结构力学第9章位移法
结构力学_位移法
1
1
1 B
1 B
B
1 C
1 C
C C
FP FP A A D D
D
Z2 Z2
C
Z3 Z3 C
B B
D
B
C C
A
A
Z1 Z1
B
B
C
D D
2
2
F F E E
G G
Z4 Z4
G
G
F E
F
G
G
E
A D
A D
nB Y= 4
Z6
Z5 C
Z5
B
C
Z6
F
G
3、结点独立线位移数 (1) 先简化结构
1)除特殊指明外,梁与刚架一般不考虑由于轴向变形引
b)一端固定 一端铰支
c) 一端固定 一端定向支承
由荷载或温度变化引起的杆端内力称为载常数。其中的杆端弯
F F 矩也常称为固端弯矩,用M BA 和 M AB 表示;杆端剪力也常称为 F F 固端剪力,用FQ 和 表示。 F AB QBA
常见荷载和温度作用下的载常数列入表中(书P5) 。
由杆端单位位移引起的杆端内力称为形常数,见书P279,7-7 式。表中引入记号i=EI/l,称为杆件的线刚度。
F 3i A 3i M AB l 0
3、一端固定另一端定向支承梁
FP B EI
A
A
MAB FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
结构力学——位移法
结论: 刚架(不带斜杆的)一个结点一个转角,一层一个侧移。
例5 :
A B C B D
例6:
A
有两个刚结点B、C,由于 忽略轴向变形及B、C点的约 束,B、C点的竖向、水平位 移均为零,因此该结构的未 知量为: B C
桁架杆件要考虑轴向变形。因此每个 结点有两个线位移。该结构的未知量为:
D C
超静定结构计算
满足基本假设的几何不变体系在一定外因作用下 内力和位移的物理关系是一一对应的;力满足平衡条 件;位移满足协调条件。
当以多余未知力为基本未知量作为突破口时采取 的方法就是力法;当以某些结点位移作为基本未知量 作为突破口时采取的方法就是位移法。 超静定结构计算的总原则:欲求超静定结构先取一 个基本体系,然后让基本体系在受力方面和变形方 面与原结构完全一样。
EA EA 2 FNDA FNDC L 2L 2
杆端力与杆端 位移的关系
由结点平衡:
NDB NDA D Fp NDC
Y 0
2 2 FNDB FNDC FNDA FP 2 2 EA(2 2) FP 2L
建立力的 平衡方程
2 PL 由方程解得: (2 2) EA
3、确定系数与自由项
1 l 2 l l 11 EI 2 3 3EI 3i 1 l 2 l l 22 EI 2 3 3EI 3i
EI 令 i l
1 l 1 l l 12 21 EI 2 3 6 EI 6i
1C
l
2C
l
4、解方程,求杆端弯矩
1 1 X1 X 2 A 3i 6i l
1 1 X 1 X 2 B 6i 3i l
位移法结构力学知识点概念讲解
位移法结构力学知识点概念讲解位移法是结构力学中常用的一种分析方法,通过计算结构的位移来求解结构的内力、应力和变形等问题。
它的基本思想是建立结构的位移与应力之间的关系,并利用位移方程和边界条件,求解结构的位移分布,进而获得结构内力、应力和变形等信息。
1.位移概念:结构的位移是指结构中各点相对于参考点的位置变化量。
通常用向量形式表示,位移向量包含所有结构节点的位移分量。
位移分量包括两个方向的位移:横向位移和纵向位移。
横向位移是结构在水平方向上的位置变化,纵向位移是结构在垂直方向上的位置变化。
2.位移分布方程:位移分布方程是描述结构位移与应力之间关系的基本方程。
根据结构的力学特性和边界条件,可以建立位移方程。
一般情况下,位移方程包含多个线性方程,通过求解这些方程组,可以得到结构的位移分布。
常用的位移分布方程包括静平衡方程、变形方程和边界条件等。
3.静平衡方程:静平衡方程是结构力学中最基本的方程之一,它描述结构受力平衡的条件。
根据牛顿第二定律,结构的受力和位移之间存在其中一种关系。
通过建立结构受力平衡的方程,可以获得结构的位移分布。
4.变形方程:变形方程是位移法分析中的重要概念,它用来描述结构的变形与应力之间的关系。
根据结构力学理论,结构受到外力作用时,会发生形变,形成内力和应力。
通过建立变形方程,可以求解结构内力和应力分布。
5.边界条件:边界条件是位移法中必须考虑的条件,它是解决位移方程的关键因素。
边界条件主要包括结构的支座约束条件和结构受力边界条件。
支座约束条件指明结构的一些节点固定或受到特定的位移限制,受力边界条件指明结构的一些部分受到特定的外力或力矩作用。
6.内力和应力计算:通过求解结构的位移分布,可以计算得到结构的内力和应力。
内力是指结构中各点所受的力的大小和方向,包括轴力、剪力和弯矩等。
应力是指结构内部各点处的应力大小和方向,包括正应力和剪应力等。
7.变形计算:位移法可以用来计算结构的变形情况,包括横向变形和纵向变形。
《结构力学》第9章矩阵位移法.
对结构整体建立坐标系oxyz,则每个结点都有确定的位置坐标。
下标I表示结点编号,上标T表示矩阵转置。
结构力学
对结构所有的结点位移,统一用矢量Δ表示,称为结构整体位 移,简称结构位移或整体位移。Δ中各分量的顺序首先是结点 编号,然后是每个点本身的x,y,z顺序,即
对应结点载荷用矢量F表示,它的排序与位移排序相同
整体坐标系下单元杆端力与杆端位移间的关系—刚度方程: 简写为 其中Ke称为整体坐标系下的单元刚度矩阵。
结构力学
9.4 结构的整体刚度方程和整体刚度矩阵
上式称为结构的整体刚度方程,其中K称为结构的整体刚度 矩阵。
总体刚度矩阵是一个方阵,其阶数与结构结点位移分量总 数相同。它的分量是由单元刚度矩阵的系数叠加构成的。叠加 规律是:单元刚度矩阵的元素,按照它所处的局部行和列号, 对应单元的定位向量,在总刚度矩阵中落到新的行和列上。 总刚度矩阵的特点: (1)刚度矩阵的系数是物理量,由结构本身的长度、截面尺寸、 材料性质、连接方式等决定,与载荷、变形等量无关。 (2)总刚度系数kij表示结构沿第j个整体结点位移方向产生单位 位移Δj=1,其他所有结点位移等于0时,在第i结点位移方向所 需要施加的力(与传统位移法相同)。
结构力学
9.5 非结点荷载的等效化
计算步骤: 1. 在局部坐标系下计算单元的等效载荷 2. 将固端力转换到结构(整体)坐标系 3. 等效结点载荷FP
结构力学
9.6 计算步骤和算例
矩阵位移法的基本步骤如下:
(1)整理原始数据,对结点位移进行整体编码,得到单元定位向量等。 直接的结点载荷按它对应的结点位移编码,直接计入整体结点载荷向量 F中。 (2)单元分析,先形成局部坐标系中的单元刚度矩阵 ,用式(9-10)。 再形成整体坐标系中的单元刚度矩阵Ke,用式(9-24)。 (3)整体分析,依定位向量,将单元刚度矩阵“对号入座”集成总刚度 矩阵K。
结构力学 位移法典型方程、计算举例
r21 B r22 CH R2
满足此方程,就消去了施加的2个约束
即,
r11 B r12 CH R1P 0 r21 B r22 CH R2 P 0
4)弯矩图的作法----消去最先附加的刚臂 P R1P R2P + MP图 R2
r
j 1
n
ij
Zj
,为消去该处的约束力,令: R iP
r
j 1
n
ij
Z j =0 即可。写成方程组的形式为:
r11 Z1 r12 Z 2 r1n Z n R1P 0 r Z r Z r Z R 0 21 1 22 2 2n n 2P rn1 Z1 rn 2 Z 2 rnn Z n RnP 0
R1P
R2P
+ +
r11 R A
1
r21R 2A
MP图 +
r12 B
r22 B
或
P
qL2/12
PL/8
4i
2i
q
R1P
R2P
+ A•
r11 8i r21 2i
2i
M 1图
MP图
4i
+
B•
4i r22 11i 2i r12 2i 3i 2i
M 2图
M M P M 1 A M 2 B
叠加右侧2个图,意味着结点B转动 及结点C侧移都发生。
叠加后B处的转角和C处的位移
分别为:B CH 则两处的约 束力必为R1,R2
r12 CH
结构力学位移法
R2
R1=0 R2=0
ql
C D
Z1 R1
l
四.位移法典型方程
ql
q
l/2 B
ql
C D
ql B
A r22
q
R2 Z1
R1=0
ql C D
Z2=1
l/2 A
EI=常数
R2=0 R1 R1 r11 Z1 r12 Z 2 R1 P 0
l
C
r21
R2 r21 Z1 r22 Z 2 R2 P 0
r11
3i 3i
EI
r
11
=6i
R1P
ql 2 / 8
R1P
q
R1 P ql 2 / 8
Z1 ql / 48i ql 2 8 MM Z M 1 1 P
2
MP
ql2 / 16
r11
3i
Z1=1 3i
M1
Z1
M
位移法求解过程:
1)确定基本体系和基本未知量 2)建立位移法方程 3)作单位弯矩图和荷载弯矩图 4)求系数和自由项 5)解方程 6)作弯矩图
A
Z1
B
Z1
q
B
C
=
A
B
+
B
ቤተ መጻሕፍቲ ባይዱ
C
Z1
q
A
EI
B
Z1
EI
C
----刚臂,限制转动的约束 R1=0 R1=r11 Z1+ R1P =0
R1
q
A
EI
B
EI
C
r11
3i
B B
ql 8
2
3i
r
结构力学教学课件-09矩阵位移法
学习者可以通过实际的结构分析案例,将矩阵位移法应用于实际问题中,加深理解和掌 握。
THANKS
感谢观看
矢量与张量
在结构力学中,矢量与张量是描述结 构内力和位移的重要工具,矩阵位移 法中需要用到这些概念。
矩阵位移法的计算步骤
建立结构离散化模型
将结构划分为若干个离散的单元,每个单元 具有一定的自由度。
建立单元刚度方程
根据结构力学中的刚度原理,建立每个单元 的刚度方程。
集成整体刚度方程
将所有单元的刚度方程集成在一起,形成整 体刚度方程。
课程目标
掌握矩阵位移法的基本原理和步骤,理解如何应 用矩阵位移法解决实际工程问题。
学会使用相关软件进行结构分析,提高解决实际 问题的能力。
培养学生对结构力学学科的兴趣和热爱,为今后 从事土木工程领域的工作打下基础。
02
矩阵位移法基础
矩阵位移法概述
矩阵位移法是一种基于矩阵运算的数值分析方法,用 于解决结构力学中的位移问题。
结构力学教学课件-09矩阵位移法
目 录
• 引言 • 矩阵位移法基础 • 矩阵位移法的基本原理 • 矩阵位移法的应用实例 • 结论
01
引言
课程背景
01
结构力学是土木工程学科中的重 要基础课程,矩阵位移法是结构 力学中的一种重要分析方法,用 于解决结构的位移和内力问题。
02
随着计算机技术的发展,矩阵位 移法在结构分析中得到了广泛应 用,因此掌握矩阵位移法对于土 木工程师来说具有重要意义。
矩阵位移法的应用范围
矩阵位移法广泛应用于各种工程结构的分析,如桥梁、建筑、机械等 。
下一步学习建议
深入学习矩阵位移法的数学基础
为了更好地理解和应用矩阵位移法,建议学习者深入学习线性代数和数值分析等相关数 学基础。
结构力学PPT 第9章
<I>
临沂大学建筑学院 结构力学学科组
第九章
§9.1 位移计算概述
静定结构的位移 静定结构在荷载、温度变化、支座移动以及制造误 差等因素作用下,结构的某个截面通常会产生水平线 位移、竖向线位移以及角位移。 Bx 1. 截面位移
P
P
B
C
c
cx
B
By
cy
A C
A
刚架受荷载作用
如果结构由多个杆件组成,则整个结构变形引起某点的位移为:
( M N Q 0 )ds
若结构的支座还有位移,则总的位移为:
( M N Q 0 )ds Rk ck
广义力与广义位移的对应关系 作功的两方面因素:力、位移。与力有关的因素,称为广 义力S。与位移有关的因素,称为广义位移Δ。 广义力与广义位移的关系是:它们的乘积是虚功。即: T=SΔ 1)广义力是单个力,则广义位移是该力的作用点的位移在力作 用方向上的分量; 2)广义力是一个力偶,则广义位移是它所作用的截面的转角; 3)若广义力是等值、反向的一对力P
C
L
P=1/l
D
求C点两边的相对转角
求CD杆的转角位移
练习
A P=1/ l
图示虚拟的广义单位力状态,可求什么位移。 AB杆的转角
l ④ P=1/ l B
P=1/ l B l A P=1/ l P=1/ l P=1/ l l C
(
P=1/ l A l ⑤
)
AB连线的转角
P=1/ l B
( )
AB杆和AC杆的 相对转角
9kN.m
12kN B
7.5kN.m
A
2m
2m
位移法结构力学知识点概念讲解
位移法结构力学知识点概念讲解1.结构位移:结构在受力作用下会发生形变,而位移描述了结构各点之间的距离变化。
位移可以分为水平位移和竖向位移,用于表示结构在水平和竖直方向的变形情况。
2.自由度:结构的自由度是指结构中可以自由变动的独立变量的个数。
自由度越多,结构描述和计算的精度越高。
常见的自由度有平动自由度和转动自由度,平动自由度用于描述结构的水平位移,而转动自由度用于描述结构的转动变形。
3.约束条件:结构中存在的各种约束条件限制了结构的自由度。
约束条件是指结构中一些部分的位移受到限制,不能随意变动。
常见的约束条件有支座和铰链等,它们可以限制结构的平动和转动自由度。
4.单元:位移法将结构划分为若干个单元,每个单元由一组节点和单元内部的位移函数组成。
节点是指结构中的一些特定点,单元内部的位移函数用于描述该单元内部各处的位移情况。
6.节点位移:节点位移是指结构中各个节点的位移,它通过节点的约束条件和单元的位移函数之间的关系得到。
节点位移是位移法计算的核心内容,通过计算节点位移可以得到结构的变形和位移分布。
7.应变:结构在荷载作用下会发生应变,应变描述了结构内部各点的变形情况。
应变是位移的导数,可以通过位移的一阶导数来表示。
应变的计算是位移法中重要的步骤之一8.应力:结构在荷载作用下会发生应力,应力描述了结构各点的受力情况。
应力是力和单位面积的比值,可以通过应变和材料的本构关系得到。
应力的计算是位移法中重要的步骤之一通过以上的概念和知识点,位移法可以对不同类型的结构进行分析和计算。
它是结构力学中常用的方法之一,通过假设结构的位移函数和节点之间的位移关系,得到了结构的变形和位移的近似解。
在实际工程中,位移法广泛应用于桥梁、建筑物和各种结构的设计和分析中,具有重要的理论和实践意义。
结构力学——位移法
结构力学——位移法结构力学,位移法结构力学是研究物体受到外力作用时的变形和应力分布规律的学科。
在结构力学中,位移法是一种常用的分析方法,用于解决结构受力变形问题。
位移法是建立在位移场的基础上,通过求解物体的位移场,再根据位移场得到应力场、应变场以及应力分布等信息,从而获得结构的受力变形情况。
位移法的基本原理是微分方程的解析方法。
在位移法中,首先需要确定结构的几何形状、边界条件和外力情况,然后通过应变能原理或变分原理等方法建立物体的弯曲方程或应变能方程。
接下来,在确定了适当的位移函数形式后,将其代入方程中,通过求解微分方程来得到物体的位移场。
在位移法中,常用的位移函数形式包括简单弯曲、直角坐标、梯形分段等。
根据结构问题的具体条件,选择合适的位移函数形式,是位移法分析的一个重要步骤。
在求解位移函数时,通常要满足边界条件和界面连续条件。
边界条件是指结构边界上位移和应力的已知条件,界面连续条件是指相邻物体的位移和应力在界面上连续的条件。
求解位移场后,可以根据位移场求出应变场。
应变场是位移场的导数,反映了物体各点的拉伸和压缩程度。
通过求解应变场,可以进一步求解应力场。
应力场是应变场的导数,反映了物体各点的强度和应力分布情况。
由于应力是物体受力的重要指标,因此通过求解应力场,可以分析出物体受力分布情况,评估结构的强度和稳定性。
位移法在结构力学中具有重要的应用价值。
通过求解位移场,可以全面了解结构受力变形情况,为结构的设计和施工提供依据。
位移法不仅能够分析简单的结构问题,还可以扩展应用到更复杂的结构问题中,如悬索桥、拱桥和空间柱等。
位移法不仅适用于线性问题,还可以应用于非线性问题,如大变形、大位移和材料非线性等。
总之,位移法是结构力学中一种常用的分析方法,通过求解物体的位移场,可以获得结构的应力和变形情况。
位移法不仅能够分析简单的结构问题,还可以应用于复杂的结构问题。
通过位移法的研究,可以更全面地了解结构的受力变形情况,为结构的设计和施工提供依据。
结构力学中的位移法
结构力学中的位移法
位移法是基于以下假设的:结构单元之间的约束全部通过边界条件来
体现,结构中的材料是线弹性材料,结构中的每个单元之间是相互独立和
互不干扰的。
位移法的基本思想是首先假设结构的位移场,然后利用位移场的表达
式和边界条件,推导出结构的应力、应变和位移等信息。
具体步骤如下:
1.确定结构的约束条件:根据结构的平衡条件,确定结构各部分之间
的约束关系。
一般包括边界条件和连接条件等。
2.建立位移场:通过将结构的变形分解为一系列位移函数的线性组合,建立位移场。
常用的位移函数包括常数、线性函数、二次函数等。
3.推导位移场的表达式:利用结构的几何关系和材料的力学性质,根
据平衡条件和应力-应变关系,推导出位移场的表达式。
4.边界条件和连接条件:利用结构的边界条件和连接条件,确定位移
场中的待定系数。
5.应力和应变的计算:利用位移场的表达式和应力-应变关系,计算
结构中各点的应力和应变。
6.变形和位移的计算:利用位移场的表达式,计算结构中各点的变形
和位移。
7.校核:通过校核位移场的可行性和合理性,验证所得结果的准确性。
位移法的优点是可以处理各种复杂的边界条件和载荷情况,适用于各
种不规则结构。
但是位移法也存在一些局限性,如要求解一些复杂结构时,可能需要大量的计算和繁琐的推导过程。
总之,位移法是结构力学中一种重要的解决结构问题的方法,通过确定结构的位移场来分析结构的力学性能,具有广泛的应用前景。
在实际工程中,位移法被广泛运用于结构设计和分析中,是一种非常有效的结构分析方法。
结构力学位移法
结构力学位移法结构力学是研究结构物的力学性能和变形规律的科学,位移法是结构力学中常用的一种分析方法。
它通过计算结构物各个节点的位移,进而求解出结构物的应力、应变等力学参数。
下面将详细介绍位移法的原理和应用。
一、位移法的原理位移法是一种基于力的平衡方程和位移的相关性质来计算结构物响应的方法。
它的基本原理是通过建立结构物的整体刚度方程,解这个方程得到各节点的位移,再根据位移计算出相应节点上的应力和应变。
在应用位移法时,首先需要确定结构物的受力状态,即施加在结构物上的外力和边界条件。
然后,根据结构物的几何约束条件和材料特性,建立结构物的整体刚度方程。
这个方程是一个描述结构物节点位移与受力关系的方程,通常表示为[K]{D}={F},其中[K]是结构物的刚度矩阵,{D}是节点位移矩阵,{F}是节点受力矩阵。
解刚度方程可以得到节点位移矩阵{D},再通过位移与应力或应变的关系,计算出各个节点上的应力和应变。
常用的位移与应力或应变的关系包括伯努利梁理论、平面假设等。
最后,根据应力或应变条件,判断结构物的安全性和稳定性。
二、位移法的应用位移法广泛应用于各种结构物的力学分析和设计中,特别是对于复杂结构和非线性问题的分析更具优势。
1.梁和框架的分析对于梁和框架结构,可以根据位移法计算出节点上的位移、弯矩、剪力和轴力等力学参数。
通过对结构物的力学性能的准确分析,可以进行合理的结构设计和优化。
2.刚架和刚构的计算在刚架和刚构的计算中,位移法可以用来求解节点刚度,从而得到结构物的受力分布和变形情况。
这对于评估结构物的稳定性和刚度有重要意义。
3.非线性问题的分析位移法还可以应用于非线性结构的分析,如软土地基的承载力计算、非线性材料的应力分析等。
在这些情况下,结构物的刚度和应力等参数会随着受力状态的变化而发生变化,需要通过迭代的方法来求解。
4.动力分析位移法也可以用于结构物的动力分析。
动力分析主要研究结构物在动态载荷下的响应和振动特性。
结构力学位移法PPT_图文
用位移法分析超静定结构时,把只有角位移没有线位移结构,称无侧移 结构,如连续梁; 又把有线位移的结构,称为有侧移结构。如铰接排架 和有侧移刚架等。
位移法应用举例
例题1 试计算图示连续梁,绘弯矩图。各杆EI相同。
22.5
5、依M=M1X1+ M2X2+ MP绘弯矩图
例题2 试计算图示刚架,绘弯矩图。各杆EI相同。 Z1 Z2
(a)
(b )
(c)
1)求qA1,qA1见上图(b) (d
(e)
(f)
(g )
2)求qA2,qA2见图(c) 3)叠加得到
由平衡条件得杆端剪力:见图(g)
等截面直杆的转角位移方程,或典型单元刚度 方程。
4)当考虑典型单元上同时也作用荷载时的单元 刚度方程
MfAB
MfBA
式中,MfAB、MfBA——为两端固定梁在荷载单独作 用下的杆端弯矩(固端弯矩或载常数)
四、一端固定、另一端铰支梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
五、一端固定、另一端定向支承梁的转角位移方程
φA P
MAB A φA
QAB
q
βAB
EI
l
B
B' MBA
× ×
表9-1 等截面单跨超静定梁的杆端弯矩和剪力
28
29
30
31
32
9.3 基本未知量数目的确定
64
65
66
67
68
69
70
71
72
73
§9-5 用位移法分析具有剪力静定杆的刚架
结构力学 位移法
A EI B EI C 16kN 2kN/m
6m
EI
D
3m
6m
基本结构 基本方程:k11 △1+F1P=0 F1P
24 18
解:基本未知量:△1=θB, k11 4i 3i i
12
2i
△1= 1; M 图 MP图
k11
4i
3i i 2i
F1P
A B
F2P 16kN.m
C 8kN.m
F1P
6kN.m B 4kN.m 4kN.m
F2P
C 16kN.m
F1P = 2kN.m
F1P = -12kN.m
四、解题步骤(以一个基本未知量为例)
⑴确定基本未知量△1、基本结构、基本方程; ⑵令△1=1,画基本结构的弯矩 M 1 图,由结点或截面平衡方 程得系数k11; ⑶画基本结构荷载下的弯矩MP图,由结点或截面平衡方程得 常数项F1P; ⑷将系数k11 和常数项F1P 代入基本方程k11 △1 + F1P =0,求 解基本未知量△1 ;
⑴ 基本方程中系数kij的确定 系数kij为第j号位移△j=1,第i号附加约束的约束反力,也就 是结构的刚度系数。由结点或截面的平衡方程确定之。 附加约束的约束反力kij的正负规定与结点位移△j的正负规定 相同,刚臂的约束反力(约束力偶)kij以顺时针转为正,链杆的约 束反力kij以使杆顺时针转为正。 位移法中规定:杆端弯矩也以顺时针转为正。
△ Dx
D
△ Ex
E
△1=θ
F
F
P
△Fx
F A
θ
△2= △Dx= △Ex
△ Gx
G
F
结构力学 矩阵位移法
F1 K111 K122 K133 4i11 2i12
F2 K211 K222 K233 2i11 4i1 4i2 2 2i23
F3 K311 K322 K333 2i22 4i23
写成矩阵形式
l 2EI
l
2EI e
e
l 4EI
1
2
l
4EI
k
e
l 2E
I
l
2EI e
l 4EI
l
§9-2节 单元刚度矩阵(局部坐标系)
⑵桁架结构中杆件单元
e EA
Fx1
Fx2
l EA
l
F x1 e
4i1 2i1
2i1
4i1
F1
F2
①
1
F1①
②
2
F2①
①
②
1
2
F1② 0
+ F2②
①
②
2
F3 3 F3① 0
F3② 3
§9-4节 连续梁的整体刚度矩阵
F1① 4i1 2i1 01
F①
F2①
2i1
4i1
0
2
F3① 0
Fy1
cos sin
sin cos
0 0
M
1
Fx2
0 0
01 00
0 0 0 cos
0 0 0 sin
0 e Fx1 e
0
结构力学位移法详解
结构力学位移法详解结构力学是一门研究物体受力和变形关系的科学,它对于工程结构的设计和分析具有重要的意义。
结构力学包括静力学和动力学两个方面,其中位移法是解决结构静力学问题的一种重要方法。
位移法是一种基于结构位移的方法,通过建立结构的位移方程来求解结构中的受力和变形情况。
相比于应力法,位移法在简化问题过程中能够更好地处理约束条件和边界条件,使得解题更加简化和精确。
在位移法中,首先需要确定结构的边界条件,即结构的约束条件和边界条件。
然后根据结构的受力平衡和力的平衡条件,建立结构的位移方程。
位移方程是一个描述结构变形情况的方程,通过解这个方程可以得到结构的位移分布。
位移方程的建立通常需要以结构单元为基础,将整个结构分解为不同的单元进行分析。
每个单元之间通过节点连接,将力和位移传递给下一个单元。
而每个单元的位移方程则可以通过应力-应变关系、平衡方程和简化条件得到。
在求解位移方程时,常常使用有限差分法、有限元法或弹性力学公式等数值方法来近似求解。
这些数值方法将结构离散化,并通过数值计算得到结构的位移分布。
在得到结构的位移分布后,可以进一步计算结构的应力和应变分布,以及其它受力和变形相关的参数。
这样,就可以对结构的安全性和机械性能进行评估和优化。
总结起来,位移法是通过建立结构的位移方程来求解结构静力学问题的一种方法。
通过分析结构的位移分布,可以得到结构的应力和应变情况,进而评估结构的安全性和机械性能。
在实际工程问题中,位移法经常用于分析和设计各类结构,具有重要的实际应用价值。
结构力学-位移法-PPT(1)
五、解题示例 q
A
øB B øB
l
l
原结构
Z1
q
A
øB B øB
Z1= 14EI/l
CA
B
C
2EI/l 3EI/l
ql2/8M1图 ql2/8
A C
B
C
基本体系 4EI 3EI 7EI r11 l l l
Mp图
r11 Z1 R1 p
R1 P
ql 2 8
0
Z1
R1 p r11
ql2 8
7 EI
φA P
MAB A φA
QAB
q
βAB
EI
l
B ΔAB
B'
QBA
M AB
3
EI l
A
3
EI l2
Δ
M
f AB
M BA 0
QAB
3EI l2
a
b
3EI l3
Δ QAfB
QAB
3EI l2
a
b
3EI l3
Δ QBfA
令:i
EI l
称为“线刚度”、 AB
l
称为“旋转角”,则:
M AB
3i A
R1 r11Z1 r12 Z 2 R1P R2 r21Z1 r22 Z 2 R2P
要使基本结构在荷载和基本未知量共同作用下的受力和 原结构受力相同,故本例中R1和R2应该为零
rr1211ZZ11
r12 Z 2 r22 Z 2
R1P R2P
0 0
上式既为二个未知量的位移法典型方程
计算系数和自由项
B øB
(c)
A
Z1= øB
øB
结构力学 矩阵位移法
§9-2节 单元刚度矩阵(局部坐标系)
一.一般单元的刚度方程和刚度矩阵
1.单元两端采用局部编码1、2
1
e
2.六个杆端位移组成杆端位移列向量。
v1
1
u1
EAI L
3.六个杆端力组成杆端力列向量。
y
2
2 vu22 x
e
1
2
e
u1 v1
e
3
1
F1
e
F2
e
F x1 Fy1
单元刚度矩阵中的每个元素都代表单元
杆端单位位移引起的杆端力称之为单元
刚度系数。其中
k
表示第j个杆端单位位移
ij
引起的第i个杆端力。
⑵单元刚度矩阵为对称矩阵。 kij k ji
⑶一般单元刚度矩阵为奇异矩阵 k e 0
三、特殊单元刚度方程和刚度矩阵
⑴连续梁中的受弯杆件单元 ⑵桁架结构中杆件单元
⑴连续梁中的受弯杆件单元
忽略轴变时单元的刚度矩阵
12EI
l3 6EI
k
e
l2
12E
l3 6EI
I
l2
6EI
l2 4EI
l 6EI
l2 2EI
l
12EI l3
6EI l2
12EI
l3 6EI l2
6EI
e
l2 2EI
l
6EI l2
4EI
l
§9-3节 单元刚度矩阵(整体坐标系)
一、单元坐标转换矩阵
⑶根据所选基本未知量的不同,结构矩阵分析 包括:
§9-1节 位移法概述
矩阵力法
结构矩阵分析
一般刚度法
矩阵位移法
直接刚度法
《结构力学》_龙驭球_9.矩陈位移法(1)解析
e
u 1 v1 1 u 2 v 2 2
e
上面的式子可以用矩阵符号记为
F
e
e
e
0 12 EI l3 6 EI l2 0 12 EI l3 6 EI l2
0 6 EI l2 4 EI l 0 6 EI l2 2 EI l
EA l 0 0
12 EI l3 6 EI 2 l 0 12 EI l3 6 EI 2 l
EA l 0 0
e
u 1 v1 1 u 2 v 2 2
u2
F x2
e
F x2
EA u1 u2 l EA u1 u2 l
② 由两个杆端横向位移 v1、v2 和 1、2 可以用转角位移方程推导出相应 e e e e 的杆端横向力 F x1、 和 F x2 M 1、 M 2。
M1
EA 4 EI 2 EI 6 EI 4i A u 21i 6 i F B u2 x1 1 2 2 ( 1 2 ) M AB l l l l l EA 2 EI 4 EI 6 EI F i A 4 u2 6 x2 2 u M2 1 2 2 ( 1 2 ) M BA i i 1 B l l l l l
e
M 1e
2
v1
F
e x1
1
u1
e
e M2
v2
F
e x2
F
e y1
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位移法的两种思路:位移法典型方程和直接平衡方程 有侧移的斜柱刚架 剪力静定杆的求算 对称性的利用 联合法和混合法 温度改变时的计算 支座移动的计算 弹性支座问题 课堂练习 本章小结
位移法的基本概念
求解超静定结构的两种最基本的方法: 力法 位移法
力法适用性广泛,解题灵活性较大。(可选用各 种各样的基本结构)。
法求得转角Z1,即可求出刚
架的内力。
为了求出Z1值,可先对原结构作些修改
P
1
1
B
基本结构
A
基本体系
这样,原结构就被改造成两个单跨梁: lB是两端固定梁,1A是一端固定、另端铰支梁。
R1P
P
在基本结构上加上原来的 力P,由于附加刚臂不允许结 点1转动,此时只有梁lB发生 变形,梁1A则不变形。
基本结构
x
A
4 i A 2 i B
y 由线性小变形,由叠加原理可得
6i F M 4 i 2 i M A B AB AB l AB M 4 i 2 i 6 i M F B A AB BA BA l
2 i A
+
+
P
B 4 i B
综上所述,位移法的基本思路是: 1. 在原结构产生位移的结点上设置附加约束,使结点 固定,从而得到基本结构,然后加上原有的外荷载;
2. 人为地迫使原先被“固定”的结点恢复到结构原 有的位移。
通过上述两个步骤,使基本结构与原结构的受力和变 形完全相同,从而可以通过基本结构来计算原结构的内力 和变形。
此时附加刚臂中产生了反力矩R1P,反力矩规定以顺时 针为正。于是,基本结构与原结构就发生了差别,表现为:
1.由于加了约束,使结点1不能转动,而原来是能转动 的。
2 .由于加了约束,产生了约束反力矩,而原来是没有 这个约束反力矩的。
为了消除基本结构与原
Z1
R11
Z1
结构的差别,在结点 1 的附
加约束上人为地加上一个外R1=11+R1P=0(a)
R11为强制使结点发生转角Z1时所产生的约束反力矩。
R1P为荷载作用下所产生的约束反力矩。
为了将式(a)写成未知量Z1的显式,将R11写为
R11 r11 Z1
Z1=1
R11=r11Z1
产生的约束反力矩。
r 11为单位转角( Z1 = 1 )
式(a)变为
r11Z1 R1P 0
其物理意义是,基本结构由于转角Z1及外荷载共同作用, 附加刚臂1处所产生的约束反力矩总和等于零。
由此方程可得
R1P Z1 r11
可见,只要有了系数 r11及自由项R1P,Z1值很容易求得。
为了确定上式中的 R1P 和 r11 ,可先用力法分别求出各
单跨超静定梁在梁端、柱顶1处转动 Z1=1时产生的弯矩图
等截面直杆的物理方程
A B
位 移 法 中 的
基 本 单 跨 梁
A
B
1.转角位移方程
Slope-Deflection Equation
单跨超静定梁在荷载、 温改和支座移动共同作用下
符号规定:
杆端弯矩---绕杆端顺时针为正 杆端剪力---同前 杆端转角---顺时针为正 杆端相对线位移---使杆轴顺时针转为正
及外荷载作用下产生的弯矩图。
Z1=1
r11
M1
R1P
P
Pl 8
P
Pl 8
1
MP图
A
现取 M 1 图、MP图中的结点1为隔离体,由力矩平衡方
程
M
1
0,求出 :
7 EI r11 l
1 R1P Pl 8
将这些结果代入位移法基本方程中解方程,即得
Pl 2 Z1 56EI
最后,根据叠加原理 M M P M 1 Z1 ,即可求出最后弯 矩图 。
力矩 R11 ,迫使结点 1 正好转 动了一个转角 Z1 ,于是变形 复原到原先给定的结构。
R1P
P
基本结构
=
Z1
+
R11
Z1
结点1正好转动一个转角Z1时,所加的附加约束不再 起作用,其数学表达式为:
R1=0
即外荷载和应有的转角Z1共同作用于基本结构时,附 加约束反力矩等于零。 根据叠加原理,共同作用等于单独作用的叠加:
AB 6i AB / l
t1
2
6i AB / l
+
M
F AB
转角位移方程 t
固端弯矩
F M BA
6i F M 4 i 2 i M AB A B AB AB l 6 i M 4 i 2 i M F BA B A AB BA l
拆成基本 结构
加上某些条件
原结构的变形协调条件(力法基本方程)
位移法: 先求某些结点位移 结构内力
解题过程:
结构 拆成单根杆件 的组合体
1.杆端位移协调条件 2.结点的平衡条件
加上某些条件
适用范围:
力法: 超静定结构 位移法: 超静定结构,也可用于静定结构。 一般用于结点少而杆件较多的刚架。 例:
转角位移方程(刚度方程) Slope-Deflection (Stiffness) Equation EI 其中: i 称杆件的线刚度。 l F F 为由荷载和温度变化引起的 M AB , M BA 杆端弯矩,称为固端弯矩。
A端固定B端铰支杆的转角位移方程为
B
A
M AB
3i F 3i A AB M AB l
位移法在解题上比较规范,具有通用性,因 而计算机易于实现。 位移法可分为:手算——位移法 电算——矩阵位移法
力法与位移法最基本的区别:基本未知量不同
力法:以多余未知力基本未知量 位移法:以某些结点位移基本未知量
力法和位移法的解题思路: 力法: 先求多余未知力 结构内力 结构位移
解题过程:
超静定结构
结 构 力 学
讲 授: 刘华良 刘华良 课件制作:
南华大学城建学院道桥系
衡阳
2005年
结 构 力 学 Ⅱ
讲 授: 刘华良 刘华良 课件制作:
南华大学建资学院道桥教研室 衡阳 2005年
第八章 位移法
(Displacement Method)
内
容
位移法的基本概念
等截面直杆的物理方程 位移法基本未知量数目的确定
用位移法计算图示刚架。
为了使问题简化,作如下 计算假定:
1. 在受弯杆件中,略去杆 件的轴向变形和剪切变 形的影响。 2. 假定受弯杆两端之间的 距离保持不变。
由此可知,结点1只有转角Z1,而无线位移,汇交 于结点1的两杆杆端也应有同样的转角Z1。 整个刚架的变形只要用未 知转角Z1来描述,如果能设