,绝对收敛与一致收敛,收敛与绝对收敛等等之间的关系。

本文针对它们的关系,给出了相应的证明和反例来理清他们之间的必然与非必然的联系。

最后还给出猜想,给出一定的条件,并利用常微分学中的知识,给出了相应的证明,证明猜想是成立并存在的。

关键字:连续 一致连续 收敛 一致收敛 绝对收敛 条件收敛引言:函数的连续性和函数级数的一致收敛性在数学学习中起着重要的作用。

本文较详细地介绍了他们之间所有的关系,并给出相应的证明和反例,使读者在巩固这类知识点中,达到事半功倍的效果。

一 连续与一致连续首先给出函数()f x 在点 0x 处连续的定义[1]:对任给的ε>0, ,0>∃∂,当∂<-||o x x 时,有|)()(|0x f x f -<ε函数f(x)在区间I 上一致连续的定义[1]:任给ε>0, 0∃∂>,对,,,x x ∀,当∣,,,x x -∣<∂时,有 |)()(|0x f x f -<ε可看出函数f(x)的连续性和一致连续性最根本的区别是在于连续是针对某个点而研究的,而一致连续是定义在区间上的。

1) 若()f x 在区间I 上一致连续,则对任意0x ∈I ,f (x )在点0x 处连续。

证明:对任给的ε>0, 0∃∂>,对∀x ’,x ”,当∣,,,x x -∣<∂时,有<-|)"(x f |'x f )(ε 取x ’=x,x ” =0x 则对上述的ε>0 当∣,,,x x -∣<∂时,有|)()(|0x f x f -<ε.即f(x)在点0x 连续。

2) 但f (x )在任给x ∈ I 上连续,f(x)不一定在I 上一致连续。

一致收敛

一致收敛
n= 1

n= 1

∫x
证: 因为
k= 1
x
0
S(x)d x = ∑ ∫ un(x)d x
n= 1 x0
x
且上式右端级数在 [a, b] 上也一致收敛 .
∑ ∫x
n
x
0
uk (x)d x = ∫
x
x0
k= 1
∑uk (x)d x = ∫x
目录
n
x
0
Sn(x)d x
下页 返回 结束
上页
所以只需证明对任意 x0, x∈[a,b] (x0 < x), 一致有
2 n n− 1
在 [0,1] 上不一致收敛 .
+ 证: Sn(x) = x +(x − x) +L (x − x
)=x
n
0, S(x) = 1,
− xn, 0 ≤ x <1 rn(x) = S(x) −Sn(x) = 0, x =1 1 1, 对无论多么大的正数 N , 取x = (1) N+1, 取正数 ε < 0 2 2
*第六节
第十二章
函数项级数的一致收敛性 及一致收敛级数的基本性质
一、函数项级数的一致收敛性 二、一致收敛级数的基本性质
目录
上页
下页
返回
结束
一、函数项级数的一致收敛性
幂级数在收敛区间上的性质类似于多项式, 但一般函 数项级数则不一定有这么好的特点. 例如, 例如 级数
x +(x − x) +(x − x ) +L+(x − x
2) 正 级 ∑an 收 , 项 数 敛
则函数项级数 ∑un(x) 在区间 I 上一致收敛 .

一致收敛和绝对收敛的关系

一致收敛和绝对收敛的关系

一致收敛和绝对收敛的关系
一致收敛和绝对收敛是函数级数收敛的两种不同方式。

一致收敛指的是函数级数在给定区间内,对于每个自变量都有相同的极限。

也就是说,对于任何给定的ε>0,都可以找到一个整数N,对于所有n>N和所有x属于区间,都有|fn(x)-f(x)|<ε。

也就是说ε与x无关,而只与n有关。

绝对收敛则是指函数级数的每一项都为正数,并且级数的正项级数收敛。

也就是说,正级数和收敛的同时,绝对值级数和也必定收敛。

即∑|fn(x)|级数收敛。

它们的关系是:若一个函数级数在某一区间内绝对收敛,则该级数在该区间内一致收敛。

原因是在绝对收敛的条件下,每一项都为正,并且正项级数收敛,因此每个函数项的差值不大于对应绝对值级数项之差,所以级数收敛更快。

这使得在每个自变量值上,级数之差都小于某个固定的正数,从而导致一致收敛。

但是,反之未必成立,即一致收敛并不意味着绝对收敛。

一致收敛的概念和判别法

一致收敛的概念和判别法

7.1第7讲 一致收敛的概念与判别法所谓函数项级数是指级数的每项均为某一变量或多个变量的函数的级数,也就是说是无穷多个函数求和的问题,研究函数项级数主要回答下列几个问题:1. 收敛区域,即对于函数项级数:()1n n a x ∞=∑,x 在什么范围内级数是收敛的?这一问题是平凡的,因为对于给定x ,由数项级数之收敛性即可判别级数的收敛性,从而确定x 之收敛域。

2. 设()()1n n S x a x ∞==∑是收敛的,若()n a x 均为连续函数,问()S x 是否连续?回答是不一定。

例如:当1x <时,()1n n a x x −=,则有()11S x x=−,()n a x 在1x =处左连续,但()S x 在1x =处不是左连续的。

问题还可以提为:什么时候()S x 连续? 3. 可导性能否保持?即:若()n a x 均为可导函数,问()S x 是否可导?同样有问题:什么时候可导性可以保持?特别地,如果均可导,()S x 的导数与()n a x 的导数有何关系?4. 可积性问题。

即:若()n a x 均为可积函数,问()S x 是否可积?何时可积?它们的积分有何关系? 为了研究上述几个问题,我们需要引进“一致收敛”的概念。

7.2§1 一致收敛的概念讨论级数的收敛性实质上是其部分和函数()n S x 的性质,因此我们先考虑极限过程()()lim n n S x S x →∞=的性质。

上面所说的关于和函数的连续性,可导性、可积性有一个共同的特点,就是某一点x 处的连续性与可导性均与函数在该点邻域的性质有关,而不仅仅只与该点函数值相关,而可积性则更是函数在某一区间内的性质了。

另一方面,函数序列()n f x 在0x x =处是否收敛实际上只是数列()0n f x 的性质,与0x 点邻域内的性质是不相干的,因此从这一角度看,我们知道收敛性是无法用来描述其极限函数之性质的,因而有必要引入新的概念来区分不同的收敛性,以刻画函数序列的极限函数的性质。

数学分析判断题36个经典反例

数学分析判断题36个经典反例

数学分析判断题36个经典反例本文介绍了数学分析中的36个经典反例,这些反例可以帮助读者更好地理解和掌握分析性数学的相关概念和方法。

反例一:可导不连续函数在某点可导不一定在该点连续,例如函数$f(x)=|x|$在$x=0$处可导,但在该点不连续。

反例二:微积分基本公式不成立微积分基本公式$\int_a^bf(x)dx=F(b)-F(a)$在一些情况下不成立,例如函数$f(x)=x\sin\frac{1}{x}$在$[0,1]$上积分不满足基本公式。

反例三:连续不可导函数在某点连续不一定可导,例如函数$f(x)=|x|$在$x=0$处连续但在该点不可导。

反例四:一致连续性函数一致连续和点连续不等价,有些点连续的函数不一定一致连续,例如函数$f(x)=\sqrt{x}$在$[0,1]$上连续但不一致连续。

反例五:级数收敛性与函数可积性不等价级数收敛的函数不一定可积,例如函数$f(x)=\frac{\sinx}{x}$在$[0,\infty)$上级数收敛但不可积。

反例六:积分换序对于一些函数,交换积分次序会导致结果错误,例如函数$f(x,y)=\frac{xy}{(x^2+y^2)^2}$,交换积分次序后结果不同。

反例七:泰勒级数不收敛某些函数在某点的泰勒级数不收敛,例如函数$f(x)=e^{-\frac{1}{x^2}}$在$x=0$处泰勒级数不收敛。

反例八:函数可导与偏导数存在不等价当函数的偏导数存在且连续时,函数不一定可导,例如函数$f(x,y)=xy\sin\frac{1}{\sqrt{x^2+y^2}}$在原点处偏导数存在但不可导。

反例九:连续与闭集不等价一个连续函数的原像不一定为闭集,例如函数$f(x)=\arctanx$在$(-\infty,\infty)$上连续但原像不是闭集。

反例十:一致收敛不保持函数类如果$f_n(x)$是$[0,1]$上的可积函数,$f_n(x)$在$[0,1]$上一致收敛于$f(x)$,则$f(x)$不一定可积。

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

函数项级数的一致收敛性及一致收敛级数的基本性质

函数项级数的一致收敛性及一致收敛级数的基本性质

y S(x)
y Sn (x)
I
x
定理(柯西收敛原理)

un ( x)在I上一致收敛于S( x) 0, N ( ) N ,
n1
当n N ( )时, x I ,p N , un1( x) un p( x) .

推论 若 un ( x)在I上一致收敛,则 {un( x)}在I上一致 n1
即 0, N ( x0 , ) 0,当n N ( x0 , )时, | fn ( x0 ) f ( x0 ) |
定义 设 fn(x)在点集I上逐点收敛于f (x),且对
任意 0, 存在与x无关N ( ), 使得当n N时, 对一
切x I , 都有 fn(x) f (x) , 则称 fn(x)在I上一
>
N
时有
rn (x) (0 x )
这说明级数在 [0, +∞) 上一致收敛于 S(x) 1 . x 1
余项 rn (x) 一致收敛于 0
几何解释 : (如图)
0, N N , 当n > N 时, S(x) Sn (x) 表示 曲线 y Sn (x) 总位于曲线 y S(x) 与y S(x)
之间.
y S(x)
y S(x)


例.
求证fn ( x)

1
x n2
x2
在(, )上一致收敛.
证明: x (, ),
lim
n
fn ( x)

x
lim
n
1

n2
x
2

0, 逐点收敛于f ( x)

(整理)一致收敛性判别及应用.

(整理)一致收敛性判别及应用.

(整理)⼀致收敛性判别及应⽤.⼀致收敛性判别及应⽤摘要:函数是⾼等数学中重要的内容之⼀,但是函数项级数与函数列的⼀致收敛性问题往往是初学者学习函数的最⼤障碍,本⽂对函数项级数、函数列的⼀致收敛性的常⽤判别⽅法进⾏简单分析并阐述其应⽤。

关键词:函数项级数函数列⼀致收敛判别法及应⽤设(){}n x ?为定义在区间Z 上的函数序列,假如那么就存在x 1,x 2∈Z ,当|x 1-x 2|<,对于⼀切n 有|()()12n -n X X ??|<,则称之为函数序列(){}n x ?在区间Z 上等度连续。

假设函数列{}n ?与函数?定义在区间Z 上,假如对于任意给的正数|()()n x -x ??|<以上情况则称之为{}n ?在区间Z 上⼀致收敛于?。

⼀、函数列及其⼀致收敛性假设1?,2?,,n ?,是⼀列定义在同⼀数集Z 上的函数,那么则称为定义在Z 上的函数列,可以表达为:{}n ?或n ?,n=1,2,。

(1)以x 0∈Z 带⼊以上数列,可以得出以下数列:(2)假如数列(2)收敛,那么则称为数列(1)在点0X 收敛,x 0则是函数列(1)的收敛点,当函数列(1)在数集D Z 上每⼀个收敛点都出现收敛时,则称(1)在数集D 上收敛,这时候D 上⾯的每⼀个点x 都有相应的数列(){}n x ?的⼀个极限值与之相对应,根据这个对应法则所确定的D 上的函数,则称为函数列(1)的极限函数假如将此极限函数记作为?,那么则有:或者是:(),x ∈D例 1 设,n=1,2,,为定义在(-,。

证明:设>0,当>0时,由于有:||=|n x |,只要N (=,当n >(||=|x n |<|x|N =.当x=0,x=1,对于任何正整数n ,都存在||=0<,||=0<.以上结果证明了{}n ?在(]-1,1上收敛。

例2 定义在()-∞∞,上的函数列,n=1,2,。

由于对于任何的实数x ,都存在sin nx n ≤1n,因此,对于任意>0,只要符合n >N=,就存在sin nx-0n<所以,函数列{}sin nx/n 的收敛域为()-∞∞,。

解析函数的泰勒级数展开

解析函数的泰勒级数展开
1
1
( ) = a + a1 ( z 0 )+ a ( z 0) … 1 1 两边乘以 2 i z 1 a0 1 a1( z0 ) 1 a2 ( z0 )2 1 ( ) 2i z 2i z 2i z 2i z
n p

Sn p Sn
k 成立。 k n 1
说明从n>N后面项的和为一小数,所以收敛。 证明见高等数学教材。
6
(3) 复数项级数的收敛定义 如果复数项级数 k 的部分和序列
k
s 有极限S,即
n
s1 1
s2 1 2
这时极限S称为这级数的和
k 1 k
( z z 0) ( z z 0)
k 1
k
ak 1 lim ( z z0 ) 1 k a k
收敛半径为
绝对收敛。 即
a z z0 lim k k a k 1
ak R lim k a k 1
18
2)Cauchy法求收敛半径 k k ak z z 0 <1对收敛。 lim K 收敛半径为 R = lim a
25
三、幂级数性质
1、幂级数在收敛圆内绝对且一致收敛 证明 收敛圆半径为R, 做比收敛圆稍微缩小的圆周C R1 ,半径为R1 ∵
k a ( z z 0) ≤ a k R1
k k
由 a k R 构成的常数项级数
k 1
a R
k 0 k

k
1
则有
a R = lim a R = lim a a R
2 k
、 ….
1
2
2 k

函数项级数的一致收敛性及非一致收敛性判别法归纳

函数项级数的一致收敛性及非一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一 概念引言设函数列{}n f 与函数f 概念在同一数集D 上,假设对任给的正数ε,总存在某一正数N ,使适当N n >时,对一切D x ∈,都有()()ε<-x f x f n 那么称函数列{}n f 在上一致收敛于()x f ,记作()()x f x fn →→()∞→n ,D x ∈ 设()x u n 是概念在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n E x ∈ )1(称为概念在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1, E x ∈, ,2,1=n )2(为函数项级数)1(的部份和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,那么对每一个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.概念1]1[ 设{})(x S n 是函数项级数∑)(x u n 的部份和函数列,假设{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部份和函数列来确信,因此能够依照函数列一致收敛性概念取得等价概念.概念2]1[ 设{})(x S n 是函数项级数∑)(x u n 的部份和函数列,函数列{})(x S n ,和函数)(x S 都是概念在同一数集D 上,假设关于任给的正数ε,总存在某一正整数N ,使适当N n >时,对一切D x ∈,都有ε<-)()(x S x S n ,那么称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.概念3 设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部份和函数列∑==nk n n x u x S 1)()(,假设0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,那么函数项级数∑)(x u n 在区间D 上非一致收敛.例1 试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明 显然∑∞=1n n x 在)1,1(-内收敛于xx-1. 对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xxn nk k1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+ 成立,只要当N n >时,恒有()r r n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依概念,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1. 存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使 ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依概念,∑∞=1n n x 在)1,1(-内不一致收敛.二 函数项级数一致收敛性的判定方式定理1 Cauchy 一致收敛准那么]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使适当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或 ()()()ε<++++++x u x u x u p n n n 21 或()ε<∑++=pn n k kx u 1专门地,当1=p 时,取得函数项级数一致收敛的一个必要条件:推论1 函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D 上一致收敛于0.定理2]2[ 函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3 放大法]3[(){}x S n 是函数项级数()∑x u n 的部份和函数列,和函数)(x S ,都是概念在同一数集D 上,关于任意的n ,存在数列{}n a ()0>n a ,使得关于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,那么称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明 因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使适当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由概念2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要明白)(x S . 定理4 确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是 ()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n证明 充分性 设(){}x S n 是函数项级数()∑x u n 的部份和函数列, )(x S 为和函数,那么有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方式把一致收敛问题转化为求数列极限的问题. 定理5 若()∑x u n 在区间D 上收敛,那么()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明 充分性 假设()∑x u n 在D 上不一致收敛,那么0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此取得{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性 因已知()∑x u n 在D 上一致收敛,因此N ∃>∀,0ε,使适当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,关于{}D x n ⊂∀,那么有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2 设()0≥x u n , 2,1=n ,在[]b a ,上持续,又()x u n ∑在[]b a ,收敛于持续函数()x f ,那么()x u n ∑在[]b a ,一致收敛于()x f .证明 已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,因此[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上持续,既然()ε<x R n ,因此00>∃δ,当()0000,δδ+-∈x x x 时, ()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每一个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}组成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6 M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑概念在数集D 上,∑n M 为收敛的正项级数,假设对一切D x ∈,有 2,1,)(=≤n M x u n x)3(那么函数项级数()x u n ∑在D 上一致收敛.证明 由假设正项级数()x u n ∑收敛,依照函数项级数的Cauchy 准那么,∀0>ε,∃某正整数N ,使适当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1依照函数项级数一致收敛的Cauchy 准那么,级数()x u n ∑在D 上一致收敛.注:假设能用从判定()∑∞=1n n x u 一致收敛,那么()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3 函数项级数∑∑22cos ,sin n nxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin nn nx n n nx ≤≤,而正项级数∑21n 是收敛的. 推论2 设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得关于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,那么函数项级数()∑∞=1n n x u 在区间I 一致收敛证明 已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,那么()n n a k ∑∞=+1ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n pn,当1>p 时收敛,故当n a =p n 1时,有 推论2' 设有函数项级数()∑∞=1n n x u ,假设存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,那么函数项级数()x u n ∑在区间I 一致收敛.例4 证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明 关于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim 2=+++∞→n x n x n n 由的推论2与推论2'得, ∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7 比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,假设N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,那么函数()x u n ∑区间I 绝对一致收敛.证明 已知 ()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准那么知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4 假设有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,那么函数()∑∞=1n n x u 区间I 绝对一致收敛.证明 已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数). 又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3 比较极限法假设有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,假设级数()x v n ∑在区间I 绝对一致收敛,那么函数()∑x u n 在区间I 也绝对一致收敛.证明 由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4 有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,那么函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明 由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知, 函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5 假设函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,那么函数项级数()x b n ∑在区间I 上一致收敛.证明 由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,那么级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5 设函数项级数()∑x u n 概念在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,假设对一切D x ∈,有()()x v x u n n ≥, ,2,1那么函数项级数()∑x u n 在D 上一致收敛.定理9 逼近法[]5假设对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,那么()x u n ∑也在D 上一致收敛于)(x S .证明 设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,因此D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即 +∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;因此+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛概念知, ()x u n n ∑∞=1在D 上也一致收敛于)(x S .定理10 由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,那么[]∑±)()(x v x u nn在D 上也一致收敛证明 由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使 适当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21 ()()ε<++++++x v x v x v p n n n 21)(因此 ()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)( εεε2=+<由函数项级数一致收敛的Cauchy 收敛准那么知,[]∑±)()(x v x u nn在D 上也一致收敛定理11 Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上持续,又()x u n ∑在[]b a ,上收敛于持续函数,那么函数项级数()x u n ∑在[]b a ,一致收敛.利用步骤:⑴判定()0≥x u n 且持续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上持续.Abel 引理定理12 Abel 判别法[]1 证明推论6 设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,那么()()x u x g n∑在D 上一致收敛.证明 因为()x g 在D 上有界,因此,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u pn nk k ε<∑+=,对D x ∈∀成立,此式说明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g p n nk k pn nk k .由Cauchy 准那么知()()x u x g n ∑在D 上一致收敛.定理13 Dirichlet 判别法[]1设(i )()x u n ∑的部份和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调; (ⅲ)在I 上()()∞→→n x v n 0,那么级数和()()x u x v n n ∑在I 上一致收敛.证明 充分性 由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n , 时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,取得 ()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;因此()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++于是由一致收敛的Cauchy 准那么级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,那个地址再也不赘述.例6 假设数列{}n a 单调且收敛于0,那么级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明 由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x xn kx n k 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,因此级数∑nx cos 的部份和函数列在[]απα-2,上一致有界,于是令()()nnna x v nx x u ==,cos ,那么由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14 积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数, ()x u n ∑是概念在数集D 上的正项函数级()()n x f x u n ,=,若是()y x f ,在[)+∞,1上关于y 为单调减函数,假设含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,那么()x u n ∑在数集D 上一致收敛.证明 由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,因此()x u n ∑在数集D 上一致收敛.例7 设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0持续.证明 第一对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,咱们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,而且无穷级数dy e y y ⎰+∞-⋅δδ1收敛,因此含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎬⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得, ()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 持续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也持续,因此()x S 在0x 持续,由0x 在()+∞,0的任意性可知, ()x S 在()+∞,0上持续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者持续作和,后者离散作和,因此它们的一致收敛性概念及判别法都是平行的,而且所表示的函数分析性质(如持续、可微、可积性)也一致,在此不在赘述.由定理14,咱们可利用积分的便利条件判定某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15 函数列(){}x u n 在[]b a ,上持续且单调,级数()∑a u n 和级数()||b u n 收敛,那么级数()x u n ∑在[]b a ,上一致收敛.证明 级数()∑a u n 和()∑b u n 收敛.那么()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上持续且单调,那么()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6 设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且知足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,那么函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明 对0>∀ε,因为b a ,为有限数,因此存在自然数k ,使得()εεk a b k a +≤≤-+1,咱们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时, 对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j j x x u()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u()()εεε+-+≤-=+=∑∑11/1/||i nj j pn j j x x u u()ε12+≤M因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使适当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.定理17 设()x u nn ∑为概念在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每一个()x u n 在上一致可微, ()x u nn ∑/在上一致收敛,记()=x S ()x u nn ∑.定理18 设函数列(){}x u n 在闭区间[]b a ,上持续可微,且存在一点[]b a x ,0∈,使得()x u n n ∑∞=1在点0x处收敛; ()x u n n ∑∞=1/在[]b a ,上一致收敛,那么函数项级数()x u n n ∑∞=1在[]b a ,上一致收敛.证明 已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛, ()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.依照拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2 假设函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明 由函数项级数的柯西收敛准那么有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两头取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准那么知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,那么()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,持续,那么()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19 利用内闭一致收敛判别[]7假设函数项级数()x u n ∑在[)b a ,内闭一致收敛,那么()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛. 证明 必要性,充分性用终归法,那个地址再也不赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能取得函数级数在区间一致收敛的.例8 证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛. 证明 ∑<<∀nx sin ,0,πεε的部份和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知, ∑nnx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n nx n ,2,02ππ,那么0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知, ∑∞=1sin n n nx在()π2,0不一致收敛. 推论7 若()x u n ∑在[)+∞,a 内闭一致收敛,那么()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,, ()x u n ∑皆收敛.证明 与定理19类似,略.定理20[]7 设函数级数()x u n ∑在[)b a ,收敛,且知足引理2中必要条件,那么()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明 必要性 用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,那么由定理20知不可;假设()b a x ,0∈,那么存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性 用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,那么由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8 设()x u n n ∑∞=1在[)+∞,a 收敛,且知足引理的必要条件,那么()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明 与定理20的类似,略.推论12[]4 设∑)(x u n 使概念在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D 上有界,假设D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,那么当1>q 时,∑)(x u n 在D 上一致收敛.证明 由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,因此1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n n n n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n s n s ++≥,因此s S O N SOn sn M N x u N x u n O ≤≤)()(,由1>s 时,∑sSO nMN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13 函数列{})(x u n 概念于数集D 上,且)(1x u 在D 上有界,假设+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,那么函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明 不妨设关于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,那么1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,那么当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1因此1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14 函数列{})(x u n 概念于数集D 上,且)(1x u 在D 上有界,假设D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,那么函数项级数在D 上一致收敛.证明 因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε )1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11 判定函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛性. 证明 因为11)(1≤=xx u , 且 11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛. 定理23[]8 (根式判别法)设∑)(x u n 为概念在数集D 上的函数项级数,记n n n x u x q )()(=,假设存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,那么函数项级数∑)(x u n 在D 上一致收敛.证明 由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8 (根式判别法的极限形式)设)(x u n 为概念在数集D 上的函数列,假设nn x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,那么函数项级数∑)(x u n 在D 上一致收敛.证明 由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,因此εε+<+<q x q x u n n )()(,因此n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51' 设()∑x u n 为概念在数集D 上的正项函数项级数,记()n n n x u q =,假设()1sup lim <=∈∞→q x q n Dx n ,那么函数项级数()∑x u n 在D 上一致收敛.证明 由假设()1sup lim <=∈∞→q x q n Dx n ,那么存在正整数N ,使适当N n >时,有()1<≤q x q n ,那么对任意的N n >,D x ∈∀有 ()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12 函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()xnx u q nn n n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n D x n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛. 推论16[]8 有函数项级数()∑x u n ,假设对D x ∈∀,有()1lim <=∞→l x u n n n ,那么函数项级数()∑x u n 在D 上一致收敛.证明 因()1lim <=∞→l x u n n n ,那么1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13 判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明 因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上一致收敛.定理24[]8 (对数判别法)设()x u n 为概念在D 上的正的函数列,假设()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,那么函数项级数()∑x u n 一致收敛;②假设对D x ∈∀,()1<<p x p ,那么函数项级数()∑x u n 不一致收敛.证明 由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln , 即()()()εε-+<<x p n x p n x u n 11,那么当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25 设函数项级数()∑x u n ,()∑x v n 都是概念在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q D x =∈;①当+∞<=21,0q q 时,假设()∑x v n 在D 上一致收敛,那么()∑x u n 在D 上也一致收敛. ②当+∞=>21,0q q 时,假设()∑x u n 在D 上一致收敛,那么()∑x v n 在D 上也一致收敛. ③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛. 证明 由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,那么任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n,取得()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部份可知假设()∑x v n 在D 上一致收敛,那么()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部份可知假设()∑x u n 在D 一致收敛,那么()∑x v n在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5概念4 设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的持续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,那么称这种级数为Lipschitz 型函数项级数.定理26 假设()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,那么①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明 ①因为()x u n 是[]b a ,上的持续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于持续函数()0=x u .因此()()x u x u k k 1+-在[]b a ,持续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,因此()1111≤-∑=+n k k ,故()∑=+-nk k 111一致有界,由Dirichlet 判别法知交织函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14 试证()∑+--211x n n 在区间[]b a ,一致收敛.证明 ⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的持续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17 设函数列(){}x S n 在[]b a ,上收敛于)(x S ,假设()x S n 可写成L 型函数项级数的部份和,那么函数列(){}x S n 在上一致收敛于)(x S .证明 设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k n k k n ∑=+-=111,那么对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15 证明()∑-xnn 11在[)+∞,δ上一致收敛. 证明 因为[)+∞∈∀,δx ,()x xnn 1110≤+≤,01lim =∞→x n n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k211,由Cauchy 准那么证毕.定理27[]9 利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,那么①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1 Cauchy 准那么与M 判别法比较有效一样优先考虑;2 Cauchy 准那么、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对必然的表达式进行有效是我放大.三 非一致收敛性的判别 1 利用非一致收敛的概念概念3,略.例16 讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是不是一致收敛.解 ()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,不管n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2 利用确界原理的逆否命题定理28 假设函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明 它是确界原理的逆否命题,故成立.例17 函数项级数()∑x u n 的部份和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是不是一致收敛.证明 部份和函数()xx x S nn --=11,当1<x 时,()(),11lim x x S x S n n -==∞→又当∞→n 时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数明白时值得用3 利用定理5的逆否命题定理29 设()()x S x u n =∑,假设存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,那么()∑x u n 在D 上不一致收敛.证明 略.注:此定理比较有效.4 利用Cauchy 准那么逆否命题定理30 函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明 它是Cauchy 准那么的逆否命题,故成立. 例18 讨论∑nnxsin 在[]π2,0=D 上的一致收敛性. 解 取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>o ε= 故∑nnxsin 在[]π2,0=D 上非一致收敛. 注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方式,即取1=p 能适用于很多例题.此方式比较有效,优先考虑.推论18 函数列(){}x u n 在上非一致收敛于0,那么函数项级数()∑x u n 在数集D 上非一致收敛.证明 它是推论1的逆否命题,故成立. 例19 设()()()()12sin 1212cos +⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解 取()12+=n n x n ,那么()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,因此(){}x u n 在概念域内非一致收敛于0,那么()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9 假设函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim≠∞→n n n x u ,那么函数项级数()∑x u n 在区间D 上非一致收敛. 例20 讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解 因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛. 5 利用求极值的方式定理31 ()()∑∞+==1n k kn x u x R ,假设()0sup lim ≠∈∞→x R nDx n ,那么()∑x u n 在D 上不一致收敛.例21 证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明 因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,因此()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,因此[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛. 注:极限函数明白时,可考虑用.6 利用一致收敛函数列的一个性质判别[]10引理2 假设持续函数列(){}x f n 在区间D 上一致收敛于()x f ,那么D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim证明 由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .依照持续函数列(){}x f n 在区间D 上一致收敛于()x f ,那么()x f 也必在D 上持续,从而()()o n n n x f x f =∞→lim .定理32 持续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}D x n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 那么函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22 讨论∑+221xn x在()+∞∞-,上一致收敛性. 解 显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上持续,取() ,2,11==n n x n ,那么0lim =∞→n n x .再设()221x k xx u k +=,由定积分概念。

【微积分】09-函数项级数

【微积分】09-函数项级数

【微积分】09-函数项级数1. ⼀致收敛函数1.1 函数项级数 前⾯讨论了数列的极限和级数,它们都是对单点的逼近,现在我们把这些讨论扩展到函数对象。

设u_1(x),u_2(x),\cdots是同⼀定义域上的函数序列,则式(1)左被称为函数项级数,式(1)右是它的部分和函数。

如果S_n(x)处处收敛于S(x),则S(x)称为函数项级数的和函数。

函数项级数问题的本质其实就是函数序列\{S_n(x)\}的问题,下⾯的叙述更多地是讨论函数序列\{f_n(x)\}的性质。

\sum\limits_{n=1}^{\infty}u_n(x)=u_1(x)+u_2(x)+\cdots;\quad S_n(x)=\sum\limits_{k=1}^{n}u_k(x)\quad\tag{1} 关于函数项级数(函数序列),我们更关⼼的不是它在单点的收敛条件,⽽是着重讨论和函数S(x)(极限函数f(x))的分析性质。

主要包括它的连续性、可微性和可积性,以及这些分析性质与函数序列分析性质的关系,这样的讨论反过来可以⽤函数序列的分析性质来近似和函数的分析性质,这使得⽤简单函数模拟和研究复杂函数成为可能。

但要有这样的关系,函数序列还要满⾜⼀些条件。

⽐如函数序列x^n在[0,1]上都是连续的,但它们的极限函数在[0,1)上为0,但在x=1时为1,并不连续。

再看函数序列\dfrac{\sin{nx}}{\sqrt{n}},它的极限函数恒为0,导数⾃然为0,但通项的导函数\sqrt{n}\cos{nx}在有理点极限却为⽆穷。

再⽐如函数序列2nxe^{-nx^2},它在[0,1]上的极限函数恒为0,故积分也为0,但通项的积分却恒为1。

1.2 ⼀致收敛的判定 仔细观察上⾯分析性质不⼀致的例⼦,你会发现本质上是因为,函数序列在每⼀点并不是“同时”收敛于极限函数,这导致了函数序列与极限函数并不“相似”,从⽽也就不会有相同的分析性质。

为此我们定义⼀种类似⼀致连续的收敛,即对任意\varepsilon>0,当n⾜够⼤后总有式(2)成⽴,则称函数序列f_n(x)⼀致收敛于f(x)。

绝对收敛与一致收敛

绝对收敛与一致收敛

绝对收敛与一致收敛
绝对收敛是指数列或级数的收敛性质,而一致收敛是函数序列或函数级数的收敛性质。

对于数列来说,如果数列的绝对值收敛,即数列的绝对值序列收敛,则称该数列绝对收敛。

绝对收敛的一个重要性质是,绝对收敛的序列一定是收敛的,也就是说,如果数列绝对收敛,则它必定收敛。

对于级数来说,如果级数的绝对值序列收敛,即级数的绝对值级数收敛,则称该级数绝对收敛。

绝对收敛的一个重要性质是,绝对收敛的级数对于项的排列顺序是不敏感的,即无论如何重新排列级数中的项,仍然会收敛到同一个值。

一致收敛是指函数序列或函数级数在其定义域内的每一个点上都收敛,并且收敛速度对于不同点是一致的。

具体来说,对于函数序列来说,如果对于任意给定的ε>0,存在一个正整数N,当n≥N时,函数序列的每一个函数都满足|fn(x)-f(x)|<ε,其中
f(x)是函数序列的极限函数,则称函数序列一致收敛于f(x)。

对于函数级数来说,如果对于任意给定的ε>0,存在一个正整
数N,当n≥N时,函数级数的部分和函数与其极限函数的差
的绝对值在定义域内的每一个点上都小于ε,则称函数级数一
致收敛于其极限函数。

绝对收敛与一致收敛的区别在于,绝对收敛关注的是数列或级数的项的绝对值的收敛性质,而一致收敛关注的是函数序列或函数级数在定义域内的每一个点上的收敛性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档