数学总复习全套讲义

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

初三数学总复习讲义

初三数学总复习讲义

第1课 实数复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。

2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。

3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。

4、结合具体问题渗透化归思想,分类讨论的数学思想方法。

复习教学过程设计: 一、填空:1、-1.5的相反数是 、倒数是 、绝对值是 、1- 2 错误!未指定书签。

的绝对值是 。

2、倒数等于本身的数是 ,绝对值等于本身的数是 。

算术平方根等于本身的数是 ,立方根等于本身的数是 。

3、2-1= ,-2-2= ,(-12 )-2= ,(3.14-∏ )0=4、在227,∏,-8 ,3(-64) ,sin600,tan450中,无理数共有 个。

5、用科学记数法表示:-3700000= ,0.000312=用科学记数法表示的数3.4×105 中有 个有效数字,它精确到 位。

6、点A 在数轴上表示实数2,在数轴上到A 点的距离是3的点表示的数是 。

7、3260 精确到0.1 的近似值为 ,误差小于1的近似值为 。

8、比较下列各位数的大小:-23 -34,0 -1, tan300 sin600二、判断:1、不带根号的数都是有理数。

( )2、无理数都是无限小数。

( )3、232是分数,也是有理数。

( )4、3-2没有平方根。

( ) 5、若3x =x ,则x 的值是0和1。

( )6、a 2的算术平方根是a 。

( ) 三、选择:1、和数轴上的点一一对应的数是( ) A 、整数 B 、有理数 C 、无理数 D 、实数2、已知:xy < 0,且|x|=3 ,|y|=1,则x+y 的值等于( ) A 、2或-2 B 、4或-4 C 、4或2 D 、4或-4或2或-23、如果一个数的平方根与立方根相同,这个数为( ) A 、0 B 、1 C 、0或1 D 、0或+1或-1 例2,计算下列各题:1、 20-(-12 )2+2-2-3(-64) 2、(38 -724 +1118 -59 )×(-72) 3、(1 )-2-23×0.125- 4 +|-1|例3,已知实数a 、b 在数轴上的位置如图所示:(1)你会比较实数a 、b 的大小吗? (2)你会比较|a|与|b|的大小吗?相信你能!(3)在什么条件下b a >0? b a <0? ba=0?并说明此时坐标原点的大致位置。

(完整)小学数学总复习讲义6

(完整)小学数学总复习讲义6

第三节整数、分数四则混合运算知识梳理1.分数加法、减法的意义和计算法则可归纳如下:在分数加减法计算中,计算结果能约分的要约分;是假分数的,要化成带分数或整数。

另外如遇到被减数的分数部分小于减数的分数部分时,必须借1化假,然后再加减。

2.分数乘法、除法的意义和计算法则可归纳如下:在分数乘除法计算中,能约分的先约分,计算比较简便;是带分数的要先化成假分数再计算。

计算结果能约分的要约分;是假分数的,要化成带分数或整数。

在分数乘除法混合计算中,要注意只把除数变为倒数相乘,因数不要变倒数。

3.分数、小数混合运算(1)分数混合四则运算的顺序和整数相同。

(2)整数四则混合运算的定律、性质完全适用于分数。

(3)在分数、小数加减混合运算中,如果分数能化为有限小数,可以先把分数花成小数后再计算;如果分数不能化为有限小数而要求准确结果,应先把小数化成分数再进行计算。

分数和小数相乘或小数除以分数,可以直接相乘或相除;分数除以小数,一般把小数化成分数后再变为相乘的形式进行计算。

例题分析拓展训练1.计算。

47 ÷32 +47 ÷3 (1-21-41)÷81 (1÷14 + 14 ÷1)×812÷(1+31-65) 52×4÷52×4 1×1001÷20001×10143-43÷3+53 31÷21-45×52 53+41÷(32-23×31)2、能简便的要简便计算:(12题,每题2分)85×43+41×85 (125+167)×48 3-127-12543×52+43×0.6 257×118+257÷311 257×101-2573.应用题(1)小华读一本120页的故事书,第1天读了全书的13 ,第二天读了余下的14。

九年级数学精讲班讲义

九年级数学精讲班讲义

九年级数学精讲班讲义一、一元二次方程。

1. 定义。

- 一般形式:ax^2+bx + c = 0(a≠0)。

- 举例:x^2+2x - 3 = 0,这里a = 1,b = 2,c=- 3。

2. 解法。

- 直接开平方法。

- 对于方程x^2=k(k≥slant0),解得x=±√(k)。

- 例如:(x - 1)^2=4,则x - 1=±2,x = 1±2,即x = 3或x=-1。

- 配方法。

- 步骤:先将二次项系数化为1,然后在方程两边加上一次项系数一半的平方,将方程化为(x + m)^2=n的形式再求解。

- 例如:x^2+4x - 1 = 0,x^2+4x = 1,x^2+4x + 4 = 1+4,(x + 2)^2=5,x=-2±√(5)。

- 公式法。

- 求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 对于方程2x^2-3x - 1 = 0,a = 2,b=-3,c = - 1,代入公式可得x=frac{3±√((-3)^2)-4×2×(-1)}{2×2}=(3±√(17))/(4)。

- 因式分解法。

- 把方程化为(mx + n)(px + q)=0的形式,则mx + n = 0或px + q = 0。

- 例如:x^2-3x + 2 = 0,分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。

- 当Δ = 0时,方程有两个相等的实数根。

- 当Δ<0时,方程没有实数根。

- 例如:对于方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1;对于方程x^2+1 = 0,Δ = 0 - 4×1×1=-4<0,方程没有实数根。

完整小学数学总复习讲义4

完整小学数学总复习讲义4

第二章数的运算第一节数的整除知识梳理1.整除的意义数 a 除以数 b,除得的商正好是整数而没有余数,我们就说 a 能被 b 整除。

注意:(1) 在讲数的整除时,我们所说的自然数,不包含零。

(2)除法里的“整除”和“除尽”是两个不一样的看法。

“整除”是指在自然数的范围内两个数相除,除得的商是整数,且余数为0 的状况。

“除尽”则被除数,除数,商不必定都是整数,可以包含小数在内。

比方:15 =3 =5。

可以说 15能被 3 整除,也可以说 3 能整除 15。

而 15 =6 = 2.5 ,只好称除尽,不可以称整除。

2. 约数和倍数从整数 a 能被整数 b 整除,又引出约数和倍数的看法:要正确理解约数和倍数,一定弄清下边两个问题:(1) 约数和倍数是建立在“整除”基础上的既相关又不一样的两个看法,只有在拥有整除关系的前提下才合用。

(2)约数和倍数是互相依存的,表示两个数之间的关系的两个看法,不可以单独存在。

所以不可以说: 30+6=5 中, 30 是倍数, 6 是约数,而应当说 30 是 6 的倍数,6 是 30 的约数。

3.能被 2、5、3 整除的数的特色能被 2 整除的数叫做偶数,也叫做双数;不可以被 2 整除的数叫做奇数,也叫做单数。

判断一个数是奇数还是偶数,要点要看这个数能不可以被 2 整除,为了进一步区分奇数和偶数,需要弄清以下问题:(1)所有的自然数不是奇数就是偶数。

(2)最小的奇数是1,最小的偶数是2,没有最大的奇数和最大的偶数。

(3 )在自然数中除了 1 之外,每个奇数的两个相邻数都是偶数;每个偶数的两个相邻数都是奇数。

4.质数和合数一个数只有 1 和它自己两个约数的,这样的数叫做质数。

要知道一个数是否是质数,可以用检查约数个数的方法,也可以查质数表,下边是 100 之内的质数表。

一个数除了 1 和它自己,还有其余约数的,这样的数叫做合数。

1不是质数也不是合数。

要做到正确,娴熟地判断一个数是否是质数,一定掌握以下方法:a.先找出所要判断的自然数的所有约数,而后依据质数与合数的定义进行判断。

王总结数学全套讲义

王总结数学全套讲义

第一部分:基础知识与概念
第一章:数的概念与运算
1. 整数、分数、小数的基本概念与性质
2. 实数、虚数、复数的概念与运算
3. 指数运算、对数运算、幂运算
第二章:代数概念与基本运算
1. 方程、方程组、不等式的解法与性质
2. 一次方程、二次方程、分式方程的解法与原理
3. 代数矩阵、行列式的基本概念与性质
第三章:几何概念与基本运算
1. 平面几何基本概念(点、线、面、角等)
2. 立体几何基本概念(多面体、旋转体等)
3. 图形变换的基本方法与性质
第二部分:解题技巧与方法
第四章:代数解题技巧与方法
1. 代数变换技巧
2. 一元二次方程的因式分解法
3. 矩阵变换的技巧
第五章:几何解题技巧与方法
1. 平面几何的图形分析法
2. 立体几何的体积求解法
3. 图形变换的技巧与方法
第三部分:实际应用
第六章:数学在日常生活中的应用
1. 财务计算(利息、年金等)
2. 生产管理(产量、成本等)
3. 质量控制(均值、方差等)
1. 数理统计的基本概念与方法
2. 线性规划的优化方法与应用
3. 非线性方程拟合与应用问题求解技巧。

总之,这套讲义对于提高数学能力是非常有帮助的。

掌握这些基础知识与概念,再加上解题技巧与方法,就可以更好地解决实际问题。

同时,也要注意实际应用,将数学知识应用到生活中,提高自己的综合素质。

希望这些内容可以帮助您更好地理解和掌握数学知识。

高中数学总复习全套讲义

高中数学总复习全套讲义

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为_____.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是______个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值.第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论: 若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】1.若p q ⇒,则p 是q ,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件. (2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件. 3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件; (4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_ 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

人教版初中数学讲义完整版

人教版初中数学讲义完整版

人教版初中数学讲义标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、48、定理四边形的内角和等于360°49、49、四边形的外角和等于360°50、50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、51、推论任意多边的外角和等于360°52、52、平行四边形性质定理1 平行四边形的对角相等53、53、平行四边形性质定理2 平行四边形的对边相等54、54、推论夹在两条平行线间的平行线段相等55、55、平行四边形性质定理3 平行四边形的对角线互相平分56、56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、60、矩形性质定理1 矩形的四个角都是直角61、61、矩形性质定理2 矩形的对角线相等62、62、矩形判定定理1 有三个角是直角的四边形是矩形63、63、矩形判定定理2 对角线相等的平行四边形是矩形64、64、菱形性质定理1 菱形的四条边都相等65、65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、67、菱形判定定理1 四边都相等的四边形是菱形68、68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、71、定理1 关于中心对称的两个图形是全等的72、72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、75、等腰梯形的两条对角线相等76、76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、77、对角线相等的梯形是等腰梯形78、78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),86、那么(a+c+…+m)/(b+d+…+n)=a/b87、86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例88、87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例89、88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边90、89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例91、90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似92、91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)93、92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似94、93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)95、94、判定定理3 三边对应成比例,两三角形相似(SSS)96、95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似97、96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比98、97、性质定理2 相似三角形周长的比等于相似比99、98、性质定理3 相似三角形面积的比等于相似比的平方100、99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值101、100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值102、101、圆是定点的距离等于定长的点的集合103、102、圆的内部可以看作是圆心的距离小于半径的点的集合104、103、圆的外部可以看作是圆心的距离大于半径的点的集合105、104、同圆或等圆的半径相等106、105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆107、106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线108、107、到已知角的两边距离相等的点的轨迹,是这个角的平分线109、108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线110、109、定理不在同一直线上的三点确定一个圆。

《数学下册总复习全》课件

《数学下册总复习全》课件

对几何定理运用不当
学生在运用几何定理时,容易 记错定理的内容,导致答案错 误。
计算失误
学生在进行几何计算时,容易 因为粗心大意导致计算错误。
概率与统计易错点
对概率的理解有误
学生对概率的定义和计算方法理解不 准确,导致在解题时出现偏差。
对统计图表解读不当
学生在解读统计图表时,容易忽略图 表的细节,导致对数据的理解出现错 误。
测试结果反馈
测试后及时反馈成绩和解 析,帮助学生了解自己的 掌握情况,找出薄弱环节 。
期末模拟测试
模拟测试目的
在学期末进行一次模拟测 试,模拟真实考试环境, 帮助学生适应考试压力。
测试难度
模拟测试的难度应与真实 期末考试相当,以检验学 生的应试能力。
测试结果反馈
提供详细解析和成绩反馈 ,指出学生在哪些方面需 要加强复习。
对统计方法运用不当
学生在运用统计方法时,容易忽视方 法的适用范围和限制条件,导致答案 错误。
计算概率时出错
学生在计算概率时,容易因为计算失 误导致答案不准确。
05
复习测试与反馈
单元测试
01
02
03
单元测试内容
每个单元结束后进行一次 单元测试,确保学生对该 单元的知识点掌握牢固。
测试题型
包括选择题、填空题、计 算题和应用题等,全面考 察学生的数学能力。
概率
通过解析概率的基本概念、概率 计算、随机事件的独立性等,让 学生理解概率的基本原理和应用 。
统计
通过学习数据收集、整理、分析 和推断等基本统计技能,让学生 掌握数据处理和分析的方法,培 养数据处理能力。
04
易错点解析
代数易错点
代数式变形错误

2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)

2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)

2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13. 开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】 数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A .BC .2-D .2例3.2的平方根是( )A .4BC .D .例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( ) A .1 B .1- C .12a - D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-第4题图0 例5图6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数.8.如果2()13⨯-=,则“”内应填的实数是()A.32B.23C.23-D.32-第2课时实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】 数形结合,分类讨论【例题精讲】 例 1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.9 0-4国际标准时间(时)-5 例2图……例4.下列运算正确的是( )A .523=+B .623=⨯C .13)13(2-=-D .353522-=- 例5.计算:(1)911)1(8302+-+--+-π (2)0(tan 45π--+º(3)102)21()13(2-+--; (4)2008011(1)()3π--+-.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元 3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB.C . 3.2- D.5.计算:(1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫--+ ⎪⎝⎭第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nn a a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=± 3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式. 4.分解因式的方法:第4题图⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a ab b a b±+=±-=+-;2222()a b a b a b5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是()A. a+2a=3a2B. 3a-2a=aC. a2•a3=a6D.6a2÷2a2=3a2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是()+2 结果A.m B.m2C.m+1 D.m-1 【例3】若2+-=.a a526a a--=,则2320【例4】下列因式分解错误的是( )A.22()()x x x++=+-=+-B.22x y x y x y69(3)C.2()x y x y+=++=+D.222()x xy x x y【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 . 4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA 叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1a b=ab a 0b 0≥≥(,)(2a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2132202). A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 . 【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)11(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】 1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121-(3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简 222()a b a b -第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 .3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】 方程思想和转化思想【例题精讲】 例1. (1)解方程.x x +--=21152156 (2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】 1.方程x -=52的解是______.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________.4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根aacb b x 242-±-=4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0 (1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x 12=-+ ②01x 2=+ ③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 . 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=011.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B .方程x(2x-1)=2x-1的解为x=1 C .方程x 2+2x+2=0实数根为0个 D .方程x 2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】 例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( ) A .4场 B .5场 C .6场 D .13场 例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎪⎨⎪⎧x –y= 49y=2(x+1)B .⎩⎪⎨⎪⎧x+y= 49y=2(x+1)C .⎩⎪⎨⎪⎧x –y= 49y=2(x –1)D .⎩⎪⎨⎪⎧x+y= 49y=2(x –1) 例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例 4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下:100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( )⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B•型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A•种彩票每张1.5元,B 种彩票每张2元,C 种彩票每张2.5元. (1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20扎,请你设计进票方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61 例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米B .1.5米C .2米D .2.5米例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( ) A .11 B .8 C .7 D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B 为止,点Q以2 cm/s的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?第10课时一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法.【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .34321B A O C)c a (b >-11- 11- 10 1- 10 1-例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题: (1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.第11课时 平面直角坐标系、函数及其图像【知识梳理】 一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a5.两点之间的距离6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法21212211P P )0()0()2(y y y P y P-=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 【思想方法】 数形结合 【例题精讲】例1.函数22y x =-中自变量x 的取值范围是 ;函数y =中自变量x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形. 求点C 的坐标.例4.阅读以下材料:对于三个数a,b,c 用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:{}123412333M -++-==,,; min{-1,2,3}=-1;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,, 解决下列问题: (1)填空:min{sin30o ,sin45o ,tan30o }= ;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x ;②根据①,你发现了结论“如果M{a,b,c}= min{a,b,c},那么 (填a,b,c 的大小关系)”. ③运用②的结论,填空:M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}若,则x + y= .(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x 的图象(不例3图需列表描点)min{x+1, (x-1)2,2-x}x【当堂检测】1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)2.已知点P(x,y)位于第二象限,并且y≤x+4 , x,y为整数,写出一个..符合上述条件的点P的坐标:.3.点P(2m-1,3)在第二象限,则m的取值范围是()A.m>0.5 B.m≥0.5C.m<0.5 D.m≤0.54.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.⑴由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出他们的坐标: B'、C';⑵结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);。

上海高考数学复习全套讲义

上海高考数学复习全套讲义

上海高考数学复习全套讲义上海高考数学复习全套讲义面对即将到来的高考,许多学生都感到焦虑和紧张。

对于数学这门科目,有些人觉得它难如登天,而有些人则觉得它不过是小菜一碟。

无论大家的数学基础如何,只要大家认真阅读本文,按照本文所提供的方法进行复习,相信大家一定能够在高考中取得优异的成绩。

首先,我们需要明确数学高考所考察的内容。

根据历年高考的命题趋势,数学高考主要考察数与代数、空间与几何、概率与统计等方面的知识。

其中,数与代数、空间与几何是数学高考的两大重点,而概率与统计则相对较为简单。

因此,在复习时,我们应该将重点放在数与代数、空间与几何上。

针对数与代数,我们需要掌握初中和高中所学习的所有数学知识,尤其是整数、有理数、一元二次方程等基础知识的运用。

同时,我们还需要掌握一些数学思想和解题方法,如分类讨论、函数思想等。

在复习时,我们可以结合历年高考的数与代数题目进行练习,加深对知识点的理解和掌握。

针对空间与几何,我们需要掌握平面几何、立体几何等基础知识,尤其是三角形、四边形、圆等图形的性质和面积、体积的计算方法。

同时,我们还需要掌握一些几何证明的方法和技巧,如逆证法、反证法等。

在复习时,我们可以结合历年高考的空间与几何题目进行练习,加深对知识点的理解和掌握。

针对概率与统计,我们需要掌握概率论、统计学等基础知识,尤其是随机事件、概率分布、统计图表等知识的理解和运用。

在复习时,我们可以结合历年高考的概率与统计题目进行练习,加深对知识点的理解和掌握。

除了以上所提到的知识点,我们还需要注意一些解题技巧和方法的运用。

例如,在解答选择题时,我们可以利用排除法、特殊值法等技巧来快速得到答案;在解答填空题时,我们可以利用直接法、分析法等技巧来准确求解;在解答大题时,我们可以利用综合法、分类讨论法等技巧来逐步解决问题。

最后,我们需要注意一些复习方法和技巧。

首先,我们需要制定科学的复习计划,合理安排时间,做到有的放矢。

其次,我们需要注重练习和实践,通过做题来加深对知识点的理解和掌握。

完整小学数学总复习讲义7

完整小学数学总复习讲义7

第三章式与方程知识梳理1.用字母表示数2(1)用字母表示任意数。

如a=1.2 ,x=等。

3(2)用字母表示数目关系。

如:行程=速度×时间,S= vt 。

(3)用字母表示运算定律和性质。

运算定律和性质加法交换律: a+b=b+a加法联合律:(a+b)+c=a+(b+c)乘法交换律: ab=ba乘法联合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质: a-(b+c) =a-b-c(4) 用字母表示计算公式。

长方形的长用 a 表示,宽用 b 表示,周长用 c 表示,面积用 s 表示。

c=2(a+b)s=ab正方形的边长 a 用表示,周长用 c 表示,面积用s 表示。

c=4a s=a2平行四边形的底 a 用表示,高用 h 表示,面积用s 表示。

s=ah三角形的底用 a 表示,高用 h 表示,面积用 s 表示。

s=ah/2梯形的上底用 a 表示,下底 b 用表示,高用 h 表示,中位线用 m表示,面积用s表示。

s=(a+b)h/2圆的半径用 r 表示,直径用 d 表示,周长用 c 表示,面积用 s 表示。

扇形的半径用 r 表示, n 表示圆心角的度数,面积用s 表示。

s=πnr 2/360长方体的长用 a 表示,宽用 b 表示,高用 h 表示,表面积用s 表示,体积用v 表示。

v=sh s=2(ab+ah+bh)v=abh正方体的棱长用 a 表示,底面周长 c 用表示,底面积用s 表示体积用 v 表示 .s=6a2v=a3圆柱的高用 h 表示,底面周长用 c 表示,底面积用s 表示,体积用v表示.s 侧=ch s表=s侧+2s底v=sh圆锥的高用 h 表示,底面积用s 表示,体积用v表示.v=sh/3( 5) 用字母表示规则。

如 x×9=9·x 或 9x,不可以写成 x9, mxa=am或 ma。

2.方程(1)等式:表示相等关系的式子叫做等式。

如:2+3=5,10+5= 2, C= 2( a +b),x-1 =4 等。

人教版数学《总复习》全文课件1

人教版数学《总复习》全文课件1
∏ ×102 (3)做这样一个水桶用多少铁皮,是求什么?
∏ ×102+2×∏×10×20 (4)这个水桶能装多少水,是求什么?
∏ ×102×20
基本练习:
2.做一个圆柱形的油箱,底面半径3分米,高4分米。 至少需要铁皮多少平方分米? ∏ ×32×2 + 2× ∏ ×3×4
3.做一个圆柱形的水桶,底面直径6分米,高4分米。 至少需要铁皮多少平方分米? ∏ ×(6÷2)2 + ∏ ×6×4
立体图形的表面积和体积复习
1.什么是长方体、正方体和圆柱的表面积? 2.这些立体图形的表面积怎样计算? 3.计算表面积时有什么要注意的问题?
1.什么是长方体、正方体和圆柱的表面积? 表面积:是指物体所有表面的面积之和。
2.这些立体图形的表面积怎样计算?
3组相对的面相加
6个面相加 两个底面加一个侧面 长方形面积 = 长 × 宽 圆柱侧面积 =底面周长 ×高

6. 选 择 思 维 方式。 除直接 从事物 本身入 手,抓 住其中 自己感 受最深 的一个 方面外 ,也可 以从侧 面出击 ,这往 往能出 奇制胜 。

7. 合 理 想 象 联想、 提升材 料层次 。联想 和想象 是作文 不可或 缺的思 维方式 ,它可 以使我 们在写 作时由 物及人 ,由人 及社会 ,有效 地提升 素材的 层次, 从而达 到文章 表达“ 以小见 大”的 目的。

2这篇文章用河神见海神的寓言故事说 明哲理 ,通篇 都是设 喻而这 些比喻 又是通 过奔放 新奇的 想象和 浓厚的 浪漫主 义情调 抒写出 来的。 庄子把 一切自 然事物 、神话 传说都 具体化 、人格 化。

3.河伯这一神话传说中的神便被庄子 任意驱 使为其 观点服 务,先 让河伯 因受环 境和习 见习闻 的限制 而自傲 ,然后 让河伯 从小圈 子里跳 出来, 看到了 大海而 对自己 以前的 自满羞 愧不已 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学复习讲义第一章集合与简易逻辑第1课时集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为_____. 【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B . 【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是______个. 3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值.第3课时充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论: 若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合P Q =,则P 是Q 的充要条件.3.会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件. (2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件. (3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件; (4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假. 【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_ 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.2012高中数学复习讲义第二章函数A语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =y x =,y =;③y =y =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x =;⑤lg 1y x =-,lg 10xy =.其中表示同一个函数的有______.2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:N 3.①②③④(1)()13f x x =-的定义域为______________;(2)21()1f x x =-的定义域为______________;(3)1()f x x =的定义域为______________;(4)0()f x =_________________. 4.已知三个函数:(1)()()P x y Q x =;(2)y =(*)n N ∈;(3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________;(2)______________________;(3)______________________________. 5.写出下列函数值域: (1)2()f x x x =+,{1,2,3}x ∈; (2)2()22f x x x =-+;. (3)()1f x x =+,(1,2]x ∈.. 【范例解析】例1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.例2.求下列函数的定义域:①12y x =+-()f x = 例3.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)221x y x =+()x R ∈;(3)y x =-【反馈演练】1.函数f (x )=x 21-的定义域是___________. 2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________.3.函数21()1y x R x=∈+的值域为________________. 4.函数23134y x x =-+-的值域为_____________.5.函数)34(log 25.0x x y -=的定义域为_____________________. 6.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B . (1)求A ;(2)若B ⊆A ,求实数a 的取值范围.第2课函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式. 【基础练习】1.设函数()23f x x =+,()35g x x =-,则(())f g x =_________;(())g f x =__________.2.设函数1()1f x x=+,2()2g x x =+,则(1)g -=__________;[(2)]f g =;[()]f g x =. 3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =_____.4.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=_____________.5.如图所示的图象所表示的函数解析式为__________________________.【范例解析】例1.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式. 分析:给出函数特征,可用待定系数法求解.例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式. 分析:理解题意,根据图像待定系数法求解析式. 【反馈演练】 1.若()2x x e e f x --=,()2x xe e g x -+=,则(2)f x =()A.2()f x B.2[()()]f x g x + C.2()g x D.2[()()]f x g x ⋅2.已知1(1)232f x x -=+,且()6f m =,则m 等于________.3.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式.第5题 xy O 12 34 10 20 30 40 50 60 例2第3课函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性. 【基础练习】1.下列函数中:①1()f x x=; ②()221f x x x =++;③()f x x =-;④()1f x x =-.其中,在区间(0,2)上是递增函数的序号有_____. 2.函数y x x =的递增区间是______.3.函数y =__________.4.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.5.已知下列命题:①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数; ②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数;③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函数()f x 在R 上是增函数.其中正确命题的序号有__________. 【范例解析】例.求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数;(2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数.例2.确定函数()f x = 【反馈演练】 1.已知函数1()21x f x =+,则该函数在R 上单调递____,(填“增”“减”)值域为_________.2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =____.3.函数y =.4.函数2()1f x x x =-+的单调递减区间为5.已知函数1()2ax f x x +=+在区间(2,)-+∞上是增函数,求实数a 的取值范围. 第4课函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数. 【基础练习】1.给出4个函数:①5()5f x x x =+;②421()x f x x-=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有______;偶函数的有________;既不是奇函数也不是偶函数的有_______. 2.设函数()()()xa x x x f ++=1为奇函数,则实数=a .3.下列函数中,在其定义域内既是奇函数又是减函数的是()A.R x x y ∈-=,3B.R x x y ∈=,sinC.R x x y ∈=,D.R x x y ∈=,)21(【范例解析】例1.判断下列函数的奇偶性:(1)2(12)()2x xf x +=;(2)()lg(f x x =;(3)221()lg lgf x x x =+;(4)()(1f x x =-(5)2()11f x x x =+-+;(6)22(0),()(0).x x x f x x x x⎧-+≥⎪=⎨<+⎪⎩例2.已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.点评:(1)求解析式时0x =的情况不能漏;(2)两个单调区间之间一般不用“⋃”连接;(3)利用奇偶性求解析式一般是通过“x -”实现转化;(4)根据图像写单调区间.【反馈演练】1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则()A .()()76f f >B .()()96f f >C .()()97f f >D .()()107f f >2.在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ()A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数3.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为_______.4.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ________. 5.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是.6.已知函数21()ax f x bx c+=+(,,)a b c Z ∈是奇函数.又(1)2f =,(2)3f <,求a ,b ,c 的值;第5课函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法.【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1)2x y =12x y -=123x y -=+;(2)2log y x =2log ()y x =-2log (3)y x =-. 2.作出下列各个函数图像的示意图:(1)31x y =-;(2)2log (2)y x =-;(3)21xy x -=-. 向右平移1个单向上平移3个单作关于y 轴对称的图向右平移3个单3.作出下列各个函数图像的示意图:(1)12log ()y x =-;(2)1()2x y =-;(3)12log y x =;(4)21y x =-.解:(1)作12log y x =的图像关于y 轴的对称图像,如图1所示;(2)作1()2x y =的图像关于x 轴的对称图像,如图2所示;(3)作12log y x =的图像及它关于y 轴的对称图像,如图3所示;(4)作21y x =-的图像,并将x 轴下方的部分翻折到x 轴上方,如图4所示.x -例2.设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像;(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A .试判断集合A 和B 之间的关系,并给出证明. 【反馈演练】112.的图象,可以把函数y =3kx 的图象有公共点A4y =f (x )f . 5.作出下列函数的简图: (1)2(1)y x x =-+;(2)21x y =-;(3)2log 21y x =-.. .2012高中数学复习讲义第二章函数B第6课二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系. 【基础练习】1. 已知二次函数232y x x =-+,则其图像的开口向____;对称轴方程为;顶点坐标为,与x 轴的交点坐标为(1,0),(2,0),最小值为14-.2. 二次函数2223y x mx m =-+-+的图像的对称轴为20x +=,则m =____,顶点坐标为,递增区间为,递减区间为.3. 函数221y x x =--的零点为.4. 实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件为;有两正根的充要条件为;有两负根的充要条件为.5. 已知函数2()23f x x x =-+在区间[0,]m 上有最大值3,最小值2,则m 的取值范围是__________. 【范例解析】例1.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈. (1)讨论)(x f 的奇偶性;(2)若2a =时,求)(x f 的最小值.例2.函数()f x 212ax x a =+-()a R ∈在区间2]的最大值记为)(a g ,求)(a g 的表达式.分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况. 【反馈演练】1.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是.2.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为.3.设0>b ,二次函数122-++=a bx ax y 的图象为下列四图之一: 则a 的值为()A .1B .-1C .251-- D .251+- 4.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是.5.若关于x 的方程240x mx -+=在[1,1]-有解,则实数m 的取值范围是.6.已知函数2()223f x x ax =-+在[1,1]-有最小值,记作()g a . (1)求()g a 的表达式; (2)求()g a 的最大值.7.分别根据下列条件,求实数a 的值:(1)函数2()21f x x ax a =-++-在在[0,1]上有最大值2; (2)函数2()21f x ax ax =++在在[3,2]-上有最大值4. 8.已知函数2(),()f x x a x R =+∈.(1)对任意12,x x R ∈,比较121[()()]2f x f x +与12()2x x f +的大小;(2)若[1,1]x ∈-时,有()1f x ≤,求实数a 的取值范围.第7课指数式与对数式【考点导读】1.理解分数指数幂的概念,掌握分数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质;3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算. 【基础练习】1.写出下列各式的值:(0,1)a a >≠=;238=________;3481-=;log 1a =_______;log a a =________;log 4=___.2.化简下列各式:(0,0)a b >> (1)2111333324()3a ba b ---÷-=;(2)2222(2)()a a a a ---+÷-=. 3.求值:(1)35log (84)⨯=______;(2)33(lg 2)3lg 2lg 5(lg 5)+⋅+=_______;(3)234567log 3log 4log 5log 6log 7log 8⨯⨯⨯⨯⨯=________. 【范例解析】 例1.化简求值:(1)若13a a -+=,求1122a a --及442248a a a a --+-+-的值; (2)若3log 41x =,求332222x xx x--++的值.例2.(1)求值:11lg9lg 240212361lg 27lg 35+-+-+; (2)已知2log 3m =,3log 7n =,求42log 56. (2)由2log 3m =,得31log 2m=;所以33342333log 563log 2log 73log 56log 4213log 2log 71mnm mn++===++++.点评:在对数的求值过程中,应注意将对数化为同底的对数.例3.已知35a b c ==,且112a b+=,求c 的值.【反馈演练】1.若21025x =,则10x -=. 2.设lg321a =,则lg0.321=. 3.已知函数1()lg1xf x x-=+,若()f a b =,则()f a -=. 4.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是5.设已知f (x 6)=log 2x ,那么f (8)等于. 6.若618.03=a ,)1,[+∈k k a ,则k =____.7.已知函数21(0)()21(1)xc cx x c f x c x -+⎧⎪=⎨⎪+≤⎩<<<,且89)(2=c f .(1)求实数c 的值; (2)解不等式182)(+>x f . 第8课幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】1.指数函数()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是.2.把函数()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =.3.函数220.3x x y --=的定义域为____;单调递增区间是;值域是.4.已知函数1()41x f x a =++是奇函数,则实数a 的取值. 5.要使11()2x y m -=+的图像不经过第一象限,则实数m 的取值范围.6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为. 【范例解析】例1.比较各组值的大小:(1)0.20.4,0.20.2,0.22, 1.62;(2)b a -,b a ,a a ,其中01a b <<<;(3)131()2,121()3.例2.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数,求,a b 的值;例3.已知函数2()(1)1x x f x a a x -=+>+,求证:(1)函数()f x 在(1,)-+∞上是增函数; (2)方程()0f x =没有负根. 【反馈演练】1.函数)10()(≠>=a a a x f x 且对于任意的实数y x ,都有() A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+2.设713=x ,则()A .-2<x <-1B .-3<x <-2C .-1<x <0D .0<x <13.将y =2x 的图像()再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D .先向下平行移动1个单位4.函数b x a x f -=)(的图象如图,其中a 、bA .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a5.函数x a y =在[]1,0上的最大值与最小值的和为3,则a 的值为_____. 6.若关于x 的方程4220x x m ++-=有实数根,求实数m 的取值范围. 7.已知函数2()()(0,1)2x xa f x a a a a a -=->≠-. (1)判断()f x 的奇偶性;(2)若()f x 在R 上是单调递增函数,求实数a 的取值范围.第9课对数函数及其性质【考点导读】1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题. 【基础练习】1.函数)26(log 21.0x x y -+=的单调递增区间是.2.函数2()log 21f x x =-的单调减区间是.【范例解析】例1.(1)已知log (2)a y ax =-在[0,1]是减函数,则实数a 的取值范围是_________. (2)设函数2()lg()f x x ax a =+-,给出下列命题: ①)(x f 有最小值;②当0=a 时,)(x f 的值域为R ; ③当40a -<<时,)(x f 的定义域为R ;题④若)(x f 在区间),2[+∞上单调递增,则实数a 的取值范围是4-≥a . 则其中正确命题的序号是_____________. 分析:注意定义域,真数大于零. 【反馈演练】1.给出下列四个数:①2(ln 2);②ln(ln 2);③ln 2;④ln 2.其中值最大的序号是______.2.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),(8,2),则a b +等于_____.3.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,则定点A 的坐标是. 4.函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为.5.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数有_____个.6.下列四个函数:①lg y x x =+;②lg y x x =-;③lg y x x =-+;④lg y x x =--.其中,函数图像只能是如图所示的序号为______.7.求函数22()log 2log 4x f x x =⋅,1[,4]2x ∈的最大值和最小值. 8.已知函数()log ax bf x x b+=-(0,1,0)a a b >≠>. (1)求()f x 的定义域;(2)判断()f x 的奇偶性;(3)讨论()f x 的单调性,并证明.第10课函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法. 【基础练习】1.函数2()44f x x x =++在区间[4,1]--有________个零点.2.已知函数()f x 的图像是连续的,且x 与()f x 有如下的对应值表:123456第6题则()f x 在区间[1,6]上的零点至少有____个. 【范例解析】例1.()f x 是定义在区间[-c ,c ]上的奇函数,其图象如图所示:令()()g x af x b =+, 则下列关于函数()g x 的结论:①若a <0,则函数()g x 的图象关于原点对称;②若a =-1,-2<b <0,则方程()g x =0有大于2的实根; ③若a ≠0,2b =,则方程()g x =0有两个实根; ④若0a ≠,2b =,则方程()g x =0有三个实根. 其中,正确的结论有___________. 分析:利用图像将函数与方程进行互化.例2.设2()32f x ax bx c =++,若0a b c ++=,(0)0f >,(1)0f >. 求证:(1)0a >且12-<<-ab; (2)方程()0f x =在(0,1)内有两个实根. 【反馈演练】1.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a 的取值范围是.2.设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =解的个数为() A .1B .2C .3D .43.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实数根,下列命题:①方程[()]f f x x =也一定没有实数根;②若0a >,则不等式[()]f f x x >对一切实数x 都成立;③若0a <,则必存在实数0x ,使00[()]f f x x >④若0a b c ++=,则不等式[()]f f x x <对一切实数x 都成立. 其中正确命题的序号是.4.设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.求实数a 的取值范围.5.已知函数2()log (41)()x f x kx k R =++∈是偶函数,求k 的值;6.已知二次函数c bx ax x f ++=2)(.若a>b >c , 且f (1)=0,证明f (x )的图象与x 轴有2个交点.第11课函数模型及其应用【考点导读】1.能根据实际问题的情境建立函数模型,结合对函数性质的研究,给出问题的解答.2.理解数据拟合是用来对事物的发展规律进行估计的一种方法,会根据条件借助计算工具解决一些简单的实际问题.3.培养学生数学地分析问题,探索问题,解决问题的能力. 【基础练习】1今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,①2log v t =②12log v t = ③212t v -= ④22v t =-其中最接近的一个的序号是_____________.2.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量. (Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?(Ⅱ)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y即⎩⎨⎧<<>+-.10,020602x x x 解不等式得310<<x .答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0<x<0.33.【范例解析】例.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg,时间单位:天)【反馈演练】1.把长为12cm的细铁丝截成两段,各自围成一个正三角形,则这两个正三角形面积之和的最小值是___________2cm.2.某地高山上温度从山脚起每升高100m降低0.7℃,已知山顶的温度是14.1℃,山脚的温度是26℃,则此山的高度为__________m.=5.06x-0.15x2 3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1和L=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的2最大利润为_______万元.2012高中数学复习讲义第三章三角函数A【知识导读】的作用,比如在物理学、天文学、测量学及其它各门科学技术都有广泛的应用.第1课三角函数的概念【考点导读】1.理解任意角和弧度的概念,能正确进行弧度与角度的换算.角的概念推广后,有正角、负角和零角;与α终边相同的角连同角α本身,可构成一个集合{}Z k k S ∈⋅+==,360 αββ;把长度等于半径的圆弧所对的圆心角定义为1弧度的角,熟练掌握角度与弧度的互换,能运用弧长公式r l α=及扇形的面积公式S =lr 21(l 为弧长)解决问题. 2.理解任意角的正弦、余弦、正切的定义.角的概念推广以后,以角的顶点为坐标原点,角的始边为x 轴的正半轴,建立直角坐标系,在角的终边上任取一点(,)P x y (不同于坐标原点),设OP r =(0r =>),则α的三个三角函数值定义为:sin ,cos ,tan y x yr r xααα===. 从定义中不难得出六个三角函数的定义域:正弦函数、余弦函数的定义域为R ;正切函数的定义域为{|,,}2R k k Z παααπ∈≠+∈.3.掌握判断三角函数值的符号的规律,熟记特殊角的三角函数值.由三角函数的定义不难得出三个三角函数值的符号,可以简记为:一正(第一象限内全为正值),二正弦(第二象限内只有正弦值为正),三切(第三象限只有正切值为正),四余弦(第四象限内只有余弦值为正).另外,熟记0、6π、4π、3π、2π的三角函数值,对快速、准确地运算很有好处.4.掌握正弦线、余弦线、正切线的概念.在平面直角坐标系中,正确地画出一个角的正弦线、余弦线和正切线,并能运用正弦线、余弦线和正切线理解三角函数的性质、解决三角不等式等问题. 【基础练习】1.885-化成2(02,)k k Z πααπ+≤≤∈的形式是 . 2.已知α为第三象限角,则2α所在的象限是. 3.已知角α的终边过点(5,12)P -,则cos α= ,tan α= . 4.tan(3)sin 5cos8-的符号为.5.已知角θ的终边上一点(,1)P a -(0≠a ),且a -=θtan ,求θsin ,θcos 的值. 【范例解析】例1.(1)已知角α的终边经过一点(4,3)(0)P a a a -≠,求2sin cos αα+的值;(2)已知角α的终边在一条直线y =上,求sin α,tan α的值. 分析:利用三角函数定义求解.例2.(1)若sin cos 0θθ⋅>,则θ在第_____________象限. (2)若角α是第二象限角,则sin 2α,cos2α,sin 2α,cos2α,tan2α中能确定是正值的有____个.例3.一扇形的周长为20cm ,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?分析:选取变量,建立目标函数求最值. 【反馈演练】1.若sin cos θθ>且sin cos 0θθ⋅<则θ在第_______象限. 2.已知6α=,则点(sin ,tan )A αα在第________象限.3.已知角θ是第二象限,且(P m 为其终边上一点,若cos 4m θ=,则m 的值为_______.4.将时钟的分针拨快30min ,则时针转过的弧度为 . 5.若46παπ<<,且α与23π-终边相同,则α=. 6.已知1弧度的圆心角所对的弦长2,则这个圆心角所对的弧长是_______,这个圆心角所在的扇形的面积是___________.7.(1)已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,求该扇形面积. (2)若扇形的面积为82cm ,当扇形的中心角α(0)α>为多少弧度时,该扇形周长最小.第2课同角三角函数关系及诱导公式【考点导读】1.理解同角三角函数的基本关系式;同角的三角函数关系反映了同一个角的不同三角函数间的联系.2.掌握正弦,余弦的诱导公式;诱导公式则揭示了不同象限角的三角函数间的内在规律,起着变名,变号,变角等作用. 【基础练习】1.tan600°=______.2.已知α是第四象限角,5tan 12α=-,则sin α=______. 3.已知cos 2πϕ⎛⎫+= ⎪⎝⎭,且2πϕ<,则tan ϕ. 4.sin15°cos75°+cos15°sin105°=___1___.【范例解析】例1.已知8cos()17πα-=,求sin(5)απ-,tan(3)πα+的值.分析:利用诱导公式结合同角关系,求值.解:由8cos()17πα-=,得8cos 017α=-<,α∴是第二,三象限角.若α是第二象限角,则15sin(5)sin 17απα-=-=-,15tan(3)tan 8παα+==-;若α是第三象限角,则15sin(5)sin 17απα-=-=,15tan(3)tan 8παα+==.点评:若已知正弦,余弦,正切的某一三角函数值,但没有确定角所在的象限,可按角的象限进行分类,做到不漏不重复.例2.已知α是三角形的内角,若1sin cos 5αα+=,求tan α的值.分析:先求出sin cos αα-的值,联立方程组求解.解:由1sin cos 5αα+=两边平方,得112sin cos 25αα+⋅=,即242sin cos 025αα∴⋅=-<.又α是三角形的内角,cos 0α∴<,2παπ∴<<.由249(sin cos )25αα-=,又sin cos 0αα->,得7sin cos 5αα-=. 联立方程组1sin cos 57sin cos 5αααα⎧+=⎪⎪⎨⎪-=⎪⎩,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=-⎪⎩,得4tan 3α=-.点评:由于2(sin cos )12sin cos αααα±=±⋅,因此式子sin cos αα-,sin cos αα+,sin cos αα⋅三者之间有密切的联系,知其一,必能求其二. 【反馈演练】 1.已知sin α=,则44sin cos αα-的值为_____. 2.“21sin =A ”是“A =30o ”的必要而不充分条件. 3.设02x π≤≤,sin cos x x =-,则x 的取值范围是544x ππ≤≤4.已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是.5.(1)已知1cos 3α=-,且02πα-<<,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值.(2)已知1sin()64x π+=,求25sin()sin ()63x x ππ-+-的值.解:(1)由1cos 3α=-,得tan α=-原式=2cos 3sin 23tan 4cos sin 4tan αααααα-+-+=--2=(2)1sin()64x π+=,225sin()sin ()sin[()]sin [()]63626x x x x ππππππ∴-+-=-++-+219sin()cos ()6616x x ππ=+++=.6.已知4tan 3α=-,求(I )6sin cos 3sin 2cos αααα+-的值;(II )212sin cos cos ααα+的值. 解:(I )∵4tan 3α=-;所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--.(II )由4tan 3α=-,于是212sin cos cos ααα+2222sin cos tan 152sin cos cos 2tan 13ααααααα++===-++. 第3课两角和与差及倍角公式(一)【考点导读】1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系;2.能运用上述公式进行简单的恒等变换;3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系;4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】1.sin163sin 223sin 253sin313+=___________.2.x x =_____________.3.若f (sin x )=3-cos2x ,则f (cos x )=___________.4.化简:sin sin 21cos cos 2αααα+=++___________.【范例解析】例.化简:(1)42212cos 2cos 22tan()sin ()44x x x x ππ-+-+; (2(1sin cos )(sin cos ))θθθθθπ++-<<.(1)分析一:降次,切化弦.解法一:原式=2221(2cos 1)22sin()4cos ()4cos()4x x x x πππ----22(2cos 1)4sin()cos()44x x x ππ-=--2cos 22sin(2)2x x π=-1cos 22x =.分析二:变“复角”为“单角”.解法二:原式221(2cos 1)x -=22cos 2cos sin 2(sin cos )cos sin x x x x x x x =-⋅++1cos 22x =. (2)原式2(2sincos2cos )(sin cos )θθθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθθθθ--⋅==3+cos2x0θπ<<,022θπ∴<<,cos02θ>,∴原式=cos θ-.点评:化简本质就是化繁为简,一般从结构,名称,角等几个角度入手.如:切化弦,“复角”变“单角”,降次等等.【反馈演练】1.化简22sin 2cos 1cos 2cos 2⋅=+ααααtan 2α. 2.若sin tan 0x x ⋅<=_________. 3.若0<α<β<4π,sin α+cos α=α,sin β+cos β=b ,则a 与b 的大小关系是_________.4.若sin cos tan (0)2παααα+=<<,则α的取值范围是___________.5.已知α、β均为锐角,且cos()sin()αβαβ+=-,则tan α=1.6.化简:222cos 12tan()sin ()44αππαα--⋅+.解:原式=222cos 12sin()4cos ()4cos()4απαπαπα--⋅--cos 22sin()cos()44αππαα=-⋅-cos 21cos 2αα==.7.求证:222sin 22cos cos 22cos x x x x +=.证明:左边=2224sin cos 2cos cos 2x x x x +22222cos (2sin 12cos )2cos x x x x =+-==右边.8.化简:22sin sin 2sin sin cos()αβαβαβ+++.解:原式=22sin sin 2sin sin (cos cos sin sin )αβαβαβαβ++-2sin ()αβ=+.第4课两角和与差及倍角公式(二)【考点导读】1.能熟练运用两角和与差公式,二倍角公式求三角函数值;2.三角函数求值类型:“给角求值”,“给值求值”,“给值求角”. 【基础练习】1.写出下列各式的值:(1)2sin15cos15︒︒=_________; (2)22cos 15sin 15︒-︒=_________;。

相关文档
最新文档