初数学基本的平面图形易错题训练[优质文档]

合集下载

七年级上数学第四章平面图形及其位置关系 易错题

七年级上数学第四章平面图形及其位置关系 易错题

第四章平面图形及其位置关系一、立体图形与平面图形一、立体图形(一)围成图形1、下面图形经折叠后可以围成一个棱柱的有()A、1B、2C、3D、42、如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是()3、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是()A.甲B.乙C.丙D.丁4、如图是一正方体的平面展开图,若AB =4,则该正方体A,B两点间的距离为()A.1 B.2 C.3 D.4(二)骰子类1、如图,一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A、B、C三种状态所显示的数字,可推出6的对面和2的对面的两数字之和为________。

3、把立方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将上述大小相同,颜色、花朵分别完全一样的四个立方体拼成一个水平放置的长方体,如图所示,问长方体的下底面共有多少朵花?3、如图所示,一个正方体,六个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,你能看到的面上数分别是7,10,11,求这6个整数的和。

4、如图,线段AB和CD是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CD可能出现下列关系中的哪几种?①AB⊥CD;②AB∥CD;③A、B、C、D四点在同一直线上。

正确的结论是()A.①②B.②③C.①③D.①②③(三)立体图形的面、棱1、下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等。

其中正确的有()。

A.2个B.3个C.4个D.5个2、三棱柱的顶点有个,棱条总数是条,面有个;n棱柱的顶点有个,棱条总数是条,面有个;n棱锥的顶点有个,棱条总数是条,面有个。

初中数学几何图形初步易错题汇编附答案

初中数学几何图形初步易错题汇编附答案

初中数学几何图形初步易错题汇编附答案一、选择题1.已知:在RtAABC中,/ C=90 °, BC=1 , AC= J3 ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )B. 3 1C. 3D.2,3【答案】C【解析】【分析】作B关于AC的对称点B',连接B'。

易求/ ABB'=60°,则AB=AB',且UBB为等边三角形,BE+DE=DE+E的B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=J3 ,所以最小值为卮解:作B关于AC的对称点B',连接B'。

••• / ACB=90 , / BAC=30 , / ABC=60 ,•.AB=AB',・•.△ABB'为等边三角形,・•.BE+DE=DE+E的B'与直线AB之间的连接线段,••.最小值为B'到AB的距离=AC=J3 ,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此B.内心C.外心D.不能确定考点:棱柱的侧面展开图【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;G 是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是 .故选C.【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的 特征.4.在等月ABC 中,AB AC, D 、E 分别是BC , AC 的中点,点P 是线段AD 上 的一个动点,当 PCE 的周长最小时,P 点的位置在 ABC 的()2.下列图形经过折叠不能围成棱柱的是(【解析】试题分析:三棱柱的展开图为3个矩形和 2个三角形,故B 不能围成.3.下面四个图形中,是三棱柱的平面展开图的是( )A.重心【解析】【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可 .【详解】连接BP、BE,•. AB=AC, BD=BQ•••ADXBC,•.PB=PC•.PC+PE=PB+PEPB PE BE,・•・当B、P、E共线时,PC+PE勺值最小,此时BE是AABC的中线,,「AD也是中线,.・・点P是AABC的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义5.如图所示是一个正方体展开图,图中六个正方形内分别标有新“、时“、制“、去”、奋”、斗”、六个字,将其围成一个正方体后,则与奋”相对的字是()C.时D.代【答案】C【解析】分析:正方体的表面展开图, 详解:正方体的表面展开图, 相对的面之间一定相隔一个正方形,根据这一特点作答. 相对的面之间一定相隔一个正方形,时”相对的字代”相对的字去”相对的字故选C. 奋”;新”;点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特新征.6 .如图,已知圆柱底面的周长为 4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点 A 和点C嵌有一圈金属丝,则这圈金属丝的周长的最小值为(• ••圆柱底面的周长为 4dm,圆柱高为2dm,• .AB=2dm, BC=BC =2dm• •・AC 2=22+22=4+4=8, • •.AC=2 72dm,.二这圈金属丝的周长最小为2AC=4j 2 dm .故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱 底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,化曲面为平面”,用勾 股定理解决. 7.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方 形图片的周长要小,能正确解释这一现象的数学知识是( )A. 445 dm【答案】DB. 2 2 dmC.D. 4 2 dm【解析】【分析】 要求丝线的长,需将圆柱的侧面展开,进而根据两点之间线段最短 ”得出结果,在求线段长时,根据勾股定理计算即可. 解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为 2AC 的长度.A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BCX AC即可••・线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又•••两点之间线段最短・••ACvAB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离8.下列语句正确的是()A.近似数0. 010精确到百分位B. | x-y | =| y-x |C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x—y与y—x互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的9 .如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特 点解题.【详解】解:根据三视图可判断这个几何体是圆柱;围成的几何体是圆柱. A 选项平面图折叠后是一个圆锥;B 选项平面图折叠后是一个正方体;C 选项平面图折叠后是一个三棱柱 .故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键. 10 .把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是() D 选项平面图一个长方形和两个圆折叠后,能 A.【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C, D,再根据三角形的位置,即可排除D选项.故选C.考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A 5 C,A. 1条B. 2条C. 3条D. 4条【答案】C【解析】解:图中线段有:线段AB、线段AC线段BC,共三条.故选C.12.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D. 一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,【解析】【分析】首先根据平行线性质得出/ 1 = /AEG,再进一步利用角平分线性质可得/AEF 的度数,最后 再利用平行线性质进一步求解即可 .1. AB// CD, ・ ./ 1 = /AEG. . EG 平分/ AEF,/ AEF=2Z AEG, ・ ./ AEF=2Z 1=64°, 1. AB// CD, ・ ・/ 2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键14.如图,在 AABC 中,/ ABC= 90°, / C= 52°, BE 为AC 边上的中线, AD 平分/ BAC,交BC 边于点D,过点B 作BFXAD,垂足为F,则/ EBF 的度数为( )AB//CD,直线EF 分别交AB CD 于E 、F 两点,EG 平分/ AEF,如果/D. 60° 故三种视图面积最小的是左视图,13.如图,直线 1=32 °,那么/ 2的度数是(C. 58sC E 且A. 19°B, 33° C. 34°D, 43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得/ EBC= 52。

七年级数学上册平面图形的认识(一)易错题(Word版 含答案)

七年级数学上册平面图形的认识(一)易错题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【答案】(1)解:∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°(2)解:∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON= α+15°﹣15°= α(3)解:∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.∵∠MON=∠MOC﹣∠CON,∴∠MON= β+45°﹣β=45°(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.2.如图1,△ABC中,∠ABC=∠BAC,D是BC延长线上一动点,连接AD,AE平分∠CAD 交CD于点E,过点E作EH⊥AB,垂足为点H.直线EH与直线AC相交于点F.设∠AEH=,∠ADC= .(1)求证:∠EFC=∠FEC;(2)①若∠B=30°,∠CAD=50°,则=________,=________;②试探究与的关系,并说明理由;(3)若将“D是BC延长线上一动点”改为“D是CB延长线上一动点”,其它条件不变,请在图2中补全图形,并直接写出与的关系.【答案】(1)证明:∵∠ABC=∠BAC,EH⊥AB.∴∠EFC=∠AFH=90°-∠BAC,∠FEC=90°-∠ABC,∴∠EFC=∠FEC.(2)35°;70°;解:② , 理由如下: 由(1)可知:, 又∵ , ∴ . ∴ .(3)解:图形如下:∵∠ABC=∠BAC,∠BHE=90°-∠ABC,∠F=90°-∠BAC,∴ .又∵,∴在△CEF中有:∠ECF+2∠CEF=180°,即 ..∵2∠EAC=∠DAC, ,∴ .∴即 .∴ .【解析】【解答】解:(2)①∵∠CAD=50°,AE平分∠CAD,∴∠ =∠AFH-∠EAC=90°-∠BAC-∠EAC=90°-30°-25°=35°.∵∠ACB=∠ABC+∠BAC=60°,∠CAD=50°,∴∠ =180°-∠ACB-∠CAD=180°-60°-50°=70°.故答案为:35°,70°.【分析】(1)利用等角的余角相等的性质证明即可.(2)①利用外角定理和角平分线的性质求解即可;②分别用∠和∠表示出∠AEC即可解.(3)画出图形,将所有的角度集中在△CEF 的内角和上,列出等式求解即可.3.如图(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

平面图形的认识(一)易错题(Word版 含答案)

平面图形的认识(一)易错题(Word版 含答案)
∴ MC= AC= 6=3cm, 同理:CN=2cm,
∴ MN=MC+CN=3cm+2cm=5cm, ∴ 线段 MN 的长度是 5m
(2)解:分两种情况: 当点 C 在线段 AB 上,由(1)得 MN=5cm, 当 C 在线段 AB 的延长线上时, ∵ AC=6cm,且 M 是 AC 的中点
∴ MC= AC= ×6=3cm, 同理:CN=2cm, ∴ MN=MC﹣CN=3cm﹣2cm=1cm, ∴ 当 C 在直线 AB 上时,线段 MN 的长度是 5cm 或 1cm. 【解析】【分析】(1)根据线段的中点定义,由 M 是 AC 的中点,求出 MC、CN 的值, 得到 MN=MC+CN 的值;(2)当点 C 在线段 AB 上,由(1)得 MN 的值;当 C 在线段 AB 的延长线上时,再由 M 是 AC 的中点,求出 MC、CN 的值,得到 MN=MC﹣CN 的值.
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图 1,点 为直线 上一点,过点 作射线 ,使
,将一直角三角
板的直角顶点放在点 处,一边 在射线 上,另一边 在直线 的下方.
(1)将图 1 中的三角板绕点 逆时针旋转至图 ,使一边 在
的内部,且恰好平

,问:此时直线 是否平分
?请直接写出结论:直线 ________(平
分或不平分)
.
(2)将图 1 中的三角板绕点 以每秒 的速度沿逆时针方向旋转一周,在旋转的过程
中,第 秒时,直线 恰好平分锐角
,则 的值为________.(直接写出结果)
(3)将图 1 中的三角板绕点 顺时针旋转,请探究:当 始终在
的内部时(如图
3),

的差是否发生变化?若不变,请求出这个差值;若变化,请举例

鲁教版六年级下册数学《第五章 基本平面图形》易错题专项练习题(含答案)

鲁教版六年级下册数学《第五章 基本平面图形》易错题专项练习题(含答案)

鲁教版六年级下册数学《第五章基本平面图形》易错题专项练习题1.已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB 的“巧分点”的个数是()A.3B.6C.8D.92.若平面内有三个点A、B、C,过其中任意两点画直线,那么画出的直线条数可能是()A.0,1,2B.1,2,3C.1,3D.0,1,2,3 3.下列说法错误的是()A.一枚硬币在光滑的桌面上快速旋转,像形成一个球,用“面动成体”来解释B.流星划过天空时留下一道明亮的光线,用“线动成面”来解释C.把弯曲的公路改直,就能缩短路程,用“两点之间线段最短”来解释D.将一根细木条固定在墙上,至少需要两个钉子,用“两点确定一条直线”来解释4.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm 5.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间6.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B.C.D.7.8点30分,时钟的时针与分针的夹角为()A.60°B.65°C.70°D.75°8.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°9.把2.36°用度、分、秒表示,正确的是()A.2°21′36″B.2°18′36″C.2°30′60″D.2°3′6″10.下列说法中,正确的个数有()①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③两点之间,线段最短;④若∠AOC=2∠BOC,则OB是∠AOC的平分线.A.1个B.2个C.3个D.4个11.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)12.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.13.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.14.有两根木条,一根长60厘米,一根长100厘米.如果将它们放在同一条直线上,并且使一个端点重合,这两根木条的中点间的距离是.15.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.过平面上四点中的任意两点作直线,甲说有一条,乙说有四条,丙说有六条,丁说他们说的都不对,应该是一条、四条或六条,谁说的对?请画图来说明你的看法.18.请完成以下问题:(1)如图1,在比较B→A→C与B→C这两条路径的长短时,写出你已学过的基本事实;(2)如图2,试判断B→A→C与B→D→C这两条路径的长短,并说明理由.19.如图:已知AB=8cm,BD=3cm,C为AB的中点,求线段DC的长.20.已知:线段AB=10厘米,点C是直线AB上的一点,且BC=4厘米,点D是线段AC 的中点,求线段AD的长.参考答案1.解:线段AB的3个等分点都是线段AB的“巧分点”.同理,在线段AB延长线和反向延长线也分别有3个“巧分点”.∴线段AB的“巧分点”的个数是9个.故选:D.2.解:如图,可以画3条直线或1条直线,故选:C.3.解:A、一枚硬币在光滑的桌面上快速旋转,像形成一个球,用“面动成体”来解释,本选项说法正确,不符合题意;B、流星划过天空时留下一道明亮的光线,用“点动成线”来解释,故本选项说法错误,符合题意;C、把弯曲的公路改直,就能缩短路程,用“两点之间线段最短”来解释,本选项说法正确,不符合题意;D、将一根细木条固定在墙上,至少需要两个钉子,用“两点确定一条直线”来解释,本选项说法正确,不符合题意;故选:B.4.解:如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∵M、N分别为AB、BC的中点,∴BM=6cm,BN=5cm,①如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,②如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选:C.5.解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<300),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<600),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.6.解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠AOB不能用∠O表示,故本选项错误;C、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;D、图中的∠AOB不能用∠O表示,故本选项错误;故选:C.7.解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分分针与时针的夹角是2.5×30°=75°.故选:D.8.解:射线OA表示的方向是南偏东65°,故选:C.9.解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:A.10.解:①过两点有且只有一条直线,是直线的公理,故正确;②连接两点间的线段的长度叫两点间的距离,故错误;③两点之间,线段最短,是线段的性质,故正确;④若OB在∠AOC内部,∠AOC=2∠BOC,OB是∠AOC的平分线,若OB在∠AOC外部则不是,故错误.故选:B.11.解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.12.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.13.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.14.解:若两条线段的另一个端点在重合端点的同旁,则中点间的距离为50﹣30=20cm;若两条线段的另一个端点在重合端点的异侧,则中点间的距离为50+30=80cm.故答案为20cm或80cm.15.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:丁说的对.(1)当四点共线时,可画1条,如图(1);(2)当四点中有三点共线时,可画4条,如图(2);(3)当四点中任意三点不共线时,可画6条,如图(3);18.解:(1)基本事实是:两点之间线段最短;(2)B→A→C比B→D→C长,理由是:延长BD交AC于点E,由两点之间线段最短可知:AB+AE>BD+DE,故:AB+AE﹣DE>BD①同理:DE+EC>DC②由①+②并整理可得:AB+AC>BD+DC.19.解:∵AB=8cm,BD=3cm,∴AD=AB﹣BD=8﹣3=5(cm),∵C为AB的中点,∴AC=AB=4cm,∴DC=AD﹣AC=5﹣4=1(cm),即线段DC的长是1cm.20.解:①当点C在线段AB上时,AC=AB﹣BC=10﹣4=6,根据点D是线段AC的中点,得:AD=AC=3;②当点C在线段AB的延长线上时,AC=AB+BC=14,根据点D是线段AC的中点,得:AD=AC=7.综上所述,得AD的长是3cm或7cm.。

平面图形的认识(一)易错题(Word版 含答案)

平面图形的认识(一)易错题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值. 2.如图(1),将两块直角三角板的直角顶点C叠放在一起.(1)试判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想∠ACB与∠DCE的数量关系,并说明理由;(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)【答案】(1)解:∠ACE=∠BCD,理由如下:∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,∴∠ACE=∠BCD(2)解:若∠DCE=30°,∠ACD=90°,∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,∵∠BCE=90°且∠ACB=∠ACE+∠BCE,∠ACB=90°+60°=150°(3)解:猜想∠ACB+∠DCE=180°.理由如下:∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°(4)解:成立【解析】【分析】(1)根据同角的余角相等即可求证;(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;(4)根据重叠的部分实质是两个角的重叠可得。

中考数学图形与几何专题知识易错题50题含参考答案

中考数学图形与几何专题知识易错题50题含参考答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm 2.周长相等的图形,图形面积最大的是()A.长方形B.正方形C.圆形3.在长方体中,与一个面平行的棱有()A.2条B.3条C.4条D.6条4.如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1≥S25.小圆半径是4cm,大圆半径是8cm,小圆面积是大圆面积的()A.12B.14C.16D.186.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为()A.(30π+米2B.40π米2C.(30π+米2D.55π米27.一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为()A.13B.14C.15D.1683A .3B .6C .99.甲、乙两个圆柱的体积相等,如果甲圆柱的底面直径扩大2倍,乙圆柱的高扩大3倍;那么这时甲、乙两个圆柱体积的大小关系是( ) A .V 甲>V 乙B .V 甲=V 乙C .V 甲<V 乙D .不能确定10.圆的周长总是它直径的( )倍. A .3.14B .2πC .πD .311.若圆环的外圆直径是10厘米,内圆直径是8厘米,这个圆环的面积是( ) A .29cm πB .2cm πC .210cm πD .22cm π12.在一个长4cm ,宽2cm 的长方形中,画一个最大的圆,这个圆的面积是( )2cmA .9.42B .50.24C .3.14D .12.5613.在一个直径为16米的圆形花坛周围有一条宽为1米的小路(黑色),则这条小路的面积是多少平方米?( )A .πB .17πC .33πD .64π14.把一个圆剪成10个面积相等的扇形,每个扇形的圆心角的度数为( ) A .18°B .36°C .45°D .60°15.现有一圆心角为90︒ ,半径为12cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( )AB .C .D .16.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米. A .100πB .0.1πC .0.01π17.一个圆柱的底面半径是4厘米,它的侧面展开正好是一个正方形,这个圆柱的高是( )厘米. A .4B .8C .12.56D .25.1218.下列说法中,正确的是( ) A .过圆心的线段叫直径 B .长度相等的两条弧是等弧C .与半径垂直的直线是圆的切线D .圆既是中心对称图形,又是轴对称图19.一根长3米的圆柱形木料,横着截4分米,和原来相比,剩下的圆柱形木料的表面积减少12.56平方分米,原来这根圆柱形木料截面周长为()分米A.0.314B.31.4C.3.14D.6.2820.圆柱的高不变,底面半径扩大3倍.则圆柱的体积扩大()倍.A.9B.3C.27D.6二、填空题21.①25m³=( )L;①7.2L=( )cm³;①56cm³=( )mL22.在如图的长方体中,既与平面ABCD垂直,又与平面11ABB A平行的平面是面______.23.在比例尺为10:1的零件图纸上,一个圆形部件在图纸上的直径为40厘米,则该部件的实际半径是______厘米,实际周长是______厘米.24.在同一个圆中,100°的圆心角所对的弧的弧长与20°的圆心角所对的弧的弧长之比是________.25.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.26.用圆规画圆时,若圆规两脚之间的距离为2厘米,则所画圆的周长是__________.27.三角形ABC是直角三角形,阴影部分①的面积比阴影部分①的面积小28平方厘米,AB长40cm,BC 长为___________厘米?( 3.14π=)28.如图所示,有一块边长为3米的正方形草地,在点B处用一根木桩牵住了一头小羊.已知牵羊的绳子长2米,那么草地上不会被羊吃掉草的部分是________平方米.(π取3.14)29.若圆规的两脚分开后,两脚间的距离为3厘米,那么所画出的圆的面积为___________平方厘米.(π取3.14)30.检验平面与平面平行的方法:(1)____________:(2)____________31.圆的周长是62.8米,这个圆的面积是_________平方米.32.等底等高的圆柱和圆锥,若圆柱的体积比圆锥多8立方分米,则圆锥的体积是______立方分米.=,则高等于_______cm.33.长方体的总棱长是64cm,长:宽:高5:1:234.两个圆的半径的比是2①1,则这两个圆的周长之比是( ),这两个圆的面积之比是( ).35.用一根长12.56米的绳子围成一个圆,这个圆的半径是( )米,它的面积是( )平方米.(π取3.14)36.在同一个圆中,有两个扇形A、B,已知扇形A的圆心角等于12°,扇形B的圆心角等于90°,则面积较大的是__________,扇形B的面积占整个圆面积的__________.37.扇形的圆心角为210︒,弧长是28π,则扇形的面积为_______.38.长方体中,最少可以看到____________条棱,最多可以看到____________个面.39.某长方体中,有一个公共顶点的三条棱的长的比是5:8:10,最小的一个面的面积为360平方厘米,则这个长方体的__________条棱长总和是__________厘米.三、解答题40.面积为296cm,形状不同,长和宽都为整厘米的长方形有多少种?41.有一个圆环形装饰纸片,内圆周长是31.4厘米,外圆周长是37.68厘米,圆环的面积是多少平方厘米?42.动物园打算新挖一个直径是4米,深0.3米的圆形水池.(1)如果用水泥把池底和侧壁粉刷,粉刷的面积有多大?(2)这个水池能蓄多少立方米水?43.如图,把一个半径为4的圆分成A、B两部分,其中较小部分为A,且较小部分的面积与较大部分的面积比为5:11.(1)求A、B两部分的面积;(2)若将较大部分分出一部分给较小的部分,且使此时两部分面积的比为9:7,则应从较大部分分出去多大面积?44.长方体相邻的三个面的面积分别是6平方厘米、8平方厘米、12平方厘米,求长方体的体积?45.如图是直角梯形ABCD,如果以AB边为轴旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?(π取3.14).46.求下面阴影部分的周长和面积,(单位:厘米)47.如图所示,一个呼啦圈的截面是圆环形.已知大圆的周长 3.14C=米,小圆的直径0.92d=米,求该圆环的面积(结果保留两位小数).48.顺迈学校准备新建一个花坛,花坛的示意图,如图1所示,它是由5个大小相等的正方形和4个大小相等的扇形组成,每一个小正方形的边长是4米.(π取3)(1)这个花坛的周长是多少米?(2)这个花坛的面积是多少平方米?(3)如图2所示,学校准备在花坛里种植花草,其中阴影内种植红色花草,空白部分内种植黄色花草,已知每平方米红色花草的价格为20元,每平方米黄色花草价格的34比每平方米红色花草的价格多12,求学校购买花草的总费用为多少元?49.如图长方形的长BC为8,宽AB为4.以BC为直径画半圆,以点D为圆心,CD 为半径画弧.求阴影部分的周长和面积.参考答案:1.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r , 则1R r -=,①()2222 6.28R r R r ππππ-=-==, 即周长相差6.28cm , 故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式. 2.C【分析】在所有几何图形中,周长相等的情况下,圆形的面积最大. 【详解】在周长相等的情况下,面积:圆>正方形>长方形. 故选:C .【点睛】在周长相等的情况下,在所有几何图形中,圆的面积最大,应当做常识记住. 3.C【分析】根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与平面ABCD 平行的棱有:棱EF 、棱HG 、棱EH 、棱FG 四条; 故答案选C .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 4.B【分析】分别求出图1和图2的表面积,比较即可.【详解】设圆柱的底面半径为r ,图1水的表面积为:S 1=2πr 2+2πr •r =4πr 2. 对于图2,上面的矩形的长是2r ,宽是2r .则面积是4r 2. 曲面展开后的矩形长是πr ,宽是2r .则面积是2πr 2.上下底面的面积的和是:π×r 2. 图2水的表面积S 2=(4+3π)r 2. 显然S 1<S 2. 故选:B .【点睛】此题主要考查了圆柱的有关计算,解决此题的关键是掌握化曲为平的思想. 5.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=, ①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键. 6.A【分析】由底面圆的半径=5米,根据勾股定理求出母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和. 【详解】解:①底面半径=5米,圆锥高为2米,圆柱高为3米,①圆锥的母线长①圆锥的侧面积=π5⨯, 圆柱的侧面积=底面圆周长×圆柱高, 即2π5330π⨯⨯=,故需要的毛毡:(30π+米2, 故选:A .【点睛】此题主要考查勾股定理,圆周长公式,圆锥侧面积,圆柱侧面积等,分别得出圆锥与圆柱侧面积是解题关键. 7.C【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论.【详解】解:72÷360=15即这条弧长与这条弧所在圆的周长之比为15故选C .【点睛】此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 8.C【分析】根据圆的面积公式:S =πr ²计算即可.【详解】解:一个圆的半径扩大为原来的3倍,面积就扩大为原来的3×3=9倍. 故选:C .【点睛】本题考查了认识平面图形,解题的关键是掌握圆的面积公式:S =πr ². 9.A【分析】利用圆柱体积公式v =sh 进行计算,比较结果即可.【详解】解:设两圆柱的体积相等为V ,底面直径为2r ,高为h ,掌握V =()2224r h r h ππ= 若甲圆柱的底面直径扩大2倍,则体积为()224r 16h r h ππ= ,; 若乙圆柱的高扩大3倍,则此时乙圆柱的体积就是()222r 312h r h ππ=; 221612r h r h ππ> ,故选:A .【点睛】本题考查圆柱的计算,牢记体积公式是解决问题的关键. 10.C【分析】根据圆周率的定义即可得出答案.【详解】解:设圆周长为C ,直径为d ,由C πd ,可得Cdπ=, 故选:C .【点睛】本题考查认识平面图形,掌握圆周长的计算公式是正确解答的关键. 11.A【分析】此题是求圆环面积,要根据“直径÷2=半径”先求出半径,然后根据圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可. 【详解】解:10÷2=5(厘米),8÷2=4(厘米), π×(2254-) =9π(平方厘米)答:它的面积是9π平方厘米. 故选:A .【点睛】此题考查圆的面积公式,圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可得出结论. 12.C【分析】先确定这个圆的位置情况,再利用圆的面积公式求解.【详解】如图,当画的圆的圆心与长方形的三条边距离相等时,这个圆最大,半径为1, 面积=21 3.14ππ⨯=≈, 故选:C .【点睛】本题考查了长方形中的最大圆及其面积的问题,解题关键是能画出这个最大圆,并利用圆的面积公式进行求解. 13.B【分析】阴影部分面积可以看作是一个圆环的面积,只需要利用外圆面积减去内圆面积即可得到答案【详解】解:①圆形花坛的直径为16米, ①圆形花坛的半径为8米, ①圆形小路的宽度为1米,①这个圆环的外圆半径为8+1=9米,①229817S πππ=⨯-⨯=阴影,故选B .【点睛】本题主要考查了求圆环的面积,熟知圆面积公式是解题的关键. 14.B【分析】由于扇形面积相等,则扇形的圆心角相等,然后求360°的十分之一即可. 【详解】每个扇形的圆心角=110×360°=36°. 故选:B .【点睛】本题考查了圆的认识:熟练掌握圆心角与扇形的概念.15.C【分析】利用底面周长=展开图的弧长可得. 【详解】解:90122180R ππ⨯=, 解得3cm R =,再利用勾股定理可知,高==.故选:C .【点睛】本题考查了圆锥的展开图,弧长公式以及勾股定理,解答本题的关键是确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.16.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 17.D【分析】根据圆柱侧面展开图的形状解答.【详解】解:侧面展开后长方形的长(底面周长)=2πr =2×3.14×4=25.12(厘米); 又因为侧面展开后是正方形所以:宽=长=25.12厘米;侧面展开后长方形的宽又是圆柱的高,即高=25.12厘米;这个圆柱的高是25.12厘米.故答案为:D .【点睛】根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后解答即可.18.D【分析】根据直径的定义对A 进行判断;根据等弧的定义对B 进行判断;根据切线的判定定理对C 进行判断;根据圆的性质对D 进行判断.【详解】解:A 、过圆心的弦叫直径,所以此项错误;B 、在同圆或等圆中,长度相等的两条弧是等弧,所以此项错误;C 、过半径的外端,与半径垂直的直线是圆的切线,所以此项错误;D 、圆既是中心对称图形,又是轴对称图形,所以此项正确.故选:D .【点睛】本次考查了圆中直径、等弧、切线的定义以及圆的对称性,准确把握定义和圆的对称性是解答此题的关键.19.C【分析】剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积,据此即可作答.【详解】如图,剩下的圆柱体木料的表面积减少12.56平方分米,就是图中虚线部分圆柱体的侧面积, 设虚线部分圆柱体的底面周长为a ,则其侧面积为:12.56=4×a ,即:a =3.14分米,故选:C .【点睛】本题考查了圆柱体的计算,几何体的表面积等知识,理解“剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积”是解答本题的关键.20.A【分析】圆柱的底面半径扩大3倍,则它的底面积就扩大9倍,在高不变的情况下,体积就扩大9倍,所以应选A ,也可用假设法通过计算选出正确答案.【详解】因为2V r h π=当r 扩大3倍时,22(3)9V r h r h ππ=⨯=⨯所以体积扩大9倍;或:假设底面半径是1,高也是121 3.1411 3.14V =⨯⨯=当半径扩大3倍时,r =322 3.1431 3.149V =⨯⨯=⨯所以体积扩大9倍故选:A【点睛】本题考查了圆柱的体积公式,解答具有灵活性,可灵活选择作答方法. 21. 400 7200 56【详解】解:①25m³=400dm 3=400L ; ①7.2L=7200cm 3; ①56cm³=56mL . 故答案为:400;7200;56. 【点睛】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.22.11CC D D【分析】根据平面与平面垂直和平面和平面平行的定义即可求解.【详解】既与平面ABCD 垂直,又与平面11ABB A 平行的平面是面11CC D D .故答案为:11CC D D .【点睛】本题考查长方体中平面与平面的的位置关系的认识.理解平面与平面的垂直和平行的位置关系是本题解题的关键.23. 2 4π【分析】设该部件的实际半径是r 厘米,根据比例的性质可求出该部件的实际半径,再由圆的周长公式计算,即可求解.【详解】解:设该部件的实际半径是r 厘米,根据题意得:4010:1:2r =, 解得:2r =,即该部件的实际半径是2厘米,①实际周长是224ππ⨯=厘米.故答案为:2;4π【点睛】本题主要考查了比例尺的应用,求圆的周长,熟练掌握比例的基本性质,圆的周长公式是解题的关键.24.5:1【分析】根据弧长公式进行计算再求比即可.【详解】100°的圆心角所对的弧的弧长:10051809r r ππ=, 20°的圆心角所对的弧的弧长:201809r r ππ=, ①59r π:9r π=5:1. 故答案为:5:1.【点睛】本题考查了弧长,熟练掌握弧长公式是解题的关键.25.16π【分析】长方形绕长边旋转一周以后,得到高为4cm ,半径为2cm 的圆柱,根据圆柱的体积公式:V Sh =,即可求解.【详解】①长方形绕它的长边所在的直线旋转一周,①旋转后的图形为高为4cm ,半径为2cm 的圆柱,①圆柱的体积公式:V Sh =,①22416V sh π==⨯=π3cm .故答案为:16π.【点睛】本题考查图形的旋转,解题的关键是掌握旋转后得到的图形,根据体积公式,进行计算.26.12.56厘米【分析】依据圆的周长计算公式解答即可.【详解】所画圆的周长=23.14212.56⨯=(厘米),故答案为:12.56厘米.【点睛】本题考查了圆的周长计算公式,理解圆规两脚之间的距离为半径是解题的关键. 27.32.8【分析】设半圆中空白部分用①表示,先求出半圆的面积,①与①的面积和为628,①-①=28,求出①、①部分的面积和62828656+=是直角三角形面积.利用面积公式求即可.【详解】设半圆中空白部分用①表示,图中半圆的直径为AB ,AB =40cm , 所以半圆面积为:2120200 3.146282π⨯⨯≈⨯=. 由空白部分①与①的面积和为628,又①-①=28,所以①、①部分的面积和62828656+=.由直角三角形ABC的面积为:1140656 22AB BC BC⨯⨯=⨯⨯=.所以32.8BC=(厘米).故答案为:32.8.【点睛】本题考查圆有关的面积问题,掌握圆的面积公式,会用半圆面积表示三角形面积是解题关键.28.5.86【分析】根据题意可得能够被羊吃到的部分是以B为圆心,2米为半径的14圆,利用扇形的面积公式求解即可.【详解】2133 3.142 5.864⨯-⨯⨯=(平方米),故答案为:5.86.【点睛】本题考查扇形面积的实际应用,掌握求扇形的面积公式是解题的关键.29.28.26【分析】首先根据题意得出圆的半径,再根据圆的面积公式,计算即可得出结果.【详解】解:①圆规的两脚分开后,两脚间的距离为3厘米,①圆的半径为3厘米,①圆的面积为223.14328.26rπ=⨯=平方厘米.故答案为:28.26【点睛】本题考查了圆的认识、圆的面积,解本题的关键在熟练掌握圆的面积公式.30.铅垂线法长方形纸片法【分析】在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面,如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行;或长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.【详解】解:检验平面与平面互相平行的方法有铅垂线法,长方形纸片法,铅垂线法:在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面, 如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行; 长方形纸片法:长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.故答案为:铅垂线法,长方形纸片法.【点睛】本题主要考查了长方体中平面与平面的位置关系,掌握检验平面与平面互相平行的方法是解题的关键.31.314【分析】先根据圆的周长求出圆的半径,再根据圆的面积公式求解.【详解】解:设该圆的半径为r ,则62.82πr =,62.8102 3.14r ∴==⨯(米), 2π 3.14100314S r ∴==⨯=(平方米). 故答案为:314.【点睛】本题考查圆的周长与面积,掌握圆的周长公式与面积公式是解题的关键. 32.4【分析】等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.【详解】解:8÷(3−1),=8÷2=4(立方分米)即圆锥的体积是4立方分米.故答案为:4.【点睛】本题主要考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.33.4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高34. 2①1 4①1【分析】设小圆的半径为r ,则大圆的半径为2r ,再分别求解两个圆的周长与面积,再列比例式进行计算即可.【详解】解:设小圆的半径为r ,则大圆的半径为2r ,小圆的周长=2r π, 大圆的周长=224r r , 周长比:4r π:2r π=2:1;小圆的面积=2r π, 大圆的面积=2224r r , 面积比:24r π:2r π=4:1;故答案为:2:1;4:1.【点睛】本题主要考查圆的周长和面积的计算方法的灵活应用,比值的计算,列出正确的比例式进行计算是解本题的关键.35. 2 12.56【分析】利用周长公式求出半径,再利用面积公式计算.【详解】解:这个圆的半径为:12.5622π÷÷=米,面积为:2212.56π=平方米,故答案为:2,12.56.【点睛】本题考查了圆的周长和面积与半径的关系,熟记公式是解题的关键.36. 扇形B 14【分析】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大;一个圆的圆心角是360°,圆的半径和扇形的半径相等,只要求出扇形的圆心角是360°的几分之几,则扇形的面积就是所在圆面积的几分之几.【详解】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大, 因为扇形A 的圆心角等于12°,扇形B 的圆心角等于90°,所以面积较大的是B ;因为扇形B 的圆心角等于90°,9013604=, 所以扇形B 的面积占整个圆面积的14, 故答案为:B ;14. 【点睛】本题考查了扇形面积的知识,理解扇形的圆心角的度数比等于扇形的面积比是解答本题的关键.37.1055.04 【分析】根据弧长公式180n r l π=求出扇形的半径,再根据扇形的面积公式12S lr =即可求解.【详解】解:因为扇形的圆心角为210︒,弧长是28π, 所以扇形的半径1802824210r ππ⨯==, 所以扇形的面积为1128241055.0422S lr π==⨯⨯≈,故答案为:1055.04. 【点睛】本题考查弧长公式、扇形的面积公式,掌握弧长180n r l π=和扇形的面积12S lr =是解题的关键.38. 4 3【分析】由长方体的特征可知,长方体最多可以看到3个面,最少可以可以看到4条棱;我们可以把一个长方体放在桌子上进行观察,从而得到最多能看到几个面.【详解】解:一个长方体最多可以看到3个面,最少可以可以看到4条棱.故答案为:4,3.【点睛】本题考查了长方体的特征以及从不同方向观察物体和几何体.39. 12 276【分析】先根据三条棱长的比例关系以及最小的一个面的面积求出较小的两条棱的长度,再用比例关系求出最长的棱,最后求棱长总和.【详解】根据三条棱长比是5:8:10,且最小面的面积是360平方厘米,设较短的两条棱分别是5k 和8k ,列式58360k k ⋅=,解得3k =,则较短的两条棱分别长15厘米和24厘米,最长的棱为31030⨯=(厘米),长方体的12条棱长和=()1524304276++⨯=(厘米).故答案是:12;276.【点睛】本题考查比例和长方体的棱长和,解题的关键是先根据比例求出三条棱长,再去根据长方体的性质求棱长和.40.共6种【分析】根据长方形的面积S=ab ,即ab=72,由此分别求出a 与b 的整数情况即可.【详解】①96196=⨯,①96248=⨯,①96332=⨯,①96424=⨯,①96616=⨯,①96812=⨯,共计有6种.【点睛】考查了长方形面积的计算,解题关键利用长方形的面积公式解决问题. 41.圆环的面积为34.54平方厘米【分析】根据圆的周长公式C =2πr ,知道r =C ÷π÷2,分别求出内、外圆的半径,再用外圆的半径减去内圆的半径即得圆环的宽是多少;根据圆环的面积公式S =π(R 2﹣r 2)可求得圆环的面积;把内圆和外圆的周长相加即得此圆环的周长.【详解】解:31.4 3.1425÷÷=(厘米),37.68 3.1426÷÷=(厘米),()22223.146 3.145 3.1465⨯-⨯=⨯-3.141134.54=⨯=(平方厘米).答:圆环的面积为34.54平方厘米.【点睛】本题主要考查了圆的周长公式C =2πr 和圆环的面积公式S =π(R 2﹣r 2)的灵活应用.42.(1)用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)这个水池能蓄3.768立方米水.【分析】(1)根据题意,涂水泥的面积即是这个圆柱形水池的表面积,圆柱形水池的表面积=底面积+侧面积;代入S 侧=πdh ,S 圆=πr 2,即可求出;(2)水池里边存水的体积,可利用圆柱的体积公式=底面积×高进行计算即可得到答案. (1)解:圆柱侧面积:3.14×4×0.3=3.768(平方米),4÷2=2(米),3.14×2×2=12.56(平方米),3.768+12.56=16.328(平方米),答:用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)解:3.14×22×0.3=12.56×0.3=3.768(立方米),答:这个水池能蓄3.768立方米水.【点睛】此题主要考查的是圆柱的表面积公式和圆柱的体积公式的灵活应用. 43.(1)A 、B 两部分的面积分别是5π、11π.(2)应从较大部分分出去的面积为4π或2π.【分析】(1)用圆的面积分别乘以各自的比率即可;(2)根据B 变化前后占整个圆的面积的分率分两种情况进行解答即可.【详解】(1)解:2545511ππ⨯⨯=+,211411511ππ⨯⨯=+. 答:A 、B 两部分的面积分别是5π、11π.(2)解:1174151197164-==++, 21444ππ⨯⨯=. 或1192151197168-==++, 21428ππ⨯⨯=.答:应从较大部分分出去的面积为4π或2π.【点睛】本题考查了圆的面积,解题的关键是掌握圆的面积公式.44.长方体的体积是24cm².【分析】设长宽高分别为a ,b ,h 则:ab=6,ah=8,bh=12;根据“长方体的体积=长×宽×高”进行解答即可.【详解】设长宽高分别为a 、b 、h ,则ab=6,ah=8,bh=12.a²b²h²=6×8×12abh=24答:长方体的体积是24cm².【点睛】本题考查了长方形面积公式和长方体体积公式.45.141.3立方厘米【分析】如果以AB 边为轴旋转一周,得到的立体图形是由1个圆柱和1个圆锥组成的,上面得到一个圆锥,(7﹣4)是圆锥的高,BC 的长度是圆锥的底面圆的半径,下面是一个圆柱,高是4厘米,底面圆的半径是3厘米,根据圆锥的体积=213r πh 1+πr 2h 2代入数据计算即可.【详解】解:以AB 边为轴旋转一周,得到一个圆锥和一个圆柱, 该几何体的体积为:13πr 2h 1+πr 2h 2 =13×3.14×32×(7﹣4)+3.14×32×4, =28.26+113.04,=141.3(立方厘米).答:这个立体图形的体积是141.3立方厘米.【点睛】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是弄清楚计算所需要的数据.46.周长:()64cm π+;面积:26cm π.【分析】观察图形可知,阴影部分的周长分为三个部分,大圆周长的一半,加上大圆的半径,加上小圆周长的一半,根据圆的周长公式:C d π=,进行计算;根据圆的面积公式:2S r π=,面积用大圆的面积减去空白处小圆的面积,即为阴影部分的面积.【详解】阴影部分的周长:。

中考数学图形与几何专题知识易错题50题-含参考答案

中考数学图形与几何专题知识易错题50题-含参考答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。

北师版七年级数学上册 第四章 基本平面图形(易错题归纳)

北师版七年级数学上册  第四章 基本平面图形(易错题归纳)

第四章基本平面图形(易错题归纳)易错点一:直线、射线、线段的概念理解不透技巧点拨:代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“⋅”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.根据代数式的书写要求判断各项即可1.直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.102.下列叙述正确的是()A.线段AB可表示为线段BAB.射线AB可表示为射线BAC.直线可以比较长短D.射线可以比较长短3.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm4.下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC易错点二:线段运用技巧点拨:正确掌握数线段方法5.A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4B.20C.10D.96.由汕头开往广州东的D7511动车,运行途中须停靠的车站依次是:汕头→潮汕→普宁→汕尾→深圳坪山→东莞→广州东.那么要为D7511动车制作的车票一共有()A.6种B.7种C.21种D.42种7.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问:(1)这两地之间有种不同的票价;(2)要准备种不同的车票.易错点三:两点间的距离技巧点拨:题意不明确时注意分类讨论8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上10.已知线段AB=6cm,点C在直线AB上,AC=AB,则BC=.11.如图,已知A、B、C是数轴上的三点,点B表示的数是﹣2,BC=6,AC=18,点P从A点出发沿数轴向右运动,速度为每秒2个单位.(1)数轴上点A表示的数为;点C表示的数为.(2)经过t秒P到B点的距离等于P点到C点距离的2倍,求此时t的值.(3)当点Q以每秒1个单位长度的速度从C点出发,沿数轴向终点A运动,N为BQ中点.P、Q同时出发,当一点停止运动时另一点也随之停止运动.用含t的代数式表示线段PN的长.12.P是线段AB上一点,AB=12cm,C,D两点分别从P,B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)如图若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明线段AC和线段CD的数量关系;(2)如果t=2s时,CD=1.5cm,试探索AP的值.易错点四:比较线段的长短技巧点拨:注意点的位置进行分类讨论。

(易错题精选)初中数学几何图形初步易错题汇编含答案解析

(易错题精选)初中数学几何图形初步易错题汇编含答案解析

(易错题精选)初中数学几何图形初步易错题汇编含答案解析一、选择题1.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a∥b,所以∠2=∠3=35°.故选C.【点睛】本题主要考查了平行线的性质.3.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.4.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的5.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.6.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G=12(∠3﹣∠2).【详解】解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE ,∵∠3=∠G+∠CFG ,∠1=∠2+∠G ,∠CFG =∠AFE ,∴∠3=∠G+∠2+∠G ,∠G =12⨯(∠3﹣∠2).故选:C .【点睛】本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.7.下列图形不是正方体展开图的是( )A .B .C .D .【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A 、B 、C 是正方体展开图,错误;D 折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件8.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.9.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.10.下列图形中,不是三棱柱的表面展开图的是( )A.B.C.D.【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y+的值为()A.-2 B.-3 C.2 D.1【答案】C【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+0 30xy=⎧⎨-+=⎩解得:-13 xy=⎧⎨=⎩则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.12.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.13.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.14.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.15.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键. 16.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。

初一数学基本的平面图形易错题训练

初一数学基本的平面图形易错题训练

初一数学基本的平面图形易错题训练一.选择题(共14小题)1.(2016春•威海期中)学校、书店、邮局在平面图上的标点分别是A、B、C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25° B.65° C.115° D.155°2.(2016春•龙口市期中)下列计算错误的是()A.0.25°=900″ B.1.5°=90′C.1000″=()° D.125.45°=1254.5′3.(2015•石家庄校级模拟)把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.三角形两边之和大于第三边4.(2015•临沂模拟)设A1,A2,A3,A4是数轴上的四个不同点,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且+=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则()A.点C可能是线段AB的中点B.点D一定不是线段AB的中点C.点C,D可能同时在线段AB上D.点C,D可能同时在线段AB的延长线上5.(2015秋•蓬江区期末)下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.(2015秋•淮北期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm7.(2015秋•丹东期末)如图所示,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,则下列结论错误的是()A.AB=AC B.EC=2BD C.B是AE的中点D.DE=AB8.(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个9.(2015春•郑州校级月考)在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A.9:48﹣9:49 B.9:49﹣9:50 C.9:50﹣9:51 D.9:51﹣9:5210.(2013秋•五莲县校级期末)已知线段AB=8厘米,直线AB上有一点C,且BC=6厘米,M是线段AC的中点,则线段AM的长为()A.2cm B.1cm或7cm C.2cm或14cm D.7cm11.(2012秋•河北区期末)我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种12.(2008秋•江山市期末)若∠AOB=60°,∠AOC=30°,则∠BOC为()A.30° B.90° C.30°或90° D.不确定13.(2008秋•临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.914.如图,∠AOD=150°,∠BOC=30°,∠BOC绕点O逆时针在∠AOD的内部旋转,其中OM平分∠AOC,ON平分∠BOD,在∠BOC从OB与OA重合时开始到OC与OD重合为止,以每秒2°的速度旋转过程中,下列结论其中正确的是()(1)射线OM的旋转速度为每秒2°;(2)当∠AON=90°时间为15秒;(3)∠MON的大小为60°.A.(1)(2)(3)B.(2)(3)C.(1)(2)D.(3)二.填空题(共3小题)15.(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是.16.(2014秋•合肥期末)上午9:40时,时针与分针夹角为度.17.计算:48°39′+67°41′=;90°﹣78°19′40″=;21°17′×5=;176°52′÷3=(精确到分)三.解答题(共6小题)18.(2015秋•文安县期末)如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.19.(2015春•淄博校级期中)如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.20.(2015秋•陕西校级月考)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,求∠BOD的度数.解:∵OB是∠AOC的角平分线∴∠AOB==40°∵OD是∠COE的角平分线∴∠COE==∵∠COE=60°∴∴∠BOD=∠COD+=+=.21.(2014秋•罗平县校级期末)如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;(2)若∠BOD=60°,求∠COF的度数.22.(2013秋•东西湖区校级期末)如图,O是直线AC上一点,OD平分∠AOB,∠BOE=∠COD,∠COE﹣∠BOD=40°,求∠DOE的度数.23.(2014春•芝罘区期中)如图,∠AOC:∠BOC=2:1,OD平分∠AOB,∠COD=18°,求∠AOB的度数.初一数学基本的平面图形易错题训练参考答案与试题解析一.选择题(共14小题)1.(2016春•威海期中)学校、书店、邮局在平面图上的标点分别是A、B、C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25° B.65° C.115° D.155°【分析】根据方位角的概念,正确画出方位图表示出方位角,即可求解.2.(2016春•龙口市期中)下列计算错误的是()A.0.25°=900″ B.1.5°=90′C.1000″=()° D.125.45°=1254.5′【分析】根据1°=60′,1′=60″,进行转换,即可解答.3.(2015•石家庄校级模拟)把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.三角形两边之和大于第三边【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短解答.4.(2015•临沂模拟)设A1,A2,A3,A4是数轴上的四个不同点,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且+=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则()A.点C可能是线段AB的中点B.点D一定不是线段AB的中点C.点C,D可能同时在线段AB上D.点C,D可能同时在线段AB的延长线上【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件,根据题意考查方程的解的情况,用排除法选出正确的答案即可.5.(2015秋•蓬江区期末)下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个【分析】利用确定直线的条件、线段的性质、余角的性质及线段中点的定义分别判断后即可确定正确的选项.6.(2015秋•淮北期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.7.(2015秋•丹东期末)如图所示,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,则下列结论错误的是()A.AB=AC B.EC=2BD C.B是AE的中点D.DE=AB【分析】根据题中的已知条件,结合图形,对结论进行一一论证,从而选出正确答案8.(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.9.(2015春•郑州校级月考)在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A.9:48﹣9:49 B.9:49﹣9:50 C.9:50﹣9:51 D.9:51﹣9:52【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,时钟的时针每小时转过的角是一份,即30°;分针每分钟转过的角是分,即×30°=6°;九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x分,重合,则有0.5x+270=6x,即可解答.10.(2013秋•五莲县校级期末)已知线段AB=8厘米,直线AB上有一点C,且BC=6厘米,M是线段AC的中点,则线段AM的长为()A.2cm B.1cm或7cm C.2cm或14cm D.7cm【分析】分类点C在AB上,点C不在AB上;根据线段AB上,AB=8cm,BC=6cm,可得AC,根据M是AC中点,可得AM.11.(2012秋•河北区期末)我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种【分析】相当于一条线段上有4个点,又火车票是要说往返的.12.(2008秋•江山市期末)若∠AOB=60°,∠AOC=30°,则∠BOC为()A.30° B.90° C.30°或90° D.不确定【分析】本题是角的计算的多解问题,求解时要注意分情况讨论.13.(2008秋•临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.9【分析】根据A站到B站之间还有3个车站,首先弄清楚每两个站之间的数量,再根据往返两种车票进行求解.14.如图,∠AOD=150°,∠BOC=30°,∠BOC绕点O逆时针在∠AOD的内部旋转,其中OM平分∠AOC,ON平分∠BOD,在∠BOC从OB与OA重合时开始到OC与OD重合为止,以每秒2°的速度旋转过程中,下列结论其中正确的是()(1)射线OM的旋转速度为每秒2°;(2)当∠AON=90°时间为15秒;(3)∠MON的大小为60°.A.(1)(2)(3)B.(2)(3)C.(1)(2)D.(3)【分析】(1)根据角平分线的意义来分析射线OM的速度;(2)先假定时间为15秒,然后来分析A、C的位置的变化情况;(3)根据角平分线的性质来求即可.二.填空题(共3小题)15.(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π﹣2.【分析】通过图形知S阴影部分面积=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积,所以由圆的面积公式和三角形的面积公式可以求得阴影部分的面积.16.(2014秋•合肥期末)上午9:40时,时针与分针夹角为50度.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出9时40分时针和分针之间相差的大格数,用大格数乘30°即可.17.计算:48°39′+67°41′=116°20′;90°﹣78°19′40″=11°40′20″;21°17′×5=106°25′;176°52′÷3=58°57′(精确到分)【分析】根据度、分、秒是60进制,度与度相加,分与分相加,分大于60,向度进1;向90°借1°化为60分,再借1′化为60″,然后度与度相减,分与分相减,秒与秒相减,进行计算即可得解;同一单位相乘,分大于60,向度进1;先用度除,余数乘以60化为分,加上原来的分,继续除以3计算即可得解.三.解答题(共6小题)18.(2015秋•文安县期末)如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.【分析】根据线段AB=8cm,E为线段AB的中点,得到BE=AB=4cm,所以BC=BE﹣EC=4﹣3=1cm,从而求得AC=AB﹣BC=8﹣1=7cm,又点D为线段AC的中点,所以CD==3.5cm,根据DE=CD﹣EC即可解答.19.(2015春•淄博校级期中)如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【分析】根据AC=12cm,CB=AC,得到CB=6cm,求得AB=18cm,根据D、E分别为AC、AB的中点,分别求得AE,AD的长,利用线段的差,即可解答.20.(2015秋•陕西校级月考)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,求∠BOD的度数.解:∵OB是∠AOC的角平分线∴∠AOB=∠BOC=40°∵OD是∠COE的角平分线∴∠COE=∠DOE=∠COE,∵∠COE=60°∴∠COD=30°,∴∠BOD=∠COD+∠BOC=30°+40°=70°.【分析】根据OB是∠AOC的角平分线,∠AOB=40°,可以求出∠BOC=40°,OD是∠COE 的角平分线,∠COE=60°,得出∠COD=30°,两角相加得∠BOD.21.(2014秋•罗平县校级期末)如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;(2)若∠BOD=60°,求∠COF的度数.【分析】(1)因为射线OC平分∠AOB,所以∠AOC=∠BOC=∠AOB=40°,根据∠AOD=∠AOC﹣∠COD=40°﹣20°=20°,∠COD=20°,所以∠AOD=∠COD,所以OD为∠AOC的角平分线;(2)先根据∠BOD=60°,∠COD=20°,得到∠BOC=∠BOD﹣∠COD=60°﹣20°=40°,因为射线OC平分∠AOB,所以∠AOB=2∠BOC=80°,所以∠BOF=180°﹣∠AOB=180°﹣80°=100°,所以∠COF=∠BOF+∠BOC=100°+40°=140°.22.(2013秋•东西湖区校级期末)如图,O是直线AC上一点,OD平分∠AOB,∠BOE=∠COD,∠COE﹣∠BOD=40°,求∠DOE的度数.【分析】根据∠BOE=∠COD可得:∠BOE=∠BOD+∠COE,再利用∠COE﹣∠BOD=40°与平角等于180°列等式计算.23.(2014春•芝罘区期中)如图,∠AOC:∠BOC=2:1,OD平分∠AOB,∠COD=18°,求∠AOB的度数.【分析】根据∠AOC:∠BOC=2:1,OD平分∠AOB,得到∠AOC=,∠AOD=,再根据∠COD=∠AOC﹣∠AOD,即可解答.。

初中数学基本平面图形基础训练1含答案

初中数学基本平面图形基础训练1含答案

基本平面图形基础训练1一.选择题(共18小题)1.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙C,且半径都是0.5cm,则图中三个阴影部分面积之和等于()A.cm2B.cm2C.cm2D.cm22.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上3.下列说法错误的是()A.两点之间线段最短B.两点确定一条直线C.作射线OB=3厘米D.延长线段AB到点C,使得BC=AB4.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定5.如图,已知⊙O的半径为2,∠AOB=90°,则图中阴影部分的面积为()A.π﹣2B.C.πD.26.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A.60°B.90°C.120°D.150°7.已知如图,在⊙O中,OA⊥OB,∠A=35°,则的度数为()A.20°B.25°C.30°D.35°8.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为()A.3π﹣3B.3π﹣6C.6π﹣3D.6π﹣69.如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°10.如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对11.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2πB.πC.D.12.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°13.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm14.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条15.有下列说法:①平角是一条直线;②线段AB是点A与点B的距离;③射线AB与射线BA表示同一条直线;④过一点有且只有一条直线与已知直线平行;⑤圆柱的侧面是长方形.其中正确的有()A.0个B.1个C.2个D.3个16.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA 平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:417.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟18.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间二.填空题(共18小题)19.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°,则∠DF A=______度.20.如图,用圆规比较两条线段A′B′和AB的长短,A′B′和AB的大小关系是______.21.如图,是从甲地到乙地的四条道路,其中最短的路线是______,依据是______.22.把弯曲的河道改直,能够缩船舶航行的路程,这样做的道理是______.23.下列现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了;③把原来弯曲的河道改直,以缩短路程;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路.其中可以用数学“两点之间,线段最短”来解释的有______(填序号).24.如图,有一块草地三面靠墙,其中BC=3米,∠BCD=120°,一根5米长的绳子,一端拴在柱子上另一端拴着一只羊(羊只能在草地上活动),羊的活动区域面积为______平方米.25.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=______度.26.已知扇形所在的圆半径为6cm,面积为6πcm2,则扇形圆心角的度数为______.27.如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数______.28.⊙O的弦AB等于半径,那么弦AB所对的圆心角度数是______.29.若∠AOB=100°,∠BOD=60°,∠AOC=70°时,则∠COD=______°(自己画图并计算)30.已知⊙O的半径r=acm,弦AB=acm,则∠AOB的度数是______.31.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为______同学的说法是正确的.32.如图,若点O为⊙O的圆心,则线段______是圆O的半径;线段______是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.33.已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD=1cm,则AC=______.34.计算:53°40′30″+75°57′28″=______.35.甲看乙在北偏东50度,那么乙看甲的方向为______.36.如图,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线.求∠BOD的度数.三.解答题(共4小题)37.如图,平面上有A、B、C、D,4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上.38.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.39.如图,已知点A、B、C在同一直线上,M、N分别是AC、BC的中点.(1)若AB=20,BC=8,求MN的长;(2)若AB=a,BC=8,求MN的长;(3)若AB=a,BC=b,求MN的长;(4)从(1)(2)(3)的结果中能得到什么结论?40.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.基本平面图形基础训练1参考答案与试题解析一.选择题(共18小题)1.解:∵⊙A、⊙B、⊙C的半径都是0.5,扇形的三个圆心角正好构成三角形的三个内角,∴阴影部分扇形的圆心角度数为180°,∴S阴影==.故选:B.2.解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.3.解:A、两点之间线段最短,正确,不合题意;B、两点确定一条直线,正确,不合题意;C、作射线OB=3厘米,错误,射线没有长度,符合题意;D、延长线段AB到点C,使得BC=AB,正确,不合题意;故选:C.4.解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.5.解:∵⊙O的半径为2,∠AOB=90°,∴△AOB的面积=,∴扇形面积=,∴图中阴影部分的面积=扇形面积﹣△AOB的面积=π﹣2,故选:A.6.解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选:C.7.解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴的度数为20°,故选:A.8.解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.∵S扇形AMO=×π×MA2=.S△AMO=AM•MO=1,∴S弓形AO=﹣1,∴S三叶花=6×(﹣1)=3π﹣6.故选:B.9.解:∵OD边平分∠AOB,OE平分∠BOC,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠EOD=∠AOB+∠BOC=∠AOC,∵∠EOD=60°,∴∠AOC=2×60°=120°.故选:C.10.解:∵|x|=3,∴x=±3,∵|y|=1,∴y=±1,∴当x与y是同号时,A、B两点间的距离是2;当x与y是异号时,A、B两点间的距离是4;∴A、B两点间的距离是2或4;故选:C.11.解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是(m2),故选:C.12.解:①当OC在∠AOB内部时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;②当OC在∠AOB外部时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.13.解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.14.解:如图,共有5条.故选:D.15.解:①错误,角是由两条射线组成;②错误,只能说“线段AB的长度是点A与点B的距离”;③错误,只有说“射线AB与射线BA在同一条直线”;④错误,应说“过直线外一点有且只有一条直线与已知直线平行”;⑤错误,只有是圆柱的侧面展开图是长方形;故选:A.16.解:∵OM是∠AOB平分线,OQ是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.17.解:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选:C.18.解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共18小题)19.解:如图所示:∠EFD′=∠DFE,则∠DF A=180﹣2∠DFE=180﹣70=110°,故∠DF A=110度.故答案为:110.20.解:由图知A′B′>AB,故答案为:A′B′>AB.21.解:由图可得,最短的路线为①,因为两点之间,线段最短.故答案为:①,两点之间,线段最短.22.解:弯曲的河道改直,能够缩船舶航行的路程,这样做的道理是:两点之间线段最短.故答案为:两点之间线段最短.23.解:①用两个钉子就可以把一根木条固定在墙上,是两点确定一条直线;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了,是两点确定一条直线;③把原来弯曲的河道改直,以缩短路程,是两点之间,线段最短;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路,是两点之间,线段最短;故答案为:③④.24.解:如图所示:∵大扇形的圆心角是90度,半径是5,所以面积==π(m2),∵小扇形的圆心角是180°﹣120°=60°,半径是2m,则面积==(m2),∴羊E在草地上的最大活动区域面积=π+π=π(m2).故答案为π.25.解:连接OB,∵OB=OE=BC,∠C=40°,∴∠COB=∠C=40°,∴∠ABO=∠C+∠COB=80°,∵OA=OB,∴∠A=∠ABO=80°,△AOC中,∠EOA=180°﹣40°﹣80°=60°,故答案为:60.26.解:设扇形的圆心角是n°,根据扇形的面积公式得:6π=,解得n=60.故答案为:60°27.解:∵,∠COD=32°,∴∠BOC=∠EOD=∠COD=32°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=84°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣84°)=48°.故答案为:48°28.解:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故答案为:60°29.解:如图①∵∠AOB=100°,∠BOD=60°,∠AOC=70°,∴∠COD=∠BOC+∠BOD=∠AOB﹣∠AOC+∠BOD=100°﹣70°+60°=90°;如图②∠COD=360°﹣∠AOB﹣∠BOD﹣∠AOC=360°﹣100°﹣60°﹣70°=130°;如图③∠COD=∠AOD+∠AOC=∠AOB﹣∠BOD+∠AOC=100°﹣60°+70°=110°;如图④,∠COD=∠AOC+∠BOD﹣∠AOB=70°+60°﹣100°=30°;故答案为:30°或90°或110°或130.30.解:∵⊙O的半径为acm,弦AB的长也是acm,∴△AOB是等边三角形∴∠AOB=60°.故答案为:60°.31.解:在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,应该是两点确定一条直线,而不是两点之间线段最短.故答案为:甲.32.解:如图,若点O为⊙O的圆心,则线段OA、OB、OC是圆O的半径;线段AC、AB、BC是圆O的弦,其中最长的弦是AC;、是劣弧;、是半圆.故答案为OA、OB、OC;AC、AB、BC;AC;、;、;33.解:如图1,设BC=xcm,则AB=2xcm,AC=3xcm,∵点D为AC的中点,∴AD=CD=AC=1.5xcm,∴BD=0.5xcm,∵BD=1cm,∴0.5x=1,解得:x=2,∴AC=6cm;如图2,设BC=xcm,则AB=2xcm,AC=xcm,∵点D为AC的中点,∴AD=CD=AC=0.5xcm,∴BD=1.5xcm,∵BD=1cm,∴1.5x=1,解得:x=,∴AC=cm,故答案为:6cm或cm.34.解:53°40′30″+75°57′28″=128°97′58″=129°37′58″,故答案为:129°37′58″.35.解:甲看乙在北偏东50度,那么乙看甲的方向为南偏西50°.故答案为:南偏西50°.36.解:∵∠AOB=35°,∠BOC=90°,∴∠AOC=∠AOB+∠BOC=35°+90°=125°.∵OD平分∠AOC,∴∠AOD=∠AOC=×125°=62.5°.∴∠BOD=∠AOD﹣∠AOB=62.5°﹣35°=27.5°.三.解答题(共4小题)37.解:所画图形如下:38.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.39.解:(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=AC=14,NC=BC=4,∴MN=MC﹣NC=14﹣4=10;(2)根据(1)得MN=(AC﹣BC)=AB=a;(3)根据(1)得MN=(AC﹣BC)=AB=a;(4)从(1)(2)(3)的结果中能得到线段NM始终等于线段AB的一半,与C的点的位置无关.40.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.。

初一上第九讲 《基本平面图形》易错题过关

初一上第九讲  《基本平面图形》易错题过关

初一上第九讲 《基本平面图形》易错题过关一、填空题。

1、甲看乙的方向是北偏西060,那么乙看甲的方向是___________________2、///00_____________________________24.22=///0///0_____________________________43023=3、平面内两两相交的4条直线,最少______个交点,最多_______个交点;平面内不重合的4条直线,可能有____________________个交点。

4、如果一个角的两边分别和另一个角的两边分别平行,那么这两个角的关系是_____________5、12点时,时针和分针是重合的,再过__________分钟,时针和分针再次重合6、如果两条直线相交所得的四个角相等,那么这两条直线_____________7、已知线段AB=4,BC=3,那么线段AC 的长度的取值范围是____________8、往返于甲乙两地的火车,中途停靠三个站(假设该车只有硬座,且各站距离不等),有_______种不同的票价,要准备__________种车票9、平面内有若干条直线,当下列情形时,可将平面最多分成几个部分:(1) 有一条直线时,最多分成__________部分(2) 有两条直线时,最多分成__________部分(3) 有三条直线时,最多分成__________部分(4) 有n 条直线时,最多分成__________部分10、(1)从同一点O 出发,引出n 条射线,构成小于平角的角___________个(2)直线上n 个点,以这n 个点为端点的线段共________________条(3)平面内n 个点,任意三个点都不在一条直线上,这n 个点可以构成____________条不同的直线二、选择题1、已知同一平面内的直线321,,l l l ,如果3221,l l l l ⊥⊥,那么1l 与3l 得位置关系是( )A 、平行B 、相交C 、垂直D 、以上全不对2、平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( )A 、点C 在线段AB 上B 、点C 在线段AB 的延长线上C 、点C 在直线AB 外D 、点C 可能在直线AB 上,也可能在直线AB 外3、两条直线所成的角中( )A 、必有一个锐角B 、必有一个钝角C 、必有一个不是钝角D 、必有两个直角4、下列说法正确的是( )A 、没有公共点的两条线段互相平行B 、在同一平面内,没有公共点的两条射线互相平行C 、互相平行的两条直线没有公共点D 、没有公共点的两条直线互相平行5、下列说法中,正确的是( )A 、有且只有一条直线垂直于已知直线B 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C 、互相垂直的两条线段一定垂直D 、直线l 外一点P 与直线l 上各点连接而成的所有线段中,最短线段的长是3cm ,则点P 到直线l 的距离是3cm6、下列语句中正确的是( )A 、两条直线不相交就平行B 、有公共端点的两条直线也是平行线C 、铁路的轨道线是不平行的D 、在同一平面内,两条直线没有公共点,那么这两条直线平行7、甲乙丙丁四个同学在判断时钟的时针和分针在某一时刻是否互相垂直时,有下列几种说法,完全正确的是( )A 、甲说3点和3点半B 、乙说6点1刻和6点3刻C 、丙说9点和12点1刻D 、丁说3点和4点1160分 8、小明从A 处出发沿北偏东60度方向行走至B 处,又沿北偏西20度方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A 、右转80度B 、左转80度C 、右转100度D 、左转100度9、下列说法正确的是( )A 、大于090的角是钝角B 、任何一个角都可以用一个大写字母表示C 、平角是两条边互为反向延长线的角D 、有公共顶点的两条边组成平角三、解答题1、某人晚上6点多外出时手表上时针和分针的夹角是110度,晚上7点前回家时表上时针和分针的夹角是1100,求此人外出多长时间?2、已知0120=∠AOB ,OC 时AOB ∠内的任意一条射线,OD 、OE 分别是BOC AOC ∠∠,的平分线,求DOE ∠的度数。

(易错题精选)初中数学几何图形初步经典测试题及答案解析

(易错题精选)初中数学几何图形初步经典测试题及答案解析
A.-2B.-3C.2D.1
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x、y的值,从而得到x+y的值.
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.
因为相对面上的两个数互为相反数,
所以
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
【答案】A
【解析】
【分析】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【详解】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.
故选A.
【点睛】
注意正方体的空间图形,从相对面入手,分析及解答问题.
18.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则 的值为()
【点睛】
本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
7.下列图形不是正方体展开图的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方体展开的11种形式对各选项分析判断即可
【详解】
A、B、C是正方体展开图,错误;
D折叠后,有2个正方形重合,不是展开图形,正确

平面图形的认识(一)易错题(Word版 含答案)

平面图形的认识(一)易错题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)解:AB∥CD.理由如下:如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)证明:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥G H;(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.2.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.3.如图1,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6cm,求DE的长;(3)试说明不论AC取何值(不超过16cm),DE的长不变;(4)知识迁移:如图2,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD、OE 分别平分∠AOC和∠BOC,试说明∠DOE=65°与射线OC的位置无关.【答案】(1)解:∵点C恰为AB的中点,∴AC=BC= AB=8cm,∵点D、E分别是AC和BC的中点,∴DC= AC=4cm,CE= BC=4cm,∴DE=8cm(2)解:∵AB=16cm,AC=6cm,∴BC=10cm,由(1)得,DC= AC=3cm,CE= CB=5cm,∴DE=8cm(3)解:∵点D、E分别是AC和BC的中点,∴DC= AC,CE= BC,∴DE= (AC+BC)= AB,∴不论AC取何值(不超过16cm),DE的长不变(4)解:∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC= ∠AOC,∠EOC= ∠BOC,∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= ∠AOB=65°,∴∠DOE=65°与射线OC的位置无关【解析】【分析】(1)由点C恰为AB的中点,得到AC=BC的值,再由点D、E分别是AC和BC的中点,求出DE的值;(2)由(1)得,DC= AC的值,CE= CB的值,得到DE的值;(3)由点D、E分别是AC和BC的中点,得到不论AC取何值(不超过16cm),DE 的长不变;(4)由OD、OE分别平分∠AOC和∠BOC,根据角平分线定义,得到∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=∠AOB,得到∠DOE=65°与射线OC的位置无关.4.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.5.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.(1)求证:;(2)如图2,平分交于点F,平分交于点G,求的度数;(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,∴∴∴∴∴(2)解:作,,设,,由(1)知:,,,∴,∴,同理:,∴(3)【解析】【解答】解:(3)结论:或,I.∠NCD在∠BCD内部时,过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=3y.∵a∥b,∴∴,,,∴,,∴,∴∴II. 在外部时,如图3(2):过I点作,过N点作,设∠IPN=∠BPN=x, =y,∴∠BCD=y.∵a∥b,∴IG∥a∥∴,,,∴,,∴,∴∴.故答案为:.【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,,从而可得 = + = ;(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出即可解答;(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.6.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。

基本平面图形易错题专练

基本平面图形易错题专练
基本平面图形 易错题专练
1.下列叙述正确的是( A ) A.线段 AB 可表示为线段 BA B.射线 CD 可表示为射线 DC C.直线最长,线段最短 D.射线是直线长度的一半
2.把一张多边形的纸片剪去其中一个角,剩下的部分是一个四
边形,则这张纸片原来不可能是( A )
A.六边形
B.五边形
C.四边形
因为 EA=3 cm,CA=6 cm, 所以 BE=3+6+2=11(cm). 当点 E 在点 A 的右侧时, 因为 AC=6 cm,EA=3 cm, 所以点 E 在点 C 的左侧. 所以 BE=AB-AE=AC+BC-AE=6+2-3=5(cm). 综上所述,BE 的长为 11 cm 或 5 cm.
②若∠BOC-∠BOD=15°,求∠BOC 的度数. 解:②因为 OD 平分∠AOC,
所以∠AOD=∠COD, 设∠BOD=x°,则∠AOD=∠COD=(90-x)°.
所以∠BOC=∠COD-∠DOB=(90-2x)°. 因为∠BOC-∠BOD=15°, 所以 90-2x-x=15,解得 x=25. 所以∠BOC=90°-2×25°=40°.
(2)求线段 AD 的长.
解:(2)因为点 B 为 CD 的中点,BD=2 cm, 所以 CD=2BD=4 cm. 所以 AD=AC+CD=10 cm.
(3)若点 E 在直线 AD 上,且 EA=3 cm,求线段 BE 的长.
解:(3)当点 E 在点 A 的左侧时, 则 BE=EA+CA+BC. 因为点 B 为 CD 的中点, 所以 BC=BD=2 cm.
8.已知∠AOB=90°,过点 O 作射线 OC,射线 OD 平分∠AOC. (1)如图 1,射线 OC 在∠AOB 的外部(90°<∠AOC<180°). ①若∠BOC=30°,求∠BOD 的度数.

(易错题精选)初中数学几何图形初步易错题汇编附答案解析(1)

(易错题精选)初中数学几何图形初步易错题汇编附答案解析(1)

(易错题精选)初中数学几何图形初步易错题汇编附答案解析(1)一、选择题1.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A.斗B.新C.时D.代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.6.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.7.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.8.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()A.28°B.32°C.34°D.36°【答案】B【解析】【分析】根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.【详解】解:如图,设CD和BF交于点O,由于矩形折叠,∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,∵∠AEC=32°,∴∠ACE=90°-32°=58°,∴∠BCO=90°-∠ACE=32°,∴∠BOC=90°-32°=58°=∠DOF,∴∠BFD=90°-58°=32°.故选B.【点睛】本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【答案】C【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.10.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又∵两点之间线段最短∴AC<AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.∠=∠的图形的个数是()12.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.13.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.14.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..15.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.16.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .【答案】B【解析】【分析】 根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B .【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.17.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【分析】根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A、根据作图方法可得AD是∠BAC的平分线,正确;B、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.20.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.。

初一上数学图形易错题

初一上数学图形易错题

初一(Yi)上数学图形易错题一个正方体,六个面上分别写着六个连续整数,且每两个相对面上的两个数的和都相等(Deng),如图所示,能看到的所写的数为16,19,20,问(Wen)这6个整数的和为多(Duo)少?解(Jie)答:从(Cong)16到(Dao)20共(Gong)5个数,还差一个数,它是15或21.因为这6个数是连续的整数且相对面上的两个数的和都相等。

如果缺少的那个数是15,那么最小的15应该和最大的20相对,16和19相对,这和图示不符,所以这6个数是16、17、18、19、20、21.16+17+18+19+20+21=111.故这6个整数的和为111.题目:如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是___.平方差公式的几何背景分析:根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.解答:拼成的长方形的面积=(a+3)2−32,=(a+3+3)(a+3−3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.如图的数阵是由全体奇数排成:图中平行四边形框内的九个数之和与(Yu)中间的数有什么关系?在数阵图中任意作一类似(1)中的平行四边形,这九个数之和还有这种规律吗?请说(Shuo)出理由。

这九个数之和能等于(Yu)2016吗(Ma)?2015,2025呢?若能,请写出这九个数(Shu)中最小的一个;若不能,请说出理由。

考(Kao)点:一元一次(Ci)方程的应用分(Fen)析:(1)求出图中平行四边形框内的九个数的和,即可发现其与中间的数的关系;(2)设数阵图中中间的数为x,用含x的代数式分别表示其余的8个数,求出九个数的和,即可发现这九个数之和还有这种规律;(3)根据这九个数之和分别等于2016,2015,2025列出方程,解方程求出x的值,根据实际意义确定即可.解答:1. 【答案】图中平行四边形框内的九个数之和是中间的数的9倍【解析】图中平行四边形框内的九个数的和为:,,所以图中平行四边形框内的九个数之和是中间的数的9倍。

猜题04 基本平面图形(易错必刷40题12种题型专项训练)原卷版

猜题04 基本平面图形(易错必刷40题12种题型专项训练)原卷版

第4章 基本平面图形(易错必刷40题12种题型专项训练)➢直线、射线、线段➢直线的性质:两点确定一条直线 ➢线段的性质:两点之间线段最短 ➢两点间的距离 ➢比较线段的长短 ➢角的概念➢钟面角 ➢方向角 ➢度分秒的换算 ➢角平分线的定义 ➢角的计算 ➢多边形的对角线一.直线、射线、线段(共3小题) 1.如图,下列说法正确的是( )A .点O 在射线BA 上B .点B 是直线AB 的端点C .直线AO 比直线BO 长D .经过A ,B 两点的直线有且只有一条2.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票( ) A .20种B .15种C .10种D .5种3.如图,已知线段AB ,点C 在AB 上,点P 在AB 外. (1)根据要求画出图形:画直线P A ,画射线PB ,连接PC ; (2)写出图中的所有线段.二.直线的性质:两点确定一条直线(共1小题)4.小明想在墙上钉一根细木条,要使细木条固定,至少需钉的钉子个数是( )A.1个B.2个C.3个D.4个三.线段的性质:两点之间线段最短(共1小题)5.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做蕴含的数学道理是.四.两点间的距离(共7小题)6.线段AB=5厘米,BC=4厘米,那么A,C两点的距离是()A.1厘米B.9厘米C.1厘米或9厘米D.无法确定7.已知点A、B、C在同一条直线上,若AB=10cm,AC=20cm,则BC的长是()A.10cm B.30cmC.20cm D.10cm或30cm8.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为cm.9.如图,点D是线段AB的中点,点E是AC的中点,若AB=6cm,AC=14cm,则线段DE的长度是.10.如图线段AB=6,如果在直线AB上取一点C,使AB:BC=3:2,再分别取线段AB、BC的中点M、N,那么MN=.11.已知点B在线段AC上,点D在线段AB上,(1)如图1,若AB=6cm,BC=4cm,D为线段AC的中点,求线段DB的长度:(2)如图2,若BD=AB=CD,E为线段AB的中点,EC=12cm,求线段AC的长度.12.如图,已知点O在线段AB上,点C、D分别是AO、BO的中点(1)AO=CO;BO=DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.五.比较线段的长短(共3小题)13.已知直线AB上有两点M,N,且MN=8cm,再找一点P,使MP+PN=10cm,则P点的位置()A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在14.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两个树坑的位置,就能使同一行的树坑在一条直线上15.(1)特例感知:如图①,已知线段MN=30cm,AB=2cm,线段AB在线段MN上运动(点A不超过点M,点B不超过点N),点C和点D分别是AM,BN的中点.①若AM=16cm,则CD=cm;②线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,请求出CD的长度,如果变化,请说明理由.(2)知识迁移:我们发现角的很多规律和线段一样,如图②,已知∠AOB在∠MON内部转动,射线OC 和射线OD分别平分∠AOM和∠BON.①若∠MON=150°,∠AOB=30°,求∠COD=度.②请你猜想∠AOB,∠COD和∠MON三个角有怎样的数量关系.请说明理由.(3)类比探究:如图③,∠AOB在∠MON内部转动,若∠MON=150°,∠AOB=30°,==k,用含有k的式子表示∠COD的度数.(直接写出计算结果)六.角的概念(共2小题)16.如图,能用∠1、∠ABC、∠B三种方法表示同一个角的是()A.B.C.D.17.如图,在已知一个角内部画射线,画1条射线,图中共有3个角;画2条射线,图中共有6个角;画3条射线,图中共有10个角;求画9条射线得的角的个数是()A.10个B.18个C.45个D.55个七.钟面角(共1小题)18.当时针指向上午10:10时,时针与分针夹角的度数为()A.105°B.115°C.120°D.125°八.方向角(共4小题)19.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC 的度数是()A.85°B.135°C.105°D.150°20.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.西北方向B.北偏西30°C.北偏西60°D.西偏北60°21.如图,货轮A在航行过程中,发现航标船B在其东偏南54°36'的方向上,那么货轮A相对于航标船B 的方向是()A.北偏西35°24'B.北偏西54°36'C.东偏南54°36'D.东偏南35°2422.如图,C岛在A岛的北偏东54°的方向上,C岛在B岛的北偏西36°的方向上,则从C岛看A,B两岛的视角∠C的度数是()A.72°B.82°C.90°D.100°九.度分秒的换算(共6小题)23.把40°12′36″化为用度表示,下列正确的是()A.40.11°B.40.21°C.40.16°D.40.26°24.把7.26°用度、分、秒表示正确的是()A.7°2′12″B.7°2′6″C.7°15′36″D.7°15′6″25.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是()A.27°40′B.62°20′C.57°40′D.58°2026.下列运算正确的是()A.34.5°=34°5′B.90°﹣23°45′=66°15′C.12°34′×2=25°18′D.24°24′=24.04°27.若∠P=25°12',∠Q=25.12°,∠R=25.2°,则()A.∠P=∠Q B.∠Q=∠R C.∠P=∠R D.∠P=∠Q=∠R28.51°37′﹣32°5′31″=.十.角平分线的定义(共2小题)29.下列说法:①若干个有理数相乘,如果负因数的个数是奇数,则积一定是负数.②两点间的距离就是两点间的线段;③若AP=BP,则点P是线段AB的中点;④若∠AOC=∠AOB,则射线OC是∠AOB的平分线,其中错误的个数有()个.A.0B.1C.2D.430.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为度.十一.角的计算(共8小题)31.如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°32.如图所示,∠DCE=90°,CF、CH、CG分别平分∠ACD,∠BCD,∠BCE,下列结论:①∠DCF+∠BCH=90°,②∠FCG=135°,③∠ECF+∠GCH=180°,④∠DCF﹣∠ECG=45°.其中正确的个数有()A.1个B.2个C.3个D.4个33.如图,∠BOC在∠AOD的内部,且∠BOC=20°,若∠AOD的度数是一个正整数,则图中所有角的度数之和可能是()A.330°B.340°C.350°D.360°34.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,则∠BOE=度.35.如图1,已知,点O为直线AB上一点;OC在直线AB是上方,∠AOC=60°.一直角三角板的直角顶点放在点C处,三角板一边OM在射线OB上,另一边ON在直线AB的下方.(1)在图1的时刻,∠BOC的度数为°,∠CON的度数为°;(2)如图2,当三角板绕点O旋转至一边OM恰好平分∠BOC时,∠BON的度数为°;(3)如图3,当三角板绕点O旋转至一边ON在∠AOC的内部时,∠AOM﹣∠CON的度数为°;(4)在三角板绕点O旋转一周的过程中,∠COM与∠AON的关系为.36.如图,已知A,O,E三点在同一条直线上.(1)若OB平分∠AOC,OD平分∠COE,试求∠BOD的度数;(2)若OB平分∠AOC,∠AOB+∠DOE=90°,试判断∠COD与∠DOE有怎样的数量关系,并说明理由.37.如图,点O在直线AB上,OD平分∠AOC,∠BOE=2∠EOC.(1)若∠AOD=24°,求∠DOC的度数;(2)若∠AOD:∠EOC=3:4,求∠AOD的度数.38.如图1,将一副三角板的直角顶点C叠放在一起.(1)若∠DCE=35°,则∠ACB=;若∠ACB=150°,则∠DCE=.(2)请你猜想∠ACB与∠DCE有何关系,并说明理由;(3)如图2,若将两个同样的三角尺60°锐角的顶点A重合在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.十二.多边形的对角线(共2小题)39.从多边形的一个顶点出发可引出7条对角线,则它是()A.七边形B.八边形C.九边形D.十边形40.若过某多边形一个顶点的所有对角线将这个多边形分成3个三角形,则这个多边形是边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学基本的平面图形易错题训练一.选择题(共14小题)1.(2016春•威海期中)学校、书店、邮局在平面图上的标点分别是A、B、C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25° B.65° C.115° D.155°2.(2016春•龙口市期中)下列计算错误的是()A.0.25°=900″ B.1.5°=90′C.1000″=()° D.125.45°=1254.5′3.(2015•石家庄校级模拟)把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.三角形两边之和大于第三边4.(2015•临沂模拟)设A1,A2,A3,A4是数轴上的四个不同点,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且+=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则()A.点C可能是线段AB的中点B.点D一定不是线段AB的中点C.点C,D可能同时在线段AB上D.点C,D可能同时在线段AB的延长线上5.(2015秋•蓬江区期末)下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个6.(2015秋•淮北期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm7.(2015秋•丹东期末)如图所示,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,则下列结论错误的是()A.AB=AC B.EC=2BD C.B是AE的中点D.DE=AB8.(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个9.(2015春•郑州校级月考)在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A.9:48﹣9:49 B.9:49﹣9:50 C.9:50﹣9:51 D.9:51﹣9:5210.(2013秋•五莲县校级期末)已知线段AB=8厘米,直线AB上有一点C,且BC=6厘米,M是线段AC的中点,则线段AM的长为()A.2cm B.1cm或7cm C.2cm或14cm D.7cm11.(2012秋•河北区期末)我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种12.(2008秋•江山市期末)若∠AOB=60°,∠AOC=30°,则∠BOC为()A.30° B.90° C.30°或90° D.不确定13.(2008秋•临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.914.如图,∠AOD=150°,∠BOC=30°,∠BOC绕点O逆时针在∠AOD的内部旋转,其中OM平分∠AOC,ON平分∠BOD,在∠BOC从OB与OA重合时开始到OC与OD重合为止,以每秒2°的速度旋转过程中,下列结论其中正确的是()(1)射线OM的旋转速度为每秒2°;(2)当∠AON=90°时间为15秒;(3)∠MON的大小为60°.A.(1)(2)(3)B.(2)(3)C.(1)(2)D.(3)二.填空题(共3小题)15.(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是.16.(2014秋•合肥期末)上午9:40时,时针与分针夹角为度.17.计算:48°39′+67°41′=;90°﹣78°19′40″=;21°17′×5=;176°52′÷3=(精确到分)三.解答题(共6小题)18.(2015秋•文安县期末)如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.19.(2015春•淄博校级期中)如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.20.(2015秋•陕西校级月考)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,求∠BOD的度数.解:∵OB是∠AOC的角平分线∴∠AOB==40°∵OD是∠COE的角平分线∴∠COE==∵∠COE=60°∴∴∠BOD=∠COD+=+=.21.(2014秋•罗平县校级期末)如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;(2)若∠BOD=60°,求∠COF的度数.22.(2013秋•东西湖区校级期末)如图,O是直线AC上一点,OD平分∠AOB,∠BOE=∠COD,∠COE﹣∠BOD=40°,求∠DOE的度数.23.(2014春•芝罘区期中)如图,∠AOC:∠BOC=2:1,OD平分∠AOB,∠COD=18°,求∠AOB的度数.初一数学基本的平面图形易错题训练参考答案与试题解析一.选择题(共14小题)1.(2016春•威海期中)学校、书店、邮局在平面图上的标点分别是A、B、C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25° B.65° C.115° D.155°【分析】根据方位角的概念,正确画出方位图表示出方位角,即可求解.2.(2016春•龙口市期中)下列计算错误的是()A.0.25°=900″ B.1.5°=90′C.1000″=()° D.125.45°=1254.5′【分析】根据1°=60′,1′=60″,进行转换,即可解答.3.(2015•石家庄校级模拟)把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.三角形两边之和大于第三边【分析】根据数学常识,连接两点的所有线中,线段最短,即两点之间线段最短解答.4.(2015•临沂模拟)设A1,A2,A3,A4是数轴上的四个不同点,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且+=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则()A.点C可能是线段AB的中点B.点D一定不是线段AB的中点C.点C,D可能同时在线段AB上D.点C,D可能同时在线段AB的延长线上【分析】由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件,根据题意考查方程的解的情况,用排除法选出正确的答案即可.5.(2015秋•蓬江区期末)下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个B.2个C.3个D.4个【分析】利用确定直线的条件、线段的性质、余角的性质及线段中点的定义分别判断后即可确定正确的选项.6.(2015秋•淮北期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.7.(2015秋•丹东期末)如图所示,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,则下列结论错误的是()A.AB=AC B.EC=2BD C.B是AE的中点D.DE=AB【分析】根据题中的已知条件,结合图形,对结论进行一一论证,从而选出正确答案8.(2015秋•太康县期末)如果点B在线段AC上,那么下列表达式中:①AB=AC,②AB=BC,③AC=2AB,④AB+BC=AC,能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个【分析】根据题意,画出图形,观察图形,一一分析选项,排除错误答案.9.(2015春•郑州校级月考)在上午9时到10时之间,时钟的分针与时针会重合一次,这次的重合时间是()A.9:48﹣9:49 B.9:49﹣9:50 C.9:50﹣9:51 D.9:51﹣9:52【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,时钟的时针每小时转过的角是一份,即30°;分针每分钟转过的角是分,即×30°=6°;九点钟,时针和分针呈270°,时针1分钟走0.5°,分针一分钟走6°设九点x分,重合,则有0.5x+270=6x,即可解答.10.(2013秋•五莲县校级期末)已知线段AB=8厘米,直线AB上有一点C,且BC=6厘米,M是线段AC的中点,则线段AM的长为()A.2cm B.1cm或7cm C.2cm或14cm D.7cm【分析】分类点C在AB上,点C不在AB上;根据线段AB上,AB=8cm,BC=6cm,可得AC,根据M是AC中点,可得AM.11.(2012秋•河北区期末)我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种【分析】相当于一条线段上有4个点,又火车票是要说往返的.12.(2008秋•江山市期末)若∠AOB=60°,∠AOC=30°,则∠BOC为()A.30° B.90° C.30°或90° D.不确定【分析】本题是角的计算的多解问题,求解时要注意分情况讨论.13.(2008秋•临清市期中)A站与B站之间还有3个车站,那么往返于A站与B站之间的车辆,应安排多少种车票?()A.4 B.20 C.10 D.9【分析】根据A站到B站之间还有3个车站,首先弄清楚每两个站之间的数量,再根据往返两种车票进行求解.14.如图,∠AOD=150°,∠BOC=30°,∠BOC绕点O逆时针在∠AOD的内部旋转,其中OM平分∠AOC,ON平分∠BOD,在∠BOC从OB与OA重合时开始到OC与OD重合为止,以每秒2°的速度旋转过程中,下列结论其中正确的是()(1)射线OM的旋转速度为每秒2°;(2)当∠AON=90°时间为15秒;(3)∠MON的大小为60°.A.(1)(2)(3)B.(2)(3)C.(1)(2)D.(3)【分析】(1)根据角平分线的意义来分析射线OM的速度;(2)先假定时间为15秒,然后来分析A、C的位置的变化情况;(3)根据角平分线的性质来求即可.二.填空题(共3小题)15.(2014•达州)如图,在△ABC中,AB=BC=2,∠ABC=90°,则图中阴影部分的面积是π﹣2.【分析】通过图形知S阴影部分面积=S半圆AB的面积+S半圆BC的面积﹣S△ABC的面积,所以由圆的面积公式和三角形的面积公式可以求得阴影部分的面积.16.(2014秋•合肥期末)上午9:40时,时针与分针夹角为50度.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出9时40分时针和分针之间相差的大格数,用大格数乘30°即可.17.计算:48°39′+67°41′=116°20′;90°﹣78°19′40″=11°40′20″;21°17′×5=106°25′;176°52′÷3=58°57′(精确到分)【分析】根据度、分、秒是60进制,度与度相加,分与分相加,分大于60,向度进1;向90°借1°化为60分,再借1′化为60″,然后度与度相减,分与分相减,秒与秒相减,进行计算即可得解;同一单位相乘,分大于60,向度进1;先用度除,余数乘以60化为分,加上原来的分,继续除以3计算即可得解.三.解答题(共6小题)18.(2015秋•文安县期末)如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.【分析】根据线段AB=8cm,E为线段AB的中点,得到BE=AB=4cm,所以BC=BE﹣EC=4﹣3=1cm,从而求得AC=AB﹣BC=8﹣1=7cm,又点D为线段AC的中点,所以CD==3.5cm,根据DE=CD﹣EC即可解答.19.(2015春•淄博校级期中)如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【分析】根据AC=12cm,CB=AC,得到CB=6cm,求得AB=18cm,根据D、E分别为AC、AB的中点,分别求得AE,AD的长,利用线段的差,即可解答.20.(2015秋•陕西校级月考)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,求∠BOD的度数.解:∵OB是∠AOC的角平分线∴∠AOB=∠BOC=40°∵OD是∠COE的角平分线∴∠COE=∠DOE=∠COE,∵∠COE=60°∴∠COD=30°,∴∠BOD=∠COD+∠BOC=30°+40°=70°.【分析】根据OB是∠AOC的角平分线,∠AOB=40°,可以求出∠BOC=40°,OD是∠COE 的角平分线,∠COE=60°,得出∠COD=30°,两角相加得∠BOD.21.(2014秋•罗平县校级期末)如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;(2)若∠BOD=60°,求∠COF的度数.【分析】(1)因为射线OC平分∠AOB,所以∠AOC=∠BOC=∠AOB=40°,根据∠AOD=∠AOC﹣∠COD=40°﹣20°=20°,∠COD=20°,所以∠AOD=∠COD,所以OD为∠AOC的角平分线;(2)先根据∠BOD=60°,∠COD=20°,得到∠BOC=∠BOD﹣∠COD=60°﹣20°=40°,因为射线OC平分∠AOB,所以∠AOB=2∠BOC=80°,所以∠BOF=180°﹣∠AOB=180°﹣80°=100°,所以∠COF=∠BOF+∠BOC=100°+40°=140°.22.(2013秋•东西湖区校级期末)如图,O是直线AC上一点,OD平分∠AOB,∠BOE=∠COD,∠COE﹣∠BOD=40°,求∠DOE的度数.【分析】根据∠BOE=∠COD可得:∠BOE=∠BOD+∠COE,再利用∠COE﹣∠BOD=40°与平角等于180°列等式计算.23.(2014春•芝罘区期中)如图,∠AOC:∠BOC=2:1,OD平分∠AOB,∠COD=18°,求∠AOB的度数.【分析】根据∠AOC:∠BOC=2:1,OD平分∠AOB,得到∠AOC=,∠AOD=,再根据∠COD=∠AOC﹣∠AOD,即可解答.。

相关文档
最新文档