高等数学课后答案第八章习题详细解答Word版

合集下载

高等数学(同济第七版)第八章课后答案

高等数学(同济第七版)第八章课后答案

a -c.
l)3 A = -(1IH + Ill)一;)= - 卡 - c.
4
一、《高等数学》{第七版)下00习�全解
言。 .
D4r1 =
?’ … -
(
,18
+
b
BD4)
=

a
- c.
a,i 4.已知l网点M 1 (0.l.2)利l M2 (1. -l. 0).试用卢I生 f,T; .-t< ,1�式表不,:., :,, .11 , 叫戊
nt Fi,, 14.试iif.nJJ以气!!X A(4. I.9). R( 10. - I.的.r.(2.4.3)为顶点的 · ((1 ff�{(: :Y 1'1 <r1
?角:/巳.
iiF. 111 I A革I :=/(10-4) 1 +(-I-I) ) +(。-9) 2 ::7.
I |元 =/(2-4) 2 +<.:i-门 2 +(3-9)1::7,
” 17. 的,,Jr,川
I I I ..!.. = 饵 U知 Ir =4.贝lj l勺’j,, r
r ,·o执 0=4 ·叫 王 : 4X =2.
3
2
: J: 18. 才句 (I() 1 右,-�� fl:点IJ(2. 叶 ,7). 'l;:.° (1: .t 输 、y圳和 z 4111 l二的投影依次为4, -4和1

yOz

( 2) 111 ("O揭 β=!!刘lβ=0 , 攸向;,t与 ) 4·111 la]向.JliJI'β=0知。=β= 旦 2 . 伙向没if'i自于宫和h和I J'轨,且II与z都Ii平行,

《高等数学》第八章习题答案

《高等数学》第八章习题答案
3、 x + 2 y − 4 = 0 ;
6、 x − y + 2 z = ± (B) 1、略。 8.6
11 。 2
1、 (1)0; (2)0; (3)
3 5 3 + 2; (4) + 2。 2 2 2
2、
1 2 3 + + 3。 2 2 2
3、 x0 − y 0 + z 0 。 4、略。 5 、 gradu = 2i − 4 j + k 是 方 向 导 数 取 最 大 值 的 方 向 。 此 方 向 导 数 的 最 大 值 为
(x2 + y 2 ) 2 2 (dx + dy ) 。 3 12 π 3、 ∆z = arctan − , dz = 0.05 。 11 4
2、 (B) 1、 2.95 。2、 2.039 。 8.4 (A) 1、 e 2、
sin t − 2 t 2
(cos t − 4t ) 。
1 (2 − 15t 2 ) 。
(5)
∂z yze xy ∂z yxe xy = = ; 。 ∂x 3 z − 1 ∂y 3z − 1 ∂f ∂f ∂f , , 。 ∂x ∂y ∂z
(B) 1、提示:求出
∂2z ∂2z 2、提示:求出 2 ; 2 。 ∂x ∂y
8.5 (A) 1、 { ,2,3} , 1
x −1 y −1 z −1 = = 。 1 2 3 x − 1 + sin 1 y − 1 + cos 1 z − 4 sin 1 2、 = = ; 1 + cos 1 sin 1 4 cos 1
1 − (2t − 5t )
3 2
3、
∂z ∂z = 4x ; = 4y 。 ∂x ∂y

高等数学作业集答案第八章Word版

高等数学作业集答案第八章Word版

1 / 16第八章 空间解析几何与向量代数§8.1向量及其线性运算 1.填空题(1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-).(2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--).2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角.解:因为)0,1,1(21=M M ,故2||21=M M ,方向余弦为22cos =α,22cos =β,0cos =γ,方向角为4πα=,4πβ=, 2πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y ,即⎪⎩⎪⎨⎧-+-+=-+-+-+=-+222222)3()3(9)2()1(4)2(4)1(1z y z y z z ,解得⎩⎨⎧==33y z ,则该点为)3,3,0(.4. 求平行于向量k j i a 432-+=的单位向量的分解式.解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为29)4(32||222=-++=a ,所以)432(291k j i e a -+±=.5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量.解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为k k a z 7-=.6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.解:设所求的点为),,0(z y P ,由||||||CM BM AM ==可得⎪⎩⎪⎨⎧-+++=+-++-+=-+-+222222222222)1()1(1)1(2)1(2)1()2(1z y z y zy z y ,解之得21=y ,0=z 故所求的点为)0,21,0(.7. 已知点)6,2,1(-B 且向量AB 在x 轴、y 轴和z 轴上的投影分别为1,4,4-,求点A 的坐标.解:设点A 的坐标为),,(z y x ,由题意可知)1,4,4()6,2,1(-=----z y x ,则5,6,5=-==z y x ,即点A 的坐标为)5,6,5(-.8.试用向量法证明:三角形各边依次以同比分之,则三个分点所成的三角形必与原三角形有相同的重心.证明:若),,(111z y x A 、),,(222z y x B 、),,(333z y x C 是一个FGH ∆的三个顶点,设三角形的重心为E,则),,(31)(31321321321z z z y y y x x x C B A E ++++++=++=设ABC ∆的同比nm之分点分别为F 、G 、H ,分点的坐标为),,(212121mn mz nz m n my ny m n mx nx F ++++++),,(323232mn mz nz m n my ny m n mx nx G ++++++),,(131313mn mz nz m n my ny m n mx nx H ++++++则三角形FGH ∆的重心为,()(31133221mn mx nx m n mx nx m n mx nx H G F ++++++++=++),133221133221mn mz nz m n mz nz m n mz nz m n my ny m n my ny m n my ny ++++++++++++++++),,(31321321321z z z y y y x x x ++++++=. 所以三个分点所成的三角形必与原三角形有相同的重心. §8.2 数量积 向量积 1.若3),(,4||,3||π===Λb a b a ,求b ac 23-=的模.解:b b b a a b a a b a b a c 22233233)23()23(||2⋅+⋅-⋅-⋅=-⋅-=73443cos431239||412||92222=⨯+⨯⨯⨯-⨯=+⋅-=πb b a a所以73||=c .2.已知||||b a b a -=+,证明:0=⋅b a .证明:由||||b a b a -=+,可得22||||b a b a -=+,可知)()()()(b a b a b a b a -⋅-=+⋅+,展开可得b a b a b a b a ⋅-+=⋅++2||||2||||2222,即04=⋅b a ,故0=⋅b a . 3.已知20||,18||,10||=+==b a b a ,求||b a -. 解:因为ba b a b a b a b a b a ⋅++=⋅++=+⋅+=+=23241002||||)()(||400222 所以242-=⋅b a ,)()(||b a b a b a -⋅-=-b a b a ⋅-+=2||||227824324100=++=.4.已知)4,2,1(=a ,)3,3,3(-=b ,求a 与b 的夹角及a 在b 上的投影. 解:934)3(231=⨯+-⨯+⨯=⋅b a ,7799916419cos =++⋅++=θ,77arccos =θ. 因为a jb b a b Pr ||=⋅,所以3339Pr ==a jb .5.已知a ,b ,c 为单位向量,且满足0=++c b a ,计算a c c b b a ⋅+⋅+⋅.解:因为0)()(=++⋅++c b a c b a ,所以0222||||||222=⋅+⋅+⋅+++a c c b b a c b a ,而1||||||222===c b a ,所以23-=⋅+⋅+⋅a c c b b a .6.求与k j i b k j i a 32,2-+=++=都垂直的单位向量. 解:kj i k j i kji b a c 357122132113112312121-+-=+---=-=⨯=而83)3(5)7(||222=-++-=c ,所以)3,5,7(831--±=c e .7.设)(8,186,5b a b a b a -=+-=+=,试证A 、B 、D三点共线.证明:只需证明BD AB //.因为b a b a 2)5(2102=+=+=+=,所以//.8.已知)3,2,1(-=a ,=b )0,,2(m ,)9,3,9(-=c(1)确定m 的值,使得b a +与c 平行. (2)确定m 的值,使得b a -与c 垂直.解:(1)要使b a +与c 平行,只需0=⨯+c b a )(,因为b a +)3,2,3(-=m ,而c b a ⨯+)()99,0,99(32m m m j--=--=,所以当1=m 时b a +与c 平行.(2)要使b a -与c 垂直,只需0)(=⋅-c b a ,因为b a -)3,2,1(---=m ,而c b a ⋅-)(24327639)9,3,9()3,2,1(+=+++-=-⋅---=m m m ,所以当8-=m 时,b a -与c 垂直. §8.3 曲面及其方程 1.填空题(1)将xOz 坐标面上的抛物线x z 42=绕x 轴旋转一周,所生成的旋转曲面的方程为(x y z 422=+),绕z 轴旋转一周,所生成的旋转曲面的方程为(2224y x z +=).(2)以点)2,3,2(-为球心,且通过坐标原点的球面方程为(17)2()3()2(222=-+++-z y x ).(3)将xOy 坐标面的圆422=+y x 绕x 轴旋转一周,所生成的旋转曲面的方程为(4222=++z y x ).2.求与点)1,2,1(A 与点)2,0,1(B 之比为2:1的动点的轨迹,并注明它是什么曲面.解:设动点为),,(z y x P ,由于2:1||:||=PB PA ,所以222222)2()0()1()1()2()1(2-+-+-=-+-+-z y x z y x ,解之,可得0194166333222=+---++z y x z y x ,即920)32()38()1(222=-+-+-z y x ,所以所求的动点的轨迹为以点)32,38,1(为心,半径为352的球面. 3.求与点)3,1,2(和点)4,2,4(等距离的动点的轨迹.解:设动点为),,(z y x P ,由题意知222222)4()2()4()3()1()2(-+-+-=-+-+-z y x z y x ,整理得0112=-++z y x .4. 写出下列曲面的名称,并画出相应的图形. (1)259916222-=--z y x . 解:该曲面为单叶双曲面. (2)259916222=--z y x . 解:该曲面为双叶双曲面.(3)1254222=++z y x . 解:该曲面为旋转椭球面. (4)x y x 922=-. 解:该曲面为双曲柱面. (5)x z y 922=+. 解:该曲面为椭圆抛物面.(6)0)3()2()1(4222=---+-z y x . 解:该曲面为椭圆锥面.§8.4 空间曲线及其方程 1. 填空题(1)二元一次方程组⎩⎨⎧-=+=3412x y x y 在平面解析几何中表示的图形是(两相交直线的交点)5,2();它在空间解析几何中表示的图形是(两平面的交线,平行于z 轴且过点)0,5,2().(2)旋转抛物面)20(22≤≤+=z y x z 在xOy 面上的投影为(⎩⎨⎧=+=222z y x z ),在xOz 面上的投影为(22≤≤z x ),在yOz 面上的投影为(22≤≤z y ).2.求球面4222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.解:将x z -=1代入4222=++z y x ,得4)1(222=-++x y x ,因此投影方程为⎩⎨⎧=+-=322022y x x z .3.分别求母线平行于x 轴、y 轴及z 轴且通过曲线⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 的柱面方程.解:在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去x 得4322=-z y ,即为母线平行于x 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去y 得45322=+z x ,即为母线平行于y 轴且通过曲线的柱面方程.在⎪⎩⎪⎨⎧=+-=++0242222222z y x z y x 中消去z 得8522=+y x ,即为母线平行于z 轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧-==++-14)1(222x y z y x .解:将1-=x y 代入4)1(222=++-z y x 得4)1(222=+-z x ,即14)2()1(222=+-z x . 令θcos 21=-x ,θsin 2=z ,所求的参数方程为⎪⎪⎩⎪⎪⎨⎧==+=θθθsin 2cos 2cos 21z y x . (2)⎪⎩⎪⎨⎧=+=++4922222z x z y x .解:做变换⎩⎨⎧==θθsin 2cos 2z x ,将其带入方程9222=++z y x ,即得52=y .所以参数方程为⎪⎩⎪⎨⎧=±==θθsin 25cos 2z y x (πθ20≤≤).5.求螺旋线⎪⎩⎪⎨⎧===θθθ3sin 2cos 2z y x 在三个坐标面上的投影曲线的直角坐标方程.解:螺旋线在xOy 面上的投影为⎪⎩⎪⎨⎧===0sin 2cos 2z y x θθ,直角坐标方程为⎩⎨⎧==+0422z y x . 螺旋线在yOz 面上的投影为⎪⎩⎪⎨⎧===03sin 2x z y θθ,直角坐标方程为⎪⎩⎪⎨⎧==03sin2x z y . 螺旋线在zOx 面上的投影为⎪⎩⎪⎨⎧===03cos 2y z x θθ,直角坐标方程为⎪⎩⎪⎨⎧==03cos2y z x . 6.画出下列方程所表示的曲线:(1)⎩⎨⎧==++1164222z z y x .(2)⎪⎩⎪⎨⎧=-+=+1)2(2222y x y z x .(3)⎪⎩⎪⎨⎧==-4116422y z x .§8.5 平面及其方程 1. 填空题(1)一平面过点)4,1,1(-且平行于向量)1,1,2(-=a 和)1,0,1(=b ,平面的点法式方程为(0)4()1(3)1(=+----z y x ),平面的一般方程为(023=---z y x ),平面的截距式方程(12232=-+-+z y x ),平面的一个单位法向量为()1,3,1(1111-). (2)设直线L 的方程为⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A ,当(021==D D )时,直线L 过原点;当(021==A A )且(01≠D 或02≠D 有一个成立)时,直线L 平行于x 轴但不与x 轴相交;当(2121D D B B =)时,直线L 与y 轴相交;当(02121====D D C C )时,直线L 与z 轴重合.2.求过三点)1,1,1(-,)3,1,3(-和)2,1,0(的平面方程. 解:由平面的三点式方程知,所求的平面方程为131313121212111z z y y x x z z y y x x z z y y x x ---------121110131113111-+---+--+-=z y x121422111---+-=z y x =0,即0735=-++z y x . 3.求过点)1,1,1(-且垂直于两平面02=-+z y x 和052=+-z y x 的平面方程.解:该平面的法向量为k j i kj i37521211--=--,平面的方程为0)1(3)1(7)1(=--+--z y x ,即0537=---z y x .4.求点)1,2,1(到平面01022=-++z y x 的距离.解:点),,(0000z y x P =到平面0=+++D Cz By Ax 的距离公式是222000||CB A D Cz By ax d +++++=,因此点)1,2,1(到平面01022=-++z y x 的距离为1221|10122211|222=++-⨯+⨯+⨯=d .5.求平面052=-+-z y x 与各坐标面的夹角的余弦.解:所给平面的法向量为)1,2,1(-=n ,设该平面与xOy 面、yOz 面和zOx 面的夹角为z θ、x θ和y θ,于是=z θcos ||||n k n ⋅611)2(1|110201|222=+-+⨯+⨯-⨯=, =x θcos ||||n i n ⋅611)2(1|010211|222=+-+⨯+⨯-⨯=, =y θcos ||||n j n ⋅621)2(1|011201|222=+-+⨯+⨯-⨯=. 6.求过点)5,4,1(-且在三个坐标轴上的截距相等的平面的方程. 解:设所求平面的方程为1=++aya y a x ,由于点)5,4,1(-在平面上,则1541=+-+aa a ,2=a ,所求方程为02=-++z y x . 7.分别按下列条件求平面方程:(1)平行于yOz 平面且经过点)2,3,2(--;(2)通过y 轴和点)1,1,2(-;(3)求平行于x 轴,且经过两点)2,1,2(-和)1,0,4(-的平面方程. 解:(1)yOz 平面的法向量是)0,0,1(=n ,可作为所求平面的法向量,因此所求平面的方程为0)2(0)3(0)2(1=+⋅++⋅+-⋅z y x ,即2=x .(2)所求平面的法向量即垂直于y 轴又垂直于向量)1,1,2(-=n ,所以所求平面的法向量为k i kj i 2010112+-=-,因此所求平面的方程为0)1(2)1(0)2(1=-⋅++⋅+-⋅-z y x ,即02=-z x .(3)由于所求平面平行于x 轴,故设所求平面方程为0=++D Cz By . 将点)2,1,2(-和)1,0,4(-分别代入0=++D Cz By 得02=+-D C B 及0=+-D C ,解得D C =及D B =. 因此所得方程为0=++D Dz Dy ,即01=++z y . §8.6 空间直线及其方程 1. 填空题 (1)直线421z y x =-=和平面442=+-z z x 的关系是(平面与直线互相垂直).(2)过点)0,1,1(-且与直线321123-+=-=-z y x 平行的直线的方程是(31121-=+=-zy x ). (3)直线182511+=--=-z y x 与直线⎩⎨⎧=+=-326z y y x 的夹角为(3π). 2.化直线⎩⎨⎧=++=+-522z y x z y x 为对称式方程和参数方程.解:直线的方向向量为k j i kj i n n s 3211211121++-=-=⨯=. 取10=x ,代入直线方程可得10=y ,20=z . 所以直线的对称式方程为321121-=-=--z y x . 令t z y x =-=-=--321121,所给直线的参数方程为⎪⎩⎪⎨⎧+=+=-=tz t y t x 32121.3.求过点)3,0,2(且与直线⎩⎨⎧-=-+=+-1253742z y x z y x 垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即21n n n ⨯=)11,14,16(253421-=--=kj i .所求平面的方程为0)3(11)0(14)2(16=-+-+--z y x ,即01111416=+--z y x .4. 求直线⎩⎨⎧=---=-+-01023z y x z y x 与直线⎩⎨⎧=-+=+-+01202z y z y x 夹角的余弦.解:因为两直线的方向向量为k j i kji n 2241111311++=---=,k j i kj i n +-=-=232101112,设两直线的夹角为θ,则422151)2(3224|122234|cos 222222=+-+++⨯+⨯-⨯=θ. 5. 求点)5,1,2(P 在直线:L13111-=-=-zy x 上的投影. 解:过)5,1,2(P 作垂直于已知直线L 的平面∏,则其法向量)1,3,1(-=n ,于是平面的方程为0)5()1(3)2(=---+-z y x ,即03=-+z y x .将已知直线的参数方程⎪⎩⎪⎨⎧-=+=+=t z t y t x 311代入03=-+z y x ,可得114-=t ,因此点)5,1,2(P 在直线L 上的投影即为平面∏与直线L 的交点)114,111,117(-.6. 求直线:L ⎩⎨⎧=---=+-083032z y x z y x 在平面:∏12=+-z y x 上的投影直线的方程. 解:设所给直线L的平面束方程为0)83(32=---++-z y x z y x λ,即08)1()3()32(=--++-+λλλλz y x ,其中λ为待定常数,要使该平面与已知平面∏垂直,则有0)1()3()32(2=-++++λλλ,解得34-=λ,将其代入08)1()3()32(=--++-+λλλλz y x ,可得32756=-+z y x ,因此直线L 在平面∏上的投影直线方程为⎩⎨⎧=+-=-+1232756z y x z y x . 7.确定λ的值,使直线:L ⎩⎨⎧=-+=-+02012z x y x 与平面1:=-+∏z y x λ平行,并求直线L 与平面∏之间的距离.解:直线L 的方向向量n k j i kj i --==2101012,要使直线L 与平面∏平行,只要0=⋅s n (其中=s )1,,1(-λ为平面∏的法向量),即0121=+-λ,解得1=λ. 令10=x ,代入直线L 的方程可得10-=y ,10=z ,直线L 与平面∏之间的距离332)1(11|1)1(11111|222=-++--⨯+⨯-⨯=d .8.求通过直线⎩⎨⎧=-++=-+-02201:z y x z y x L 的两个互相垂直的平面,其中一个平面平行于直线111121-=-+=-z y x . 解:设平面束方程为0)22(1=-+++-+-z y x z y x λ,即12)1()1()12(=--++-++λλλλz y x ,=n )1,1,12(+-+λλλ. 设平行于直线111121-=-+=-z y x 的平面为1∏,由0)1()1(2)12(=++--+λλλ,可知1-=λ,令10=x ,代入直线L 的方程,可得000==z y 平面1∏的方程为02)1(=---y x ,即012=-+y x . 设垂直于平面1∏的平面为2∏,由0)1(2)12(=-++λλ,可得41=λ,平面2∏的方程为04543)1(23=+--z y x ,即06536=-+-z y x . 第八章 空间解析几何与向量代数综合练习 1.填空题:(1)已知1||=a ,2||=b ,且a 与b 夹角为3πθ=,则=-||b a (3).(2)若向量)1,2,1(-=a ,=b ),,3(μλ-平行,则=),(μλ()3,6(-). (3)已知向量OM 的模为10,且与x 轴的夹角为6π,与y 轴的夹角为3π,与z 轴的夹角为锐角,则OM =() 0 5, , 3(5).(4)曲线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos (a 、b 为常数)在xOy 平面上投影曲线是(⎩⎨⎧==+0222z a y x ). (5)xOy 平面上曲线16422=-y x 绕x 轴旋转一周所得旋转曲面方程是 (16)(4222=+-z y x ). (6)直线pz z n y y m x x 111-=-=-与平面0=+++D Cz By Ax 的夹角θ 的正弦=θsin (222222CB A pn m pC nB mA ++++++).(7)方程y z x =-22所表示的曲面名称为(双曲抛物面).(8)与两直线⎪⎩⎪⎨⎧+=+-==tz t y x 122及112212-=-=+z y x 都平行,且过原点的平面方程是(0=+-z y x ).(9)已知动点),,(z y x P 到yOz 平面的距离与点P 到点)2,1,1(-的距离相等,则点P 的轨迹方程为(012)2()1(22=++-+-x z y ).(10)与两平面012=--+z y x 和032=+-+z y x 等距离的平面方程为(012=+-+z y x ).2. 设k i a -=,k j i b ++=,求向量c ,使得b c a =⨯成立,这样的c 有多少个,求其中长度最短的c .解:设=c ),,(z y x ,则c a⨯y x z y zy++-=-=)(10,则1,1-=+=x z y ,因此这样的c )1,1,(x x --=,有无穷个.由于||c 23)21(2)1(1222++=--++=x x x ,因此,当21-=x 时,即c )21,1,21(--=长度最短.3. 已知点)0,1,1(A 和点)2,1,0(B ,试在x 轴上求一点C ,使得ABC ∆的面积最小.解:设)0,0,(x C ,则)2,0,1(-=,)0,1,1(--=x,k j x i x AC AB +-+=---=⨯)1(221101,故ABC ∆的面积为1)]1(2[221||2122+-+=⨯=x S ,显然,当1=x 时,ABC ∆的面积最小,为25,所求点为)0,0,1(. 4. 求曲线⎪⎩⎪⎨⎧+==+-2222242yx z z y x 在各坐标平面上的投影曲线方程.解:在xOy 平面投影为⎩⎨⎧==-04222z y x ;在yOz 平面投影为⎩⎨⎧==-043222x y z ;在zOx 平面投影为⎩⎨⎧==-04322y z x . 5.求原点关于平面:∏0=+++D Cz By Ax 的对称点的坐标. 解:过原点作垂直于平面0=+++D Cz By Ax 的直线,该直线的方向向量等于平面∏的法向量),,(C B A ,所求直线的对称式方程为C z B y A x ==,即⎪⎩⎪⎨⎧===Ctz Bt y Atx 为其参数方程. 将此参数方程代入平面∏,有0)(222=+++D t C B A ,解得222CB A Dt ++-=,即直线与平面的交点为),,(222222222CB A CDC B A BD C B A AD ++-++-++-. 设所求的对称点为),,(000z y x ,则222020C B A ADx ++-=+,222020C B A BD y ++-=+,222020CB A CDz ++-=+,即所求的对称点为)2,2,2(222222222C B A CDC B A BD C B A AD ++-++-++-.6.求直线11111:--==-z y x L 在平面012:=-+-∏z y x 上的投影直线绕x 轴线转一周所成曲面的方程.解:过L 作垂直于平面∏的平面0∏,所求的直线L 在平面∏上的投影就是平面∏和0∏的交线. 平面0∏的法向量为:k j i kj i n 232111210--=--=,则过点),,(101的平面0∏的方程为:0)1(23)1(=----z y x ,即0123=+--z y x . 所以投影线为⎩⎨⎧=+--=-+-0123012z y x z y x . 将投影线表示为以x 为参数的形式:⎪⎩⎪⎨⎧--==)12(212x z x y ,则绕x 轴的旋转面的方程为2222)]12(21[)2(--+=+xx z y ,即0416*******=+---z y x x .7.求球心在直线11212--==-z y x 上,且过点)1,2,1(-和点)1,2,1(--的球面方程.解:设球心为),,(z y x ,则222222)1()2()1()1()2()1(-++++=++-+-z y x z y x ,即02=-+z y x .又因为球心在直线上,直线的参数方程为⎪⎩⎪⎨⎧-==+=t z t y t x 122,将直线的参数方程代入02=-+z y x ,可得61-=t ,球心坐标为)67,31,611(-,所求球面方程为665)67()31()611(222=-+++-z y x .8.已知两条直线的方程是142211:1--=+=-z y x L ,10122:2z y x L =-=-,求过1L 且平行于2L 的平面方程.解:因为所求平面过1L ,所以点)4,2,1(-在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为k j i kj i 432102121--=-. 因此所求平面的方程为0)4(4)2(3)1(2=--+--z y x ,即08432=+--z y x .9. 在过直线⎩⎨⎧=++=+++0201z y x z y x 的所有平面中,求和原点距离最大的平面.解:设平面束方程为0)2(1=++++++z y x z y x λ,即01)1()1()12(=++++++z y x λλλ,平面与原点的距离为31)32(61)1()1()12(|10)1(0)1(0)12(|2222++=++++++⨯++⨯++⨯+=λλλλλλλd要使平面与原点的距离最大,只要32-=λ,即该平面方程为03=---z y x .10. 设两个平面的方程为052=---z y x 和062=--+z y x(1)求两个平面的夹角. (2)求两个平面的角平分面方程. (3)求通过两个平面的交线,且和yOz 坐标面垂直的平面方程.解:(1)两个平面的法向量为)1,1,2(1--=n 和)2,1,1(2-=n ,设两个平面的夹角为θ,则21)2(111)1(2|)2()1(1112|||||||cos 2222222121=-+++-+-⨯-+⨯-⨯=⋅=n n n n θ, 所以3πθ=.(2)因为角平分面上任意一点),,(z y x 到两个平面的距离相等,由点到平面的距离公式,可得222222)2(11|62|)1()1(2|52|-++--+=-+-+---z y x z y x ,即)62(52--+±=---z y x z y x ,所求的角平分面方程为12=+-z y x 或1133=-z x .(3)设通过两个平面的交线的平面方程为)62(52=--++---z y x z y x λ,即0)65)12()1()2(=--+--++λλλλz y x ,由于该平面垂直于yOz 坐标面,所以00)12(0)1(1)2(=⋅+-⋅-+⋅+λλλ,可得2-=λ,因此所求的平面方程为0733=--z y .11. 求直线321zy x =-=绕z 轴旋转所得旋转曲面的方程. 解:由于空间曲线⎪⎩⎪⎨⎧===)()()(t z z t y y t x x )(+∞<<-∞t 绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=+=+)()()(2222t z z t y t x y x )(+∞<<-∞t ,消去参数t 即可. 此直线的参数方程为 ⎪⎩⎪⎨⎧=-==t z t y tx 32,故该直线绕z 轴旋转所得旋转曲面的方程为⎩⎨⎧=-+=+t z t t y x 3)2()(2222,消去参数t ,旋转曲面的方程为22295z y x =+. 12. 画出下列各曲面所围立体的图形: (1)0,0,0,12643====++z y x z y x . (2)2,222=+=z y x z . (3)22224,y x z y x z --=+=. (4)2222,2y x z y x z +=--=.(5)222y x z +=,22x z -=.(6)2x y =,0=z ,y z =,1=y .友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

高等数学课后习题答案--第八章

高等数学课后习题答案--第八章

第八章 多元函数积分学 §3 三重积分的计算及其应用 习 题
1. 计算下列三重积分 (1) ∫∫∫ xy 2 z 3 dσ ,其中 Ω 是曲面 z = xy 和平面 y = x, x = 1, z = 0 所围成的区域;

(2) ∫∫∫ xzdσ ,其中 Ω 是由平面 z = 0 , x = y, y = z 以及抛物柱面 y = x 2 所围成的
D D
的大小。 【解】 利用 sin 2 x ≤ x 2 .则 sin 2 ( x + 2 y + 3z ) ≤ ( x + 2 y + 3z ) 2 积分得
∫∫∫ sin
D
2
( x + 2 y + 3 z )dσ ≤ ∫∫∫ ( x + 2 y + 3 z ) 2 dσ
D
4. 利用重积分的性质,估计积分值
(1) ∫∫ sin( x 2 + y 2 )dσ ,其中 D = {( x, y ) |
D
π
4
≤ x2 + y2 ≤
3π }; 4
dxdy , 其中 D = {( x, y ) | 0 ≤ x ≤ 4,0 ≤ y ≤ 8}; ln(4 + x + y ) D 2 2 1 (3) ∫∫ e x + y dσ ,其中 D = {( x, y ) | x 2 + y 2 ≤ }. 4 D
习题参考资料
第八章 多元函数积分学 §2 二重积分的计算 习 题
1. 计算二重积分
(1) ∫∫ xye xy dσ ,其中 D = {( x, y ) | 0 ≤ x ≤ 1,0 ≤ y ≤ 1};
2
D
(2) ∫∫

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

大学高数第八章 多元函数微分学习题解课后参考答案及知识总结

大学高数第八章 多元函数微分学习题解课后参考答案及知识总结

第8章多元函数微分学§8.1 多元函数的基本概念内容概要课后习题全解习题8-1★1.设222(,)xy f x y x y =+,求(1,)y f x。

解:222222(1,)1()yy xy x f y x x y x==++★2. 已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy +-。

解: 2(,,)()()xyxf x y x y xy x y xy +-=++★★3.设()z x y f x y =++-,且当0y =时,2z x =,求()f x 。

解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)zy x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z=解:要使表达式有意义,必须0x ≥, ∴{(,)|D x y x =≥★★(3)u=解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤≤★★★(4)z = 解:要使表达式有意义,必须 222224010ln(1)0ln1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-+解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10y x y →→知识点:二重极限。

思路:(1,0)为函数定义域内的点,故极限值等于函数值。

解:1ln 2ln 21y x y →→== ★★(2)00x y →→知识点:二重极限。

思路: 应用有理化方法去根号。

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1

高等数学课后习题答案第八章1第八章习题解答节8.1部分习题解答 5、求极限(1)、101011l i m 2201=+-=+-→→yx xy y x (2)、xy y x y x 1sin)(lim 0+→→。

由y x xyy x +≤+≤1sin )(0,而0)(lim 00=+→→y x y x 所以01sin)(lim 00=+→→xyy x y x (3)、2ln 214)02ln()sin ln(lim2202=++=++→→y x y x y x (4)、=+-→→xy xy y x 42lim 041421)42(lim 00-=+-=++-→→xy xy xy y x (5)、110c o s 1c o s l i m000==++→→e y x y e x y x (6)、=++-→→xy y x ey x y x )()cos(1lim22220=++→→xy y x ey x y x )()(21sin 2lim 222220 )(21)(21sin lim 222200y x y x y x ++→→0101)(21sin lim 2200=?=+?→→xy y x e y x 6、证明下列极限不存在(1)、yx yx y x -+→→00l i m 证明:取路径0=x 有=-+→→y x y x y x 00lim1lim0-=-→=yyy x 取路径0=y 有=-+→→y x y x y x 00lim1lim 00=→=xx x y ,所以y x yx y x -+→→00lim 不存在(2)、xy x x y x -+→→2220l i m证明:取路径x y =有xy x x y x -+→→22200lim x x x y x -=→→2202lim 0142lim 00=-=→→x x y x 取路径x y =有x y x x y x -+→→2220 0lim 1lim 220==→→x x y x ,所以xy x x y x -+→→22200lim 不存在。

高等数学第八章课后习题答案

高等数学第八章课后习题答案

第八章习题解答(2) 节8.4部分习题解答1、设22v uv u z ++= y x v y x u -=+=,,求x z ∂∂,yz ∂∂ 解:v u u z +=∂∂2 v u vz 2+=∂∂ 1=∂∂x u ,1=∂∂x v ;1=∂∂y u ,1-=∂∂yv 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xvx v u v u v u 6)(3)2()2(=+=+++y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv y v u v u v u 2)2()2(=-=+-+ 2、设v u z ln 2= y x v yxu 23,-==,求x z ∂∂,y z ∂∂解:v u u zln 2=∂∂ vu v z 2=∂∂ y x u 1=∂∂,3=∂∂x v ;2yx y u -=∂∂,2-=∂∂y v所以 x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂x v )23(3)23l n (23ln 21222y x y x y x y x v u v u y -+-=+y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂y v )23(2)23l n (22ln 2223222y x y x y x y x v u v u y x ----=-- 3、设v e z uln = 22222,2y x v y x u -=-=,求x z ∂∂,yz∂∂ 解:v e u z uln =∂∂ ve v z u =∂∂ x x u 4=∂∂,x x v 2=∂∂;y y u 2-=∂∂,y yv 4-=∂∂ 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xv]21)2ln(2[22ln 42222222yx y x xe v e x v xe y x u u-+-=+-y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv ]22)2ln(2[24ln 2222222yx y x ye v e y v ye y x u u-+--=--- 4、设y x e z 2-= 3,sin t y t x ==,求 dtdz解:y x e x z 2-=∂∂ y x e yz 22--=∂∂,t dt dx cos =,23t dt dy =, 所以dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy223c o s t te y x +-)2(2y x e --=)6(c o s 22s i n 3t t e t t -- 5、设)arcsin(y x z -= 34,3t y t x ==,求 dtdz 解:2)(11y x x z --=∂∂ 2)(11y x y z ---=∂∂,t dt dx 3=,212t dt dy =, 所以 dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy=---22)(1123y x t 232)43(1123t t t ---6、设)23tan(22y x t z -+= t y tx ==,1,求dtdz 解:2sec 4x x z =∂∂)23(22y x t -+ 2s e c 2y yz -=∂∂)23(22y x t -+, 2sec 3=dt dz )23(22y x t -+;21t dt dx -=,tdt dy 21=, 1=dt dt 所以t dz ∂⋅∂∂=x z +dt dx ⋅∂∂y z =∂∂+t z dt dy 2s e c )23(22y x t -+]3212)1(14[2+--tt t t 2sec =)22(2t t +)42(3t -⋅ 7、设1)(2+-=a z y e u ax xz x a y cos ,sin ==,求 dx du解:=∂∂x u 1)(2+-a z y ae ax ,=∂∂y u12+a ae ax ,-=∂∂z u 12+a ae ax x dx dy cos =;x dxdzsin -=,所以 dx du ⋅∂∂=x u ⋅∂∂+y u =⋅∂∂+dx dzz u dx dy ]s i n c o s )c o s s i n ([12x x a x x a a a e ax ++-+ x e ax sin =8、设222z y xe u ++= x y z sin 2=,求x u ∂∂,yu∂∂ 解:x x u 2=∂∂222z y x e ++⋅ y yu2=∂∂222z y x e ++⋅,z z u 2=∂∂222z y x e ++⋅ x y x z cos 2=∂∂,x y yz sin 2=∂∂; 所以:x u ∂∂=∂∂⋅∂∂+∂∂⋅+∂∂=xzz u y u x u 0]cos 22[2222x zy x e z y x +++ =+=++]cos sin 22[22sin 2422x xy y x e xy y x]2sin 2[4sin 2422x y x e xy y x+=++y u ∂∂=∂∂⋅∂∂+∂∂+⋅∂∂=yz z u y u x u 0]sin 222[222x y z y e z y x ⋅+++ =⋅+=++]sin 2sin 22[2sin 2422x y x y y e xy y x]sin 21[222sin 2422x y ye xy y x+++9、设)cos(22y x y x z +++= v y v u x arcsin ,=+=,求vu zu z ∂∂∂∂∂2, 解:)sin(2y x x x z +-=∂∂,)sin(2y x y yz +-=∂∂ 1=∂∂u x ,1=∂∂v x ,0=∂∂u y211vv y -=∂∂所以)a r c s i n s i n ()(2)s i n (2v v u v u y x x uz++-+=+-=∂∂)111)(arcsin cos(222vv v u v u z -+++-=∂∂∂ 10、设,arctan y xz =v u y v u x -=+=,验证:22vu v u v z u z +-=∂∂+∂∂ 证明:22yx yx z +=∂∂,22y x x y z +-=∂∂,1=∂∂u x ,1=∂∂v x ,11=∂∂u y ,1-=∂∂v y所以)(122x y y x u z -+=∂∂22v u v +-=,)(122x y yx v z ++=∂∂22v u u += 故有 左边=+-=∂∂+∂∂=22vu vu v z u z 右边 11、设f 具有连续的一阶偏导数,求下列函数的一阶偏导数 (1)、)34,23(y x y x f z -+=解:设y x v y x u 34,23-=+=,于是有3=∂∂x u ,2=∂∂y u ,4=∂∂x v ,3-=∂∂yv2143f f x z +=∂∂ =∂∂yz2133f f - (2)、),(22xy e y x f z -= 解:设xy e v y x u =-=,22,于是有x x u 2=∂∂,y y u 2-=∂∂,xy ye x v =∂∂,xu xe yv=∂∂ =∂∂x z 212f ye xf xy + 212f xe yf yzxy +-=∂∂ (3)、)32,ln (y x x y f z +=解:设y x v x y u 32,ln +==,于是有x y x u =∂∂,x y u ln =∂∂,2=∂∂x v ,3=∂∂yv212f f x y x z +=∂∂ 213ln f xf yz+=∂∂ (4)、),(yxx y f z = 解:设y x v x y u ==,,于是有2x y x u -=∂∂,x y u 1=∂∂,y x v 1=∂∂,2yx y v -=∂∂ 2121f y f xy x z +-=∂∂2211f y x f x y z -=∂∂ (5)、),,(y x y x x f z -+=解:设y x v y x u -=+=,,于是有1=∂∂x u ,1=∂∂x v ,1=∂∂y u ,1-=∂∂yv321f f f x z ++=∂∂ 32f f yz -=∂∂ (6)、),,(x y z xy x f u =解:设xyz t xy s ==,,于是有y x s =∂∂,yz x t =∂∂,x y s =∂∂,zx yt=∂∂ 0=∂∂z x ,0=∂∂z s xy zt=∂∂ 321yzf yf f x u ++=∂∂ 32z x f xf yu+=∂∂ 3xyf z u =∂∂ 12、设)(u f 具有连续的导数,)(xyxf xy z += 验证:z xy yz y x z x+=∂∂+∂∂ 验证:)])(()([2xy x y f x x y f y x x z x-'++=∂∂)()(x y f y x y xf xy '-+= ='+=∂∂)])(([xyx y f x x y y z y)(x y f y xy '+左边==+=+=∂∂+∂∂z xy xyxf xy y z y x z x)(2右边 13、设)(22y x f z +=,)(u f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22y z∂∂ 解:设22y x u +=有1f u z=∂∂ 1122f u z =∂∂ x x u 2=∂∂ 222=∂∂x u 0=∂∂∂y x u y y u2=∂∂ 222=∂∂yu 12xf x z =∂∂ x xf f x z 22211122+=∂∂112142f x f += 11112422xyf y xf yx z ==∂∂∂ 12yf y z=∂∂ 11212242f y f yz +=∂∂ 14、设f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22yz∂∂(1)、),(xy y x f z += 解:设xy v y x u =+=,有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z =∂∂ 2222f v z =∂∂ 1=∂∂x u 022=∂∂x u 02=∂∂∂y x u 1=∂∂y u 022=∂∂y u y x v =∂∂ 022=∂∂x v 12=∂∂∂y x v x y v =∂∂ 022=∂∂yv 于是有:22222)(xv v z x u u z z v y u x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f y yf f ++=y x vv z y x u u z z v x u v y u y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂+∂∂∂∂+∂∂=∂∂∂222))((2221211)(f xyf f y x f ++++= 22222)(y vv z y u u z z v x u yz ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f x xf f ++= (2)、),(yxxy f z =解:设yx v xy u ==, 有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z=∂∂ 2222f v z =∂∂ y x u =∂∂ 022=∂∂x u 12=∂∂∂y x u x y u =∂∂ 022=∂∂yu y x v 1=∂∂ 022=∂∂x v221yy x v -=∂∂∂ 2y x y v -=∂∂ 3222y x y v =∂∂ 于是有:22222)1(x v v z x u u z z v y u y x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂2221211212f y f f y ++=yx vv z y x u u z z v y x u x v y u y y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂-∂∂∂∂+∂∂=∂∂∂2222))(1(221223111f y f f y x xyf -+-+=222222)(y v v z y u u z z v y x u x y z ∂∂∂∂+∂∂∂∂+∂∂-∂∂=∂∂232242122211222f y x f y x f y x f x ++-=。

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

高等数学第8章答案

高等数学第8章答案

高等数学院系_______学号________班级_______姓名__________得分______题 号 选择题 填空题 计算题 证明题 其它题型总 分题 分 20 20 20 20 20 核分人 得 分 复查人一、选择题(共 20 小题,20 分)1、C2、(B)3、C4、A5、答:C 10分6、B7、(A)8、(C)9、(C) 10、C 11、B 12、(C) 13、C 14、D 15、(A) 16、C17、答:(B) 18、C 19、A 20、(D)二、填空题(共 20 小题,20 分)1、f z x y z x y(,ln ,)(ln )= 10分2、[]1222z xyyz x dx xz y dy --+-()() 10分 3、04、x y +≥110分5、2210x y z +++=6、(2,1)7、-48、答:-ln 2 10分 9、答:arctan14=π。

10分10、-16xy (10分) 11、1312、122y yx -13、[]sinh()sin()(d d )xy xy y x x y -+ (10分)14、15215、x x 242-(10分)16、π4(10分)17、3018、答:e e2。

10分 19、答:y 轴上的所有点。

10分20、2(10分)三、计算题(共 20 小题,20 分)1、z x x (,)arctan 02=d d (,)x z x x x0214=+ (8分)∂∂z xx y ===101(10分)2、ln ln u yz x =(4分)d d ln d ln d u u yzxx z x y y x z =++ (8分) []d d ln (d d )u x yz x x x z y y z yz =++-1(10分)3、由z f u =()可得,∂∂∂∂∂∂∂∂z x f u ux z y f u uy='='()() (3分)在方程u u p t t yx=+⎰ϕ()()d 两边分别对x , y 求偏导数,得∂∂ϕ∂∂∂∂ϕ∂∂u x u uxp x u y u uyp y =+=-''()()()() 所以∂∂ϕ∂∂ϕu x p x x u y p y x =-=--()()()()''11 (8分)p y z x p x z y()()∂∂∂∂+=0(10分)4、{}n =±-=±=±=35435212452,,,cos ,cos ,cos αβγ(4分)∂∂∂∂ux x y u yx(,,)(,,)(,,)(,,)()0110110110112870=-+==-=∂∂u z(,,)0111=所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯+⨯+⨯±=∂∂25412102537n u =±1752 (10分) 5、由⎪⎩⎪⎨⎧=+-==-+=03306332x y z y x z yx ,得D 内驻点(1,1)且 z (,)1112=- 3分在边界x =0上,()z y y 1232302=-+≤≤'=-≤==-z y z z 111300323,(),() 在边界x =2上,z y y y 22326102=-+-≤≤()'=-+≥=-=z y z z 2223600125,(),()在边界y =0上,()z x x x 336302=-+≤≤'=-=z x 32360 得驻点x =2()z z z 33303212342(),(),==-=-在边界y =2上,)20(334≤≤-=x x z'=≥=-=z x z z 4244300325,(),()8分比较后可知,函数z 在点(,)02处取最小值z (,)023=- 在点(,)22处取最大值z (,)225=。

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

第八章 多元函数的定义1.求下列函数的定义域,并作图表示:(1)arcsin 3xz =+ (2)()2ln 48;z y x =-+(3)z x = (4)z =(5))0;z R r =>>(6)z =解答: 本题图略(1)30,03,0,0;x x y y -≤≤≤≤⎧⎧⎨⎨≤≥⎩⎩ (2)()242y x >-;(3),0x y <+∞≤<+∞;(4)x ≥且0y ≥;(5)2222r x y R <+≤; (6) 1.xy >所属章节:第八章第一节 难度:一级2.试用不等式表示由抛物线2y x =和2y x =所围成的区域(含边界)。

解答:201,x x y ≤≤≤≤ 所属章节:第八章第一节 难度:一级3.设(),,x f x y xy y=+求1,32f ⎛⎫⎪⎝⎭及()1,1.f - 解答:()15,3,1,1 2.23f f ⎛⎫=-=- ⎪⎝⎭所属章节:第八章第一节 难度:一级4.设()22,tan ,xf x y x y xy y=+-求(),.f tx ty解答:()()2,,.f tx ty t f x y = 所属章节:第八章第一节 难度:一级5.设22,,x f x y x y y ⎛⎫+=- ⎪⎝⎭求(),.f x y解答: 令11uv u x y x v xv u y y v ⎧=+⎧=⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩,代入原式得 222(1)(,)()()111uv u u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+注:如果题目是“设22,,y f x y x x y ⎛⎫=⎪⎭-+ ⎝求(),.f x y ”则答案为令11u u x y x v yuv v y x v ⎧=+=⎧⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩ ,代入原式得 222(1)(,)()()111u uv u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+。

高等数学第八章教材答案

高等数学第八章教材答案

高等数学第八章教材答案[注意:本文适用于自主学习及交流,而非代表课堂考试答案。

在学习过程中,应先自行尝试解答问题,再对比与本文答案的异同,以强化掌握知识的能力。

]第一节:导数与微分1. (1)导数定义为函数在某一点的瞬时变化率,可用以下公式计算:f'(x) = lim(h→0) [f(x+h) - f(x)] / h(2)若函数f(x)在区间[a,b]上连续且在(a,b)内可导,则在(a,b)内,存在一点c使得f'(c) = [f(b) - f(a)] / (b - a)2. 利用导数的四则运算法则、链式法则等,可以求解各种类型的题目,如函数的导数、隐函数求导、参数方程求导等。

3. 微分是导数的几何解释,微分形式为df = f'(x)dx。

微分可用于近似计算函数值的变化,例如:f(x+Δx) ≈ f(x) + f'(x)Δx第二节:不定积分与定积分1. 不定积分用符号∫表示,表示求一个函数的原函数。

常用的不定积分公式有:① ∫1/x dx = ln|x| + C② ∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)2. 定积分表示曲线与x轴之间的面积,用符号∫[a,b]表示。

计算定积分可采用以下方法:①几何法:根据几何图形的面积计算原则,求出曲线与x轴之间的面积。

②换元法:根据换元积分法则,将被积函数的自变量进行适当的变量代换。

③分部积分法:根据积分的乘积法则,将被积函数进行适当的乘法分解。

3. 牛顿-莱布尼茨公式是计算定积分的重要工具,公式表达为:∫[a,b] f(x) dx = F(b) - F(a)其中,F(x)为f(x)的一个原函数。

第三节:定积分的应用1. 定积分可用于计算曲线与x轴之间的面积、曲线的弧长、旋转体的体积、质量等物理量。

2. 面积计算:利用定积分求得曲线与x轴之间的面积,可以通过以下公式求解:S = ∫[a,b] |f(x)| dx3. 弧长计算:弧长公式为:L = ∫[a,b] √[1 + (dy/dx)^2] dx4. 旋转体体积计算:将曲线绕x轴或y轴旋转一周形成的空间曲面,其体积可通过以下公式求解:V = ∫[a,b] πy^2 dx 或V = ∫[a,b] πx^2 dy第四节:多元函数微积分基础1. 多元函数的偏导数可以理解为函数关于某个自变量的导数。

高等数学李伟版课后习题答案第八章.

高等数学李伟版课后习题答案第八章.

习题8—1(A)1.判断下列论述是否正确,并说明理由:(1)一个点集的内点一定属于,其外点一定不属于,其边界点一定不属于,其聚点一定属于;(2)开集的所有点都是其内点,开集也称为开区域;(3)一个有界集一定能包含在以坐标原点为圆心,适当长的线段为半径的圆内;(4)考查二元函数的定义域时,应从两方面去考虑:用解析式表达的函数要考虑使该解析式有意义的所对应的点的集合(自然定义域).对有实际意义的函数还应该从自然定义域中找出使实际问题有意义的点集;(5)当沿某一条曲线趋于时,函数的极限存在,并不能说明极限存在,但如果当沿某一条使函数有定义的曲线趋于时,函数的极限不存在,则一定不存在;(6)为说明极限不存在,通常也采取用当沿两条不同曲线趋于时,函数的极限不相等的方法;(7)如果函数在点连续,点必须是函数定义域的内点;(8)若是二元函数的间断点,那么一定不存在.答:(1)前两者都正确,这是根据内点、外点的定义;后两者都不正确,无论是边界点还是聚点它们都可以是的点,也可以是非的点,如当是闭集是,的边界点是的点当是开集时的边界点就不是的点;又如点是集合的聚点,但是它不是的点.(2)前者正确,这是有开集定义决定的;后者不正确,连通的开集才是开区域,不连通的开集不是开区域,如是开集,但是不是开区域.(3)正确,这就是有界集的定义.(4)正确,求多元函数的自然定义域如同一元函数的定义域,要从以下几个方面考虑:①分式中分母不能为零,②开偶次方底数要大于等于零,③对数中真数要于零,④、中要求,⑤若干个式子的四则运算中,取每个式子有意义的交集,等等.(5)两者都正确,如:不存在,但是沿取极限时值为1;后者是由极限的定义决定.(6)正确,这是证明多元函数极限不存在的基本方法,它源于在中,是以(定义域内的)任意方式实现的.(7)不正确.如:在点连续,但是点不是函数定义域的内点.(8)不正确.如:点是函数的间断点,但是极限.2.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所组成的集合(称为导集,用表示)和边界:(1);(2);(3);(4).解:(1)是有界闭区域,其导集,其边界.(2)是非开非闭的有界区域,其导集,其边界.(3)是无界区域,其导集,.(4)是有界开集(不是区域),其导集,其边界.3.设函数,求,.解:,.4.设函数,求.解:.5.设函数,已知时,,求及的表达式.解:由时,,有,即,所以;而.6.设函数,求的表达式.解:(方法1)因为,所以.(方法2)令,则,于是,所以.7.求下列各函数的定义域,并作定义域草图:(1);(2);(3);(4).解:(1)由且,得定义域.(2)由及,有,得定义域.(3)由,有,得定义域.(4)由,有,或,得定义域.8.求下列极限:(1);(2);(3);(4);(5);(6).解:(1).(2).(3).(4)因为有界,而,所以.(5).(6).9.证明下列极限不存在:(1);(2).证明:(1)沿取极限,则,当取不同值时,该极限值不同,所以极限不存在.(2)先沿取极限,则;再沿取极限,则,由于沿两种不同方式取极限其极限值不同,所以极限不存在.10.找出下列函数的间断点的集合:(1);(2);(3).解:三个函数都是初等函数,找间断点只需找函数无定义的点,并且这些点又是定义域的聚点.(1)函数只在点无定义,且是定义域的聚点,所以断点的集合.(2)函数在圆周上无定义,且圆周上的点都是定义域的聚点,所以断点的集合.(3)函数的定义域,函数在及上无定义,这些点中只有,及()是定义域的聚点,所以断点的集合.习题8—1(B)1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为(单位:元),两个市场的销售量各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是,试用表示该厂生产此产品的利润.解:根据已知,设,由时,;时,,有得,于是.由时,;时,,有得,于是.两个市场销售该产品的收入为,该产品的成本.根据利润等于收入减去成本,得.2.设函数求函数值.解:当时,则,于是;当时,则,于是.3.求函数的定义域.解:由,有且,即且,或写作且;或且,即且,或写作且,所以定义域.4.求下列极限:(1);(2);(3);(4).解:(1)令,则当时,,所以.或者:因为时,与是等价无穷小,所以.(2).(3)令,则当时,(其中在区间内任意变化),所以.(4)因为,而,,根据“夹逼准则”得.5.证明极限不存在.证明:先沿取极限,,再取极限,,由于沿两种不同方式取极限其极限值不同,所以极限不存在.6.讨论函数的连续性.解:当时,是连续函数.当时,满足的点是轴上点或轴上点,对轴上点,极限,这些点是函数的连续点.对轴上点(除去),当时,极限不存在(极限不是零,震荡),所以这些点是间断点.综上,函数在点()处不连续,其余点处都连续.习题8—2(A)1.判断下列论述是否正确,并说明理由:(1)极限既是的一元函数在点处的导数,也是二元函数在点处对变量的偏导数;(2)二元函数在某一点处连续是在这点偏导数存在的必要条件;(3)二元函数的两个二阶混合偏导数与只要存在就一定相等.答:(1)正确,这是根据导数与偏导数的定义.(2)不正确,例如函数在点处连续,但是都不存在.事实上:因为不存在,所以不存在;由变量的对称性得,也不存在.(3)不正确.还需要与连续,否则它们不一定相等,如函数在点处,,从而.事实上,,特别,,特别,,.2.求下列函数对各个自变量的一阶偏导数:(1)();(2);(3);(4);(5)();(6);(7);(8);(9);(10).解:(1)将函数改写为,则,.(2),.(3),.(4),.(5),.(6),.(7),.(8),由变量的对称性,得.(9),,.(10),,.3.求下列函数在指定点的偏导数:(1)设,求及;(2)设,求及.解:(1)在时,将函数改写为,则,,.(2)因为,所以,因为,所以.4.求曲线在点处的切线与轴正向的夹角.解:,,用表示曲线在点处的切线与轴正向的夹角,则,所以.5.求下列函数的高阶偏导数:(1)设,求,,和;(2)设,求,和;(3)设,求,和.解:(1),,,,,,.(2),,,,,.(3),,,,.6.设函数,求,和.解:因为,则,因为,则,.7.设函数,证明.证明:因为,所以.8.设函数,证明.证明:因为,所以.9.设函数,证明.证明:因为,,,,,,所以.10.若函数都可导,设,证明.证明:因为,,,所以.习题8—2(B)1.设一种商品的需求量是其价格及某相关商品价格的函数,如果该函数存在偏导数,称为需求对价格的弹性、为需求对价格的交叉弹性.如果某种数码相机的销售量与其价格及彩色喷墨打印机的价格有关,为,当,时,求需求对价格的弹性、需求对价格的交叉弹性.解:由,,有,,当,时,需求对价格的弹性:,需求对价格的交叉弹性:.2.已知满足,证明.证明:由,有,由,有,由,有,得.3.设函数,证明.证明:将函数改写为,则,,由变量的对称性,有,,所以.4.设函数满足,且,,求.解:由,两边同时对求不定积分,有,用代入该式,有,根据条件,得,于是.上式两边同时再对求不定积分,有,由条件,得,所以.5.设函数,求及.解:,(或由变量的对称性求得).6.设函数证明在点处的两个偏导数都不存在.证明:因为极限不存在,极限不存在,所以在点处的两个偏导数都不存在.习题8—3(A)1.判断下列论述是否正确,并说明理由:(1)称函数在可微分,如果在这一点函数的两个偏导数都存在,并且,其中为函数在点的全增量,;(2)函数在一点可微分,它在这点必连续;(3)函数在一点可微分的充分必要条件是,在这点的偏导数都存在;(4)函数在一点的偏导数连续,能保证在这点附近曲面可以用平面来近似替代,其中.答:(1)正确,可微的必要条件是两个偏导数存在,且,再根据,有,即.,这就是函数可微的定义.(2)正确,事实上,由可微,根据定义有,于是,这表明函数在该点连续.(3)不正确,偏导数存在仅仅是可微的必要条件,而不是可微的充分条件,如函数在两个偏导数都存在且等于零(习题8-2(B)5),但是函数在不可微.事实上,若可微,则,但是不存在(分别沿、取极限,其值为0及),这与矛盾,所以函数在不可微.函数可微的充分条件是偏导数在该点连续.(4)正确,若记,则,由此得,这表明在点附近曲面可以用平面来近似替代,这就是所谓的局部线性化.2.求下列函数的全微分:(1);(2);(3);(4);(5);(6).解:(1)因为,,所以.(2)因为,,所以.(3)因为,,所以.(4)因为,,所以(5)因为,,,所以.(6)因为,,,所以.3.当,时,求函数的全微分和局部线性化.解:因为,,,,所以,而,.4.当,,,时,求函数的全增量及全微分.解:,,,,当,,,时:全增量,全微分.习题8—3(B)1.一个圆柱形构件受压后发生形变,它的半径由cm增加到cm,高由cm减少到cm,求此构件体积变化的近似值.解:设构件的高为、底半径为、体积为,则.,,于是,当时,(,即体积大约减少了628 (.2.计算的近似值.解:考虑函数,取,而,,、、,则.3.设函数在点的某个邻域内可微,且,其中,求函数在点处的全微分及局部线性化.解:在中,令,得.在点考虑函数的全增量:,(其中)根据全微分的定义,有,并且得..4.设函数在点处讨论偏导数的存在性、偏导数的连续性以及函数的可微性.解:因为,,所以在点处函数的两个偏导数都存在,且.再讨论可微性,函数在处的全增量用表示,则,记,则不存在(沿取极限,其值为;沿取极限,其值为),所以函数在点处不可微.进而得偏导(函)数在点处不连续(若偏导(函)数在点处连续,根据可微的充分条件,则函数一点可微,与函数不可微矛盾).习题8—4(A)1.判断下列论述是否正确,并说明理由:(1)对多元复合函数来说,欲求其对自变量的偏导数,借助于树形图比较方便.不论中间变量是几元函数,最终求出的偏导数所含的项数等于从因变量到达该自变量的路径数目,某一项有几个因式,取决于与该项相对应的路径中所含有的线段数目;(2)对于可微的复合函数,,对于的偏导数;(3)利用全微分形式的不变性,对一个多元复合函数来说可以先求其全微分,最后再得出该复合函数对各自变量的偏导数.答:(1)正确,这是复合函数的链式求导法则决定的,如若函数由函数复合而成,复合函数的树形图为右图,而在图中我们可以看到从变量到变量有四条路径,由此导数公式中有四项之和,而每一项中(如第一项)偏导数或导数的个数(3个)等于这条路径上从到段数(3段).(2)不正确,左、右式中的含义不同,左式中表示对自变量求导,它涉及图中三个,而右式中的仅表示对中间变量(一)求导,(当某一个变量在复合函数中有双重身份,既是自变量又是中间变量时会出现这种记号混淆情况),为了与左式中区别,此处应当用记号(同时分别用)表示,即写作.(3)正确,即若某个复合函数的全微分是(通常这个全微分是由微分法则与微分形式不变性求得),则、,这是多元复合函数求偏导数的方法之一.2.设函数,而,,求.解:(方法1)函数的复合关系如图,则.(方法2)消去中间变量,有,按一元函数求导,得.(注:具体函数的复合函数都有以上两种方法,并且方法2简单,但是本节的目的在于练习复合函数链式求导方法,所以后面只用方法1求导)3.设函数而是的可微函数,求.解:.4.设函数,而,求.解:.5.设函数,而,,求和.解:,.6.设函数,求和.解:这是幂指函数求导,为方便求导,将它写作复合函数,为此令,则,.(注:可以由变量的对称性直接写出)7.求下列函数的一阶偏导数(其中函数具有一阶连续的偏导数或导数):(1);(2);(3);(4).解:(1),.(2),.(3),.(4),,.8.设函数,其中是可微函数,证明.证明:因为,,所以.9.设函数,其中是可微函数,证明.证明:因为,,所以.10.用微分形式不变性求函数的偏导数和.解:令,则,则根据微分法则与微分形式不变性,得所以,,.习题8—4(B)1.在解偏微分方程(含有未知函数的偏导数的方程,也称为数理方程)时,常常要用变量代换将一个复杂的方程化为一个简单的方程,从而可以求其解.设具有二阶连续偏导数,若用变量代换将偏微分方程化为,求的值.解:,,,,.由,有,即,要化为,必须,且,由,即,得或,但是由,所以只能是.2.设有一阶连续偏导数,且满足,,,求.解:令,等式两边同时对求导,有,(*)由于,,则(*)式化为,所以.3.若函数有二阶导数,且,又函数满足方程,求.解:令,则,于是,,,,由,有,即,这是二阶常系数线性齐次微分方程,特征方程是,特征根为,方程的通解是,,由条件,有,,得,所求所求函数是.4.若函数可微,且对任何正实数有,证明.证明:等式两边同时对导,则,记,则上式为,令,得,将该式中的分别用表示,则,即.5.求下列函数的二阶偏导数(其中函数具有二阶连续偏导数):(1);(2);解:(1),,,,.(2),,,,.6.设,其中函数、有二阶导数,求、及.解:,,,,.7.设,其中函数、有二阶导数,证明.证明:因为,,.所以.习题8—5(A)1.判断下列论述是否正确,并说明理由:(1)要使方程确定一个隐函数,如果将定理5.1中的条件换为而其它不变,则该方程仍能确定一个隐函数;(2)如果函数满足类似于定理5.1的条件,对各个自变量有连续偏导数,且对某个变量的偏导数不为零,则元方程可以确定一个具有连续偏导数的元函数;(3)若按照教材中的说法,一个方程组可以确定一组多元函数.那么函数的个数等于方程组中方程的个数,函数的元数等于方程中所含变量的总个数减去方程的个数;(4)若方程组能确定两个二元隐函数那么通过对该方程组中的各个方程的两边对同一个变量求导,就可以得到含有的方程组,通过解这个方程组,就可以求得.答:(1)不正确,如方程(其中),在点处有,但是它不能确定一个隐函数,因为在这点左侧附近给定一个对应有两个值,在这点右侧附近没有值对应;当且其它条件不变时,可以确定一个一元函数.(2)正确,这是定理5.1的推广.(3)正确,但是要注意两点,一是变量的个数需大于方程的个数(否则方程组可能只确定一点,或者无解);二是要满足隐函数存在的条件(超出教学要求,此处略去).(4)正确,如同例5.4、例5.5等的解法.2.若函数分别由下列方程确定,求.(1);(2);(3);(4).解:(1)(方法1)设,则,所以(方法2)方程两边同时对求导,有,解得.(注:两种方法最大的差别在于:方法1中在求时都看作自变量,而方法2在求导过程中要看作的函数.尽管方法1简单一些,但是它有局限性,只适用于求一个方程确定的隐函数的一阶导数或偏导数,而方法2适用于各类隐函数的各阶导数或偏导数的求法,后面一般都按方法2作)(2)方程两边同时对求导,有,解得.(3)方程两边同时对求导,有,得.(4)方程两边取对数,有,该式两边同时对求导,有,即,解得.3.设函数分别由下列方程确定,求.(1);(2).解:(1)方程两边同时对求导,有,得,.(2)方程两边同时对求导,有,解得,.4.若函数分别由下列方程确定,求及.(1);(2);(3);(4).解:(1)(方法1)设,则,所以.(方法2)方程两边对求导,有,得,方程两边对求导,有,得.(以下都按方法2作)(2)方程两边同时对求导,有,得,方程两边同时对求导,有,得(或由变量的对称性,得).(3)方程两边对求导,有,即,而,所以,得,由变量对称性有.(4)方程改写为,方程两边对求导,有,得,方程两边对求导,有,得.5.若函数,,都是由方程确定的隐函数,其中有一阶连续非零的偏导数,证明.证明:因为,所以.6.设函数,而函数由方程确定,求全导数.解:方程两边同时对求导,有,得,.7.设函数,而函数、分别由方程及确定,求全导数.解:方程两边同时对求导,有,得,方程两边同时对求导,有,得,所以.8.设函数,而由方程确定,求.解:方程两边同时对求导,有,用、代入,有,得.于是,所以.习题8—5(B)1.某工件的外表面是一个椭球面,方程由给出,现在点处要将其局部线性化(即做一个切平面),求局部线性化表达式.解:设方程在点确定的隐函数为,方程两边对求导,有,用、代入,有,得,由变量对称性,得.所以.2.若函数由方程确定,求.解:方程两边对求导,有,得,由变量的对称性,得.等式两边同时对求导,有,即所以.或.3.若函数由方程确定,其中是可微函数,求、.解:方程两边同时对求导,有,解得,方程两边同时对求导,有,解得.4.若函数由方程确定,其中是可微函数,证明.证明:方程两边同时对求导,有,得,方程两边同时对求导,有,得,所以.5.设函数,而由方程确定,其中函数连续,、可微,且,求.解:方程两边对求导,有,得,方程两边对求导,有,得.,所以.6.求由下列方程组所确定函数的导数或偏导数:(1)求和.(2)求及.解:(1)方程组两边同时对求导,有消去,有,得,而.(2)方程组两边同时对求导,有(1)(2),有,得,再代入到(2)之中得.方程组两边同时对求导,有与前面解法类似,得,.习题8—6(A)1.判断下列论述是否正确,并说明理由:(1)如果曲线的参数方程为(),那么它就对应一个向量值方程若存在并且不同时为零,那么,曲线在相应点处的切向量为,由此利用直线的点向式方程就可写出该点处的切线方程;(2)求曲线的切线方程与法平面方程的关键是求切向量,而其中又以参数方程为基础,其它形式的曲线方程都划归为参数方程,找出相应的切向量,然后写出要求的方程;(3)曲面的切平面方程是以曲面的一般方程为基础进行讨论的,如果曲面方程为的形式,那么必须把它化为的形式,其中,因而它在点处的法向量一定为,切平面方程为:;(4)如果曲线为一般方程那么,曲线在点的切向量可取为.答:(1)正确,这就是曲线为参数方程时,切线方向向量的求法.此时切线方程为;法平面方程为.(2)正确,对参数方程,在处的切向量;对形如的取向方程,将变量看作参数,在处的切向量对一般方程按隐函数它可以确定两个一元函数,如,按隐函数求导方法得到,从而得在处的切向量.(3)不确切,曲面的法向量可以直接由给出,也可以由给出.(4)正确,设曲面在点处的法向量为,曲面在点处的法向量为,根据法平面的定义有,于是可取.2.空间一质点在时刻时的位置为,求质点在时刻的速度.解:.3.求曲线在点处的切线及法平面方程.解:点对应参数为,切向量,切线方程为,法平面方程为,即.4.求曲线,在对应于的点处的切线及法平面方程.解:切点为,切向量,切线方程为,法平面方程为,即.5.求曲线在点处的切线及法平面方程.解:,切向量,切线方程为,法平面方程为,即.6.求曲线在点处的切线及法平面方程.解:设,则切向量,切线方程为,法平面方程为,即.7.求曲面在点处的切平面及法线方程.解:设,则法向量,切平面方程是,即,法线方程是.8.求曲面在点处的切平面及法线方程.解:法向量切平面方程是,即,法线方程是.习题8—6(B)1.求曲线()上平行于平面的切线方程,并写出该点处的法平面方程.解:设切点坐标为,该点对应参数,曲线在该点的切向量为,由切线与平面平行,有,得,即,由于,所以.切点坐标为,切向量,切线方程为,法平面方程为,即.2.在椭球面上求平行于平面的切平面方程.解:设切点坐标为,,则法向量,由切平面平行于平面,有,即,代入到曲面方程之中,有,得,切点为或,在点,切平面为,即;在点,切平面为,即.3.问旋转抛物面上哪一点处的切平面过曲线,,在点处的切线.解:设切点坐标为,则法向量,切平面方程为,即.曲线,,在点对应参数,曲线在点处的切向量.由在曲面上,有.①由切平面过,有.②曲线,,在点处的切线在切平面上,有所以,即.③由方程①、②、③式解得或,于是所求点为或.4.证明二次曲面在点处的切平面方程为:.证明:设,则曲面在的法向量。

高等数学第八章习题解答

高等数学第八章习题解答

习题8.11. 设有一平面薄板(不计其厚度),占有Oxy 平面上的闭区域D ,薄板上分布着面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q 。

解:据题意,薄板区域D 是Oxy 平面上的有界闭域,(,)x y μ是定义在D 上的面密度函数,那么用任意曲线把D 分成n 个可求面积的小区域12,,n σσσ ,以i σ∆表示小区域的面积,这些小区域构成了D 的一个分割T ,在每个i σ上任取一点(,)i i εη,那么电荷Q 即为D 上的一个积分和1(,)ni i i i Q u εησ==∆∑。

当d 足够小时,1(,)(,)ni i i i DQ u u x y d εησσ==∆=∑⎰⎰2. 下列二重积分表达怎样的空间立体的体积?试画出下列空间立体的图形:(1)()221Dx y d σ++⎰⎰,其中区域D 是圆域221x y +≤;解:(1)在圆域221x y +≤上以抛物面2221z x y =++为顶的曲顶柱体的体积。

(2)Dyd σ⎰⎰,其中区域D 是三角形域0,0,1x y x y ≥≥+≤;解: 在三角形域D 上以平面z y =为顶的柱体的体积。

z 轴x 轴y 轴(1) (2) 3. 设12231()D I x y d σ=+⎰⎰, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2 ;又22232()D I x y d σ=+⎰⎰, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故 V =4V 1, 即I 1=4I 2. 3. 利用二重积分的定义证明: (1)Dd σσ=⎰⎰ (其中σ为D 的面积;证明 由二重积分的定义可知,1(,)lim (,)ni i i i Df x y d f λσξησ→==∆∑⎰⎰其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以 01lim lim ni i Dd λλσσσσ→→==∆==∑⎰⎰.(2)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰ (其中k 为常数);证明 011(,)lim (,)lim (,)n ni i i i i i i i Dkf x y d kf k f λλσξησξησ→→===∆=∆∑∑⎰⎰1lim (,)(,)ni i i i Dk f k f x y d λξησσ→==∆=∑⎰⎰.(3)12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆,n 1+n 2=n , 作和1211122212111(,)(,)(,)n n ni i i i i i i i i i i i f f f ξησξησξησ===∆=∆+∆∑∑∑.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1,λ2), 则有1lim (,)n i i i i f λξησ→=∆∑121112221212011lim (,)lim (,)n n i i i i i i i i f f λλξησξησ→→===∆+∆∑∑,即 12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.4. 根据二重积分的性质, 比较下列积分大小:(1)2()Dx y d σ+⎰⎰与, 3()Dx y d σ+⎰⎰ 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而3()Dx y d σ+⎰⎰≤2()Dx y d σ+⎰⎰.(2)2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于直线x +y =1与圆(x -2)2+(y -1)2=2相切,故D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而 23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰.(3)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D 是三角形闭区域, 三角顶点分别为(1,0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有 [ln(x +y )]2≤ ln(x +y ),因而 2[ln()]ln()+≤+⎰⎰⎰⎰DDx y d x y d σσ.(4)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x , y )∈D 时, x +y ≥e , 从而ln(x +y )≥1,因而 [ln(x +y )]2≥ln(x +y ),故 2ln()[ln()]DDx y d x y d σσ+≤+⎰⎰⎰⎰.5. 利用二重积分的性质估计下列积分的值:(1)()DI xy x y d σ=+⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2,于是 0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即 0()2Dxy x y d σ≤+≤⎰⎰.(2)22sin sin DI x yd σ=⎰⎰, 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是可得 220sin sin 1DDDd x yd d σσσ≤≤⎰⎰⎰⎰⎰⎰,即 2220sin sin Dx yd σπ≤≤⎰⎰.(3)(1)DI x y d σ=++⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是可得 (1)4DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,即 2(1)8Dx y d σ≤++≤⎰⎰.22(49)DI x y d σ=++⎰⎰, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25.于是 229(49)25DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,222292(49)252Dx y d πσπ≤++≤⋅⋅⎰⎰,即 2236(49)100Dx y d πσπ≤++≤⎰⎰.习题8.21. 化二重积分(,)Df x y dxdy ⎰⎰为二次积分(写出两种积分次序).(1)D ={(x , y )| |x |≤1, |y |≤1}; 解 D 为矩形区域, 所以1111(,)(,)Df x y dxdy dx f x y dy --=⎰⎰⎰⎰,1111(,)(,)Df x y dxdy dy f x y dx --=⎰⎰⎰⎰.(2)D 是由y 轴, y =1及y =x 围成的区域; 解 若将D 表示为0≤x ≤1, x ≤y ≤1, 则 11(,)(,)xDf x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, 0≤x ≤y , 则 1(,)(,)yDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(3)D 是由x 轴, y =ln x 及x =e 围成的区域; 解 若将D 表示为1≤x ≤e , 0≤y ≤ln x , 则 ln 10(,)(,)ex Df x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, e y ≤x ≤e , 则 1(,)(,)y eeDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(4)D 是由x 轴, 圆x 2+y 2-2x =0在第一象限的部分及直线x +y =2围成的区域; 解 若将D 表示为0≤x ≤1,0y ≤≤1≤x ≤2, 0≤y ≤2-x , 则12201(,)(,)(,)xDf x y dxdy dx f x y dy dx f x y dy -=+⎰⎰⎰⎰⎰.若将D 表示为0≤y ≤1; 12x y ≤≤-, 则 1201(,)(,)yDf x y dxdy dy f x y dx -=⎰⎰⎰⎰(5)D 是由x 轴与抛物线y =4-x 2在第二象限的部分及圆x 2+y 2-4y =0第一象限部分围成的区域. 解 若将D 表示为-2≤x ≤0, 0≤y ≤4-x 2及0≤x ≤2,22y ≤≤ 则242222(,)(,)(,x Df x y dxdy dx f x y dy dx f x y --=+⎰⎰⎰⎰⎰⎰,若将D 表示为0≤y ≤4, x ≤ 则 40(,)(,)Df x y dxdy dy f x y dx =⎰⎰⎰.2. 交换二次积分的次序:(提示: 交换二次积分的次序, 要先根据原积分写出积分区域不等式, 再根据不等式画出积分区域, 然后根据图形写出另一种形式的积分区域不等式, 最后由不等写出二次积分)(1)228812(,)(,)x xxdx f x y dy dx f x y dy +⎰⎰⎰⎰.解 积分区域为D ={(x , y )|1≤x ≤2, x ≤y ≤x 2}⋃{(x , y )|2≤x ≤8, x ≤y ≤8}. 积分区域还可以表示为D ={(x , y )|1≤y ≤4,x ≤y }⋃{(x , y )|4≤y ≤8, 2≤x ≤y }, 于是 原式=48142(,)(,)y ydy f x y dx dy f x y dx +⎰⎰⎰.(2)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解 积分区域为D ={(x , y )|0≤y ≤1, 0≤x ≤y }⋃{(x , y )|1≤y ≤2, 0≤x ≤2-y }.积分区域还可以表示为xO y281D ={(x , y )|0≤x ≤1, x ≤y ≤2-x }, 于是 原式=120(,)x xdx f x y dy -⎰⎰. (3) 14(4)(,)y dy f x y dx -⎰⎰;解:积分区域{}2442,20|),(x y x x y x D -≤≤+≤≤=,214(4)040224(,)(,)(,);y x Dx f x y d dy f x y dx dx f x y dy σ---+∴==⎰⎰⎰⎰⎰⎰(4) 11(,)dx f x y dy ⎰;解:积分区域{}{212(,)|01,0(,)|12,0D x y y x y D x y y x =≤≤≤≤⋃=≤≤≤≤21212001(,)(,)(,)(,)y D D f x y d f x y d dy f x y dx dy f x y dxσσ=+=+⎰⎰⎰⎰⎰⎰⎰原式(5)224(,)x x f x y dy -⎰⎰。

高等数学(下)第四版-第八章习题答案.doc

高等数学(下)第四版-第八章习题答案.doc

i.判断下列平面点集哪些是开集、闭集、区域、冇界集、无界集?并分别指出它们的聚点集和边界:⑴{g)|20};⑵{(心)| 1<X2+/<4};⑷{(x,y) I (x - I)2 + b G} U {(w) I(X + I)2 + 尸5 1}.解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|尸0}.(2)既非开集乂非闭集,有界集,聚点集:{(x』)|l Wx\y2w4},边界:{(x,叨F+b=l} U {(x』)| xV=4}.(3)开集、区域、无界集,聚点集:{(x』)[yWF}, 边界:{(¥』)|尸<}.(4)闭集、有界集,聚点集即是其木身,边界:{(X^)|(X-1)24-/=1 } U {(x,y)|(x4-l)2+y=l}.2.己知f (x,y)= x2+y~-xy tan —,试求f(tx,ty).y解:f(tx,ty) = (tx)2 + (ty)2-tx-tytan— = t2f(x,y).3•已知/(u,v,w)= w u + 卜严' ,试求f(x + y,x-y,xy).解:Xx+y, x-y, xy)=(巧严+(砂严’心'=(x+)泸'+(初)4•求下列各函数的定义域:(l)z= ln(y2-2x+l);(4) w = —j= 4- —j= + —j=;yjx y]y yjzz - \n(y一x) +u = arccos解:(l)n = {(x,y)|/-2x + l>0}.(2)Z) = {(x,jO|x + y〉0,x-y >0}.(3)D = {(x,y)\4x-y2>0,\-x2-y2>0,x2+y2 ^0}.(4) D = {(x』,z) | x > 0,y > 0,z > 0}.(5) D = {(x,y)ix>0,y> 0, x2 > y}.(6)Z) = {(x』)| y-x > 0,x > 0,x2+y2 < 1}.⑺D = {(x,y,z)|/ + 尸工0,兀? + 尹2 _么2 J。

高等数学课后习题答案第八章3

高等数学课后习题答案第八章3

第八章习题解答(3)节8.5部分习题解答1、下列方程确定了)(x f y =,求dxdy,(1)、0sin 2=−+xy e y x 解:设=),(y x F 0sin 2=−+xy e y x ,2y e x F x −=∂∂;xy y yF2cos −=∂∂(2)、xyy x arctanln 22=+解:设=),(y x F xy y x arctanln 22−+,=−+−+=∂∂)()(112222x y x y y x x x F 22y x yx ++;=∂∂y F =+−+)1((11222x xy y x y 22y x xy +−;yx y x F F dx dy y x −+=−=(3)、xy y x =解:设x y y x y x F −=),(,)ln (1ln 1y x y x x y y yx x F y x y −=−=∂∂−)ln (1ln 1x x y x yxy x x y F y x y −=−=∂∂−;y x F F dx dy −=)ln ()ln (x x y x y y x y −−=(4)、1=+y e xy 解:设1),(−+=y e xy y x F ,y x F =∂∂y e x yF+=∂∂;y x F F dx dy −=ye x y +−=2、下列方程确定了),(y x f z =,求x z ∂∂yz ∂∂(1)、0=−xyz e z 解:设=),,(z y x F xyz e z −,yz F x −=zx F y −=xy e F z z −=;x z ∂∂z x F F −=xye yzz −=y z ∂∂z y F F −=xye zxz −=(2)、333a xyz z =−解:设=),,(z y x F 333a xyz z −−,yz F x 3−=zx F y 3−=xy z F z 332−=;x z ∂∂z x F F −=xyz yz−=2y z ∂∂z y F F −=xye zx−=2(3)、122=+−z e yz y x 解:设=),,(z y x F 122−+−z e yz y x ,xy F x 2=z x F y 22−=z z e y F +−=2;x z ∂∂z x F F −=ze y xy−=22y z∂∂z y F F −=ze y z x −−=222(4)、xyzz =sin 解:设=),,(z y x F xyz z −sin ,yz F x 2−=xz F y −=xy z F z −=cos ;x z ∂∂z x F F −=xyz yz −=cos 2y z ∂∂z y F F −=xyz xz−=cos 3、设z y x z y x 32)32sin(2−+=−+确定了),(y x f z =,验证:+∂∂x z 1=∂∂yz证明:设=),,(z y x F )32()32sin(2z y x z y x −+−−+,1)32cos(2−−+=z y x F x 2)32cos(4−−+=z y x F y 3)32cos(6+−+−=z y x F z ;x z ∂∂z x F F −=32=y z∂∂z y F F −=31=所以+∂∂x z 13132=+=∂∂y z 4、设),(),,(),,(y x z z x z y y z y x x ===都是由方程0),,(=z y x F 确定的函数,证明1−=∂∂⋅∂∂⋅∂∂xz z y y x 证明:1)1((3−=−=−−−=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x zz y y x 5、函数),(v u ϕ具有连续的偏导数,验证方程0),(=−−bz cy az cx ϕ所确定的函数),(y x z z =满足+∂∂x z ac yzb =∂∂证明:设bz cy v az cx u −=−=,,则有c x u =∂∂,0=∂∂y u ,a z u −=∂∂,0=∂∂x v ,c yv =∂∂,b z v−=∂∂1ϕϕc x =2ϕϕc y =21ϕϕϕb a z −−=211ϕϕϕϕϕb a ca a x za z x +=−=∂∂212ϕϕϕϕϕb a cb b y zb z y +=−=∂∂于是+∂∂x z a=∂∂y zb ++211ϕϕϕb a ca =+212ϕϕϕb a cbc b a b a c =++2121)(ϕϕϕϕ6、设f 具有连续偏导数,方程),(y z xz f z −=确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),(y z xz f z −−,又设y z v xz u −==,,则有z x u =∂∂,0=∂∂y u ,x z u =∂∂,0=∂∂x v ,1−=∂∂yv ,1=∂∂z v1zf F x −=2f F y =211f xf F z −−=x z∂∂z x F F −=2111f xf zf −−=y z∂∂2121f xf f −−−=7、设f 具有连续偏导数,方程0),,(=+++z y x y x x f 确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),,(z y x y x x f +++,321f f f F x ++=32f f F y +=3f F z =x z∂∂z x F F −=3321f f f f ++−=y z∂∂321f f f +−=8、求由方程组所确定的函数的导数或偏导数(1)、⎩⎨⎧=+++=203222222z y x y x z 求,x y ∂∂,xz∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=∂∂+∂∂+∂∂+=∂∂064222x zz x y y x x y y x x z就是⎪⎩⎪⎨⎧−=∂∂+∂∂=∂∂−∂∂xx y y x z z x x y y x z2322解得13)13(222321222+=+=−−−=∂∂z xz y xy y z y y x y x x z )13(2)16(2321321++−=−−=∂∂z y z x y z y x z x x y (2)、⎪⎩⎪⎨⎧=++=+221222z y x z y x 求,dz dx ,dz dy解:对等式两边同时求关于z 的偏导数得⎪⎩⎪⎨⎧−=+=+122dzdy dz dx z dz dy y dz dxx解得)(221122112y x y z y x y z dz dx −+=−=)(221122112y x x z y x zx dz dy −+−=−=(3)、⎩⎨⎧=−+=−+0033x yu v y xv u 求,x u ∂∂,x v ∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=−∂∂+∂∂=+∂∂+∂∂0130322xu y x v v v x vx x u u 就是⎪⎩⎪⎨⎧=∂∂+∂∂−=∂∂+∂∂13322x v v x u y v x v x x uu 解得xy v u x v v yxu v xv x u−+−=−=∂∂223222933331xy v u yv u v yx u yv u x v −+=−=∂∂222222933313(4)、⎩⎨⎧=+=+u y v x v u y x sin sin 求,y u ∂∂,yv∂∂解:对等式两边同时求关于y 的偏导数得⎪⎪⎩⎪⎪⎨⎧∂∂+=∂∂∂∂+∂∂=y u uy u y v v x yv y u cos sin cos 1即⎪⎪⎩⎪⎪⎨⎧−=∂∂−∂∂=∂∂+∂∂u y v v x y u u y y vy u sin cos cos 1解得:u y v x u v x v x u y v x u y u cos cos sin cos cos cos 11cos sin 11+−=−−−=∂∂u y v x u y u vx u y u u y y v cos cos cos sin cos cos 11sin cos 11++=−−=∂∂习题8.6解答1、求下列曲线在指定点的切线和法平面(1)、曲线t t z t y t x +===1,,2在点21,1,1(解:2)1(1)(,2)(,1)(t t z t t y t x +=′=′=′,从而得在点21,1,1(的切线的方向向量为⎭⎬⎫⎩⎨⎧=→41,2,1s ,于是得切线方程为:1218141−=−=−z y x ;法平面方程为021()1(8)1(4=−+−+−z y x ,即0252168=−++z y x (2)、曲线2sin 4,cos 1,sin t z t y t t x =−=−=在2π=t 的对应点解:2cos 2)(,sin )(,cos 1)(tt z t t y t t x =′=′−=′,2π=t 的对应点是点)22,1,12(−π,该的切线的方向向量为{2,1,1=→s ,于是得切线方程为:22211121−=−=−+z y x π;法平面方程为0)22(2)1()2(=−+−+−+z y x π,即02422=−−++πz y x (3)、曲线t z t t y t x 22cos ,cos sin 3,sin 2===在4π=t 的对应点解:t t z t t y t t t t x 2sin )(,2cos 3)(,2sin 2cos sin 4)(−=′=′==′,4π=t 的对应点是点)21,23,1(,该的切线的方向向量为{}1,0,2−=→s ,于是得切线方程为:12102321−−=−=−z y x ;法平面方程为021()1(2=−−−z x ,即0232=−−z x (4)、曲线t z tty t t t x =−=+=,1,12在)01,1(解:tt z t t y t t t t t x 21)(,1)(,)1(2)1(2)1(2)(222=′−=′+=+−+=′,1=t 对应着)01,1(,该的切线的方向向量为{}1,2,22121,1,1−=⎭⎬⎫⎩⎨⎧−=→s ,于是得切线方程为:11221−=−=−z y x ;法平面方程为0)1(2)1(2=−+−−z y x ,即0322=−+−z y x (5)、曲线⎩⎨⎧=−+−=−++0453203222z y x x z y x 在点)1,1,1(解:设x z y x z y x F 3),,(222−++=,4532),,(−+−=z y x z y x G 32−=x F x ,y F y 2=z F z 2=于是{}2211−=→n 2=x G ,3−=y G 5=z G 于是{}5322−=→n 所以切线的方向向量{}191653222121−=−−=×=→→→→→→kj i n n s 于是得切线方程为:1191161−−=−=−z y x ;法平面方程为0)1()1(9)1(16=−−−+−z y x ,即024916=−−+z y x (6)、曲线⎩⎨⎧=+=+222222z x y x 在点)1,1,1(解:设2),,(22−+=y x z y x F ,2),,(22−+=z x z y x G x F x 2=,y F y 2=0=z F 于是{}01121=→n x G x 2=,0=y G z G z 2=于是{}10122=→n 所以切线的方向向量{}11110101121−−==×=→→→→→→k j i n n s 0是得切线方程为:111111−−=−−=−z y x ;法平面方程为0)1()1()1(=−−−−−z y x ,即01=+−−z y x 2、在曲线32,,t z y t x ===上求一点,使在该点的切线与平面102=++z y x 平行解:已知平面的法向为{}121=→n ,曲线的切线的方向{}2321t ts =→,由题设可知•→n 0=→s 即03412=++t t 解得31,121−=−=t t ,所求的点是)1,1,1(−−或者)271,91,31(−−3、求下列曲面在指定点的切平面和法线(1)、zxy z ln+=在点)1,1,1(解:zzxy z y x F −+=ln ),,(,1x F x =,1=y F ,11−−=zF z 切平面的法向为{}211−=→n ,切平面为0)1(2)1()1(=−−−+−z y x 即02=−+z y x 法线为211111−−=−=−z y x (2)、22y x z +=在点)5,1,2(解:zy x z y x F −+=22),,(,2x F x =,2y F y =,1−=z F 切平面的法向为{}124−=→n ,切平面为0)5()1(2)2(4=−−−+−z y x 即0524=−+y x 法线为152142−−=−=−z y x (3)、3=+−xy z e z 在点)0,1,2(解:=),.(z y x F 3−+−xy z e z ,y F x =,x F y =,1−=zz e F 切平面的法向为{}021=→n ,切平面为0)1(2)2(=−+−y x 即042=−+y x 法线为2112zy x =−=−5、在曲面xy z =上求一点,使在该点的法线垂直于平面093=+++z y x 平行解:所求法线的方向为{}131=→n 设=),.(z y x F zxy −,y F x =,x F y =,1−=z F 切平面的法向为{}1−=→x yn ,于是有向量{}131=→n {}1−=x y λ所以1131−==x y 得3,1,3=−=−=z y x ,所求的点是()313−−。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆=.任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D DD =,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

这样(,)f x y 在12D D 上的积分和就等于1D 上的积分和加2D 上的积分和,记为1212(,)(,)(,).i i i i i i i i i D D D D f f f ξησξησξησ∆=∆+∆∑∑∑令所有i σ∆的直径的最大值0λ→,上式两端同时取极限,即得1212(,)d (,)d (,)d .D D D D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰4. 根据二重积分的性质,比较下列积分的大小:(1) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由x 轴、y 轴与直线1x y +=所围成;(2) 2()d Dx y σ+⎰⎰与3()d Dx y σ+⎰⎰,其中积分区域D 是由圆周22(2)(1)2x y -+-=所围成;(3)ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中D 是三角形闭区域,三顶点分别为(1,0),(1,1),(2,0);(4) ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰,其中{(,)35,01}D x y x y =≤≤≤≤.解 (1) 在积分区域D 上,01x y ≤+≤,故有32()()x y x y +≤+,根据二重积分的性质4,可得32()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(2) 由于积分区域D 位于半平面{(,)|1}x y x y +≥内,故在D 上有23()()x y x y +≤+.从而23()d ()d .DDx y x y σσ+≤+⎰⎰⎰⎰(3) 由于积分区域D 位于条形区域{(,)|12}x y x y ≤+≤内,故知D 上的点满足0ln()1x y ≤+≤,从而有2[ln()]ln()x y x y +≤+.因此2[ln()]d ln()d .DDx y x y σσ+≤+⎰⎰⎰⎰(4) 由于积分区域D 位于半平面{(,)|e}x y x y +≥内,故在D 上有ln()1x y +≥,从而有2[ln()]ln()x y x y +≥+.因此2[ln()]d ln()d .DDx y x y σσ+≥+⎰⎰⎰⎰5. 利用二重积分的性质估计下列积分的值:(1) ()d DI xy x y σ=+⎰⎰其中{(,)01,01}D x y x y =≤≤≤≤;(2) 22sin sin d DI x y σ=⎰⎰其中{(,)0,0}D x y x y ππ=≤≤≤≤;(3) (1)d DI x y σ=++⎰⎰其中{(,)01,02}D x y x y =≤≤≤≤;(4) 22(49)d DI x y σ=++⎰⎰其中22{(,)4}D x y x y =+≤.解 (1) 在积分区域D 上,01x ≤≤,01y ≤≤,从而0()2xy x y ≤+≤,又D 的面积等于1,因此0()d 2.Dxy x y σ≤+≤⎰⎰(2) 在积分区域D 上,0sin 1x ≤≤,0sin 1y ≤≤,从而220sin sin 1x y ≤≤,又D 的面积等于2π,因此2220sin sin d π.Dx y σ≤≤⎰⎰(3) 在积分区域D 上,014x y ≤++≤,D 的面积等于2,因此2(1)d 8.Dx y σ≤++≤⎰⎰(4) 在积分区域D 上,2204x y ≤+≤,从而22229494()925,x y x y ≤++≤++≤,又D 的面积等于4π,因此2236π(49)d 100π.Dx y σ≤++≤⎰⎰习 题 8-21. 计算下列二重积分: (1) 22()d D xy σ+⎰⎰,其中{(,)|||1,||1}D x y x y =≤≤;(2) (32)d Dx y σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域; (3)323(3)d D xx y y σ++⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤;(4) cos()d Dx x y σ+⎰⎰其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.解 (1) 1311112222221111128()d d ()d d (2)d .333Dy x y x x y y x y x x x σ-----⎡⎤+=+=+=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰(2) D 可用不等式表示为03,02y x x ≤≤-≤≤,于是22222000220(32)d d (32)d [3]d 20(422)d .3xxDx y x x y y xy y xx x x σ--+=+=+=+-=⎰⎰⎰⎰⎰⎰(3)11323323(3)d d (3)d Dx x y y y x x y y x σ++=++⎰⎰⎰⎰ 14113330001d ()d 1.44x x y y x y y y y ⎡⎤=++=++=⎢⎥⎣⎦⎰⎰(4) D 可用不等式表示为0,0πy x x ≤≤≤≤,于是ππ00πcos()d d cos()d [sin()]d 3(sin 2sin )d π.2xxDx x y x x x y y x x y x x x x x σ+=+=+=-=-⎰⎰⎰⎰⎰⎰2. 画出积分区域,并计算下列二重积分:(1) D σ⎰⎰,其中D是由两条抛物线y =,2y x =所围成的闭区域;(2) 2d Dxy σ⎰⎰,其中D 是由圆周224x y +=及y 轴所围成的右半闭区域; (3) ed x yD σ+⎰⎰,其中{(,)|||||1}D x y x y =+≤;(4)22()d Dxy x σ+-⎰⎰,其中D 是由直线2y =,y x =及2y x =所围成的闭区域.解 (1) D可用不等式表示为201x y x ≤≤≤,于是237111424000226d d (-)d .3355Dx x x y x y x x x x σ⎡====⎢⎥⎣⎦⎰⎰⎰⎰⎰(2) D可用不等式表示为022x y ≤≤-≤≤,于是22222222164d d d (4)d .215Dxy y y x y y y σ--==-=⎰⎰⎰⎰ (3) 12D D D =,其中1{(,)|11,10}D x y x y x x =--≤≤+-≤≤,1{(,)|11,01}D x y x y x x =-≤≤-+≤≤,于是120111110112112111ed e d e d e d e d e d e d (e e )d (e e )d e e .x yx y x y D D D x x x y x y x x x x x y x y x x σσσ+++++----+----=+=+=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4) D 可用不等式表示为,022yx y y ≤≤≤≤,于是 2222223222232002()d d ()d 19313d d .322486yy Dyy x y x y x y x x x x y x y y y y σ+-=+-⎡⎤⎛⎫=+-=-=⎢⎥ ⎪⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰3. 化二重积分(,)d DI f x y σ=⎰⎰为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1) 由直线y x =及抛物线24y x =所围成的闭区域; (2) 由x 轴及半圆周222(0)x y r y +=≥所围成的闭区域; (3) 由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域; (4) 环形闭区域22{(,)|14}x y x y ≤+≤.解 (1) 直线y x =及抛物线24y x =的交点为(0,0)和(4,4),于是40d (,)d xI x f x y y =⎰或2404d (,)d yy I y f x y x =⎰⎰(2) 将D用不等式表示为0y r x r ≤≤-≤≤,于是可将I 化为d (,)d rr I x f x y y -=⎰;如将D用不等式表示为0x y r ≤≤≤,于是可将I 化为d (,)d .rI y f x y x =⎰(3) 三个交点为(1,1)、1(2,)2和(2,2),于是211d (,)d x xI x f x y y =⎰⎰或12221112d (,)d d (,)d .yyI y f x y x y f x y x =+⎰⎰⎰⎰(4) 将D 划分为4块,得11211211d (,)d d (,)d d (,)d d (,)d .I y f x y x y f x y xy f x y x y f x y x ----=+++⎰⎰⎰⎰⎰或11211211d (,)d d (,)d d (,)d d (,)d .I x f x y y y f x y yy f x y y y f x y y ----=+++⎰⎰⎰⎰⎰4. 改换下列二次积分的积分次序:(1) 1d (,)d yy f x y x ⎰⎰ ; (2)2220d (,)d y y y f x y x ⎰⎰;(3) 1d (,)d y f x y x ⎰ ;(4)212d (,)d xx f x y y -⎰;(5)eln 1d (,)d xx f x y y ⎰⎰; (6)πsin 0sin2d (,)d xxx f x y y -⎰⎰.解 (1) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0,01}D x y x y y =≤≤≤≤,D 可改写为{(,)|1,01}x y x y x ≤≤≤≤,于是原式11d (,)d .xx f x y y =⎰⎰(2) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中2{(,)|2,02}D x y y x y y =≤≤≤≤,D 可改写为{(,)|04}2xx y y x ≤≤≤≤,于是原式42d (,)d .x x f x y y =⎰⎰(3) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|01}D x y x y =≤≤,D 可改写为{(,)|011}x y y x ≤≤-≤≤,于是原式11d (,)d .x f x y y -=⎰(4) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|212}D x y x y x =-≤≤≤≤,D 可改写为{(,)|2101}x y y x y -≤≤≤≤,于是原式1102d (,)d .yy f x y x -=⎰⎰(5) 所给二次积分等于二重积分(,)d D f x y σ⎰⎰,其中{(,)|0ln ,1e}D x y y x x =≤≤≤≤,D 可改写为{(,)|e e,01}y x y x y ≤≤≤≤,于是原式1eed (,)d .y y f x y x =⎰⎰(6) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,将D 表示为12D D ,其中1{(,)|arcsin πarcsin ,01}D x y y x y y =≤≤-≤≤,2{(,)|2arcsin π,10}D x y y x y =-≤≤-≤≤,于是原式1πarcsin 0πarcsin 12arcsin d (,)d d (,)d .yyyy f x y x y f x y x ---=+⎰⎰⎰⎰5. 计算由四个平面0x =,0y =,1x =,1y =所围成柱体被平面0z =及236x y z ++=截得的立体的体积.解 此立体为一曲顶柱体,它的底是xOy 面上的闭区域{(,)|01,01}D x y y x =≤≤≤≤,顶是曲面623z x y =--,因此所求立体的体积为11007(623)d d d (623)d .2DV x y x y x x y y =--=--=⎰⎰⎰⎰6. 求由曲面222z x y =+及2262z x y =--所围成的立体的体积. 解 所求立体在xOy 面上的投影区域为22{(,)|2}D x y x y =+≤所求立体的体积等于两个曲顶柱体体积的差:22222222π20(62)d (2)d (633)d (63)d d d 3)d 6π.DDDDV x y x y x y σσσρρθθρρρ=---+=--=-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰7. 画出积分区域,把积分(,)d Df x y σ⎰⎰表示为极坐标形式的二次积分,其中积分区域D是:(1) 222{(,)|}(0)x y x y a a +≤>; (2) 22{(,)|2}x y x y x +≤; (3) 2222{(,)|}x y a x y b ≤+≤,其中0a b <<; (4) {(,)|01,01}x y y x x ≤≤-≤≤. 解 (1) 在极坐标中,{(,)|0,02π}D a ρθρθ=≤≤≤≤,故2π0(,)d (cos ,sin )d d d (cos ,sin )d .aDDf x y f f σρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(2) 在极坐标中,ππ{(,)|02cos ,}22D ρθρθθ=≤≤-≤≤,故 π2cos 2π02(,)d (cos ,sin )d d d (cos ,sin )d .DDf x y f f θσρθρθρρθθρθρθρρ-==⎰⎰⎰⎰⎰⎰(3) 在极坐标中,{(,)|,02π}D a b ρθρθ=≤≤≤≤,故2π0(,)d (cos ,sin )d d d (cos ,sin )d .baDDf x y f f σρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(4) 在极坐标中,直线1x y +=的方程为1sin cos ρθθ=+,故1π{(,)|0,0}sin cos 2D ρθρθθθ=≤≤≤≤+,于是π12sin cos 0(,)d (cos ,sin )d d d (cos ,sin )d .DDf x y f f θθσρθρθρρθθρθρθρρ+==⎰⎰⎰⎰⎰⎰8. 化下列二次积分为极坐标形式的二次积分:(1) 110d (,)d x f x y y ⎰⎰ ; (2)20d (,)d x x f x y y ⎰;(3)11d (,)d xx f x y y -⎰ ; (4)21d (,)d x x f x y y ⎰⎰.解 (1) 用直线y x =将积分区域D 分成1D 、2D 两部分:1π{(,)|0sec ,0}4D ρθρθθ=≤≤≤≤,2ππ{(,)|0c ,}.42D cs ρθρθθ=≤≤≤≤, 于是原式sec csc 4204d (cos ,sin )d d (cos ,sin )d .f f ππθθπθρθρθρρθρθρθρρ=+⎰⎰⎰⎰(2) 在极坐标中,直线2,x y x ==和y =的方程分别是π2sec ,4ρθθ==和3πθ=。

相关文档
最新文档