《有理数的乘方》知识要点

合集下载

专题05_有理数的乘方(知识点串讲)(原卷版)

专题05_有理数的乘方(知识点串讲)(原卷版)

专题05 有理数的乘方重点突破知识点一乘方(重点)乘方的概念:一般地,n个相同的因数a相乘,即,记作n a,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在na中,a叫做底数,n叫做指数。

n a读作a的n次方,也可以读作a的n次幂。

读作:a的n次方,或者a的n次幂负数的幂的正负的规律:(易错)负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0. 知识点二科学记数法把一个大于10的数记成10na⨯的形式,其中a是整数数位只有一位的数(即110a≤<),n是正整数,这样的记数方法叫科学记数法。

(用科学记数法表示一个数时,10的指数比原数的整数位数少1.)把10na⨯还原成原数时,只需把a的小数点往前移动n位。

(易错)知识点三近似数和有效数字近似数概念:在实际问题中,由“四舍五入”得到的数或大约估计的数都是近似数。

(近似数小数点后的末位数是0的,不能去掉0.)【识别近似数与准确数的方法】①语句中带有“约”“左右”等词语,里面出现的数据是近似数。

②描述“温度”“身高”“体重”的数据是近似数。

③准确数字与实际相符有效数字概念:一个近似数从左边第一位非0的数字起,到末位数字止,所有的数字都是这个数的有效数字。

一个近似数有几个有效数字,就称这个近似数保留几个有效数字。

精确度:表示一个近似数与准确数的接近程度。

一个近似数,四舍五入到哪一位,就称这个数精确到哪一位。

(难点)考查题型考查题型一有理数幂的概念理解典例1.(2018·遵义市期中)对于(-2)4与-24,下列说法正确的是( ) A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等变式1-1.(2019·石家庄市期中)下列对于–34,叙述正确的是()A.读作–3的4次幂B.底数是–3,指数是4C.表示4个3相乘的积的相反数D.表示4个–3相乘的积变式1-2.(2019·惠来县期中)下列说法正确的是()A.23表示2×3 B.﹣32与(﹣3)2互为相反数C.(﹣4)2中﹣4是底数,2是幂D.a3=(﹣a)3变式1-3.(2019·宝鸡市期中)若2a与2b-互为相反数,则a的倒数是()A.2-B.12C.0D.没有倒数考查题型二有理数乘方运算典例2.(2019·赣州市期中)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77变式2-1.(2019·马鞍山市期中)下列各组的两个数中,运算后结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.323⎛⎫-⎪⎝⎭和323-变式2-2.(2018·赤峰市·)计算(53)2017×(﹣0.6)2018的结果是( )A.﹣53B.53C.﹣0.6 D.0.6考查题型三 乘方运算的符号规律典例3.(2019·兴仁市期中)在(﹣1)5、(﹣1)4、﹣23,(﹣3)2这四个数中,负数有几个( ) A .0个 B .1个 C .2个 D .3个变式3-1.(2017·马鞍山期末)计算的结果是( ) A . B . C . D . 变式3-2.(2019·大庆市期末)a ,b 互为相反数,下列各数中,互为相反数的一组为( )A .a 2与b 2B .a 3与b 5C .a 2n 与b 2n (n 为正整数)D .a 2n+1与b 2n+1(n 为正整数) 考查题型四 乘方的应用典例4.(2020·衡水市期中)一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米 变式4-1.(2018·张家口市期末)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A .1小时B .2小时C .3小时D .4小时变式4-2.(2018·郑州市期末)远古时期,人们通过在绳子上打结来的记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .336B .510C .1326D .3603考查题型五 含乘方的有理数加减乘除混合运算典例5.(2019·乌海市期中)计算:(1)20163351()()(1)461212-+---- (2)2221(2)2(10)4----⨯- (3)4322112(0.5)[(3)(3)]0.5338---÷⨯---+-变式5-1.(2019·武汉市期中)计算(1)﹣(3﹣5)+32×(1﹣3) (2)﹣32﹣3122(1)293-⨯-- . 考查题型六 用科学记数法表示绝对值大于1的数典例6.(2020·黄石市期末)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A .4.4×108B .4.40×108C .4.4×109D .4.4×1010 变式6-1.(2019·鹤壁市期末)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×1011变式6-2.(2020·周口市期末)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .10考查题型七 将用科学记数法表示的数变回原数典例7.(2019·周口市期中)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资111.00210⨯元.数据111.00210⨯可以表示为( )A .10.02亿B .100.2亿C .1002亿D .10020亿变式7-1.(2018·朝阳区期中)长江三峡工程电站的总装机容量用科学记数法表示为71.8210⨯千瓦,把它写成原数是( )A .182000千瓦B .182000000千瓦C .18200000千瓦D .1820000千瓦变式7-2.(2020·保定市期末)用科学记数法表示的数3.61×108.它的原数是( ) A .36100000000 B .3610000000 C .361000000 D .36100000考查题型八 求一个数的近似数典例8.(2020·嘉峪关市期末)用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.050 2(精确到0.000 1)变式8-1.(2020·河池市期末)用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.050(精确到0.001)变式8-2.(2019·武汉市期末)用四舍五入法对2.098176取近似值,其中正确的是( )A .2.09(精确到0.01)B .2.098(精确到千分位)C .2.0(精确到十分位)D .2.0981(精确到0.0001)。

最新七年级上学期数学有理数的乘方知识点总结

最新七年级上学期数学有理数的乘方知识点总结

湘教版七年级上学期数学有理数的乘方知识点总结一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:有理数的乘方运算.2.难点:有理数的乘方运算的符号法则.3.疑点:①乘方和幂的'区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,......是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【湘教版七年级上学期数学有理数的乘方知识点总结】。

七年级数学有理数的乘方及混合运算(提高)知识讲解

七年级数学有理数的乘方及混合运算(提高)知识讲解

有理数的乘方及混合运算(提高)责编:杜少波【学习目标】1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;3. 进一步掌握有理数的混合运算. 【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果. (2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 【高清课堂:有理数的乘方及混合运算 356849 有理数的混合运算】要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用. 【典型例题】类型一、有理数的乘方1.(2016•虞城县一模)下列各数:①﹣12;②﹣(﹣1)2;③﹣13;④(﹣1)2,其中结果等于﹣1的是( )A .①②③B .①②④C .②③④D .①②③④【思路点拨】原式各项计算得到结果,即可作出判断. 【答案】A .【解析】解:①﹣12=﹣1,符合题意;②﹣(﹣1)2=﹣1,符合题意;③﹣13=﹣1,符合题意;④(﹣1)2=1,不符合题意. 故选A .【总结升华】注意()n a -与na -的意义的区别.22()n n a a -=(n 为正整数),2121()n n a a ++-=-(n 为正整数). 举一反三:【变式1】比较(-5)3与-53的异同.【答案】相同点:它们的结果相同,指数相同;不同点:(-5)3表示-5的3次方,即(-5)×(-5)×(-5)=-125,而-53表示5的3次方的相反数,即-53=-(5×5×5).因此,它们的底数不同,表示的意义不同. 【变式2】(2015•杭州模拟)若n 为正整数,(﹣1)2n=( ) A .1 B . ﹣1 C . 2n D . 不确定【答案】A .因为n 为正整数,2n 一定是偶数,所以(﹣1)2n=1.类型二、乘方运算的符号法则2.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫ ⎪⎝⎭,-(-2)2010【答案与解析】根据乘方的符号法则判断可得:(-2)7运算的结果是负;(-3)24运算的结果为正;(-1.0009)2009运算的结果是负;553⎛⎫⎪⎝⎭运算的结果是正;-(-2)2010运算的结果是负. 【总结升华】 “一看底数,二看指数”,当底数是正数时,结果为正;当底数是0,指数不为0时,结果是0;当底数是负数时,再看指数,若指数为偶数,结果为正;若指数是奇数,结果为负. 举一反三:【变式】当n 为奇数时,()()()1111144n n n n ++--+--= .【答案】0类型三、有理数的混合运算3.计算:(1)-(-3)2+(-2)3÷[(-3)-(-5)](2)[73-6×(-7)2-(-1)10]÷(-214-24+214)(3)3112222233⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭;(4)()2311113121121324424340.2⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- 【答案与解析】(1)-(-3)2+(-2)3÷[(-3)-(-5)]=-9+(-8)÷(-3+5) =-9+(-8)÷2 =-9+(-4)=-13(2) [73-6×(-7)2-(-1)10]÷(-214-24+214)=(7×72-6×72-1)÷(-214+214-24)=[72×(7-6)-1]÷(-24) =(49-1)÷(-24) =-2(3)有绝对值的先去掉绝对值,然后再按混合运算.原式11221111[(2)]82338324=-+⨯--=--=- (4)将带分数化为假分数,小数化为分数后再进行运算.()23311113121121324424340.215457551()()241162434()5125724241251652313960561251204040⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-=÷-++-⨯--=-⨯-⨯+⨯+=--++=【总结升华】有理数的混合运算,确定运算顺序是关键,细心计算是运算正确的前提.举一反三:【高清课堂:有理数的乘方及混合运算 356849 典型例题1】【变式】计算:(1)()⎡⎤⎛⎫⎡⎤⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36(3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)【答案】(1)原式()7651-⨯⎪⎭⎫⎝⎛-=()=1×-767=-6或原式=(1-1+1123⨯)(2-9)()1=×-76 (2)原式()=⎡⎤⎣⎦1-1-×2--276=1-1-×296=35-6(3) 原式=4111(+-)×(-24)-1-8384=-32-3+66-9=22 (4) 原式=11-+|-8-3|-0.0010.04=-1000-25+11=-10144.计算:20112012(2)2-+ 【答案与解析】逆用分配律可得:2011201220112012201120112011(2)2222(12)122-+=-+=-+=⋅=【总结升华】灵活运用运算律,简化运算.另外有212222121222;222n n n n n n +---=-=举一反三:【变式1】计算:201918171643222222...2222--------- 【答案】原式=191817164321817164322222...2222222...2222--------=-------2...222==-=【变式2】计算:7734()()43-⨯-【答案】7773434()()[()()]14343-⨯-=-⨯-=类型四、探索规律5.(2015•滕州市校级二模)求1+2+22+23+…+22013的值,可令S=1+2+22+23+…+22013,则2S=2+22+23+…+22014,因此2S ﹣S=22014﹣1.仿照以上推理,计算出1+5+52+53+…+52014= . 【答案】解:设S=1+5+52+53+…+52014,则5S=5+52+53+…+52015,5S ﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1, 所以,S=.7=-6【总结升华】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可.举一反三:【变式】观察下面三行数:①-3,9,-27,81,-243,729,…②0,12,-24,84,-240,732,…③-1,3,-9,27,-81,243,…(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【答案】 (1)第①行数的规律是:-3,(-3)2,(-3)3,(-3)4,…;(2)第②行数是第①行数相应的数加3,即:-3+3,(-3)2+3,(-3)3+3,(-3)4+3,…;第③行数是第①行数相应的数的13,即133-⨯,21(3)3-⨯,31(3)3-⨯,41(3)3-⨯,…;(3)每行数中的第10个数的和是:1010101(3)[(3)3](3)3-+-++-⨯=59049+59052+19683=137784.。

1.5 有理数的乘方讲义 学生版

1.5 有理数的乘方讲义 学生版

第1章有理数1.5 有理数的乘方学习要求1、理解有理数乘方的意义,会进行有理数的乘方运算,并体会乘方结果的变化.2、掌握科学记数法的形式和要点,能按照要求使用科学记数法.3、掌握有理数混合运算的法则、顺序和运算律,能熟练、合理地进行有理数的加、减、乘、除、乘方的混合的运算.4、进一步巩固有理数的混合运算,在运算中使用简单推理,提高运算能力.知识点一:有理数乘方的意义例1.对乘积(﹣3)×(﹣3)×(﹣3)×(﹣3)记法正确的是()A.﹣34B.(﹣3)4C.﹣(+3)4D.﹣(﹣3)4变式1.(﹣3)2的值是()A.﹣9 B.9 C.﹣6 D.6变式2.把下列各式用幂的形式表示,并说出底数和指数:(1)(﹣3)×(﹣3)×(﹣3);(2).变式3.把下列各幂还原成连乘的形式:(1)(﹣7)4;(2)(﹣a3)5;(3)﹣a6;(4)(x﹣y)3.知识点二:有理数乘方的运算法则例2.计算:(1)(﹣3)4(2)﹣34(3)(4)(5)(﹣1)2011.变式1.计算.(1)53;(2)(﹣3)4;(3);(4);(5)1.52.变式2.计算:(1)﹣(﹣3)3;(2)(﹣)2;(3)(﹣)3.变式3.计算(﹣1)2014+(﹣1)2015的结果是()A.0 B.﹣1 C.﹣2 D.2变式4.简便计算:(﹣9)×(﹣)6×(1)3.变式5.计算:﹣32×(﹣)6×(1﹣)3.知识点三:有理数的混合运算顺序例3.计算:(1)(﹣2)2•(﹣3)2;(2);(3);(4)变式1.计算(1)(﹣3)4﹣(﹣3)3(2)|﹣22﹣3|﹣(﹣9)÷(﹣3)(3)(4)﹣(﹣2)2﹣3÷(﹣1)3+(﹣1)3×(﹣2)4.变式2.计算:(1)64÷(﹣2)4;(2)﹣22×(﹣3)2;(3)(﹣2)3×(﹣3)2;(4).变式3.计算:(1)﹣32﹣(﹣2)2;(2)(﹣10)2+[(﹣4)2﹣(3+32)×2];(3)(﹣1)4+(﹣23)÷×(﹣)3;(4)(﹣2)2010+(﹣2)2011;(5)(﹣0.25)2010×42011.变式4.计算题(1)﹣(﹣2)4(2)(3)(﹣1)2003(4)﹣13﹣3×(﹣1)3(5)﹣23+(﹣3)2(6)﹣32÷(﹣3)2(7)(﹣2)2﹣2+(﹣2)3+23(8)(9)(10)﹣(﹣2)2﹣3÷(﹣1)3+0×(﹣2)3变式5.计算(1);(2);(3).变式6.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)﹣0.5﹣(﹣3)+2.75﹣7;(3)(+﹣)×(﹣36);(4)﹣14﹣(﹣5)×+(﹣2)3÷|﹣32+1|知识点四:科学记数法例4.2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次,其中4640万用科学记数法可表示为()A.0.464×109B.4.64×108C.4.64×107D.46.4×106变式1.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A.0.21×108B.2.1×106C.2.1×107D.21×106变式2.据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元.将82 000 000 000 用科学记数法表示为()A.0.82×1011 B.8.2×1010C.8.2×109D.82×109变式3.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106变式4.国家体育场“鸟巢”建筑面积258000平方米,将258000用科学记数法表示应为()A.258×103B.2.58×104C.2.58×105D.0.258×106变式5.地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.9变式6.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A.3.5×106B.3.5×l07C.35×l06D.0.35×l08知识点五:近似数例5.用四舍五入法按要求取近似值:(1)99.5(精确到个位)(2)28343(精确到千位)(3)50673(精确到百位)变式1.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是﹣2℃;(3)1m等于100cm;(4)东风汽车厂2000年生产汽车14 500辆.变式2.下列各题中的数据,哪些是准确数?哪些是近似数?(1)通过第三次全国人口普查得知,山西省人口总数为3297万人;(2)生物圈中,已知绿色植物约有30万种;(3)某校有1148人;(4)由于我国人口众多,人均森林面积只有0.128公顷;(5)这个路口每分钟有3人经过;(6)地球表面积约5.1亿平方千米.变式3.用四舍五入法,按要求对下列各数取近似数:(1)地球上七大洲的总面积约为149480000平方千米(精确到10000000平方千米)(2)某人一天需要饮水1890毫升(精确到1000毫升)(3)人的眼睛可看见的红光的波长为0.000077厘米(精确到0.00001厘米)拓展点一:利用乘方解决实际问题例6.去年某地高新技术产品进出口总额为5287.8万美元,比上年增长30%,如果今年仍按此比例增长,那么今年该地高新技术产品进出口总额可达到多少万美元(结果精确到万位)?变式1.向月球发射无线电波,无线电波到月球并返回地面需2.57s,已知无线电波每秒传播3×105km,求地球和月球之间的距离.(结果保留三个有效数字)拓展点二:确定近似数的精确度例7.指出下列各近似值精确到哪一位.(1)56.3(2)5.630(3)5.63×106(4)5.630万(5)0.017(6)3800.变式1.用四舍五入法对下列各数按括号中的要求取近似值:(1)2.768(精确到百分位);(2)9.403(精确到个位);(3)8.965(精确到0.1);(4)17 289(精确到千位).变式2.下列由四舍五入法得到的近似数,各精确到哪一位?(1)127.32;(2)0.040 7;(3)20.053;(4)230.0千;(5)4.002.变式3.下列近似数各精确到哪一位?(1)3.14(2)0.02010(3)9.86万(4)9.258×104(5)3.9×103(6)3.90×105.变式4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)拓展点三:科学记数法与近似数的综合应用例8.某工人执行爆破任务时,点燃导火索后往100m外的安全地带奔跑的速度为7m/s,已知导火索燃烧的速度为0.11m/s,求:导火索的长度至少多长才能保证安全?(精确到0.1m)变式1.人体中血液的重量约占人体重量的,小丽的体重是40千克,求她体内的血液约重多少千克?(结果保留一位小数)变式2.2013年12月14日21时11分,嫦娥三号成功登陆月球.北京飞控中心通过无线电波控制,将“嫦娥三号”着陆器与巡视器成功分离的画面传回到大屏幕上.已知无线电波传播速度为3×105km/s,无线电波到月球并返回地面用2.57s,求此时月球与地球之间的距离(精确到1000km).变式3.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.变式4.1984年4月8日,我国第一颗地球同步轨道卫星发射成功.所谓地球同步轨道卫星,是指:卫星距离地球的高度约为36 000千米,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即24小时,卫星在轨道上的绕行速度约为每秒千米.(1)现在知道地球的半径约为6 400千米,你能将上面的空填上吗?(2)写出你的计算过程.(结果保留一位小数)拓展点四:用分段法进行有理数的混合运算例9.(﹣0.125)2006×82005=.拓展点五:利用乘方进行大小比较例10.比较大小:3223.变式1.(1)问题:你能比较20042005和20052004的大小吗?为了解决这个问题,首先写出它的一般形式,即比较n n+1和(n+1)n的大小(n是正整数),然后我们从分析n=1,n=2,n=3,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):1221,2332,3443,4554,5665,…(2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系是什么?(3)根据上面的归纳猜想,尝试比较20042005和20052004的大小.变式2.化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.(﹣1)2016,+(﹣3.5),﹣(﹣1.5),﹣|﹣2.5|,﹣22拓展点六:近似数真值的取值范围例11.近似数1.50所表示的准确数a的范围是()A.1.55≤a<1.65 B.1.55≤a≤1.64C.1.495≤a<1.505 D.1.495≤a≤1.505变式1.近似数15.60,它表示大于或等于,而小于的数.变式2.近似数1.70所表示的准确数A的范围是.变式3.按要求取近似值:37.49≈(精确到0.1),这个近似数表示大于或等于,而小于的数.拓展点七:偶次方的非负性例12.若|a﹣1|+(b+3)2=0,则b a=()A.﹣3 B.﹣1 C.3 D.1变式1.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.变式2.若x,y为实数,且满足|x﹣3|+(y+3)2=0,则()2016的值是()A.4 B.3 C.2 D.1变式3.若(a+1)2+|b﹣2|=0,求a2000•b3的值.变式4.已知|2x+1|+(y﹣2)2=0,求(xy)2011的值.拓展点八:定义新运算例13.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1=.变式1.现规定一种新的运算“⊙”:a⊙b=a2+b2﹣1,如2⊙3=22+32﹣1=12,则(﹣3)⊙4=.变式2.现定义一种新运算,对任意有理数x,y都有x⊕y=x2﹣y,例如3⊕2=32﹣2=7,则44⊕(﹣81)=.变式3.从三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作C32==3,一般地,从m个元素中选取n个元素组合,记作:C m n=.例:从7个元素中选5个元素,共有C75==21种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有种.变式4.对非负有理数数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最(填大或小)值,这个值为.变式5.阅读:如果一个非负数x四舍五入到个位后得到非负整数为n,记作“x”=n,例如“0.4”=0,“0.6”=1,“1.7”=2等,显然如果“x”=n,则可得n﹣0.5≤x<n+0.5,反过来如果n﹣0.5≤x<n+0.5,则可得“x”=n.根据以上知识,请解决以下问题:(1)当x为非负数,m为非负整数时,请说明“x+m”=m+“x”;(2)求满足3“x”=4x时,所有非负实数x的值.拓展点九:规律探究问题例14.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.8变式1.观察下列式子:12﹣02=1+0;22﹣12=2+1=3;32﹣22=3+2=5;…,写出第10项的算式.变式2.阅读材料:求1+2+22+23+24+…+22017首先设S=1+2+22+23+24+ (22017)则2S=2+22+23+24+25+ (22018)②﹣①得S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1以上解法,在数列求和中,我们称之为:“错位相减法”1+3+32+33+34+…+32017=.变式3.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…猜想:13+23+…+n3(n是正整数)=.易错点一:混淆(-a)2与-a2的值例15.﹣43的计算结果是()A.64 B.12 C.﹣12 D.﹣64变式1.下列各组的运算结果相等的是()A.34和43B.(﹣3)5和﹣35C.﹣32和(﹣3)2D.和变式2.下列各组中两个式子的值相等的是()A.32与﹣32B.(﹣2)2与﹣22C.|﹣2|与﹣|+2| D.(﹣2)3与﹣23变式3.下列各数与﹣6相等的()A.|﹣6| B.﹣|﹣6| C.﹣32D.﹣(﹣6)变式4.下列算式中,与(﹣3)2相等的是()A.﹣32B.(﹣3)×2 C.(﹣3)×(﹣3)D.(﹣3)+(﹣3)易错点二:混淆乘方和乘法例16.=;()3=;(﹣)3=;﹣=.易错点三:对科学记数法理解不够例17.将下列用科学记数法表示的数还原(1)2.23×103;(2)3.0×108;(3)6.03×105.变式1.用小数表示下列各数:(1)8.5×10﹣3(2)2.25×10﹣8(3)9.03×10﹣5.变式2.用科学记数法表示的数3.61×108.它的原数是()A.36100000000 B.3610000000 C.361000000 D.36100000变式3.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为()A.0.5379亿元B.5.379亿元C.53.79亿元D.537.9亿元变式4.用小数表示3.56×10﹣7为()A.0.000000356 B.0.0000000356C.0.00000000356 D.0.000000000356易错点四:“0”不能随便去掉例18.把35.89543精确到百分位所得到的近似数为。

七年级上册 专题04 有理数的乘方及混合运算(知识点串讲)(教师版含解析)

七年级上册 专题04 有理数的乘方及混合运算(知识点串讲)(教师版含解析)

专题04 有理数的乘方及混合运算知识网络重难突破知识点一有理数的乘方1.乘方:求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.2. 乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0【典例1】(2019秋•瑞安市校级月考)下面各式中,计算正确的是()A.﹣22=4 B.(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=﹣3【点拨】根据乘方的运算法则计算即可.【解析】解:A.﹣22=﹣4≠4,故该选项错误;B.(﹣2)2=4,故该选项正确;C.(﹣3)2=9≠6,故该选项错误;D.(﹣1)3=﹣1≠﹣3,故该选项错误;故选:B.【点睛】本题考查了有理数的乘方,熟记乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0,是解题的关键.【变式训练】1.(2019秋•拱墅区校级月考)下列各组数中,相等的一组是()A.(﹣2)2和|﹣2|2B.(﹣3)4和﹣34C.(﹣4)3和|﹣4|3D.(﹣3)4和﹣(﹣3)4【点拨】根据乘方的定义和绝对值的性质逐一计算即可判断.【解析】解:A、(﹣2)2=4、|﹣2|2=4,故此选项正确;B、(﹣3)4=81、﹣34=﹣81,故此选项错误;C、(﹣4)3=﹣64、|﹣4|3=64,此选项错误;D、(﹣3)4=81、﹣(﹣3)4=﹣81,此选项错误;故选:A.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义和绝对值的性质.2.(2019秋•永定区期中)一个有理数的平方等于它本身,那么这个有理数是() A.0 B.1 C.±1 D.0或1【点拨】直接利用有理数的乘方运算法则得出答案.【解析】解:∵一个有理数的平方等于它本身,∴这个有理数是:0或1.故选:D.【点睛】此题主要考查了有理数的乘方运算,正确掌握相关运算法则是解题关键.3.(2019春•西湖区校级月考)下列说法中正确的是()A.﹣a n和(﹣a)n一定是互为相反数B.当n为奇数时,﹣a n和(﹣a)n相等C.当n为偶数时,﹣a n和(﹣a)n相等D.﹣a n和(﹣a)n一定不相等【点拨】根据有理数的乘方的定义,分n是奇数和偶数两种情况讨论求解即可.【解析】解:当n为奇数时,﹣a n和(﹣a)n相等,当n为偶数时,﹣a n和(﹣a)n一定互为相反数.故选:B.【点睛】本题考查了有理数的乘方,难点在于分n是偶数和奇数讨论.知识点二科学记数法1.把一个数表示成a×10n(1≤|a|<10,n为整数)的形式叫做科学记数法..2.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【典例2】(2019秋•诸暨市期中)在今年的十一黄金周期间,五泄景区共接待海内外游客约11.2万人次,则数据11.2万用科学记数法可表示为()A.11.2×104B.11.2×105C.1.12×104D.1.12×105【点拨】先还原成112000,再用科学记数法表示出来即可.【解析】解:11.2万=112000=1.12×105,故选:D.【点睛】本题考查了科学记数法,知道任何绝对值大于10的数都可以表示成a×10n的形式(1≤a<10,n为正整数)是解此题的关键.【变式训练】1.(2019秋•南浔区期中)据统计,2019年十一期间,湖州市共接待国内外游客约585万人次,数据585万用科学记数法表示为()A.5.85×105B.5.85×106C.0.585×107D.585×106【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:585万=5850000=5.85×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2019秋•富阳区期中)计算机的计算速度为每秒384000000000次,这个速度用科学记数法表示为每秒()A.384×109次B.38.4×1010次C.3.84×1011次D.0.384×1012次【点拨】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:384000000000用科学记数法表示为:3.84×1011.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2016•富阳市模拟)﹣4.5×10﹣5表示()A.﹣000045 B.﹣0.000045 C.﹣450000 D.﹣45000【点拨】根据将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.【解析】解:﹣4.5×10﹣5表示﹣0.000045,故选:B.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.知识点三近似数1.准确数与近似数:与实际完全符合的数称为准确数;与实际接近的数称为近似数.2.一个近似数的精确度可用四舍五入法表述.一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位. 【典例3】(2018秋•桥西区期末)下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205【点拨】根据近似数的精确度对各选项进行判断.【解析】解:A、0.350是精确到0.001的近似数,所以A选项的说法正确;B、3.80万是精确到百位的近似数,所以B选项的说法正确;C、近似数26.9精确到十分位,26.90精确到百分位,所以C选项的说法错误;D、近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205,所以D选项的说法正确.故选:C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.【变式训练】1.(2019秋•慈溪市期中)用四舍五入法对0.4249取近似数,精确到百分位的结果是() A.0.425 B.0.43 C.0.42 D.0.420【点拨】取近似数,看千分位满5进1,不满5舍去即可.【解析】解:0.4249≈0.42,故选:C.【点睛】本题考查了近似数,能理解四舍五入的意义是解此题的关键.2.(2019秋•义乌市期中)由四舍五入得到的近似数3.50万,精确到()A.十分位B.百位C.十位D.百分位【点拨】先将3.50万还原,然后确定0所表示的数位即可;【解析】解:3.50万=35000,近似数3.50万精确到百位,故选:B.【点睛】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.3.(2019秋•乐清市期中)数4是4.3的近似值,其中4.3叫做真值,若一个数经四舍五入得到的近似数是12,则下列各数中不可能是12的真值的是()A.12.38 B.12.66 C.11.99 D.12.42【点拨】先找到所给数的十分位,根据四舍五入不能得到12的数即可.【解析】解:∵12.38≈12,12.66≈13,11.99≈12,12.42≈12,∴下列各数中不可能是12的真值的是选项B.故选:B.【点睛】本题主要考查了知道近似数,求真值,只需看近似数的最末位的下一位,采用的方法是四舍五入.4.(2018秋•拱墅区期末)下列由四舍五入法得到的近似数,对其描述正确的是()A.1.20精确到十分位B.1.20万精确到百分位C.1.20万精确到万位D.1.20×105精确到千位【点拨】根据近似数的精确度分别进行判断.【解析】解:A、1.20精确到百分位,所以A选项的说法不正确;B、1.20万精确到百位,所以B选项的说法不正确;C、1.20万精确到百位,所以C选项的说法不正确;D、1.20×105精确到千位,所以D选项的说法正确.故选:D.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.知识点四有理数的混合运算有理数混合运算法则:1.先算乘方,再算乘除,最后算加减;2. 如果有括号,先进行括号里的运算3. 同级运算,应按从左到右的顺序进行计算;4.如果有绝对值,要先做绝对值内的运算.【典例4】(2019秋•慈溪市期中)计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣12020﹣(﹣)×6+32【点拨】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】解:(1)原式=﹣35+9=﹣26;(2)原式=﹣1﹣(2﹣3)+9=﹣1﹣2+3+9=9.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【变式训练】1.(2019秋•瑞安市期中)下列运算中正确的个数有()①(﹣5)+5=0,②﹣3+2=﹣1,③﹣6÷3×=﹣6,④74﹣22÷70=1A.1个B.2个C.3个D.4个【点拨】①根据互为相反数的两个数和为0即可判断正误;②根据有理数的加法运算即可判断正误;③根据有理数的乘除运算顺序进行计算即可判断正误;④根据先算乘方、再算除法、最后算加减的运算顺序进行计算即可判断正误.【解析】解:①(﹣5)+5=0,正确;②﹣3+2=﹣1,正确;③﹣6÷3×=﹣6,错误.原式=﹣2×=﹣.④74﹣22÷70=1,错误.原式=74﹣=.故选:B.【点睛】本题考查了有理数的混合运算,解决本题的关键是严格按照有理数的混合运算顺序进行计算.2.(2018秋•拱墅区期末)计算:(1)﹣7﹣3+8(2)【点拨】(1)原式利用加减法则计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值.【解析】解:(1)原式=﹣10+8=﹣2;(2)原式=﹣×6+4﹣30=﹣30.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2019秋•奉化区期中)计算:(1)(﹣18)+(+12)(2)(3)(4)12÷()【点拨】(1)根据有理数的加法法则计算;(2)先算乘,再算乘除,最后计算加法;(3)根据乘法分配律计算;(4)先算小括号里面的减法,再算括号外面的除法.【解析】解:(1)(﹣18)+(+12)=﹣6;(2)=﹣4×(﹣)+8÷4=2+2=4;(3)=(﹣100+)×26=﹣100×26+×26=﹣2600+4=﹣2596;(4)12÷()=12÷=72.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.巩固训练1.(2018秋•西湖区期末)计算:|﹣2019|=2019,(﹣1)2019=﹣1.【点拨】根据绝对值的性质和有理数乘方的运算法则计算可得.【解析】解:|﹣2019|=2019,(﹣1)2019=﹣1,故答案为:2019,﹣1.【点睛】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方的定义与运算法则及绝对值的性质.2.(2019秋•瑞安市校级月考)把5×5×5写成乘方的形式53.【点拨】根据有理数乘方的定义解答即可.【解析】解:5×5×5=53.故答案为:53.【点睛】本题考查了有理数的乘方的定义,注意指数是底数的个数是解题的关键.3.(2018秋•三门县期中)下列各数|﹣2|,﹣22,﹣(﹣2),(﹣2)3中,负数的个数有2个.【点拨】先对每个数进行化简,然后再确定负数的个数.【解析】解:∵|﹣2|=2,﹣22=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,∴负数有﹣22和(﹣2)3这2个数,故答案为:2.【点睛】本题考查正数和负数,解题的关键是明确负数的定义及乘方运算法则与相反数的定义.4.(2019秋•吴兴区期中)0.0617(精确到千分位)0.062.近似数3.7×105精确到万位.【点拨】根据近似数的精确度求解.【解析】解:0.0617精确到千分位为:0.062;近似数3.7×105精确到万位.故答案为:0.062;万.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.(2019秋•温岭市期中)已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则﹣2mn+﹣x=﹣4或0.【点拨】根据题意得a+b=0,mn=1,x=2或x=﹣2,代入原式计算可得.【解析】解:∵a、b互为相反数,m、n互为倒数,x的绝对值为2,∴a+b=0,mn=1,x=2或x=﹣2,当x=2时,原式=﹣2×1+0﹣2=﹣4;当x=﹣2时,原式=﹣2×1+0﹣(﹣2)=0.综上所述,﹣2mn+﹣x=﹣4或0.故答案为:﹣4或0.【点睛】本题主要考查了有理数的混合运算,相反数、倒数、绝对值的性质及代数式求值的能力,根据题意得出a+b、mn、x的值是关键.6.(2018秋•慈溪市期中)大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是32.【点拨】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1007的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.(2018秋•余杭区期末)计算:(1)7.8+(﹣1.2)﹣(﹣0.2)(2)﹣÷﹣×(﹣3)2+32【点拨】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解析】解:(1)7.8+(﹣1.2)﹣(﹣0.2)=7.8+(﹣1.2)+0.2=6.8;(2)﹣÷﹣×(﹣3)2+32==﹣3+9=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.(2019秋•拱墅区校级月考)(1)(﹣﹣+)÷(2)﹣22×+8÷(﹣2)2(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3.(4)8×(﹣)÷|﹣16|;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣).(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5;【点拨】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题;(3)根据有理数的乘方、有理数的乘法和减法可以解答本题;(4)根据有理数的乘除法可以解答本题;(5)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(6)根据有理数的乘方、有理数的乘法和减法可以解答本题.【解析】解:(1)(﹣﹣+)÷=(﹣﹣+)×36=(﹣27)+(﹣20)+21=﹣26;(2)﹣22×+8÷(﹣2)2=﹣4×+8÷4=2+2=4;(3)(﹣)×(﹣4)2﹣0.25×(﹣5)×(﹣4)3=(﹣)×16﹣×(﹣5)×(﹣64)=(﹣10)﹣80=﹣90;(4)8×(﹣)÷|﹣16|=8×(﹣)×=﹣;(5)(﹣1)2008+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63;(6)﹣22﹣(﹣3)3×(﹣1)4﹣(﹣1)5=﹣4﹣(﹣27)×1﹣(﹣1)=﹣4+27+1=24.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

《有理数的乘方》(第二课时科学记数法)

《有理数的乘方》(第二课时科学记数法)

故事二
在第二次世界大战期间,英国广播公司(BBC)曾经发布了 一则关于英国军队的新闻。在新闻中,他们使用科学记 数法来表示英国军队的人数。当德国军队听到这个数字 时,他们错误地认为英国军队的人数达到了惊人的 $5 \times 10^5$ 人。事实上,这个数字只是英国军队人数 的一个估计值,但德国军队却被这个巨大的数字吓倒了 。
在天文学中,很多天文数据也可以用科学记数法来表示,如星球的质量、距离等。
在经济学中,一些较大的金融数据也可以用科学记数法来表示,如国民生产总值、 财政收入等。
科学记数法与其他数学概念的关系
科学记数法与小数、分数、百分数等 数学概念之间有着密切的联系。例如 ,0.007 可以表示为 7 × 10^-3 , 而 75% 可以表示为 0.75。通过使用 科学记数法,我们可以更好地理解这 些数学概念之间的关系。
THANKS
感谢观看
总结词
科学记数法是一种用指数表示大数的方法,其核心思想是将一个数表示为 $a \times 10^n$ 的形式,其中 $1 \leq |a| < 10$,$n$ 是整数。
详细描述
科学记数法是一种方便快捷地表示大数的方法。当一个数字太大或太复杂时,我们可以通 过将其表示为 $a \times 10^n$ 的形式来简化它。其中,$a$ 是一个介于 $1$ 和 $10$ 之间的数,$n$ 是整数。例如,$3270000$ 可以表示为 $3.27 \times 10^6$。
将一个数表示成a×10ⁿ的形式,其中1≤| a|<10,n为整数,这种记数方法称为 科学记数法。
科学记数法的意义
科学记数法是一种方便、快捷地表示大数和小数的记数方法,对于一些较大的 数或较小而不便直接表示的数,采用科学记数法可以有效地简化数值的表达。

初一数学有理数的乘方知识精讲 人教义务代数

初一数学有理数的乘方知识精讲 人教义务代数

初一数学有理数的乘方知识精讲 人教义务代数【学习目标】1.在现实背景中,理解有理数乘方的意义. 2.能进行有理数的乘方运算.3.通过实例感受当底数大于1时,乘方运算的结果增长得很快.【基础知识精讲】 1.乘方的有关概念.(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).图2—17(2)乘方的意义:a n 表示n 个a 相乘.如:(-3)3=(-3)×(-3)×(-3),表示3个(-3)相乘. (3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了. 如:(31)2=31×31,表示两个31相乘. (-2)2=(-2)×(-2),表示两个(-2)相乘.而312=311 ,表示2个1相乘的积除以3. -22=-(2×2),表示2个2的乘积的相反数. 2.a n 与-a n 的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:(-3)3底数是-3,指数是3,读作(-3)的3次方,表示3个(-3)相乘.(-3)3=(-3)×(-3)×(-3)=-27.-33底数是-3,指数是3,读作3的3次方的相反数.-33=-(3×3×3)=-27.注:(-3)3与-33的结果虽然都是-27,但表示的含义并不同. 3.乘方运算的符号规律. (1)正数的任何次幂都是正数. (2)负数的奇次幂是负数. (3)负数的偶次幂是正数. (4)0的奇数次幂,偶次幂都是0. 所以,任何数的偶次幂都是正数或0. 4.乘方如何运算?乘方运算就是根据乘方的意义把它转化为乘法进行计算. 如:33=3×3×3=27.5.关于平方、立方的有关知识.在a n 中,若n =2,则为a 2读作a 的2次幂,也作a 的平方;当n =3时,a 3可读作a 的3次方,也可读作a 的立方.平方、立方是乘方中最常见的.平方是它本身的数:0,1. 立方是它本身的数:0,1,-1. 6.(-1)的乘方.若用n 表示正整数,则2n 表示偶数,而用(2n +1)表示奇数. (-1)2n =偶数个)1()1()1()1()1(-⨯-⨯⨯-⨯-⨯-=+(1×1×1×……×1×1) =1.(-1)2n +1=奇数个)1()1()1()1()1(-⨯-⨯⨯-⨯-⨯-=-(1×1×1×……×1×1) =-17.纸的对折中蕴含的关系.将一X 纸对折,对折次数与纸的层数、折痕数、单层纸占整X 纸的面积比例之间有一定的关系,现列表如下:对折次数:12345……n 层数:2481632……2n 平行对折的折痕数:1371531……2n -1 单层面积 占的比例:214181161321……n 21【学习方法指导】[例1]说出下列各数的底数,指数,表示的含义,并求出结果. 52,(-3)4,-52,-432,251 点拨:对于每一个数,应注意是哪一部分进行乘方,那才是真正的底数.若底数为负数或分数,应打上括号,若没有打括号,表示只有其中的一部分进行乘方.解:52底数5,指数2,52=5×5=25.52表示2个5相乘.(-3)4底数-3,指数4,表示4个(-3)相乘,(-3)4=(-3)×(-3)×(-3)×(-3)=81. -52底数5,指数2,表示2个5相乘的积的相反数.-52=-(5×5)=-25.-432中进行2次方的是3.-432=-49.251中进行乘方的是5,与分子1没有关系,所以251=551 =251. [例2]不超过(-23)3的最大整数是多少?点拨:先求出(-23)3的值,再找出比(-23)3的结果小的最大整数.解:(-23)3=(-23)×(-23)×(-23)=-827=-383.比-383小的最大整数是-4.答:是-4.[例3]x 2=64,x 是几?x 3=64,x 是几?点拨:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:±8的平方是64,4的立方是64.注:若某数的平方是一个正数,那么这个数可能会有两个答案,要注意不要漏掉答案.[例4]a,b互为相反数,c、d互为倒数,求(a+b)2002+(cd)2002的值.点拨:a,b互为相反数,所以a+b=0;而c、d互为倒数,则cd=1.那么将这两个结论代入所求式子中,即02002+12002.而02002表示2002个0相乘,结果为0;12002表示2002个1相乘,结果为1,它们相加即为最后结果——1.解:∵a,b互为相反数,∴a+b=0.∵c、d互为倒数,∴cd=1.所以(a+b)2002+(cd)2002=02002+12002=0+1=1.此题的关键是能把a与b,c与d的关系转化为等式形式,再进行幂的运算.[例5]下列各式成立的有_______.①a2=(-a)2②a3=(-a)3③|a2|=|a|2④a3=|a3|⑤-a2=|-a2|点拨:此题主要涉及到二次方(平方)和三次方(立方).应知道:任意有理数的平方都是正数和0.互为相反数的平方相同,正数的立方是正数,负数的立方是负数.所以,此例题的5个小题主要看符号是否相同.解:①a与-a是互为相反数.互为相反数的平方相同,所以a2=(-a)2成立.②a与-a是互为相反数,可能都为0,此时a3=-a3=0,等式成立;而当a与-a一正一负时,它们的立方也是一正一负,等式不一定成立.③a2就是正数或0,而这些数的绝对值是它们本身,即|a2|=a2.a与|a|不管是相等还是互为相反数,它们的平方都相等,即|a2|=|a|2成立.④a3可能为正,也可能为负.而|a3|一定不可能负,所以a3=|a3|不一定成立.⑤-a2表示a的平方的相反数,可能为负数或0;而|-a2|一定不能为负,所以-a2=|-a2|不一定成立.所以一定成立的有①③.[例6]有一X厚度是0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米.(1)对折2次后,厚度多少毫米? (2)对折20次后,厚度为多少毫米?点拨:要求每次对折后纸的厚度,应先求出每次折叠后纸的层数,再用每X 纸的厚度×纸的层数即可.纸的对折次数与纸的层数关系如下:解:(1)0.1×22=0.4(毫米) (2)(220×0.1)毫米说明:此题的关键是将纸的层数化为幂的形式,找出这些事与对折次数的对应关系. [例7]1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?点拨:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:解:(21)7×1=1281(米)答:第7次后剩下的木棒1281米.小结:由例6可看到当底数大于1时,乘方增长得很快;而由例7可看到当底数小于1时,乘方结果减少得也很快.【拓展训练】已知|x |+y 2=0,则x =_______,y =_______.点拨:任何一个有理数的绝对值,平方都是大于、等于0的,也就是最小是0,不可能为负.当绝对值与平方相加和为0时,只有一种情况:0+0=0.所以|x|=0,y2=0.解:|x|=0,x=0,y2=0,y=0,所以x=y=0.。

七年级数学2.7有理数的乘方知识点解读科学记数法和近似数

七年级数学2.7有理数的乘方知识点解读科学记数法和近似数

知识点解读:科学记数法和近似数要点梳理:科学记数法:一般地,一个数可以表示成a×10n的形式,其中1≤a<10,n是整数,这种记数方法叫做科学记数法.准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为6.37×106m 等.注意:1.对于数目很大的数用科学记数法的形式表示起来又科学、又简单。

2.科学记数法的形式是由两个数的乘积组成的。

其中一个因数为a(1≤a<10),另一个因数为10n (n是比A的整数部分少1的正整数)。

3.用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。

当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。

例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。

4.在a×10n中,a的范围是1≤a<10,即可以取1但不能取10.而且在此范围外的数不能作为a.如:1300不能写作0.13×104.5.有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。

举几个例子:3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。

6.精确度:即数字末尾数字的单位。

比如说:9800.8精确到十分位(又叫做小数点后面一位),80万精确到万位。

9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。

例1 填空:(1)地球上的海洋面积为36100000千米2,用科学记数法表示为__________.(2)光速约3×108米/秒,用科学记数法表示的数的原数是__________.点拨:(1)用科学记数法写成a×10n,注意a的范围,原数共有8位,所以n=7.原数有单位,写成科学记数法也要带单位.(2)由a×10n还原,n=8,所以原数有9位.注意写单位.解:(1)3.61×107千米2. (2)300000000米/秒.注意:1.科学记数法形式与原数互化时,注意a的范围,n的取值.2.转化前带单位的,转化后也要有单位,一定不能漏.例2 分别用科学记数法表示下列各数.(1)100万;(2)10000;(3)44;(4)0.000128-.点拨:(1)1万=10000,可先把100万写成数字再写成科学记数法的形式.(2)(3)(4)直接写成科学记数法形式即可.解:(1)100万=1000000=1×106=106.(2)10000=104.(3)44=4.4×10.(4)40.000128 1.2810--=-⨯说明:1.在a ×10n 中,当a =1时,可省略,如:1×105=105.2.对于44和4.4×101虽说数值相同,但写成4.4×10并非简化.所以科学记数法并非在所有数中都能起到简化作用,数位较少的数,用原数较方便.3.对于10n ,n 为几,则10n 的原数就有几个零.例3 设n 为正整数,则10n 是 ( )A .10个n 相乘B .10后面有n 个零C .a =0D .是一个(n +1)位整数点拨:A 错,应是10n 表示n 个10相乘;B 错,10n 共有n 个零,10中已有一个零,故10后面有(n -1)个零;C 当a =1时,a ×10n =1×10n =10n ,可有1.若a =0,a ×10n =0;D 在10n 中,n 是用原数的整数位数减1得来的,故原数有(n +1)位整数.解答:D.例4 判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm 的圆的周长是31.4cm ;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例5 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200;(2)0.040;(3)20.05000;(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;像20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例6下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万;(2)9.03万;(3)1.8亿;(4)6.40×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列说法不正确的是( )A .三角形的三条高线交于一点B .直角三角形有三条高C .三角形的三条角平分线交于一点D .三角形的三条中线交于一点 2.25的平方根是( )A .±5B .5C .﹣5D .±253.已知a 、b 均为实数,a <b ,那么下列不等式一定成立的是( )A .3﹣|a|>3﹣|b|B .a 2<b 2C .a 3+1<b 3+1D .22a b -<- 4.小明准备用20元钱购买笔记本和水笔,若笔记本每本3元,水笔每支2元,当他买了3本笔记本后,用剩余的钱购买水笔,则他最多可以购买水笔是( )A .3支B .4支C .5支D .6支5.下列调查活动中适合使用全面调查的是( )A .某种品牌插座的使用寿命;B .了解某班同学课外阅读经典情况;C .全国植树节中栽植树苗的成活率;D .调查“厉害了,我的国”大型记录电影在线收视率.6.为确保信息安全,信息需加密传输,发送方由明文一密文(加密) ,接收方由密文一明文(解密),已知加密规则为:明文a b c d ,,,对应密文2,2,23,4a b b c c d d +++.当接收方收到密文14.9, 23. 28时,则解密得到的明文是( )A .7,6,1,4B .6,4,1, 7C .4,6,1,7D .1,6,,4, 77.不等式组31230x x -⎧⎨+>⎩的解集在数轴上表示,正确的是( ) A .B .C .D .8.对于二元一次方程27x y ,-=用含x 的方程表示y 为( )A .72x y -=B .72x y -=C .7y x =-D .7y x =-9.某学生某月有零花钱a 元,其支出情况如图所示,那么下列说法不正确的是( )A .该学生捐赠款为0.6a 元B .其他消费占10%C .捐赠款是购书款的2倍D .捐赠款所对应的圆心角为240° 10.下列算式中错误的是A .B .C .D .二、填空题题11.若()2320m n -++=,则m+2n 的值是______。

七年级数学有理数的乘方、有理数的混合运算、用计算器计算湘教版知识精讲

七年级数学有理数的乘方、有理数的混合运算、用计算器计算湘教版知识精讲

七年级数学有理数的乘方、有理数的混合运算、用计算器计算湘教版【本讲教育信息】一. 教学内容:有理数的乘方、有理数的混合运算、用计算器计算二. 重点、难点:1. 重点:有理数的乘方,科学记数法,有理数的混合运算法则,运用计算器进行有理数运算。

2. 难点:有理数乘方意义的理解,科学记数法的逆应用,掌握有理数混合运算的规律,选择正确途径进行准确熟练地运算。

三. 教学知识要点:1. 乘方的概念乘方是指求n个相同因数的积的运算,一般地a·a·……·a=a n(n为自然数),a叫底数,n叫指数。

它可表示求n个a的积的运算,读作“a的n次方”,也可表示乘方运算的结果,读作“a的n次幂”,如:35可读作“3的5次方”或“3的5次幂”。

2. 乘方运算因为a n的意义就是n个相同因数a的相乘,所以可以用有理数乘法法则来进行有理数的乘方运算,有理数乘法运算分两步进行:(1)根据法则确定符号。

(2)根据乘法运算计算幂的绝对值。

3. 科学记数法科学记数法是把一个绝对值大于10的数记作“a×10n”的形式,其中(1≤|a|<10)n为整数,即a的整数数位只有一位数,10的幂指数比原数的整数位数少1。

例如:60305=×104……4. 有理数混合运算的顺序先乘方(第三级运算),再乘除(第二级运算),最后加减(第一级运算)。

有括号情况下,先算括号里的式子,一般先算小括号,再算中括号,最后算大括号。

说明:(1)如果式中既含分数,又含有小数,究竟是将分数化成小数,还是将小数化成分数,要根据具体情况确定,以方便于计算为准则。

(2)出现括号的算式,要切实分清这些括号各自控制了哪些数及符号。

(3)要合理使用各种运算律,使运算简捷、方便、准确。

5. 计算器的使用方法使用计算器,先按 ON/C 键,然后按照算式的书写顺序输入数据,最后按 = ,停止使用时,按 OFF 关机。

注意:(1)负数的输入方法有两种,先输入绝对值,然后按 +/- 键,或先按 - 键,再输绝对值。

苏科版数学七年级上学习笔记(有理数)(有理数的乘方)

苏科版数学七年级上学习笔记(有理数)(有理数的乘方)

苏科版数学七年级上学习笔记(有理数)
泗洪县龙集中学尹寒整理提供
有理数的乘方
教材知识全解
知识点一有理数乘法的意义
1.定义:求凡个相同因数a的积的运算叫做乘方,乘方运算的结果叫做幂.其中a叫做底数,n叫做指数
2 实质:求相同因数的积的运算
3.图示:
4.读法:看作运算读作:a的n次方
看做结果:读作a的n次幂
知识点二有理数的乘法运算和符号法则
知识点三科学计数法
经典例题全解
题型一有理数偶次幂的非负性的运用
提示:
题型二求用科学计数法表示的数的原数
提示:
易错题全解
易错点:对幂的相关定义理解不透彻而致错。

人教版七年级数学上册 1.5有理数的乘方 知识点归纳

人教版七年级数学上册 1.5有理数的乘方 知识点归纳

人教版七年级数学上册1.5有理数的乘方知识点归纳⏟,记作a n,读作:a的n次方。

n个相同的因数a相乘,即a·a· ··· ·ana2可以读作a的二次方,也可以读作a的平方。

a3可以读作a的三次方,也可以读作a的立方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a n中,a叫做底数,n叫做指数,当a n看作a的n 次方的结果时,也可以读作:a的n次幂。

例1、在35中,底数是3,指数是5,35读作“三的五次方”或“3的五次幂”。

35=3×3×3×3×3=243一个数可以看作这个数本身的一次方。

指数1通常省略不写。

例2、71=7,101=10。

(-a)n与-a n是不一样的。

(-a)n读作:负a的n次方;-a n读作:a的n次方的相反数。

例3、(-3)2=(-3)×(-3)=9例4、-32=-(3×3)=−9负数的奇次幂是负数,负数的偶次幂是正数。

简称:奇负偶正。

例5、(-1)99=-1,(-1)100=1。

正数的任何次幂都是正数。

0的任何正整数次幂都是0 。

有理数的混合运算的顺序:①先乘方,再乘除,最后加减。

②同级运算,按从左到右的顺序进行。

③如果有括号,那么就要先算括号里面的,按小括号、中括号、大括号依次进行。

把一个数表示成a×10n的形式(其中a大于或等于1且小于10,n是正整数),这种记数法叫做科学记数法。

一个能表示原来物体或事件实际数量的数,叫做准确数。

与准确数相近的数,叫做近似数。

例6、“今天全班50人都有出勤”,这里的数字50就是准确数。

例7、“我们学校初一大概有250人”,这里的250就是近似数。

求近似数,一般要用四舍五入法。

四舍五入到哪一位,就说这个近似数精确到哪一位。

精确到0.1,也叫精确到十分位;精确到0.01,也叫精确到百分位;精确到0.001,也叫精确到千分位;……以此类推例8、5.372精确到十分位是5.4 。

有理数的乘方知识点讲解

有理数的乘方知识点讲解
有理数的乘方是数学中的重要概念,表示相同因数相乘的运算。文档首先阐述了有理数乘方的定义,即求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,其中n叫做底数,指数表示相同因数的个数。接着,通过丰富的例题,详细解析了有理数乘方的运算法则,包括底数为正数、负数、零以及互为相反数的两个数的乘方运算情况。特别强调了负数的奇次幂是负数,偶次幂是正数;正数的任何次幂都是正数;零的任何次幂(除0的0次幂外)都是零等重要性质。此外,还深入探讨了互为相反数的两个数的乘方运算规律,即它们的奇次幂仍然互为相反数,而偶次幂则相等。这些知识点和例题的讲解,有助于读者全面理解和掌握有理数ቤተ መጻሕፍቲ ባይዱ乘方运算。

《有理数的乘方》

《有理数的乘方》
乘方可以帮助我们简化表达一些 数字的组合形式,例如,2的3次 方表示2连续乘以3次,结果为8 。
有理数乘方的基本概念
有理数乘方的分类
有理数乘方可以分为正整数乘方、负整数乘方和零乘方。
有理数乘方的计算方法
计算有理数乘方时,需要将幂次与底数相乘,直到幂次为1为 止。
乘方在数学中的应用
幂运算的运用
通过乘方运算,我们可以快速计算出 一些常见数字的幂次结果,例如,2 的10次方等于1024。
能量与功率
在物理学中,能量和功率的乘方可以用来描述物体在不同状态下的能量转换。例如,根据热力学第一定律,系统 能量的变化量等于输入的热量与输出的热量之差,即$\Delta U = Q - W$。
乘方在计算机科学中的应用
数据压缩
在计算机科学中,数据压缩是一种常见的有理数乘方应用。通过将数据乘以一个 固定的因子,可以减少数据的存储空间和传输时间。
《有理数的乘方》
汇报人: 2023-12-21
目录
• 引言 • 有理数乘方的性质与运算规则 • 有理数乘方的计算方法与技巧 • 有理数乘方在日常生活中的应
用 • 有理数乘方的拓展与延伸 • 总结与回顾
01
引言
乘方的定义与意义
乘方的定义
乘方是指将一个正整数或负整数 的幂相乘的一种运算。
乘方的意义
复利计算
在金融领域,复利计算是一种常见的有理数乘方应用。通过将本金与利息相乘 ,可以计算出未来的资产总值。
投资回报
投资者在评估投资回报时,通常会使用乘方来计算未来的资产增长。例如,如 果年利率为5%,投资10年后,本金将增长到原来的$(1.05)^{10}$倍。
乘方在物理领域的应用
速度与加速度
在物理学中,速度和加速度的乘方可以用来描述物体运动的变化。例如,如果一个物体以初始速度v0开始运动, 经过时间t后,其速度将变为$v0 \times (1 + \frac{at}{v0})^{t}$,其中a为加速度。

《有理数的乘方》 学历案

《有理数的乘方》 学历案

《有理数的乘方》学历案一、学习主题有理数的乘方二、学习目标1、理解有理数乘方的意义,掌握有理数乘方的运算。

2、能熟练进行有理数的乘方运算,并能解决简单的实际问题。

3、经历探索有理数乘方运算的过程,培养观察、比较、分析、归纳和概括的能力,感受数学思维的严谨性。

三、学习重难点1、重点(1)有理数乘方的意义和运算。

(2)正确进行有理数的乘方运算。

2、难点(1)对乘方意义的理解,特别是负数的幂的符号的确定。

(2)灵活运用有理数乘方解决实际问题。

四、学习过程(一)知识回顾1、乘法运算:几个相同的数相加可以写成乘法形式,例如:5 + 5 + 5 = 5×3。

2、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与 0 相乘,积仍为 0。

(二)情境引入1、某种细胞每过 30 分钟便由 1 个分裂成 2 个。

经过 5 小时,这种细胞由 1 个能分裂成多少个?分析:1 个细胞 30 分钟后分裂成 2 个,1 小时后分裂成 2×2 个,15 小时后分裂成 2×2×2 个,……,5 小时后共分裂了 10 次,所以这种细胞经过 5 小时后由 1 个能分裂成2×2×2×…×2(共 10 个 2 相乘)个。

2、拉面师傅将一根很粗的面条,拉伸、捏合,再拉伸、再捏合,这样反复几次,就把这根很粗的面条拉成了许多细的面条。

假设第一次捏合后得到 2 根面条,第二次捏合后得到 4 根面条,第三次捏合后得到 8 根面条,……,那么第 n 次捏合后得到多少根面条?分析:第一次捏合后得到 2 根面条,即 2^1 根;第二次捏合后得到4 根面条,即 2^2 根;第三次捏合后得到 8 根面条,即 2^3 根;……,所以第 n 次捏合后得到 2^n 根面条。

(三)概念形成1、乘方的定义:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫做幂。

在a^n 中,a 叫做底数,n 叫做指数,读作“a 的 n 次幂”。

2022年《有理数的乘方》教材说明及教学建议

2022年《有理数的乘方》教材说明及教学建议

有理数的乘方〔一〕重点、难点分析本节教学的重点是熟练进行有理数的乘方运算;本节教学的难点是理解有理数乘方运算的符号法那么。

1.乘方是特殊的乘法运算,其特殊性就是相乘的因数都相同;2.乘方运算的结果叫做幂,幂的性质是:正数的任何次幂是正数;负数的奇次幂是负数,负数的偶次幂是正数;3.有理数的乘方运算与有理数的加减乘除一样,首先要确定幂的符号,然后再计算幂的绝对值。

〔二〕知识结构〔三〕教法建议1.正确理解乘方的意义。

表示个相乘的积,如:表示3个2相乘,即:。

一定记住:。

2.注意与二者的区别及相互关系。

〔1〕区别:底数为,表示个相乘的积;底数为,表示个相乘的积的相反数,如:;而。

〔2〕关系:当为偶数时,与互为相反数,当为奇数时,与相等。

如:,;,。

3.注意与的区别表示个相乘的积,而表示n个b相乘的积再除以a的商。

如:,。

发现和提出问题、分析和解决问题,在本节课的概念教学中表达得较为明显,我们在教学时要让学生充分经历这一过程1.引导学生回忆长度单位的进率,由长度单位的换算认识到有时需要进行相同因数相乘的运算,由此引入乘方形式的记法.2.在“试着做做〞中,通过学生独立思考和操作,理解乘方的意义,其间,同学可进行交流.3.在以上的铺垫与准备的根底上,教师引导学生认识乘方及相关概念,如底数、指数、幂等.然后要求学生对“试着做做〞中的问题,指出底数、指数.同时,还可以配以反例,如23=2×3,-24=〔-2〕4,通过辨析,强化学生对概念的理解.4.对于例题,教师可根据学生的情况选择活动方式.学生先独立解答,然后共同讨论辨析,会使学生印象更深刻.当然也可以选择教师讲解加剖析的方法.5关于“做一做〞,教师可以先让学生独立完成表格的填写,再引导学生思考、交流、讨论,并归纳出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档