自由基溶液聚合原理及生产工艺
第四章:自由基聚合方法
→ 2SO4·
B. 水溶性氧化 —还原引发剂
例 过硫酸盐 - 亚硫酸盐
_ 2 S2O8
+ SO3
_ 2
→
_ 2 SO4
+
SO4· +
_ ·SO3
过氧化氢 - 亚铁盐 H2O2 +Fe2+ → OH + HO· + Fe3+
_
(3)乳化剂
乳化剂在乳液聚合中的作用:
a. 降低体系的表面张力使单体形成细小液滴; b. 形成胶束,增溶单体
产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维纶的原料
丙烯腈 氧-还体系 醋酸乙烯酯 丙烯酸酯类 丁二烯 AIBN BPO 配位催化剂 BuLi BF3
涂料、粘合剂
顺丁橡胶 低顺式聚丁二烯
异丁烯
异丁烷
阳离子聚合
粘合剂、密封剂
聚醋酸乙烯酯(PVAc)和聚乙烯醇(PVA)
醋酸乙烯酯,甲醇(乙醇)溶液,BPO;65‐70 ℃,溶剂回 流带走聚合热;利用向溶剂的链转移控制分子 量,单体浓度
9
体积收缩:100%聚合时的体积收缩 1 1 ΔVmax w 0 ( ) dm dp
60oC: dm=0.89g/mL; dp=1.18g/ml, ∆Vmax =27mL,V0 =w/dm =112mL
体积收缩百分数= 27/112 =24%
20oC: dm=0.94g/mL; dp=1.208g/mL,∆Vmax =25.7mL 体积收缩百分数=25.7/102=25.2%
不足 反应热难导出、易局部过热、自动加速严重。 措施 降低反应温度,分段聚合,强化传热
8
3、应用实例 有机玻璃:PMMA
自由基聚合
2.自由基聚合2.1引言连锁聚合根据聚合反应机理分类,聚合反应可以分为逐步聚合连锁聚合反应需要活性中心,单体在活性中心上反应形成大分子。
活性中心可以是自由基,也可以是阴、阳离子。
活性中心的性质与化合物共价键断裂的方式有关。
共价键有两种断裂方式:均裂和异裂均裂:共价键上一对电子分属于两个基团,这种带独电子的基团呈电中性,称作自由基或游离基。
异裂:共价键上一对电子全部归属于某一基团,形成阴离子或负离子,则另一缺电子基团称作阳离子或正离子。
自由基、阴离子、阳离子都有可能成为活性中心,可打开烯类单体或羰基单体中的π键,或使环状单体的σ键断裂开环,使之链引发和链增长,分别成为自由基聚合,阴离子聚合,阳离子聚合,和配位聚合,实际上配位聚合也属于离子聚合的范畴。
Eg: 自由基聚合:2.2连锁聚合的单体单体能否聚合,须从热力学和动力学两方面考虑,热力学上能聚合的单体还要求有适当的引发剂、温度等动力学条件,才能保证一定的聚合速度。
从热力学考虑可以进行连锁聚合的单体有:2.2.1适合连锁聚合的单体大致可以分为三类:1.含有碳碳双键的烯类单体:包括单烯类、共轭二烯类,甚至炔烃。
其中:单烯类:乙烯基单体中的碳碳双键中π键可以均裂也可以异裂,因此可以进行自由基聚合或离子聚合。
具体选择哪种聚合方式,由取代基的性质决定。
共轭二烯类:如苯乙烯,丁二烯,异戊二烯等单体处于共轭体系,在外界的影响下,双键的电子云易流动,诱导极化。
因此单体既可以进行自由基聚合,也可以进行离子聚合。
2.羰基化合物如HCHO,CH3CHO,甚至酮类。
Eg: HCHO 羰基的双键有极性,使氧原子带有部分负电荷,而碳原子则带有部分正电荷。
3.杂环化合物羰基化合物和杂环化合物的极性较强,一般不能自由基聚合,只适合于离子聚合。
因此实际上只有碳碳双键的烯类单体可以进行自由基聚合,但也不是所有的都行,其取代基的性质有很大影响。
2.2.2取代基对于乙烯类单体聚合能力的影响。
高聚物合成工艺-第七章 溶液聚合
介质pH值
pH<4,NaSCN易分解,生成的硫化物有阻聚和链转 移作用,pH>7,CN水解,生成NH3,又会与聚 丙烯腈作用生成共轭双键并形成脒基而显黄色,故 控制pH值在4.8~5.2。
引发剂和分子量调节剂
常用偶氮二异丁腈,分子量调节剂异丙醇,用量为 0.2%~0.8%和0~3%。
浅色剂二氧化硫脲
7.5.2 聚丙烯腈结构、性能和应用
• 白色粉末,密度1.14g/cm3,大分子链中丙烯腈以头 -尾相连。由于主链强极性侧基-CN的相互作用, 分子呈无规结构,不易结晶,一般认为有三种不同 的聚集区域,非晶的低序区、非晶的中序区和准晶 的高序区。
• 聚丙烯腈具有独特物理和化学结构,呈某些特性。 热弹性
聚合时间与温度
聚合时间的长短会影响聚合转化率,聚合物 的分子量及其分布。聚合温度的影响也极大。 温度低,引发速度慢,温度高,则产物的颜色 太深。同时温度的高低还会影响转化率和分子 量。通常聚合时间为1~2小时,聚合温度控 制在35~55℃。
添加剂及杂质
加入少量表面活性剂,可提高聚合反应的初速度。 “NaClO3-Na2SO3”体系聚合时,加入Fe2+可 加速聚合。氧等杂质起到阻聚作用。
= Xn0
+ CS [M]
7.2.3 溶剂对聚合物分子结构、形态的影响
• 在无溶剂存在的自由基聚合反应中,随单体转化 率增高和聚合物浓度的增大,自由基向已生成的 大分子链进行链转移的几率增多,因此产生支链 结构。在溶剂存在的反应体系中,可降低向大分 子进行链转移的机会,从而减少大分子的支链, 降低支化度。
二氧化硫脲的加入量为0.5~1.2%,可改善聚合物色 泽。
7.5.1.3 聚丙烯腈水相沉淀溶液聚合工艺
• 水相沉淀的特点及工艺流程
自由基聚合生产工艺
分子量调节剂
新鲜乙烯
引发剂
25MPa
0.1MPa
25MPa
一次 压缩机
高压分离器
低压分离器
平均聚合度随温度升高而降低
严格控制引发剂用量
选择适当的分子量调节剂
严格控制反应温度 和其它反应条件
产品平均 分子量
合成聚酯的路线
某些物质同自由基作用,可能形成非自由基物质,或形成活性低、不足以再引发的自由基。根据对反应的抑制程度,可将这类物质粗略分为阻聚剂和缓聚剂。
使部分自由基终止,使聚合减慢。
有机玻璃生产工艺
单体
配料
制浆
模板 清洗
裁切 包装
脱模
聚合
封合
排气
灌浆
入库
制模
新模板
第三步聚合: 把封合的模框吊入热水箱(或烘房),根据板厚分别控制温度在25~52℃,经过10~160小时,到取样检查料源硬化为止,用接蒸汽加热水箱内水至沸腾,保持二小时,通水慢慢冷却到40℃,吊出模具,取出中间有机玻璃板材,去边,裁切后包装。
发泡剂
(a) 过氧化氢-亚铁盐氧化-还原体系
Fe+2 + H2O2 Fe+3 + OH- + ·OH
H2O2 H+ + HO2-
Fe+3 + HO2 - Fe+2 + H-O-O·
聚合方法的选择
原始颗粒粒径只有1微米左右,适于生产聚乙烯糊。
例如:聚氯乙烯树脂的生产工艺
Hale Waihona Puke 溶液聚合方法乳液聚合方法悬浮聚合方法
本体聚合方法
2.自由基聚合机理
烯类单体的加聚基本属于连锁聚合。在适当条件下价键有均裂和异裂两种方式。
实验二 溶液聚合——聚丙烯酰胺的制备
实验二溶液聚合——聚丙烯酰胺的制备—、目的1. 学习溶液聚合的原理和特点;2. 掌握聚丙烯酰胺水溶液聚合的制备方法。
二、原理将单体溶解在溶剂中进行聚合的方法称为溶液聚合。
以生成的聚合物能溶于溶剂者叫做均相溶液聚合,不溶并析出者叫异相溶液聚合(亦为沉淀聚合的一种)。
例如,丙烯酰胺的水溶液聚合是均相的,丙烯腈的水溶液聚合是异相的。
在溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物是处于比较伸展状态,包裹程度浅,链段扩散容易,只有在高转化率时,才出现自动加速现象。
若单体粘度不高,则有可能消除自动加速效应,使反应遵循正常的自由基聚合动力学规律。
因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。
溶液聚合的优点是:有溶剂为传热介质,聚合温度容易控制;反应后物料易输送处理,低分子量物质易除去;而在制造涂料、粘合剂及纺丝浆的情况下,聚合后的溶剂不需要除去就能直接使用。
溶液聚合的缺点是由于单体被溶剂稀释,浓度较小,聚合速度慢;溶剂占用反应器容积,生产效率低,增加回收、纯化的工序,使生产成本升高,聚合物平均分子量较低。
与本体聚合相比,溶液聚合体系具有粘度低、混合及传热比较容易,不易产生局部过热,温度容易控制等优点,但由于大多数单体及聚合物不易溶于水,用有机溶剂费用高,回收困难等原因,使得溶液聚合在工业上很少应用,只有在直接使用聚合物的情况,如涂料、胶粘剂、浸渍剂、和合成纤维纺丝液等采用溶液聚合的方法。
丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合,其优点是:价廉、无毒、产物可直接使用。
聚丙烯酰胺是一种优良的絮凝剂,水溶性好,被广泛应用于污水处理,另外也常用于石油开采、选矿、化学工业及食品工业的添加剂等方面。
三、仪器和试剂四口瓶、球型冷凝管、温度计、搅拌器、恒温水浴、丙烯酰胺、过硫酸铵、甲醇四、实验步骤1. 组装仪器:将四口瓶置于恒温水浴上,并装上温度计、搅拌器和冷凝管。
2. 投料:在四口瓶中加入5 g丙烯酰胺和90 mL蒸馏水,搅拌,升温至30℃使单体溶解后,用移液管加入2.5 mL 1%的(NH4)2S2O8溶液。
第四章__自由基悬浮聚合原理及生产工艺
13
2.聚合温度 当聚合配方确定后,聚合温度是反应过程中最主要的参 量。聚合温度不仅是影响聚合速率Rp的主要因素,也是 影响聚合物相对分子质量(或动力学链长Ʋ)的主要因素.
引发剂分解速率
与温度有关
引发剂的引发效率
高聚物合成工艺
14
3.聚合时间 连锁聚合的特点之一是生成一个聚合物大分子的时间 很短,只需要0.01秒~几秒的时间,也就是瞬间完成的。 但是要把所有的单体都转变为大分子则需要几小时,甚 至长达十几小时。这是因为温度、压力、引发剂的用量 和引发剂的性质以及单体的纯度都对聚合时间产生影响, 所以聚合时间不是一个孤立的因素。
高聚物合成工艺
17
(3) 粘釜壁 进行悬浮聚合时,被分散的液滴逐渐变成黏性物质, 搅拌时被浆叶甩到聚合釜壁上而结垢。 结垢后使聚合釜传热效果变差,而且,当树脂中混有 这种粘釜物后加工时不易塑化。 粘釜的原因很多,如搅拌器的型式与转速、釜型与釜 壁材料、釜壁的表面粗糙度、水油比、悬浮剂的种类及 用量、聚合温度及转化率和体系的pH值等。 (4)清釜壁 目前,用高压水冲刷釜壁除去粘釜物。高压水的压力在 15MPa~39MPa,此法不损伤釜壁,劳动强度小,效率 高,减少了单体对空气的污染,维护了工人的健康。另 外,还可以用涂布法减轻粘釜,即在釜壁涂上某些涂层。
高聚物合成工艺
8
采用明胶做悬浮剂的缺点: 用量多容易沉积在聚合物粒子表面,形成一层难于洗去 的保护膜,影响产品的色泽而且使粒子表面坚硬,产品 吸收增塑剂的能力变差,且影响产品的耐热性。另外, 由于明胶是一种天然高聚物,杂质较多,在一定温度下 易受细菌的作用而使聚合物分解变质。 (2)纤维素醚类 作为悬浮剂的纤维素醚类有甲基纤维素(MC)、羟乙基 纤维素(HEC)、羟丙基纤维素(HPC)、乙基羟乙基纤维 素(EHEC)等。 纤维素作悬浮剂的优点:可以使聚合体系稳定,防止 聚合物粒子之间粘结,减轻粘釜程度,提高产品质量, 得到的粒子小而均匀,粒子结构疏松,吸收增塑剂的能 力强。
自由基溶液聚合原理及生产工艺
为了降低生产成本和提高生产效率,研究者们不断对聚合工艺进行优化和改进。这些优化和改进包括 改进反应条件、提高反应转化率、降低能耗和减少废弃物排放等。这些措施能够有效地降低生产成本 和提高生产效率,同时也有助于保护环境。
高性能聚合物材料的研发
总结词
高性能聚合物材料的研发是自由基溶液聚合技术的重要应用方向,它们在航空航天、电子信息、生物医疗等领域 具有广泛的应用前景。
加工性能
由于具有良好的溶解性和流动性,自 由基溶液聚合的聚合物适合于采用注 塑、挤出、吹塑等加工工艺,便于生 产各种形状和尺寸的制品。
04 自由基溶液聚合技术发展 与展望
新催化剂与引发剂的开发
总结词
新催化剂与引发剂的开发是自由基溶液聚合技术发展的关键,它们能够提高聚合 效率和聚合物性能。
详细描述
详细描述
随着科技的不断进步,高性能聚合物材料的研发越来越受到关注。这些高性能聚合物材料具有优异的力学性能、 电性能、热性能和化学性能等,在航空航天、电子信息、生物医疗等领域具有广泛的应用前景。通过自由基溶液 聚合技术的不断发展,相信高性能聚合物材料的研发将取得更多的突破和进展。
05 自由基溶液聚合生产安全 与环保
自由基溶液聚合原理及生产工艺
contents
目录
• 自由基溶液聚合原理 • 自由基溶液聚合生产工艺 • 自由基溶液聚合产品性能与应用 • 自由基溶液聚合技术发展与展望 • 自由基溶液聚合生产安全与环保
01 自由基溶液聚合原理
自由基聚合定义
自由基聚合是一种常见的聚合反应类型,它通过引发剂引发 单体分子形成自由基,然后这些自由基与单体分子发生连锁 聚合反应,生成高分子聚合物。
后处理工艺的选择和操作对聚合物质 量和产率具有重要影响,需根据具体 情况进行优化和控制。
聚合物合成工艺-第3章
引发剂的分解速率,应与反应时间(停留时间)匹配
根据引发剂分解速率常数kd
在相同介质和温度下,不同引发剂的kd不同,kd 大者,分解速率快,活性高。
根据引发剂分解活化能Ed
Ed大者,分解的温度范围窄 如要求引发剂在某一温度范围内集中分解,则选
用Ed大者 反之,可选用Ed小者。
化率,是LDPE合成工艺研究的重点。
工艺概况
LDPE的合成工艺均由ICI公司的技术衍生而来,除反应 器、配方、工艺控制有所不同外,流程均大致相同。
生产流程示意图
兰化集团引进Basell公司20万t/aLDPE 装置工艺流程
流程简述
乙烯与分子量调节剂混合后,经一次压缩(25~30MPa) 后与循环乙烯混合,进入二级压缩机,出口压力110~ 400MPa(不同工艺,要求的压力不同)。
变宽 可通过控制反应过程中[S]/[M]值,控制分子量分布 比较常用的方法是分批次补加链转移剂。
链转移剂的选择
一般根据50%转化率-U1/2进行选择。 U1/2-链转移剂消耗50%时单体的转化率。
U1/2=100(1-0.51/Cs) 一般情况下,CS提高,U1/2下降。 根据反应的单体转化率要求,选择合适的链转移剂。 链转移剂的U1/2可查阅有关手册。
物理机械性能产生重要影响。
聚乙烯的主要分类
a. 低密度(高压)聚乙烯(LDPE)
密度为0.915~0.930 g/cm3的均聚物
自由基 共聚合
含少量极性基团的乙烯-醋酸乙烯酯共聚物-EVA
乙烯-丙烯酸乙酯共聚物-EAA
b.线性低密度和中等密度聚乙烯(LLDPE、MDPE)
乙烯、α-烯烃(1-丁烯、1-己烯或1-辛烯)的共聚物
第三章自由基聚合工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.1 自由基聚合工艺基础
◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一
◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单 体
影响聚合物平均分子量的主要因素:反应温度、引发 剂浓度和单体浓度、链转移剂的种类和用量
(1)聚合反应温度升高,所得聚合物的平均分子量降低 (2)引发剂用量对聚合物平均分子量发生显著的影响。
(动力学链长V=K[M]/[I]0.5
(3)链转移反应导致所得聚合物的分子量显著降低,对 获得高分子量聚合物不利,但可用来控制产品的平均 分子量,甚至还可用来控制产品的分子量。
混炼后用于成型 注塑成型用 假牙齿、牙托等
聚合物溶液 直接用于纺丝或溶解后
或颗粒
纺丝
聚合物溶液 直接用来转化为聚乙烯 醇
表2 四种聚合方法的工艺特点
聚合方法
聚合 主要操作方式 过程 反应温度控制
单体转换率 分离 工序复杂程度 回收 及后 动力消耗 处理 过程 产品纯度
废水废气
本体聚 乳液聚合 合
连续 连续
7.氯乙烯自由聚合时,聚合速率用 引发剂用量 调 节,而聚合物的相对分子质量用 聚合温度 控制。
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.2 本体聚合生产工艺
本体聚合:单体中加有少量引发剂或不加引发剂依赖热 引发,而无其他反应介质存在的聚合实施方法。
① 过氧化物类
通式:R-O-O-H 或 R-O-O-R (R可为烷基、芳基、酰基、碳酸酯基、磺酰基等)
自由基溶液聚合原理及生产工艺
服装用维尼纶纤维 建筑装潢107胶
维尼纶绳
聚乙烯醇薄膜
PVA 分散剂
2、醋酸乙烯溶液聚合生产 PVA 的工艺路线 石油乙烯法的工艺路线 电石乙炔法的工艺路线
天然气乙炔法的工艺路线
三种聚合工艺路线比较
二、醋酸乙烯溶液聚合体系各组分及作用
性
1、醋酸乙烯
原料单体
质 与
用
途
技 术 指 标
2、甲醇 溶剂及醇解剂
性 质 与 用 途
技术指标
3、偶氮二异丁腈 自由基引发剂
CH3
CH3
CH3 C N N C CH3
选择甲醇为反应介质的理由: 甲醇对 PVAc 溶解性好,链自由基处于伸展状态,可推迟
自动加速现象出现,分子量分布窄; 甲醇的 Cs 较小,不是影响分子量的主要因素; 甲醇是醇解反应的醇解剂,反应后无需分离; 甲醇与 VAc 有恒沸点 64.5℃,聚合温度( 65℃ ±0.5
℃ ),聚合反应容易控制。
向调节剂链转移的应用-----调节聚合 通过链自由基向溶剂或链转移剂的转移,可制备分子
量低的聚合物,也称低聚物,或调聚物,此过程称为调节聚 合。例如,乙烯在溶剂四氯化碳(调节剂)的作用下,制备 低聚物,反应原理如下:
链引发:
链增长: 链转移:
第二节 醋酸乙烯溶液聚合工艺和聚乙烯醇制备工艺 P386-390 一、醋酸乙烯溶液聚合概述 1、聚合原理及产品 PVA 用途
讨论:如何利用溶剂对聚合物分子量的影响规律调节聚合物分 子量的大小?
溶液聚合反应中,如希望得到分子量较高的聚合物、就 得选用链转移作用较小的溶剂;反之,制备分子量低的聚合 物则选用链转移作用较大的溶剂。 如在硫氰酸钠水溶液中 进行丙烯腈溶液聚合,可获得分子量低的聚丙烯腈。甚至利 用一些溶剂(分子量调节剂)的转移作用,进行调聚反应, 可生成分子量可以调节的调聚物。
第4章 自由基聚合反应的实施方法
工业上溶液聚合多用于聚合物溶液直接使用的 场合,例如:涂料、胶粘剂、浸渍剂、 场合,例如:涂料、胶粘剂、浸渍剂、合成纤维纺 丝的溶液、继续进行化学反应等。 丝的溶液、继续进行化学反应等。 1 溶液聚合的优缺点
优点: 优点: (i)聚合热易扩散,聚合反应温度易控制; 聚合热易扩散,聚合反应温度易控制; ii)体系粘度低,自动加速作用不明显; (ii)体系粘度低,自动加速作用不明显;反应物 料易输送; 料易输送; iii)体系中聚合物浓度低, (iii)体系中聚合物浓度低,向高分子的链转移 生成支化或交联产物较少,因而产物分子量易控制, 生成支化或交联产物较少,因而产物分子量易控制, 分子量分布较窄; 分子量分布较窄; iv)可以溶液方式直接成品。 (iv)可以溶液方式直接成品。
聚合方法是为完成聚合反应而确立的, 聚合方法是为完成聚合反应而确立的,聚合机 理不同,所采用的聚合方法也不同。 理不同,所采用的聚合方法也不同。 由于自由基相对稳定,自由基聚合反应的实 由于自由基相对稳定, 施方法主要有本体聚合 溶液聚合、悬浮聚合、 本体聚合、 施方法主要有本体聚合、溶液聚合、悬浮聚合、 乳液聚合。 乳液聚合。 离子聚合则由于活性中心对杂质的敏感性而多 采用溶液聚合或本体聚合 溶液聚合或本体聚合。 采用溶液聚合或本体聚合。 熔融缩聚、 逐步聚合采用的聚合方法主要有熔融缩聚 逐步聚合采用的聚合方法主要有熔融缩聚、溶 液缩聚、界面缩聚和固相缩聚。 液缩聚、界面缩聚和固相缩聚。
本体聚合工业生产实例
聚合物 聚甲基丙烯酸 甲酯 引发 BPO 或 AIBN 工艺过程 产品特点与用途
第一段预聚到转化率10%左 左 第一段预聚到转化率 光学性能优于无机玻 右的粘稠浆液, 璃可用作航空玻璃、 右的粘稠浆液 , 浇模升温聚 璃可用作航空玻璃、 高温后处理, 脱模成材。 光导纤维、标牌等。 合 , 高温后处理 , 脱模成材 。 光导纤维、标牌等。
自由基聚合方法
新材料开发
高性能聚合物
通过自由基聚合方法,开发出具有优异性能(如高强度、高耐磨、 高耐温等)的新型聚合物材料。
功能化聚合物
通过自由基聚合方法,制备出具有特定功能(如导电、发光、磁性 等)的聚合物材料,拓展聚合物材料的应用领域。
生物相容性聚合物
利用自由基聚合方法,制备出具有良好生物相容性的聚合物材料, 为生物医学领域的发展提供支持。
悬浮聚合
总结词
单体以固体颗粒形式悬浮于液相中进行聚合的方法。
详细描述
悬浮聚合是将单体、引发剂、水和其他添加剂加入到反应器中,通过搅拌使单体以固体颗粒形式悬浮 于液相中进行聚合的方法。该方法具有操作简便、生产安全、成本低等优点,但产品分子量分布较宽 。
本体聚合
总结词
单体在无其他介质或少量引发剂存在下进行的聚合反应。
乙烯等。这些塑料具有质轻、耐腐蚀、绝缘性好等特点,被广泛应用于
包装、建筑材料、家电等领域。
02
合成纤维
自由基聚合也是合成纤维的重要方法之一,如聚酯纤维、聚酰胺纤维等。
这些纤维具有强度高、耐磨、耐热等特点,被广泛应用于纺织服装、家
居用品等领域。
03
合成橡胶
自由基聚合合成的橡胶具有良好的弹性、耐油、耐高温等特点,如丁苯
聚合物结构缺陷
由于自由基聚合过程中链转移等副反 应的存在,聚合物链中可能存在不规 整结构、支链等缺陷,影响聚合物的 性能。
适用范围有限
虽然自由基聚合适用于多种单体,但 对于某些特殊单体(如氯乙烯等)和 特殊结构(如环状单体),自由基聚 合可能不适用或难以实现。
05 自由基聚合的发展趋势和 未来展望
环境友好型聚合方法的探索
绿色溶剂
探索使用环境友好的绿色溶剂代 替传统有机溶剂,降低自由基聚 合过程中的环境污染。
自由基聚合机理
Rp kpM M *
高分子聚合度很大,用于引发的单体远少于用于增 长的单体,即:Ri<<Rp
RCH 2CH
特点:
X
X
•放热反应(exothermal reaction);
•Ei低,约20-34KJ/mol;
•反应速率快。
2. 链增长(chain propagation):迅速形成大 分子链
RCH 2CH +CH 2=CH
RCH 2CHCH 2CH ......
X
X
XX
RCH 2CH CH 2CH nCH 2CH
二、引发剂分解动力学
(kinetics of initiator decomposition) ——研究引发剂浓度与时间、温度间的定量关系
1. 分解动力学方程 一级反应
I kd 2R•
Rd
d I
dt
kd
I
积分得: [I ]
ln [I ]0
kd t
Kd——分解速率常数,时间-1
物理意义:单位引发剂浓度时的 分解速率
由基数目并无增减,但消耗了一分子引发剂,从而使引发剂 效率降低。
过氧类引发剂、引发剂浓度大时易发生诱导分解。
2 . 笼蔽效应(cage effect)
引发剂分解产生的初级自由基,处于周围分子(如溶 剂分子)的包围,像处在笼子中一样,形成稳定分子, 使引发剂效率降低。这一现象称之为笼蔽效应。 大多数引发剂均可观察到些现象,偶氮类引发剂易发生。
链终止和链增长是一对竞争反应 终止速率常数远大于增长速率常数,但由于体系中, [M](monomer concentration)(1-10mol/l)>> [M.] (radical concentration)(10-7-10-9mol/l) Rp (增长总速率) > >Rt(终止总速率)
自由基聚合工艺
• 例如在高压法生产低密度聚乙烯过程中用 丙烷、丙烯或H2作为链转移剂,以控制聚 乙烯平均分子量。生产丁苯橡胶时加入硫 醇作为链转移剂以控制丁苯橡胶的平均分 子量。这时链转移剂起了控制分子量的作 用,或调节分子量大小的作用。因此习惯 上称为分子量调节剂、分子量控制剂或改 性剂。
自由基聚合生产工艺
• 过氧化碳酸酯如过氧化碳酸二异丙酯等对热、摩 擦、碰击都很敏感,不能进行蒸馏。甚至在室温 条件下,本身产生诱导分解反应而引起爆炸,所 以要求在低温下(10℃以下)贮存。最好加有稳定 剂如多元酚、多元硝基化合物以降低其分解倾向。 胺类化合物和某些金属则可使过氧化碳酸酯催比 分解。金属对于其分解速度影响顺序为: • Pt≈Cu>Hg>A1≈Fe>Ni≈Ag • 因此要尽量除去引发体系中的金属含量。 • 异丙基基团改换为叔丁环己基基团时,稳定性提 高。可常温贮存。
自由基聚合生产工艺
分子结构 过氧化氢—亚 铁盐
过硫酸盐—亚 硫酸盐 过硫酸盐— Fe2+
CH3 H 5C 6 N CH3 O O
+
CH3
H 5C 6 C O O C C 6H 5
CH2 O C C 6H 5
过氧化二苯甲 酰—二甲苯胺
H 5C 6
N
+
C 5H 6C O O
-
CH3
自由基聚合生产工艺
上式式经自由基聚合反应所得聚合物的动力学链长(υ)与 单体浓度和引发剂浓度的关系。 链转移反应与所得聚合物平均聚合度(或平均分子量)的关 系可用下式表示
③链转移反应导致所得聚合物的分子量显著降低。
自由基聚合生产工艺
• 分子量调节剂 • 链转移反应对于我们需要获得高分子量聚合物的 时候是不利因素。如果能够把不利因素转化为有 利因素,就为我们提供了控制产品一定分子量范 围的条件。自由基聚合反应中可能发生向单体、 溶剂、杂质以及聚合物分子进行链转移的反应, 除氯乙烯聚合过程是向单体进行链转移以外,多 数情况下是在高纯度单体条件下,加入适当数量 的易发生链转移反应的物质。利用链转移反应来 控制产品的平均分子量,甚至还可用来控制产品 的分子构型,消除那些不希望产生的支链和交联 结构,从而得到便于成型加工的聚合物。
第3章 自由基聚合生产工艺-1
常用的链转移剂有丙烷、氢、丙烯等。
丙烷是较好的调节剂,若反应温度>150℃,它能平 稳地控制聚合物的分子量。
氢的链转移能力较强,反应温度高于170℃,反应很不 稳定。
(5)单体纯度的影响 乙烯单体中杂质越多,会造成聚合物分子量降低,且 会影响产品各种性能,工业上,对乙烯的纯度要求超过 99.95%。
乙烯高压聚合生产流程
压缩机 二次 压缩机 150--250MPa 釜 式 反 应 器
引发剂 25MPa
管 式 反 应 器
0.1MPa
低压分离器
乙烯 分子量调节剂 减 压 阀 一次 压缩机 25MPa 高压分离器 减压阀
挤出 造粒机
新鲜乙烯
流程说明:
裂解厂的新鲜乙烯(压力为1.5MPa)与闪蒸气体升压器来的 乙烯混合,经过第一级压缩机,压力升到20-30MPa,冷却后, 在二级压缩机第一段入口与中压分离器分离出来的未反应乙烯 会合,进入压缩机使压力升到120-200MPa,冷却后进入聚合反 应器,在150-300度过氧化物和有机过酸酯引发下,乙烯聚合成
非均相本体聚合——聚氯乙烯本体聚合生产
本体浇铸聚合——有机玻璃生产
气相本体聚合——高压聚乙烯生产
法国本体法(PSG法)制聚氯乙烯
氯乙烯两段本体聚合生产聚氯乙烯是法国圣戈班公司 (PSG)首先工业化。 一、主要原料及规格 沸点 纯度 -13.9 >99.99%
法国本体法(PSG法)制聚氯乙烯
二、制法 聚氯乙烯可用悬浮聚合、乳液聚合、本体聚合实施方法 生产,目前仍以悬浮聚合法为主,而本体聚合法生产的聚 氯乙烯约占10%。
(2)温度的影响 操作温度:130℃~280℃ 温度升高将使聚合物的分子量相应降低,聚乙烯分子链
第5章_自由基溶液聚合
溶液聚合法的单体主要品种和聚合条件
聚 合 条 件 单体种类 丙烯酸酯 丙烯酰胺类 丙烯腈 苯乙烯 醋酸乙烯酯 氯乙烯 溶剂 反应时间, 转化率, 温度, 温度,℃ 反应时间,h 转化率,% 苯,甲苯等 水 水,DMF等 等 乙苯等 甲醇等 氯苯等 50~70 30~70 40~70 90~130 70~80 40~60 6~8 3~6 6~8 6~8 4~8 4~8 >95 >95 >90 >95 >90 90~95
(2)操作方式:半连续操作,便于控制聚合反应温度和速度。
(3)反应器:釜式反应器 反应器: 反应器
(4)聚合过程:先加溶剂于反应釜中加热至反应温度,再将溶有 聚合过程: 聚合过程
引发剂的单体按一定速度连续加入反应釜中。
(5)单体分离:如得到的聚合物溶液直接应用时,在聚合结束前补 单体分离: 单体分离 加引发剂尽量减少残存单体含量,或用化学办法除去。如果单体 沸点低于溶剂可采用蒸馏的办法或减压蒸馏除去单体。
2. 单体在水中的溶解度 温度℃ 温度℃ 溶解度 0 7.2 20 7.35 40 7.9 60 9.1 80 10.8
3. 水相沉淀聚合工艺条件
聚合温度:35-55℃(45℃最佳);聚合时间:1~2 h );聚合时间 聚合温度:35-55℃ 45℃最佳);聚合时间: 转化率:80~85%,单体总质量分数: 转化率:80~85%,单体总质量分数:28~30% 搅拌速度: 搅拌速度:55~80 r/min
脒基
(5)浅色剂的影响——还原剂 浅色剂的影响——还原剂
(6)转化率的选择
低转化率(50~55%):聚合物色白, ):聚合物色白 低转化率(50~55%):聚合物色白,设备利用率低 中转化率(70~75%):聚合物色浅, ):聚合物色浅 中转化率(70~75%):聚合物色浅,设备利用率高 高转化率(>80%):聚合物发黄, ):聚合物发黄 高转化率(>80%):聚合物发黄,设备利用率高 6 均相聚合的优缺点 ① 优点:聚合热容易导出,分子量分布窄,聚合反 优点:聚合热容易导出,分子量分布窄, 应容易控制,可进行连续聚合、连续纺丝。 应容易控制,可进行连续聚合、连续纺丝。 缺点:大量溶剂存在影响聚合反应,增加回收成本。 ②缺点:大量溶剂存在影响聚合反应,增加回收成本。
自由基溶液聚合原理及生产工艺
醋酸乙烯溶液聚合有关旳聚合反应如下:
高聚物合成工艺 13
④链转移
(a) (b)
CH2 CH
(c)
OCOCH3
高聚物合成工艺 14
继续与单体反应,经终止后形成支化聚醋酸乙烯
高聚物合成工艺 15
支化旳聚醋酸乙烯经醇解后形成支化旳聚醋酸乙烯醇
(b)位置旳转移反应
高聚物合成工艺
16
二、溶液聚合旳优缺陷 1.溶液聚合旳优点 ①因为使用了溶剂,降低了体系旳黏度,推迟了自 动加速现象旳到来,假如控制合适旳转化率能够基本 上消除自动加速现象,聚合反应接近匀速反应,聚合 反应轻易控制,聚合物旳相对分子质量分布较窄。
高聚物合成工艺 3
②假如选用Cs(链自由基向溶剂转移常数)较小旳溶剂, 控制低转化率结束反应,轻易建立正常聚合速率Rp与单 体浓度c(M)和引起剂浓度c(I)旳定量关系以及Xn与单体 浓度c(M)和引起剂浓度c(I)旳定量关系,这对试验室做 动力学研究有独到之处。
高聚物合成工艺 5
其中Kps代表新生旳自由基与单体加成旳增长反应速 率常数,SH代表溶剂。
3.溶剂对聚合物大分子旳形态和相对分子质量分布旳 影响
溶剂能控制生长着旳链自由基旳分散状态和形态。
如使用良溶剂,链自由基在其中处于伸展状态,将形 成直链型大分子。
如使用不良溶剂,因为链自由基在其中处于卷曲状态 或球型,在高转化率时会使链自由基沉淀,以溶胀状态 析出,形成无规线团。
芳香类 醇类 酚类 醚类 胺类
溶剂对偶氮类引起剂分解速率一般不产生影响,偶氮 类引起剂中只有偶氮二异丁酸甲酯可被溶剂诱导而加速 分解。 2.溶剂旳链转作用及其对聚合速率和聚合物相对分子 质量旳影响
若Kps≈Kp,则SH为链转移剂,不影响聚合速率, 但使聚合物旳相对分子质量降低。 若Kps<Kp ,则SH为缓聚剂,使聚合速率和聚合物 旳相对分子质量降低。 若Kps«Kp ,则SH为阻聚剂,使聚合反应终止并使 聚合物旳相对分子质量降低。
PMMA溶液聚合生产工艺
摘要:本文阐述了用MMA溶液聚合法生产PMMA的工艺特点以及各种添加剂的作用,对于PMMA的生产具有指导意义。
关键词:溶液聚合工艺用MMA生产PMMA的聚合方法有本体法、悬浮法、乳液法和溶液法。
前三种聚合法早已在国内外实现工业化生产,而我公司的溶液法生产模塑料则是由美国聚合物技术公司开发的新工艺。
1工艺简述本溶液聚合法生产工艺包括下列几个工段1.1进料及添加剂制备本工段包括三个单独的系统即单体制备和循环进料系统;第一级反映器进料、进料添加剂混合制备系统;添加剂制备系统。
1.2聚合脱挥发和循环回收脱气的进料单体和循环液经过连续计量和过滤进入第一级反映器。
在第一级反映器中部分聚合的物料用第泵连续输送到第二级反应器。
脱挥发器是在真空下操作,用以脱除熔融粘稠聚合物中的未反应单体和溶剂。
脱除的溶剂和未反应的单体经进化冷凝,然后循环回到进料脱器系统进而进入第一级反应器。
用聚合物挤压泵将聚合物从脱挥发器中经过静态混合器送入精制线。
1.3精制经过脱挥发后熔融的聚合物经聚合物挤压泵从脱挥发室中泵出,由尾线添加剂计量泵将尾线添加剂注入到熔融的聚合物中。
熔融的聚合物从模头送到造粒系统,颗粒在一个振动的三网分离器中分出等级,将粉尘和较大的颗粒除掉,追终产品颗粒被输送到颗粒运输和储存工段。
1.4导热油系统导热油系统为装置提供所需的全部热量。
2溶液聚合法生产工艺特点①原料及能量消耗少,生产成本低。
②生产稳定性和安全性好。
③公司的溶剂聚合工艺通过控制进料比例和使用高浓度溶剂,有效地控制了反应速度并能及时移出反映热,提高了该工艺的安全程度。
④通过选择组分和操作条件,保证了在容器壁上或输送管线中不会有聚合物积存。
⑤该反应系统能有效地利用引发剂、共聚物和链转移剂,并且在脱挥发过程减少了低分子量馏分的生成,保证了产品质量。
⑥不需污水处理设施。
⑦该工艺用反应热来加热第一反应器的进料,节约了能源。
⑧用一个静态混合器来混合加入到精制的熔融聚合物中的尾线添加剂,混合不需要使聚合物受到剪切力或热损坏即可完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高聚物合成工艺 6
四、溶剂的选择
溶剂的选择原则:
①溶剂对自由基聚合不能有缓聚和阻聚等不良影响, 即应使Kps≈Kp。 ②溶剂的链转作用几乎是不可避免的,为了得到一定 相对分子喷量的囊合物.溶剂的Cs不能太大,即应使 kp>>ktr,s。
③如果要得到聚合物溶液,则选择聚合物的良溶剂,而 要得到固体聚合物,则应选择聚合物的非溶剂。 ④尚需考虑毒性和成本等问题。
五、链转移作用的应用
1.调节聚合物的相对分子质量
采用溶液聚合方法若要生产高相对分子质量的聚合物,
就要选择Cs值小的溶剂。 可编辑ppt
高聚物合成工艺 7
要制备相对分子质量较低的聚合物就要选择适当的单 体浓度和选择Cs值大的溶剂。
2.进行调节聚合,制备所需的低聚物
调节聚合是通过自由基型溶液聚合而得到低聚物的一 种反应,也是链转移反应的一种实际应用。 调节聚合可用下式表示
2.溶液聚合的缺点 ① 由于引入了溶剂,溶剂的回收和提纯使工艺过程复
杂化,从而使生产成本增加。 ② 由于链自由基向溶剂的转移反应使聚合物的平均聚
合度Xn降低。
三、溶剂的作用 1.溶剂对引发剂分解速率的影响
溶剂对有机过氧类引发剂分解速率产生影响。
可编辑ppt
高聚物合成工艺 4
不同溶剂使有机过氧类引发剂分解速率增加的顺序为 芳香类 醇类 酚类 醚类 胺类
溶剂对偶氮类引发剂分解速率一般不产生影响,偶氮 类引发剂中只有偶氮二异丁酸甲酯可被溶剂诱导而加速 分解。
2.溶剂的链转作用及其对聚合速率和聚合物相对分子 质量的影响
若Kps≈Kp,则SH为链转移剂,不影响聚合速率,
但使聚合物的相对分子质量降低。
若Kps<Kp ,则SH为缓聚剂,使聚合速率和聚合物
的相对分子质量降低。
二、原料和工艺条件
1.醋酸乙烯溶液聚合的原料和工艺条件 w(醋酸乙烯(单体)):w(CH3OH(溶剂))=80:20 ABIN的用量为单体质量的0.025% 聚合温度为65℃±0.5℃; 转化率为50%~60%;聚合时间为4h~8h。 2.聚醋酸乙烯溶液醇解配方和工艺条件 聚醋酸乙烯 n(-OCOCH3):n(CH3OH):n(NaOH)=1:1:0.112
一、目的和要求
生产维尼纶(聚乙烯醇缩甲醛PVFo, polyvinyl formal )
纤维所需的原料是聚乙烯醇(PVA),而聚乙烯醇是聚醋
酸乙烯(PVAc, acetic acid )醇解而得,聚醋酸乙烯是
用醋酸乙烯经溶液聚合而得。 可编辑ppt
高聚物合成工艺 10
作为纤维用聚合物,其大分子必须是线型的,而且具 有一定相对分子质量,相对分子质量分布比较窄。据此, 醋酸乙烯的溶液聚合所得到的聚醋酸乙烯也必须是线型 的,而且具有一定相对分子质量,相对分子质量分布比 较窄。
二、溶液聚合的优缺点
1.溶液聚合的优点 ①由于使用了溶剂,降低了体系的黏度,推迟了自
动加速现象的到来,如果控制适当的转化率可以基本 上消除自动加速现象,聚合反应接近匀速反应,聚合 反应容易控制,聚合物的相对分子质量分布较窄。
可编辑ppt
高聚物合成工艺 3
②如果选用Cs(链自由基向溶剂转移常数)较小的溶剂, 控制低转化率结束反应,容易建立正常聚合速率Rp与单 体浓度c(M)和引发剂浓度c(I)的定量关系以及Xn与单体 浓度c(M)和引发剂浓度c(I)的定量关系,这对实验室做 动力学研究有独到之处。
若Kps«Kp ,则SH为阻聚剂,使聚合反应终止并使
聚合物的相对分子质量降低。
可编辑ppt
高聚物合成工艺 5
其中Kps代表新生的自由基与单体加成的增长反应速 率常数,SH代表溶剂。
3.溶剂对聚合物大分子的形态和相对分子质量分布的 影响
溶剂能控制生长着的链自由基的分散状态和形态。
如使用良溶剂,链自由基在其中处于伸展状态,将形 成直链型大分子。
可编辑ppt
1
第一节 溶液聚合原理
一、溶液聚合及其分类
1.基本概念 溶液聚合是单体和引发剂溶于适当的溶剂中聚合为高
聚物的过程。溶液聚合体系的组分主要为单体、溶剂和 引发剂。
2.溶液聚合分类
根据聚合物是否溶于溶剂中,可将溶液聚合分为均相溶 液聚合和非均相溶液(沉淀)聚合。
(1)均相溶液聚合 单体溶于溶剂中,聚合物也溶于溶剂中,形成聚合物 溶液,这种溶液聚合体系称为均相溶液聚合。
单体 调聚剂 ➢例如:
调聚物
单体乙烯、调聚剂CCl4在引发剂过氧化二苯甲酰(BP()) 的引发下,调节聚合过程可用下式表示。
可编辑ppt
高聚物合成工艺 8
(3)链转移和链终止 通过链的进一步转移和终止,最后生成调聚物。
可编辑ppt
高聚物合成工艺 9
第二节 醋酸乙烯溶液聚合生产工艺和 聚乙烯醇(PVA)生产工艺
可编辑ppt
高聚物合成工艺 11
三、工艺条件分析
1.选用甲醇作溶剂 ①CH3OH对聚醋酸乙烯溶解性能极好,链自由基处于 伸展状态,体系中自动加速现象来得晚,使聚醋酸乙烯 大分子为线型结构且相对分子质量分布较窄。 ②CH3OH是下一步聚醋酸乙烯醇解的醇解剂。 ③CH3OH的Cs小,只要控制单体与溶剂的比例就能够 保证对聚醋酸乙烯相对分子质量的要求。
如使用不良溶剂,由于链自由基在其中处于卷曲状态 或球型,在高转化率时会使链自由基沉淀,以溶胀状态 析出,形成无规线团。
自动加速现象使聚合物的相对分子质量增加;而链自
由基向溶剂的链转移作用又可能使聚合物的相对分子质
பைடு நூலகம்
量降低。但由于在反应中,这两种作用常常同时发生,
因而聚合物分子量分布变宽。 可编辑ppt
丙烯酰胺以水为溶剂的溶液聚合特称为水溶液聚合。
可编辑ppt
高聚物合成工艺 2
(2)非均相溶液(沉淀)聚合 非均相溶液聚合:单体溶于溶剂中,而聚合物不溶于 溶剂中,形成固体聚合物沉淀出来,这种溶液聚合体 系称为非均相溶液聚合。
如:丙烯腈以水为溶剂的溶液聚合、丙烯酰胺以丙酮 为溶剂的溶液聚合以及苯乙烯-顺丁烯二酸酐以甲苯为 溶剂的溶液聚合均为非均相溶液(沉淀)聚合。
2.聚合温度65℃±0.5℃ ①醋酸乙烯和CH3OH有恒沸点64.5℃,聚合反应容易 控制。 ②聚合物的结构与聚合温度有关。
可编辑ppt
高聚物合成工艺 12
醋酸乙烯溶液聚合有关的聚合反应如下:
可编辑ppt