结构力学第9章位移法

合集下载

结构力学_位移法

结构力学_位移法

1
1
1 B
1 B
B
1 C
1 C
C C
FP FP A A D D
D
Z2 Z2
C
Z3 Z3 C
B B
D
B
C C
A
A
Z1 Z1
B
B
C
D D
2
2
F F E E
G G
Z4 Z4
G
G
F E
F
G
G
E
A D
A D
nB Y= 4
Z6
Z5 C
Z5
B
C
Z6
F
G
3、结点独立线位移数 (1) 先简化结构
1)除特殊指明外,梁与刚架一般不考虑由于轴向变形引
b)一端固定 一端铰支
c) 一端固定 一端定向支承
由荷载或温度变化引起的杆端内力称为载常数。其中的杆端弯
F F 矩也常称为固端弯矩,用M BA 和 M AB 表示;杆端剪力也常称为 F F 固端剪力,用FQ 和 表示。 F AB QBA
常见荷载和温度作用下的载常数列入表中(书P5) 。
由杆端单位位移引起的杆端内力称为形常数,见书P279,7-7 式。表中引入记号i=EI/l,称为杆件的线刚度。
F 3i A 3i M AB l 0
3、一端固定另一端定向支承梁
FP B EI
A
A
MAB FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:

结构力学——位移法

结构力学——位移法

结论: 刚架(不带斜杆的)一个结点一个转角,一层一个侧移。
例5 :
A B C B D
例6:
A
有两个刚结点B、C,由于 忽略轴向变形及B、C点的约 束,B、C点的竖向、水平位 移均为零,因此该结构的未 知量为: B C
桁架杆件要考虑轴向变形。因此每个 结点有两个线位移。该结构的未知量为:
D C
超静定结构计算
满足基本假设的几何不变体系在一定外因作用下 内力和位移的物理关系是一一对应的;力满足平衡条 件;位移满足协调条件。
当以多余未知力为基本未知量作为突破口时采取 的方法就是力法;当以某些结点位移作为基本未知量 作为突破口时采取的方法就是位移法。 超静定结构计算的总原则:欲求超静定结构先取一 个基本体系,然后让基本体系在受力方面和变形方 面与原结构完全一样。
EA EA 2 FNDA FNDC L 2L 2
杆端力与杆端 位移的关系
由结点平衡:
NDB NDA D Fp NDC
Y 0
2 2 FNDB FNDC FNDA FP 2 2 EA(2 2) FP 2L
建立力的 平衡方程
2 PL 由方程解得: (2 2) EA
3、确定系数与自由项
1 l 2 l l 11 EI 2 3 3EI 3i 1 l 2 l l 22 EI 2 3 3EI 3i
EI 令 i l
1 l 1 l l 12 21 EI 2 3 6 EI 6i
1C
l
2C
l
4、解方程,求杆端弯矩
1 1 X1 X 2 A 3i 6i l
1 1 X 1 X 2 B 6i 3i l

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解位移法是结构力学中常用的一种分析方法,通过计算结构的位移来求解结构的内力、应力和变形等问题。

它的基本思想是建立结构的位移与应力之间的关系,并利用位移方程和边界条件,求解结构的位移分布,进而获得结构内力、应力和变形等信息。

1.位移概念:结构的位移是指结构中各点相对于参考点的位置变化量。

通常用向量形式表示,位移向量包含所有结构节点的位移分量。

位移分量包括两个方向的位移:横向位移和纵向位移。

横向位移是结构在水平方向上的位置变化,纵向位移是结构在垂直方向上的位置变化。

2.位移分布方程:位移分布方程是描述结构位移与应力之间关系的基本方程。

根据结构的力学特性和边界条件,可以建立位移方程。

一般情况下,位移方程包含多个线性方程,通过求解这些方程组,可以得到结构的位移分布。

常用的位移分布方程包括静平衡方程、变形方程和边界条件等。

3.静平衡方程:静平衡方程是结构力学中最基本的方程之一,它描述结构受力平衡的条件。

根据牛顿第二定律,结构的受力和位移之间存在其中一种关系。

通过建立结构受力平衡的方程,可以获得结构的位移分布。

4.变形方程:变形方程是位移法分析中的重要概念,它用来描述结构的变形与应力之间的关系。

根据结构力学理论,结构受到外力作用时,会发生形变,形成内力和应力。

通过建立变形方程,可以求解结构内力和应力分布。

5.边界条件:边界条件是位移法中必须考虑的条件,它是解决位移方程的关键因素。

边界条件主要包括结构的支座约束条件和结构受力边界条件。

支座约束条件指明结构的一些节点固定或受到特定的位移限制,受力边界条件指明结构的一些部分受到特定的外力或力矩作用。

6.内力和应力计算:通过求解结构的位移分布,可以计算得到结构的内力和应力。

内力是指结构中各点所受的力的大小和方向,包括轴力、剪力和弯矩等。

应力是指结构内部各点处的应力大小和方向,包括正应力和剪应力等。

7.变形计算:位移法可以用来计算结构的变形情况,包括横向变形和纵向变形。

《结构力学》第9章矩阵位移法.

《结构力学》第9章矩阵位移法.
3.结点位移整体编码
对结构整体建立坐标系oxyz,则每个结点都有确定的位置坐标。
下标I表示结点编号,上标T表示矩阵转置。
结构力学
对结构所有的结点位移,统一用矢量Δ表示,称为结构整体位 移,简称结构位移或整体位移。Δ中各分量的顺序首先是结点 编号,然后是每个点本身的x,y,z顺序,即
对应结点载荷用矢量F表示,它的排序与位移排序相同
整体坐标系下单元杆端力与杆端位移间的关系—刚度方程: 简写为 其中Ke称为整体坐标系下的单元刚度矩阵。
结构力学
9.4 结构的整体刚度方程和整体刚度矩阵
上式称为结构的整体刚度方程,其中K称为结构的整体刚度 矩阵。
总体刚度矩阵是一个方阵,其阶数与结构结点位移分量总 数相同。它的分量是由单元刚度矩阵的系数叠加构成的。叠加 规律是:单元刚度矩阵的元素,按照它所处的局部行和列号, 对应单元的定位向量,在总刚度矩阵中落到新的行和列上。 总刚度矩阵的特点: (1)刚度矩阵的系数是物理量,由结构本身的长度、截面尺寸、 材料性质、连接方式等决定,与载荷、变形等量无关。 (2)总刚度系数kij表示结构沿第j个整体结点位移方向产生单位 位移Δj=1,其他所有结点位移等于0时,在第i结点位移方向所 需要施加的力(与传统位移法相同)。
结构力学
9.5 非结点荷载的等效化
计算步骤: 1. 在局部坐标系下计算单元的等效载荷 2. 将固端力转换到结构(整体)坐标系 3. 等效结点载荷FP
结构力学
9.6 计算步骤和算例
矩阵位移法的基本步骤如下:
(1)整理原始数据,对结点位移进行整体编码,得到单元定位向量等。 直接的结点载荷按它对应的结点位移编码,直接计入整体结点载荷向量 F中。 (2)单元分析,先形成局部坐标系中的单元刚度矩阵 ,用式(9-10)。 再形成整体坐标系中的单元刚度矩阵Ke,用式(9-24)。 (3)整体分析,依定位向量,将单元刚度矩阵“对号入座”集成总刚度 矩阵K。

结构力学 位移法典型方程、计算举例

结构力学 位移法典型方程、计算举例
r11 B r12 CH
r21 B r22 CH R2
满足此方程,就消去了施加的2个约束
即,
r11 B r12 CH R1P 0 r21 B r22 CH R2 P 0
4)弯矩图的作法----消去最先附加的刚臂 P R1P R2P + MP图 R2
r
j 1
n
ij
Zj
,为消去该处的约束力,令: R iP
r
j 1
n
ij
Z j =0 即可。写成方程组的形式为:
r11 Z1 r12 Z 2 r1n Z n R1P 0 r Z r Z r Z R 0 21 1 22 2 2n n 2P rn1 Z1 rn 2 Z 2 rnn Z n RnP 0
R1P
R2P
+ +
r11 R A
1
r21R 2A
MP图 +
r12 B
r22 B

P
qL2/12
PL/8
4i
2i
q
R1P
R2P
+ A•
r11 8i r21 2i
2i
M 1图
MP图
4i
+
B•
4i r22 11i 2i r12 2i 3i 2i
M 2图
M M P M 1 A M 2 B
叠加右侧2个图,意味着结点B转动 及结点C侧移都发生。
叠加后B处的转角和C处的位移
分别为:B CH 则两处的约 束力必为R1,R2
r12 CH

结构力学位移法

结构力学位移法

R2
R1=0 R2=0
ql
C D
Z1 R1
l
四.位移法典型方程
ql
q
l/2 B
ql
C D
ql B
A r22
q
R2 Z1
R1=0
ql C D
Z2=1
l/2 A
EI=常数
R2=0 R1 R1 r11 Z1 r12 Z 2 R1 P 0
l
C
r21
R2 r21 Z1 r22 Z 2 R2 P 0
r11
3i 3i
EI
r
11
=6i
R1P
ql 2 / 8
R1P
q
R1 P ql 2 / 8
Z1 ql / 48i ql 2 8 MM Z M 1 1 P
2
MP
ql2 / 16
r11
3i
Z1=1 3i
M1
Z1
M
位移法求解过程:
1)确定基本体系和基本未知量 2)建立位移法方程 3)作单位弯矩图和荷载弯矩图 4)求系数和自由项 5)解方程 6)作弯矩图
A
Z1
B
Z1
q
B
C
=
A
B
+
B
ቤተ መጻሕፍቲ ባይዱ
C
Z1
q
A
EI
B
Z1
EI
C
----刚臂,限制转动的约束 R1=0 R1=r11 Z1+ R1P =0
R1
q
A
EI
B
EI
C
r11
3i
B B
ql 8
2
3i
r

结构力学教学课件-09矩阵位移法

结构力学教学课件-09矩阵位移法
实践应用
学习者可以通过实际的结构分析案例,将矩阵位移法应用于实际问题中,加深理解和掌 握。
THANKS
感谢观看
矢量与张量
在结构力学中,矢量与张量是描述结 构内力和位移的重要工具,矩阵位移 法中需要用到这些概念。
矩阵位移法的计算步骤
建立结构离散化模型
将结构划分为若干个离散的单元,每个单元 具有一定的自由度。
建立单元刚度方程
根据结构力学中的刚度原理,建立每个单元 的刚度方程。
集成整体刚度方程
将所有单元的刚度方程集成在一起,形成整 体刚度方程。
课程目标
掌握矩阵位移法的基本原理和步骤,理解如何应 用矩阵位移法解决实际工程问题。
学会使用相关软件进行结构分析,提高解决实际 问题的能力。
培养学生对结构力学学科的兴趣和热爱,为今后 从事土木工程领域的工作打下基础。
02
矩阵位移法基础
矩阵位移法概述
矩阵位移法是一种基于矩阵运算的数值分析方法,用 于解决结构力学中的位移问题。
结构力学教学课件-09矩阵位移法
目 录
• 引言 • 矩阵位移法基础 • 矩阵位移法的基本原理 • 矩阵位移法的应用实例 • 结论
01
引言
课程背景
01
结构力学是土木工程学科中的重 要基础课程,矩阵位移法是结构 力学中的一种重要分析方法,用 于解决结构的位移和内力问题。
02
随着计算机技术的发展,矩阵位 移法在结构分析中得到了广泛应 用,因此掌握矩阵位移法对于土 木工程师来说具有重要意义。
矩阵位移法的应用范围
矩阵位移法广泛应用于各种工程结构的分析,如桥梁、建筑、机械等 。
下一步学习建议
深入学习矩阵位移法的数学基础
为了更好地理解和应用矩阵位移法,建议学习者深入学习线性代数和数值分析等相关数 学基础。

结构力学PPT 第9章

结构力学PPT  第9章
结构力学
<I>
临沂大学建筑学院 结构力学学科组
第九章
§9.1 位移计算概述
静定结构的位移 静定结构在荷载、温度变化、支座移动以及制造误 差等因素作用下,结构的某个截面通常会产生水平线 位移、竖向线位移以及角位移。 Bx 1. 截面位移
P
P
B
C
c
cx
B
By
cy
A C
A
刚架受荷载作用
如果结构由多个杆件组成,则整个结构变形引起某点的位移为:
( M N Q 0 )ds
若结构的支座还有位移,则总的位移为:
( M N Q 0 )ds Rk ck
广义力与广义位移的对应关系 作功的两方面因素:力、位移。与力有关的因素,称为广 义力S。与位移有关的因素,称为广义位移Δ。 广义力与广义位移的关系是:它们的乘积是虚功。即: T=SΔ 1)广义力是单个力,则广义位移是该力的作用点的位移在力作 用方向上的分量; 2)广义力是一个力偶,则广义位移是它所作用的截面的转角; 3)若广义力是等值、反向的一对力P
C
L
P=1/l
D
求C点两边的相对转角
求CD杆的转角位移
练习
A P=1/ l
图示虚拟的广义单位力状态,可求什么位移。 AB杆的转角
l ④ P=1/ l B
P=1/ l B l A P=1/ l P=1/ l P=1/ l l C

P=1/ l A l ⑤

AB连线的转角
P=1/ l B
( )
AB杆和AC杆的 相对转角
9kN.m
12kN B
7.5kN.m
A
2m
2m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位移法的两种思路:位移法典型方程和直接平衡方程 有侧移的斜柱刚架 剪力静定杆的求算 对称性的利用 联合法和混合法 温度改变时的计算 支座移动的计算 弹性支座问题 课堂练习 本章小结
位移法的基本概念
求解超静定结构的两种最基本的方法: 力法 位移法
力法适用性广泛,解题灵活性较大。(可选用各 种各样的基本结构)。
法求得转角Z1,即可求出刚
架的内力。
为了求出Z1值,可先对原结构作些修改
P
1
1
B
基本结构
A
基本体系
这样,原结构就被改造成两个单跨梁: lB是两端固定梁,1A是一端固定、另端铰支梁。
R1P
P
在基本结构上加上原来的 力P,由于附加刚臂不允许结 点1转动,此时只有梁lB发生 变形,梁1A则不变形。
基本结构
x
A
4 i A 2 i B
y 由线性小变形,由叠加原理可得
6i F M 4 i 2 i M A B AB AB l AB M 4 i 2 i 6 i M F B A AB BA BA l
2 i A
+
+
P
B 4 i B
综上所述,位移法的基本思路是: 1. 在原结构产生位移的结点上设置附加约束,使结点 固定,从而得到基本结构,然后加上原有的外荷载;
2. 人为地迫使原先被“固定”的结点恢复到结构原 有的位移。
通过上述两个步骤,使基本结构与原结构的受力和变 形完全相同,从而可以通过基本结构来计算原结构的内力 和变形。
此时附加刚臂中产生了反力矩R1P,反力矩规定以顺时 针为正。于是,基本结构与原结构就发生了差别,表现为:
1.由于加了约束,使结点1不能转动,而原来是能转动 的。
2 .由于加了约束,产生了约束反力矩,而原来是没有 这个约束反力矩的。
为了消除基本结构与原
Z1
R11
Z1
结构的差别,在结点 1 的附
加约束上人为地加上一个外R1=11+R1P=0(a)
R11为强制使结点发生转角Z1时所产生的约束反力矩。
R1P为荷载作用下所产生的约束反力矩。
为了将式(a)写成未知量Z1的显式,将R11写为
R11 r11 Z1
Z1=1
R11=r11Z1
产生的约束反力矩。
r 11为单位转角( Z1 = 1 )
式(a)变为
r11Z1 R1P 0
其物理意义是,基本结构由于转角Z1及外荷载共同作用, 附加刚臂1处所产生的约束反力矩总和等于零。
由此方程可得
R1P Z1 r11
可见,只要有了系数 r11及自由项R1P,Z1值很容易求得。
为了确定上式中的 R1P 和 r11 ,可先用力法分别求出各
单跨超静定梁在梁端、柱顶1处转动 Z1=1时产生的弯矩图
等截面直杆的物理方程
A B
位 移 法 中 的
基 本 单 跨 梁
A
B
1.转角位移方程
Slope-Deflection Equation
单跨超静定梁在荷载、 温改和支座移动共同作用下
符号规定:
杆端弯矩---绕杆端顺时针为正 杆端剪力---同前 杆端转角---顺时针为正 杆端相对线位移---使杆轴顺时针转为正
及外荷载作用下产生的弯矩图。
Z1=1
r11
M1
R1P
P
Pl 8
P
Pl 8
1
MP图
A
现取 M 1 图、MP图中的结点1为隔离体,由力矩平衡方

M
1
0,求出 :
7 EI r11 l
1 R1P Pl 8
将这些结果代入位移法基本方程中解方程,即得
Pl 2 Z1 56EI
最后,根据叠加原理 M M P M 1 Z1 ,即可求出最后弯 矩图 。
力矩 R11 ,迫使结点 1 正好转 动了一个转角 Z1 ,于是变形 复原到原先给定的结构。
R1P
P
基本结构
=
Z1
+
R11
Z1
结点1正好转动一个转角Z1时,所加的附加约束不再 起作用,其数学表达式为:
R1=0
即外荷载和应有的转角Z1共同作用于基本结构时,附 加约束反力矩等于零。 根据叠加原理,共同作用等于单独作用的叠加:
AB 6i AB / l
t1
2
6i AB / l
+
M
F AB
转角位移方程 t
固端弯矩
F M BA
6i F M 4 i 2 i M AB A B AB AB l 6 i M 4 i 2 i M F BA B A AB BA l
拆成基本 结构
加上某些条件
原结构的变形协调条件(力法基本方程)
位移法: 先求某些结点位移 结构内力
解题过程:
结构 拆成单根杆件 的组合体
1.杆端位移协调条件 2.结点的平衡条件
加上某些条件
适用范围:
力法: 超静定结构 位移法: 超静定结构,也可用于静定结构。 一般用于结点少而杆件较多的刚架。 例:
转角位移方程(刚度方程) Slope-Deflection (Stiffness) Equation EI 其中: i 称杆件的线刚度。 l F F 为由荷载和温度变化引起的 M AB , M BA 杆端弯矩,称为固端弯矩。
A端固定B端铰支杆的转角位移方程为
B
A
M AB
3i F 3i A AB M AB l
位移法在解题上比较规范,具有通用性,因 而计算机易于实现。 位移法可分为:手算——位移法 电算——矩阵位移法
力法与位移法最基本的区别:基本未知量不同
力法:以多余未知力基本未知量 位移法:以某些结点位移基本未知量
力法和位移法的解题思路: 力法: 先求多余未知力 结构内力 结构位移
解题过程:
超静定结构
结 构 力 学
讲 授: 刘华良 刘华良 课件制作:
南华大学城建学院道桥系
衡阳
2005年
结 构 力 学 Ⅱ
讲 授: 刘华良 刘华良 课件制作:
南华大学建资学院道桥教研室 衡阳 2005年
第八章 位移法
(Displacement Method)


位移法的基本概念
等截面直杆的物理方程 位移法基本未知量数目的确定
用位移法计算图示刚架。
为了使问题简化,作如下 计算假定:
1. 在受弯杆件中,略去杆 件的轴向变形和剪切变 形的影响。 2. 假定受弯杆两端之间的 距离保持不变。
由此可知,结点1只有转角Z1,而无线位移,汇交 于结点1的两杆杆端也应有同样的转角Z1。 整个刚架的变形只要用未 知转角Z1来描述,如果能设
相关文档
最新文档