一次函数面积问题专题(含答案)
2021年中考数学复习函数专题突破专题12 一次函数-面积问题(全国通用)(含答案解析)
专题12 一次函数-面积问题函数的学习中,自然离不开点、线、面,如求点的坐标、直线、曲线解析式、图形的面积,并且点、线、面之间的相互转化,本专题以一次函数为背景下求多边形面积,即由点或线的条件下求图形的面积,反之,也可以由面积求点的坐标,由面积求直线或曲线的解析式等,本专题的面积问题的巩固,为后面学习函数综合题的面积问题有极大帮助!一、单选题1.(2020·广西博白·期末)如图,矩形ABCD 中,AB =4,BC =3,动点E 从B 点出发,沿B ﹣C ﹣D ﹣A 运动至A 点停止,设运动的路程为x ,△ABE 的面积为y ,则y 与x 的函数关系用图象表示正确的是( )A .B .C .D .【答案】B【解析】试题分析:当点E 在BC 上运动时,三角形的面积不断增大,最大面积=12AB BC ⋅=1432⨯⨯=6;当点E 在DC 上运动时,三角形的面积为定值6.当点E 在AD 上运动时三角形的面不断减小,当点E 与点A 重合时,面积为0. 故选B .考点: 动点问题的函数图象.2.(2020·广西灵山·期末)一次函数24y x =-+的图象与x 轴、y 轴的交点分别为A B 、,则OAB ∆的面积是( ) A .12B .1C .2D .4【答案】D【解析】由题意先根据坐标轴上点的坐标特征确定A 点坐标为(2,0),B 点坐标为(0,4),然后根据三角形面积公式即可求得△OAB 的面积.【详解】∵一次函数y=-2x+4图象与x 轴交点为A ,与y 轴的交点为B ,∴A (2,0),B (0,4), ∴OA=2,OB=4, ∴△AOB 的面积=12OA•OB=12×2×4=4.故选:D . 【点拨】本题考查一次函数图象上点的坐标特征,注意掌握与x 轴交点的纵坐标为0;与y 轴交点的横坐标为0.3.(2020·广西大化·初二期末)若直线4y x b =-+与两坐标轴围成的三角形的面积是5,则b 的值为( )A .±B .±C .D .-【答案】B【解析】首先计算出直线y =−4x +b 与两坐标轴的交点是(0,b )(4b,0),再根据三角形的面积公式可得12×|b×4b |=5,再解即可. 【详解】当x =0时,y =b ,当y =0时,x =4b, ∴直线y =−4x +b 与两坐标轴的交点是(0,b )(4b,0),∵与两坐标轴围成的三角形的面积是5,∴12×|b×4b |=5,解得:b =±故选:B .【点拨】此题主要考查了一次函数图象与坐标轴的交点,关键是根据三角形的面积公式列出方程. 4.(2020·山东枣庄·初三其他)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .4【答案】A【解析】由一次函数解析式分别求出点A 和点B 的坐标,即可作答. 【详解】一次函数y =2x +1中,当x =0时,y =1;当y =0时,x =﹣0.5;∴A (﹣0.5,0),B (0,1),∴OA =0.5,OB =1 ∴△AOB 的面积10.5124=⨯÷=,故选:A .【点拨】此题考查一次函数图象上点的坐标特征,解题关键在于结合函数图象进行解答.二、填空题5 .(2020·甘肃省庆阳市第五中学初二期末)已知直线8y kx =+与轴和轴所围成的三角形的面积是4,则k 的值是________. 【答案】8±【解析】直线8y kx =+与两坐标轴的交点为()0,8,8,0k ⎛⎫- ⎪⎝⎭,则直线8y kx =+与坐标轴围成的面积为:18-842k⨯⨯=,求解即可;【详解】直线8y kx =+与两坐标轴的交点为()0,8,8,0k ⎛⎫-⎪⎝⎭,则直线8y kx =+与坐标轴围成的面积为:18-842k⨯⨯=,若0k <,直线8y kx =+过一、二、四象限,解得:-8k =, 若0k >,直线8y kx =+过一、二、三象限,解得:8k ;则8k =±.故答案是8±.【点拨】本题主要考查了一次函数图象上的点的坐标特征,准确计算是解题的关键.6.(2020·湖南隆回·初三二模)一次函数24y x =-的图象与x 轴,y 轴所围成的三角形面积S =__________. 【答案】4【解析】先求出直线y=2x -4与两坐标轴的交点,再根据三角形的面积公式即可解答.【详解】由函数的解析式可知,函数图象与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,-4), 直线y=2x -4与两坐标轴围成的三角形面积=12×2×4=4. 故答案为:4.【点拨】本题考查了一次函数图象上点的坐标特征,属简单题目,解答此题的关键是熟知两坐标轴上点的坐标特点,及三角形的面积公式.7.(2020·湖北曾都·初二期末)若直线y=kx+b (k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k 的值为_______【答案】±1.【解析】∵直线y=kx+b(k≠0)的图象经过点(0,2),∴b=2,∴直线y=kx+b(k≠0)为y=kx+2,当y=0时,x=−2k,∴12222k⨯⨯-=,解得k=±1.故答案为±1.8.(2020·长沙市南雅中学初二期末)函数y=2x+6 的图象与x、y 轴分别交于A、B 两点,坐标系原点为O,求△ABO 的面积___________.【答案】9【解析】先求出A,B两点的坐标,然后再求面积即可.【详解】当x=0时,y=6,故B点坐标为:(0,6),当y=0时,0=2x+6,解得x=-3,∴A点的坐标为(-3,0),∴OA=3,OB=6,∴S△ABO=12×3×6=9,故答案为:9.【点拨】本题考查了一次函数与坐标轴的交点,求出A,B两点的坐标是解题关键.9.(2020·湖南渌口·初二期末)已知一次函数y=kx+4(k<0)的图象与两坐标轴所围成的三角形的面积等于8,则k的值为_____.【答案】-1.【解析】先分别求出函数图像与x轴、y轴的交点坐标,再由三角形面积可得S=12×(﹣4k)×4=﹣8k=8并解答即可.【详解】一次函数y=kx+4与x轴的交点为(﹣4k,0),与y轴的交点为(0,4),∵k<0,∴函数图象与坐标轴围成三角形面积为S=12×(﹣4k)×4=﹣8k=8,∴k=﹣1,故答案为﹣1.【点拨】本题考查一次函数图象上点的坐标特点;求出一次函数图象与坐标轴的交点坐标是解答本题的关键.10.(2019·山西初二期末)如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.【答案】152【解析】把点A (﹣3,4)代入y =﹣3x+b 求出点B 的坐标,然后得到OB=5,利用A 的坐标即可求出△AOB 的面积.【详解】 ∵点A (﹣3,4)在一次函数y =﹣3x+b 的图象上,∴9+b=4,∴b=-5, ∵一次函数图象与y 轴的交点的纵坐标就是一次函数的常数项上的数, ∴点B 的坐标为:(0,-5),∴OB=5,而A (﹣3,4), S △AOB =1155322⨯⨯= .故答案为: 152. 【点拨】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.三、解答题11.(2020·福建宁化·期中)已知直线l 的表达式为y=﹣x+8,与x 轴交于点B ,点P (x ,y )在直线l 上,且x >0,y >0,点A 的坐标为(6,0). (1)求出B 点的坐标;(2)设△OPA 的面积为S ,求S 与x 的函数关系式(并写出自变量的取值范围).【答案】(1)B (8,0);(2)()32408S x x =-+<<【解析】(1)令y=0求得x 即可;(2)由点P (x ,y )在直线l 上且x >0,y >0即80y x =-+>,可得0<x <8,再由三角形面积公式可知答案.【详解】(1)在8y x =-+中令0y =,得80x -+=,∴8x =,∴B (8,0);(2)∵点P (x ,y )在直线l 上,点A 的坐标为(6,0),∴S=()1682x ⨯⨯-+. 即324S x =-+(08x <<).【点拨】本题主要考查了一次函数的图象和性质,熟练掌握一次函数与坐标轴相交问题及一次函数图象上点的坐标特点是解题的关键.12.(2020·甘肃徽县·初二期末)如图,直线l 1的解析式为y =﹣x +2,l 1与x 轴交于点B ,直线l 2经过点D (0,5),与直线l 1交于点C (﹣1,m ),且与x 轴交于点A (1)求点C 的坐标及直线l 2的解析式; (2)求ABC 的面积.【答案】(1)C (﹣1,3),y =2x +5;(2)274. 【解析】(1)首先利用待定系数法求出C 点坐标,然后再根据D 、C 两点坐标求出直线l 2的解析式; (2)首先根据两个函数解析式计算出A 、B 两点坐标,然后再利用三角形的面积公式计算出ABC 的面积即可.【详解】(1)∵直线l 1的解析式为y =﹣x +2经过点C (﹣1,m ), ∴m =1+2=3, ∴C (﹣1,3),设直线l 2的解析式为y =kx +b ,∵经过点D (0,5),C (﹣1,3),∴53b k b =⎧⎨-+=⎩,解得:25k b =⎧⎨=⎩,∴直线l 2的解析式为y =2x +5; (2)由25y x =+得: 当y =0时,2x +5=0, 解得:52x =-,则5,0,2A ⎛⎫- ⎪⎝⎭由2y x =-+,当y =0时,﹣x +2=0,解得x =2,则B (2,0),ABC ∴的面积152723224⎛⎫=⨯+⨯= ⎪⎝⎭.【点拨】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,同时考查了坐标与图形的面积,掌握以上知识是解题的关键.13.(2020·湖北下陆·初二期末)在平面直角坐标系中,原点为O ,已知一次函数的图象过点A (0,5),点B (-1,4)和点P (m ,n ). (1)求这个一次函数的解析式;(2)当n =2时,求直线 AB ,直线 OP 与 x 轴围成的图形的面积; (3)当OAP △的面积等于OAB 的面积的2倍时,求n 的值. 【答案】(1)5y x =+;(2)5;(3)n 的值为7或3. 【解析】(1)利用待定系数法求一次函数的解析式;(2)设直线AB 交x 轴于C ,如图,则C (-5,0),然后根据三角形面积公式计算OPCS 即可;(3)利用三角形面积公式得到 11521522m ⨯⨯=⨯⨯⨯,解得m=2或m=-2,然后利用一次函数解析式计算出对应的纵坐标即可.【详解】(1)设这个一次函数的解析式是y=kx+b , 把点A (0,5),点B (-1,4)的坐标代入得:45k b b -+=⎧⎨=⎩ ,解得:15k b =⎧⎨=⎩, 所以这个一次函数的解析式是y=x+5; (2)设直线AB 交x 轴于C ,如图, 当y=0时,x+5=0,解得x=-5,则C (-5,0),当n=2时,15252OPCS=⨯⨯=, 即直线AB ,直线OP 与x 轴围成的图形的面积为5; (3)∵当OAP △的面积等于OAB 的面积的2倍,()0,5,A ∴11521522m ⨯⨯=⨯⨯⨯,∴m=2或m=-2, 即P 点的横坐标为2或-2, 当x=2时,y=x+5=7,此时P (2,7); 当x=-2时,y=x+5=3,此时P (-2,3); 综上所述,n 的值为7或3.【点拨】本题考查了待定系数法求一次函数解析式:考查了直线与坐标轴围成的图形的面积,掌握以上知识是解题的关键.14.(2020·昆明市官渡区第一中学初二月考)已知一次函数22y x =--. (1)画出函数图象;(2)求图象与x 轴、y 轴的交点A 、B 的坐标; (3)求图象与坐标轴围成的图形的面积.【答案】(1)见解析;(2)A(-1,0),B(0,-2);(3)1 【解析】(1)根据描点法,可得函数图象; (2)根据自变量与函数值的对应关系,可得答案; (3)根据三角形的面积公式,可得答案. 【详解】(1)x 的取值范围为全体实数, 列表:;(2)∵图象与x 轴交点纵坐标为0,与y 轴交点横坐标为0, ∴令y=0,220x --=,解得-1x =,A (-1,0), 令x=0,y=-2,B (0,-2); (3)11212S =⨯⨯=. 【点拨】本题考查了一次函数图象,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.15.(2018·安徽初二期末)如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数24y x =-+的图象.(1)求A 、B 、P 三点坐标; (2)求PAB △的面积;(3)已知过P 点的直线把PAB △分成面积相等的两部分,求该直线解析式.【答案】(1)()1,0A -,()2,0B ,()1,2P ;(2)3;(3)42y x =-.【解析】(1)把y =0分别代入1y x =+、24y x =-+求出x 即可得到A 、B 的坐标,联立两个函数解析式得到方程组,解方程组即可得到点P 的坐标;(2)根据A 、B 、P 三点的坐标及三角形面积公式即可求解;(3)设过P 点直线交x 轴于点D ,根据面积相等及两个三角形同高,可知AD=BD ,据此求出点D 坐标,再利用待定系数法求解析式即可.【详解】(1)直线1y x =+,当0y =时,1x =-,∴()1,0A -, 直线24y x =-+,当0y =时,2x =,∴()2,0B ,联立函数解析式得方程组124y x y x =+⎧⎨=-+⎩,解得12x y =⎧⎨=⎩,∴()1,2P ;(2)过P 点作PC ⊥x 轴,垂足为C ,∵()()()1,0,2,0,1,2A B P -,∴AB=2-(-1)=3,PC=2, ∴S △ABP =12×3×2=3; (3)设过P 点直线交x 轴于点D ,∵S △PAD = S △PBD ,且两个三角形同高,∴AD=BD , 设D 点坐标为(),0x ,∴()12x x --=-,解得12x =,∴1,02D ⎛⎫ ⎪⎝⎭, 设过P 、D 两点直线解析式为y kx b =+,则2102k bk b =+⎧⎪⎨=+⎪⎩,解得42k b =⎧⎨=-⎩, ∴直线解析式42y x =-. 【点拨】本题考查了一次函数与坐标轴交点、表达式的求法,三角形面积,及一次函数与二元一次方程组的联系,熟练掌握待定系数法求表达式,求得图形关键点坐标是解题的关键.16.(2019·山东初一期末)如图,已知一次函数y =−x +2的图像与y 轴交于点A ,一次函数y =kx +b 的图像过点B(0,4),且与x 轴及y =−x +2的图像分别交于点C 、D ,D 点坐标为(−23,n). (1)求n 的值及一次函数y =kx +b 的解析式. (2)求四边形AOCD 的面积.【答案】(1) n =83;y=2x+4;(2)S=103【解析】(1)根据点D 在函数y =-x +2的图象上,即可求出n 的值;再利用待定系数法求出k ,b 的值; (2)用三角形OBC 的面积减去三角形ABD 的面积即可. 【详解】(1)∵点D (-23,n )在直线y =-x +2上,∴n =23+2=83.∵一次函数经过点B (0,4)、点D (-23,83),∴{b =4−23k +b =83 ,解得:{k =2b =4.故一次函数的解析式为:y =2x +4;(2)直线y =2x +4与x 轴交于点C ,∴令y =0,得:2x +4=0,解得:x =-2,∴OC =2.∵函数y =-x +2的图象与y 轴交于点A ,∴令x =0,得:y =2,∴OA =2.∵B (0,4),∴OB =4,∴AB =2.S △BOC =12×2×4=4,S △BAD =12×2×23=23,∴S 四边形AOCD =S △BOC ﹣S △BAD =4﹣23=103.【点拨】本题考查了一次函数的交点,解答此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(2)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.17.(2019·内蒙古初二期中)如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C .(1)写出点A 、B 、C 的坐标;(2)求此一次函数的解析式;(3)求△AOC 的面积.【答案】(1)A (2,4),B (0,2),C (2,0-);(2)2y x =+;(3)4【解析】(1)由图观察可得A ,B ,C 的坐标;(2)由图可知A ,B 两点的坐标,把两点坐标代入一次函数y kx b =+即可求出,k b 的值;进而得出结论; (3)由C 点坐标可求出OC 的长,再由A 点坐标可知AD 的长,利用三角形的面积公式即可得出结论.【详解】(1)由图观察可知:A (2,4),B (0,2),C (2,0-)(2)由(1)知A (2,4),B (0,2),代入y kx b =+得242k b b +=⎧⎨=⎩,解得12k b =⎧⎨=⎩ 故一次函数解析式为:2y x =+(3)由(1)知C (2,0-),A (2,4)∴OC=2,AD=4 ∴1124422AOC S OC AD ∆=⋅⋅=⨯⨯= 故AOC ∆的面积为4【点拨】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出A 、B 、C 三点的坐标是解答此题的关键.18.(2019·内蒙古初三月考)一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (-1,4).(1)求两条直线的解析式;(2)求四边形ABDO 的面积.【答案】(1)直线CD 的解析式为:3y x =-+;直线AB 的解析式为:26y x =+;(2)四边形ABDO 的面积为7.5.【解析】(1)将B (﹣1,4)代入一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,可以得到关于k 、b 的二元一次方程组,解方程组即可得到k 、b 的值,即可求出两条直线的解析式.(2)由图可知四边形ABDO 不是规则的四边形,利用割补法得到ABDO ABC COD S SS =-,分别算出△ABC与△DOC 的面积即可算出答案.【详解】(1)∵一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (﹣1,4),∴将点B (﹣1,4)代入一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,可得:4422k b k b =+⎧⎨=-+⎩ 解得:13k b =⎧⎨=⎩; ∴直线CD 的解析式为:3y x =-+;直线AB 的解析式为:26y x =+;(2)∵点A 为直线AB 与x 轴的交点,令y=0得:26=0x +解得:=3x ﹣,∴A (﹣3,0);∵C 为直线CD 与x 轴的交点,令y=0得:3=0x -+解得:=3x ,∴C (3,0);∵D 为直线CD 与y 轴的交点,令x=0得y=3∴D (0,3);∴AC=6,OC=3,OD=3; 由图可知1164337.522ABDO ABC COD S S S =-=⨯⨯-⨯⨯=; ∴四边形ABDO 的面积为7.5.【点拨】本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.19.(2017·山东省济南兴济中学初二单元测试)两个一次函数的图象如图所示,(1)分别求出两个一次函数的解析式;(2)求出两个一次函数图象的交点C 坐标;(3)求这两条直线与y 轴围成△ABC 的面积.【答案】(1)l 1为y =-14x +1,l 2为y =-32x -3;(2)C (-165,95);(3)325. 【解析】试题分析:(1)利用待定系数法求出两个一次函数的解析式;(2)运用两个一次函数的解析式联立得出方程组求解即可.(3)利用三角形的面积求解.试题解析:解:(1)设l 1的解析式为y =k 1x +b 1,l 2的解析式为y =k 2x +b 2,把(﹣2,0),(0,﹣3)代入l 1,(4,0),(0,1)代入l 2得,111023k b b =-+⎧⎨-=⎩ ,222041k b b =+⎧⎨=⎩, 解得:11323k b ⎧=-⎪⎨⎪=-⎩ ,22141k b ⎧=-⎪⎨⎪=⎩.所以l 1的解析式为y =﹣32x ﹣3,l 2的解析式为y =﹣14x +1; (2)联立方程组332114y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩ ,解得:16595x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以两个一次函数图象的交点坐标(165-,95); (3)三角形的面积=116425⨯⨯=325. 点拨:本题主要考查了两条直线相交或平行问题,解题的关键是能正确求出一次函数的解析式. 20.(2020·安徽初二期末)在平面直角坐标系xOy 中,ABC ∆如图所示,点()()()3,2,1,1,0,4A B C -.(1)求直线AB 的解析式;(2)求ABC ∆的面积;(3)一次函数32y ax a =++(a 为常数).①求证:一次函数32y ax a =++的图象一定经过点A ;②若一次函数32y ax a =++的图象与线段BC 有交点,直接写出a 的取值范围.【答案】(1)1544y x =-+;(2)112;(3)①见解析,②1243a -≤≤且0a ≠. 【分析】(1)根据待定系数求解析式即可;(2)设直线AB 与y 轴的交点为D 点,求出点D 的坐标,然后根据ABC ACD BCD S S S ∆∆∆=+可得出结果; (3)①把一次函数32y ax a =++整理为()32y a x =++的形式,再令x+3=0,求出y 的值即可; ②根据直线32y ax a =++一定经过点A,而且与线段BC 有交点,可得直线32y ax a =++在绕着点A从直线AC 顺时针旋转到直线BC 之间的区域,再结合a ≠0从而得出结果.【详解】(1)设直线AB 的解析式是y kx b =+,将点()3,2A -,点()1,1B 代入的,得321k b k b -+=⎧⎨+=⎩,解得,1454k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线AB 的解析式是1544y x =-+;(2)设直线AB 与y 轴的交点为D 点,则点D 的坐标为50,4⎛⎫ ⎪⎝⎭, 151511434124242ABC ACD BCD S S S ∆∆∆⎛⎫⎛⎫=+=⨯-⨯+⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; (3)①证明:∵()3232y ax a a x =++=++,令x+3=0,得x=-3,此时y=2.∴32y ax a =++必过点()3,2-,即必过A 点;②当直线32y ax a =++与直线AC 重合时,可得4=3a+2,解得a=23, 当直线32y ax a =++与直线AB 重合时,可得1=a+3a+2,解得a=14-, ∴a 的取值范围是:1243a -≤≤且0a ≠. 【点拨】本题是一次函数的综合题,考查了是利用待定系数法求一次函数解析式,一次函数图象上点的坐标特点以及与几何图形的综合问题,有一定的难度.21.(2020·湖北房县·初二期末)如图1,直线l :y =12x +2与x 轴交于点A ,与y 轴交于点B .已知点C (﹣2,0).(1)求出点A ,点B 的坐标.(2)P 是直线AB 上一动点,且△BOP 和△COP 的面积相等,求点P 坐标.(3)如图2,平移直线l ,分别交x 轴,y 轴于交于点A 1,B 1,过点C 作平行于y 轴的直线m ,在直线m 上是否存在点Q ,使得△A 1B 1Q 是等腰直角三角形?若存在,请直接写出所有符合条件的点Q 的坐标.【答案】(1)点A 的坐标为(﹣4,0),点B 的坐标的坐标为(0,2);(2)点P 坐标为(4,4);(3)点Q 为(﹣2,2)或(﹣2,﹣2)或(﹣2,-4)或(﹣2,43). 【解析】(1)根据求与,x y 轴交点坐标的方法,列出方程即可得到结论;(2)设1,22P m m ⎛⎫+ ⎪⎝⎭,根据面积公式列出方程即可得出结论; (3)如图2,①当点1B 是直角顶点时,根据全等三角形的性质即可得出结论;②当点1A 是直角顶点时,111A B AQ =,根据平移的性质得到直线11A B 的解析式为12y x b =+,根据两点间的距离公式即可得到结论;③当点P 是直角顶点时,过点Q 作QH y ⊥轴于点H ,根据全等三角形的性质即可得出结论.【详解】(1)设y =0,则12x +2=0,解得:x =﹣4, 设x =0,则y =2,∴点A 的坐标为(﹣4,0),点B 的坐标的坐标为(0,2);(2)∵点C (﹣2,0),点B (0,2),∴OC =2,OB =2,∵P 是直线AB 上一动点,∴设P (m ,12m +2), ∵△BOP 和△COP 的面积相等,∴12×2|m |=12⨯2×(12|m |+2), 解得:m =±4,当m =﹣4时,点P 与点A 重合,∴点P 坐标为(4,4);(3)存在;理由:如图1,①当点B1是直角顶点时,∴B1Q=B1A1,∵∠A1B1O+∠QB1H=90°,∠A1B1O+∠OA1B1=90°,∴∠OA1B1=∠QB1H,在△A1OB1和△B1HQ中,111111111AOB B HQOA B HB QA B B Q∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A1OB1≌△B1HQ(AAS),∴B1H=A1O,OB1=HQ=2,∴B1(0,﹣2)或(0,2),当点B1(0,﹣2)时,Q(﹣2,2),当点B1(0,2)时,∵B(0,2),∴点B1(0,2)(不合题意舍去),∴Q(﹣2,2),②当点A1是直角顶点时,A1B1=A1Q,∵直线AB的解析式为y=12x+2,由平移知,直线A1B1的解析式为y=12x+b,∴A1(﹣2b,0),B1(0,b),∴A1B12=4b2+b2=5b2,∵A1B1⊥A1Q,∴直线A1Q的解析式为y=﹣2x﹣4b∴Q(﹣2,4﹣4b),∴A1Q2=(﹣2b+2)2+(4﹣4b)2=20b2-40b+20,∴20b2﹣40b+20=5b2,∴b=2或b=23,∴Q(﹣2,-4)或(﹣2,43);③当Q是直角顶点时,过Q作QH⊥y轴于H,∴A1Q=B1Q,∵∠QA 1C 1+∠A 1QC =90°,∠A 1QC +∠CQB 1=90°,∴∠QA 1C =∠CQB 1,∵m ∥y 轴,∴∠CQB 1=∠QB 1H ,∴∠QA 1C =∠QB 1H在△A 1QC 与△B 1QH 中,11111190QA C QB H A CQ B HQ A Q B Q ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△A 1QC ≌△B 1QH (AAS ),∴CQ =QH =2,B 1H =A 1C ,∴Q (﹣2,2)或(﹣2,﹣2),即:满足条件的点Q 为(﹣2,2)或(﹣2,﹣2)或(﹣2,-4)或(﹣2,43). 【点拨】此题目是一次函数综合题,主要考查了一次函数的性质,全等三角形的判定与性质,三角形的面积公式,等腰直角三角形的性质,判断111AOB B HP ∆≅∆是解本题的关键.。
一次函数之面积问题(与坐标轴围成的面积)(人教版)(含答案)
一次函数之面积问题(与坐标轴围成的面积)(人教版)一、单选题(共8道,每道12分)1.已知一次函数和的图象都经过点A(2,0),且与y轴分别交于B,C两点,则△ABC的面积是( )A.1B.2C.4D.8答案:C解题思路:试题难度:三颗星知识点:坐标线段长互转2.已知一次函数y=kx+(k-3)与一次函数y=2x+b交于点C(1,3),则两条直线的函数图象与x 轴所围成的三角形的面积是( )A.1B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积3.已知一次函数y=kx+b的图象经过点B(0,10),且与正比例函数y=2x的图象相交于点A(2,a),则这两个函数图象与y轴所围成的三角形的面积是( )A.5B.10C.20D.40答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积4.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上,则此函数的图象与坐标轴围成的三角形的面积为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积5.已知一次函数的图象经过点(-2,0),它与坐标轴围成的三角形面积等于1,则这个一次函数的函数表达式是( )A. B.C.或D.或答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积6.已知一次函数的图象过点(3,0),且与两坐标轴围成的三角形面积为3,则一次函数的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积7.若直线y=kx+b与直线y=4x平行,且直线y=kx+b与两坐标轴围成的三角形的面积为2,则直线y=kx+b与x轴的交点坐标是( ).A.(1,0)B.(1,0)或(-1,0)C.(2,0)D.(2,0)或(-2,0)答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积8.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值为( )A. B.C.或D.或答案:C解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积。
一次函数面积问题专题(含答案解析)
一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。
2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。
,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。
3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。
6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。
,把厶AoB的面积分为2:1的两部分,求直线I的解析式。
11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。
一次函数面积问题专题
一次函数面积问题专题
姓名:
一、基本图形识别
求图中各三角形的面积(用坐标表示)
用两种办法求S ∆MLN (用坐标表示)
用两种办法求S ∆AOB (用坐标表示)
二、 基本题型练习
1、在直角坐标系中,O 是坐标原点,点A (3,-2)在一次函数24y x =-+图象上,图象与y 轴的交点为B ,求AOB ∆面积。
x
x
x
变式:(1)在直线AB上找一点P,使得S∆AOB = S∆BOP
变式:(2)在直线AB上找一点P,使得S∆BOP =S∆AOB
变式:(3)在Y轴上找一点P,使得S∆AOP = S∆AOB
1.1如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y ,直线BC 与x 轴交于点B ,直线BA 与直线OC 相交于点A ,求:(1)当x 取何值时1y >2y (2)当直线BA 平分△BOC 的面积时,求点A 的坐标.
4
、
如图,已知直线PA 是一次函数)0(>+=n n x y 的图象,直线PB 是一次函数)(2n m m x y +-=的图象。
(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线PA 与y 轴的交点,且四边形PQOB 的面积6
5,AB=2,试求点P 的坐标,并写出直线PA 与PB 的解析式。
在平面直角坐标系中,点A (4,0),点P (x ,y )是直线32
1+-
=x y 在第一象限的一点.(1)设△OAP 的面积为S ,用含x 的解析式表示S ,并写出自变量取值范围.(2)在直线321+-=x y 求一点Q ,使△OAQ 是以OA 为底的等腰三角形.(3)若第(2)问变为使△OAQ 是等腰三角形,这样的点。
一次函数面积专题附答案
一次函数面积专题学校:___________姓名:___________班级:___________考号:___________ 一、解答题1.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (1,5),B (-3,-3)和C (7,2),求△ABC 的面积.【答案】30 【解析】 【分析】解法1:延长AC 交x 轴于点D ,先求出直线AC 的解析式,从而得出点D 的坐标,再利用=+-ABCAEDBEFCFDSSSS即可.解法2:分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG ,然后利用矩形=---ABCBEACFACBGBEFG SS SSS就可得到所求三角形的面积.解法3:分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG ,据勾股定理求得45AB =同理可得35AC =55BC =由勾股定理逆定理和三角形的面积公式即可得出答案. 解法4:作AM//y 轴交BC 于M ,先得出直线BC 解析式为1322y x =-,然后得出点M (1,-1),从而确定水平宽a =10,铅垂高h =6,再利用=+ABCABMACMS SS即可;【详解】解法1:如图2,延长AC 交x 轴于点D . 因为A (1,5),C (7,2),所以直线AC 的解析式为11122y x =-+,所以点D 的坐标为D (11,0).同理,可以求出点E 3,02⎛⎫- ⎪⎝⎭,点F (3,0),所以DE =252,EF =92,DF =8,所以1252783044ABCAEDBEFCFDSSSS=+-=+-=.解法2:如图3,分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG . 因为A (1,5),B (-3,-3),C (7,2), 所以E (-3,5),F (7,5),G (7,-3),所以BE =8,BG =10,AE =4,AF =6,CF =3,CG =5, 所以801692530ABCBEACFACBGBEFG SS SSS=---=---=矩形.解法3:如图4,在Rt △ABE 中,因为A (1,5),B (-3,-3),E (-3,5), 所以根据勾股定理求得45AB = 同理可得35AC =55BC = 因为2224580125AC AB BC +=+==, 所以由勾股定理逆定理得90BAC ∠=︒. 所以1145353022ABCSAB AC =⋅=⨯=.解法4:如图5,由B (-3,-3),C (7,2)容易得到水平宽a =10, 所以直线BC 解析式为1322y x =-. 作AM//y 轴交BC 于M , 令x =1,代入1322y x =-得y =-1,则M (1,-1). 此时,可以得到铅垂高h =5+1=6. 所以1211130222ABCABMACMSSSAM h AM h a h =+=⋅+⋅=⋅=.2.如图,已知直线AB 经过A (2,0),B (0,1)两点,点P 的坐标为(-2,a ),且0<a <2.若△ABP 的面积是1,求a 的值.【答案】1 【解析】 【分析】方法1:先根据A 、B 两点坐标求出直线AB 的解析式为112y x =-+,再过点P 作QN x⊥轴,交直线AB 于点Q ,交x 轴于点N ,利用割补法建立关于a 的方程,求解即可;方法2:设直线BP 交x 轴于点Q ,利用P 、B 两点坐标求出直线PB 的解析式为112a y x -=+,进而求出Q 2,01a ⎛⎫⎪-⎝⎭,利用割补法建立关于a 的方程,求解即可; 方法3:过点O 作AB 的平行线于直线x =-2交于点P ,根据A 、B 两点坐标求出直线AB 的解析式为112y x =-+,由直线OP 与直线AB 平行,且过原点,得到直线OP 的解析式即可求解. 【详解】 方法1:如答图所示,过点P 作QN x ⊥轴,交直线AB 于点Q ,交x 轴于点N . 设直线AB 的解析式为y kx b =+.将A (2,0),B (0,1)两点坐标代入可得201k b b +=⎧⎨=⎩,解得121k b ⎧=-⎪⎨⎪=⎩. 则直线AB 的解析式为112y x =-+,令x =-2得y =2,则Q (-2,2). 由42(2)1ABPAQNPNAPQBSSSSa a =--=---=,解得a =1.方法2:设直线BP 交x 轴于点Q ,直线PB 的解析式为y kx b =+.将P (-2,a),B (0,1)两点坐标代入可得21k b ab -+=⎧⎨=⎩,解得121a k b -⎧=⎪⎨⎪=⎩. 则直线PB 的解析式为112ay x -=+.a =1时,显然成立; 1a ≠时,令y =0得x =2a 1-,则Q 2,01a ⎛⎫⎪-⎝⎭.如图所示,121212212121ABPABQPQASSSa a a ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-= ⎪ ⎪--⎝⎭⎝⎭, 解得a =1,又1a ≠,故此时a 不存在.综上得a =1.方法3:如答图所示,过点O 作AB 的平行线于直线x =-2交于点P ,连接AP ,BP . 因为“平行线间的距离处处相等”,所以△ABP 与△AOB 同底等高,面积都是1. 设直线AB 的解析式为y kx b =+.将A (2,0),B (0,1)两点坐标代入可得201k b b +=⎧⎨=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,则直线AB 的解析式为112y x =-+. 因为直线OP 与直线AB 平行,且过原点,所以直线OP 的解析式为12y x =-.令x =-2得a =1.3.如图,在平面直角坐标系中,一次函数y x b =-+的图象与正比例函数y kx =的图象都经过点()3,1B .(1)求一次函数和正比例函数的解析式;(2)若点(),P x y 是线段AB 上一点,且在第一象限内,连接OP ,设APO ∆的面积为S ,求面积S 关于x 的函数解析式. 【答案】(1)y =﹣x +4,13y x =;(2)S =2x (0<x ≤3). 【解析】 【分析】(1)把B (3,1)分别代入y =﹣x +b 和y =kx 即可得到结论; (2)根据三角形的面积公式即可得到结论. 【详解】(1)把B (3,1)分别代入y =﹣x +b 和y =kx 得1=﹣3+b ,1=3k ,解得:b =4,k 13=,∴y =﹣x +4,y 13=x ;(2)∵点P (x ,y )是线段AB 上一点,∴S 12OA =•xP 142x =⋅⋅=2x (0<x ≤3).【点睛】本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.4.如图,在平面直角坐标系中,一次函数12y x m =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()2,4C .(1)求m 的值及2l 的解析式;(2)若点M 是直线12y x m =-+上的一个动点,连接OM ,当AOM 的面积是BOC 面积的2倍时,请求出符合条件的点M 的坐标;(3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.【答案】(1)5m =,2l 的解析式为2y x =(2)()6,2M 或()142,(3)12k =-或2或1【解析】 【分析】(1)设2l 的解析式为1y k x =,将点C 的坐标代入12,l l 的解析式,即可求解;(2)设1(,5)2M a a -+,进而根据题意列出方程,解方程求解即可;(3)根据题意,则31l l ∥或32l l ∥,进而即可求得k 的值 (1)2l 与1l 交于点()2,4C .设2l 的解析式为1y k x =,将点C 的坐标代入12,l l 的解析式,可得, 1422m =-⨯+,142k =,解得5m =,12k =,∴2l 的解析式为2y x = (2)设1(,5)2M a a -+,152y x =-+,令0x =,则5y =,令0y =,则10x =()0,5B ∴,()10,0A又()2,4C∴11111525,105522222BOCC AOMM M SBO x S OA y y a =⨯=⨯⨯==⨯=⨯⨯=⨯-+ AOM 的面积是BOC 面积的2倍,∴1552a ⨯-+2=⨯5即1522a -+=解得6a =或14∴()6,2M 或()142, (3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,∴31l l ∥或32l l ∥当3l 过点C (2,4)时,将点C 坐标代入y =kx +2并解得:k =l ,∴12k =-或2或1【点睛】本题考查了一次函数综合,求一次函数解析式,求一次函数与坐标轴围成的三角形面积,一次函数与坐标轴的交点问题,一次函数的平移,掌握一次函数的性质是解题的关键. 5.如图,在平面直角坐标系中,一次函数332y x =-+与y 轴交于点A ,与x 轴交于点B ,过点B 作AB 的垂线,垂线与反比例函数()10my m x=≠交于C 、D 两点,且AB BC =.(1)求反比例函数()10my m x=≠的表达式,及经过点C 、D 的一次函数表达式()20y kx b k =+≠;(2)请直接写出使12y y >的x 取值范围; (3)求出ABD △的面积. 【答案】(1)110y x =,22433y x =- (2)3x <-或05x << (3)656【解析】 【分析】(1)由一次函数y =﹣32x +3求得A 、B 的坐标,然后通过证得△ABO ≌△BCF ,求得C(5,2),然后利用待定系数法即可求得函数的解析式; (2)求得D 的坐标,然后根据图象即可求得;(3)利用三角形面积公式,根据S △ABD =S △ABE +S △ADE 求得即可. (1)解:∵332y x =-+ 与y 轴交于点A ,与x 轴交于点B ,∴A (0,3),B (2,0), 如图,过点C 作CF ⊥x 轴于点F ,∵AB ⊥CD ,∴∠ABO +∠CBF =90°, ∵∠ABO +∠BAO =90°, ∴∠BAO =∠CBF , 在△ABO 和△BCF 中,BAO CBF AOB BFC AB BC =⎧⎪=⎨⎪=⎩∠∠∠∠ , ∴△ABO ≌△BCF (AAS ), ∴BF =AO =3,CF =OB =2, ∴C (5,2), ∵反比例函数y 1=mx(m ≠0)过点C , ∴m =5×2=10, ∴反比例函数110y x=, 将B (2,0),C (5,2)代入y 2=kx +b (k ≠0)得2052k b k b +=⎧⎨+=⎩,解得2343k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴经过点C 、D 的一次函数表达式为22433y x =- ; (2)由102433y xy x ⎧=⎪⎪⎨⎪=-⎪⎩, 解得52=⎧⎨=⎩x y 或3103x y =-⎧⎪⎨=-⎪⎩,∴D 横坐标为﹣3.∴y 1>y 2的x 取值范围:x <﹣3或0<x <5; (3)ABD ADE ABE S S S =+△△△ 12D AE x =1·2B AE x + 656=. 【点睛】本题主要考查了反比例函数与一次函数交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.6.如图,已知一次函数1y k x b =+与反比例函数2k y x=的图象交于第一象限内的点()1,6A 和()6,B m ,与x 轴交于点C .(1)分别求出这两个函数的表达式;(2)①观察图象,直接写出不等式21k k x b x+≥的解集;②请连接OA 、OB ,并计算△AOB 的面积;(3)是否存在坐标平面内的点P ,使得由点O ,A ,C ,P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)反比例函数的表达式是:y =6x ,一次函数表达式是:y =﹣x +7 (2)①x <0或1≤x ≤6;352(3)存在点P 的坐标为(8,6)或(﹣6,6)或(6,﹣6)使得由点O ,A ,C ,P 组成的四边形是平行四边形【解析】【分析】(1)直接利用待定系数法分别求出一次函数与反比例函数解析式;(2)①利用函数图象结合其交点得出不等式k 1x +b ≥2k x的解集;②如图所示,过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于B ,则2==32AOD BOE k S S =△△,再根据=AOB BOE AOD ADEB S S S S ++△△△梯形进行求解即可;(3)利用平行四边形的性质结合当AP 为边和AP 为对角线两种情况分别得出答案即可.(1)解:∵点A (1,6)在反比例函数y =2k x 的图象上, ∴6=21k , 解得:k 2=6,∴反比例函数的表达式是:y =6x; ∵B (6,m )在反比例函数y =6x的图象上, ∴m =66=1,∴B (6,1),将点A (1,6),B (6,1)代入y =k 1x +b ,可得: 11616k b k b =+⎧⎨=+⎩, 解得:117k b =-⎧⎨=⎩, ∴一次函数表达式是:y =﹣x +7;(2)解:①∵点A (1,6),B (6,1),∴不等式k 1x +b ≥2k x的解集是:x <0或1≤x ≤6; 故答案为:x <0或1≤x ≤6;②如图所示,过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于B , ∴2==32AOD BOE k S S =△△, ∵A (1,6),B (6,1),∴OD =1,AD =6,OE =6,BE =1,∴DE =5,∵=AOB BOE AOD ADEB S S S S ++△△△梯形,∴()35===22AOB ADEB AD BE DE S S +⋅△梯形;(3)解:∵C是直线AB与x轴的交点,∴点C的坐标为(7,0),如图3-1所示:当AP为边时,∴AP∥OC,AP=OC=7,∵A(1,6),∴P点坐标为:(8,6)或(-6,6);当AP为对角线时,如图3-2所示,∵AP与OC的中点坐标相同,∴1072260022PPxy++⎧=⎪⎪⎨++⎪=⎪⎩,∴66PPxy=⎧⎨=-⎩,∴点P的坐标为(6,-6);综上所述存在点P的坐标为(8,6)或(﹣6,6)或(6,﹣6)使得由点O,A,C,P 组成的四边形是平行四边形.【点睛】此题主要考查了反比例函数的综合以及待定系数法求一次函数解析式、平行四边形的性质等知识,正确数形结合分析是解题关键.7.如图,一次函数y=kx+b(k>0)的图象经过点C(−3,0),且与两坐标轴围成的三角形的面积为3.(1)求一次函数的解析式;(2)若反比例函数myx的图象与该一次函数的图象交于一、三象限内的A,B两点,且AC=2BC,求m的值.【答案】(1)一次函数的解析式为y=23x+2;(2)m的值为12.【解析】【分析】(1)根据一次函数y=kx+b(k>0)的图象经过点C(-3,0),得到-3k+b=0①,点C到y轴的距离是3,解方程即可得到结论;(2)如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.根据相似三角形的性质得到AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.求得A(3n-3,2n),B(-3-32 n,-n),根据反比例函数y=mx的图象经过A、B两点,列方程即可得到结论.(1)解:∵一次函数y=kx+b(k>0)的图象经过点C(-3,0),∴-3k+b=0①,点C到y轴的距离是3,∵k>0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴12×3×b=3,解得:b=2.把b=2代入①,解得:k=23,则函数的解析式是y=23x+2.故这个函数的解析式为y=23x+2;(2)解:如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,∴AD ACBE BC=2,∴AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.∵直线AB的解析式为y=23x+2,∴A(3n-3,2n),B(-3-32n,-n),∵反比例函数y=mx的图象经过A、B两点,∴(3n-3)•2n=(-3-32n)•(-n),解得n1=2,n2=0(不合题意舍去),∴m=(3n-3)•2n=3×4=12.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,三角形的面积,相似三角形的判定与性质,一次函数、反比例函数图象上点的坐标特征,难度适中.正确求出一次函数的解析式是解题的关键.8.如图,反比例函数kyx=的图象与一次函数12y x=-的图象分别交于M,N两点,已知点M(-2,m).(1)求反比例函数的表达式;(2)点P为y轴上的一点,当点P的坐标为(5时,求△MPN的面积.【答案】(1)2 yx =-(2)5【解析】【分析】(1)把M(-2,m)代入函数式y=-12x中,求得m的值,从而求得M的坐标,代入y=kx可求出函数解析式;(2)根据反比例函数与正比例函数的中心对称性求得N的坐标,然后利用S△MPN=S△MOP+S△NOP求得即可.(1)解:∵点M(-2,m)在一次函数y=-12x的图象上,∴m=-12×(-2)=1.∴M(-2,1).∵反比例函数y=kx的图象经过点M(-2,1),∴k=-2×1=-2.∴反比例函数的表达式为y=-2x;(2)解:∵反比例函数y=kx的图象与一次函数y=-12x的图象分别交于M,N两点,M(-2,1),∴N(2,-1),∵点P为y轴上的一点,点P的坐标为(0,5),∴OP=5,∴S△MPN=S△MOP+S△NOP=12×5×2+12×5×2=25.【点睛】本题考查了反比例函数与一次函数的交点问题,本题利用了待定系数法求函数解析式以及利用中心对称求两个函数的交点,三角形的面积等知识.9.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数ymx(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D,AO=5,OD:AD=3:4,B点的坐标为(﹣6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.【答案】(1)y23=x+2,y12x=;(2)△AOB的面积S9=;(3)P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258)【解析】【分析】(1)设OD=3a,AD=4a,则AO=5a=5,解得:a=1,故点A(3,4),故反比例函数的表达式为:y=12x,故B(-6,2),将点A、B的坐标代入一次函数表达式,即可求解;(2)△AOB的面积S=12×OM×(xA-xB)=12×2×(3+6)=9;(3)分AP=AO、AO=PO、AP=PO三种情况,分别求解即可.(1)解:AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y12x=,故B(﹣6,﹣2),将点A、B的坐标代入一次函数表达式y=kx+b得:4326k bk b=+⎧⎨-=-+⎩,解得:232kb⎧=⎪⎨⎪=⎩,故一次函数的表达式为:y23=x+2;(2)解:设一次函数y23=x+2交y轴于点M(0,2),∵点A(3,4),B(﹣6,﹣2),∴△AOB的面积S12=⨯OM×(xA﹣xB)12=⨯2×(3+6)=9;(3)解:设点P(0,m),而点A、O的坐标分别为:(3,4)、(0,0),AP2=9+(m﹣4)2,AO2=25,PO2=m2,当AP=AO时,9+(m﹣4)2=25,解得:m=8或0(舍去0);当AO=PO时,同理可得:m=±5;当AP=PO时,同理可得:m258 =;综上,P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258).【点睛】本题考查了反比例函数与一次函数综合,等腰三角形的判定与性质,利用形数结合解决此类问题,是非常有效的方法.10.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(−3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)反比例函数的解析式为y=-12x;一次函数的解析式为y=-23x+2;(2)S△AOB=9;(3)存在.P点坐标为(-3,0)、(-173,0).【解析】【分析】(1)先把A(-3,4)代入反比例函数解析式得到m的值,从而确定反比例函数的解析式为y =-12x;再利用反比例函数解析式确定B 点坐标为(6,-2),然后运用待定系数法确定所求的一次函数的解析式为y =-23x +2; (2)先依据一次函数求得点C 的坐标,进而得到△AOB 的面积;(3)过A 点作AP 1⊥x 轴于P 1,AP 2⊥AC 交x 轴于P 2,可得P 1点的坐标为(-3,0);再证明Rt △AP 2P 1∽Rt △CAP 1,利用相似比计算出P 1P 2的长度,进而得到OP 2的长度,可得P 2点的坐标为(-173,0),于是得到满足条件的P 点坐标. (1)解:将A (-3,4)代入y =m x ,得m =-3×4=-12, ∴反比例函数的解析式为y =-12x ; 将B (6,n )代入y =-12x,得6n =-12, 解得n =-2,∴B (6,-2), 将A (-3,4)和B (6,-2)分别代入y =kx +b (k ≠0),得3462k b k b -+=⎧⎨+=-⎩, 解得232k b ⎧=-⎪⎨⎪=⎩, ∴所求的一次函数的解析式为y =-23x +2; (2)解:当y =0时,-23x +2=0, 解得:x =3,∴C (3,0),∴S △AOC =12×3×4=6,S △BOC =12×3×2=3, ∴S △AOB =6+3=9;(3)解:存在.过A 点作AP 1⊥x 轴于P 1,AP 2⊥AC 交x 轴于P 2,如图,∴∠AP 1C =90°,∵A 点坐标为(-3,4),∴P 1点的坐标为(-3,0);∵∠P 2AC =90°,∴∠P 2AP 1+∠P 1AC =90°,而∠AP 2P 1+∠P 2AP 1=90°,∴∠AP 2P 1=∠P 1AC ,∴Rt △AP 2P 1∽Rt △CAP 1, ∴11211AP PP CP AP =,即12464PP =, ∴P 1P 2=83, ∴OP 2=3+83=173, ∴P 2点的坐标为(-173,0), ∴满足条件的P 点坐标为(-3,0)、(-173,0). 【点睛】本题考查了反比例函数与一次函数交点问题,解决问题的关键是了解反比例函数图象上点的坐标特征和待定系数法确定函数解析式;会运用三角形相似知识求线段的长度.。
一次函数与几何图形面积问题含答案
一次函数与几何图形面积问题解析课时小练一、新课导入(一)学习目标学会运用数形结合思想,能根据题意处理与面积有关的一次函数问题,依据函数性质及图形特征学会面积转化,建立相应的数式关系,运用方程或不等式的知识来解决问题.(二)预习导入如图,已知A(0,2),B(6,0),C(2,m)),当S△ABC=1时,m=______..二、典型问题知识点一:与静态图形有关的面积问题例1如图,点A,B的坐标分别为(0,2),(1,0),直线y=12x−3与y轴交于点C、与x 轴交于点D.(1)直线AB解析式为y=kx+b,求直线AB与CD交点E的坐标;(2)四边形OBEC的面积是________;分析:(1)运用待定系数法即可得到直线AB解析式,再根据方程组的解,即可得到直线AB 与CD交点E的坐标;(2)根据坐标轴上点的特征求出C、D两点的坐标,然后根据S四边形OBEC=S△DOC−S△DBE 面积公式计算即可;知识点二:与动态图形有关的面积问题例2如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.(1)求点B的坐标和直线AB的函数解析式;(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D 的上方,设点P的纵坐标为m.①用含m的代数式表示△ABP的面积;②当S△ABP=6时,点P的坐标为;③在②的条件下,在坐标轴上,是否存在一点Q,使得△ABQ与△ABP面积相等?若存在,直接写出点Q的坐标,若不存在,请说明理由.分析:(1)利用一次函数图象上点的坐标特征可找出点A、B的坐标,结合S△AOB=8即可求出b值,进而可得出点B的坐标和直线AB的函数表达式;(2)①由OB的长度结合直线a垂直平分OB,可得出OE、BE的长度,利用一次函数图象上点的坐标特征可求出点D的坐标,进而可用含m的代数式表示出DP的值,再利用三角形的面积公式即可用含m的代数式表示△ABP的面积;②由①的结论结合S△ABP=6,即可求出m值,此题得解;③分点Q在x轴及y轴两种情况考虑,利用三角形的面积公式即可求出点Q的坐标,此题得解.三、阶梯训练A组:基础练习1.直线y=kx-4与两坐标轴所围成三角形的面积是4,则k=.2.已知直线y=2x+4与x轴、y轴分别交于A,B两点,点P(﹣1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为.3.如图,过点A(2,0)的两条直线l1,l2分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)则点B的坐标为;(2)若△ABC的面积为4,求l2的解析式为.4.如图,直线y=12x+2分别与x轴、y轴相交于点A,B两点.(1)求点A和点B的坐标;(2)若点P是y轴上的一点,设△AOB、△ABP的面积分别为S△AOB与S△ABP,且S△ABP=2S△AOB,求点P的坐标.5.如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一动点,AB ⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)点M的坐标为;(2)求直线MN的解析式;(3)若点A的横坐标为﹣1,求四边形ABOC的面积.6.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=12x与直线l2:y=−x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)若点M在直线l2上,且使得△OAM的面积是△OAC面积的34,求点M的坐标.B组:拓展练习7.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是().A.y=x+5B.y=x+10C.y=-x+5D.y=-x+108.如图,直线AB:y=12x+1分别与x轴、y轴交于点A.点B,直线CD:y=x+b分别与x轴、y 轴交于点C.点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是.9.如图,在平面直角坐标系中,矩形OABC的顶点A(4,0),C(0,3),直线y=﹣32x+92交OA于点D,交BC于点E,动点P从点O出发,以每秒2个单位长度的速度沿OA﹣AB运动,到点B停止,设△PDE的面积为S(平方单位),点P的运动时间为t(秒).(1)求点D和点E的坐标;(2)求S与t之间的函数关系式,并写出t的取值范围;(3)当点P在边AB上运动,且PD+PE的值最小时,直接写出直线EP的解析式.四、归纳小结方法、规律解决有关图形面积问题,着眼于相应条件在环境下的集中和转化,利用函数的性质及图形特征,运用全等、勾股及方程等相关知识进行处理,如何建立相应的方程或进行相应的计算,从而确定点的坐标,灵活运用条件是处理问题的关键.一次函数与几何图形面积问题解析课时小练答案预习导入1或53.例1(1)点A,B的坐标分别为(0,2),(1,0),∴k+b=0,b=2.解得k=−2,b=2.∴直线AB的解析式是y=-2x+2.∴y=−2x+2,y=12x−3.解得x=2,y=−2.∴E(2,-2).(2直线CD的解析式为y=12x−3.当x=0时,y=-3,当y=0时,x=6,则点C的坐标是(0,-3),点D的坐标是(6,0).S四边形OBEC=S△DOC−S△DBE=12×6×3−12×5×2=4.例2(1)∵直线AB:y=﹣x+b交y轴于点A,交x轴于点B,∴点A的坐标为(0,b),点B的坐标为(b,0).∵S△AOB=12b2=8,∴b=±4.∵点A在y轴正半轴上,∴b=4.∴点B的坐标为(4,0),直线AB的函数解析式为y=﹣x+4;(2)①∵直线a垂直平分OB,OB=4,∴OE=BE=2.当x=2时,y=﹣x+4=2.∴点D的坐标为(2,2).∵点P的坐标为(2,m)(m>2),∴PD=m﹣2.∴S△ABP=S△APD+S△BPD=12DP•OE+12DP•BE=12×2(m﹣2)+12×2(m﹣2)=2m﹣4;②∵S△ABP=6,∴2m﹣4=6.∴m=5.∴点P的坐标为(2,5);③假设存在.当点Q在x轴上时,设其坐标为(x,0).∵S△ABQ=12AO•BQ=12×4×|x﹣4|=6,∴x1=1,x2=7.∴点Q的坐标为(1,0)或(7,0);当点Q在y轴上时,设其坐标为(0,y).∵S△ABQ=12BO•AQ=12×4×|y﹣4|=6,∴y1=1,y2=7.∴点Q的坐标为(0,1)或(0,7).综上所述:假设成立,即在坐标轴上,存在一点Q,使得△ABQ与△ABP面积相等,且点Q 的坐标为(1,0)或(7,0)或(0,1)或(0,7).1.±2.2.由y=2x+4,当x=0时,y=4;当y=0时,x=﹣2∴点A(﹣2,0),点B(0,4).如图,过点P作PE⊥x轴,交线段AB于点E.∴点E横坐标为﹣1.∴y=﹣2+4=2.∴点E(﹣1,2).=12×PE×2=1,∴|m﹣2|=1.∴m=3或1.∵S△ABP故答案为3或1.3.(1)(0,3);(2)y=12x−1.4(1)在y=12x+2中,令y=0,则12x+2=0,解得x=-4,∴点A的坐标为(-4,0).令x=0,则y=2,∴点B的坐标为(0,2);(2)∵点P是y轴上的一点,∴设点P的坐标为(0,y).又∵点B的坐标为(0,2),∴BP=y−2.∵S△AOB=12OA·OB=12×4×2=4,S△ABP=12BP·OA=12|y-2|×4=2|y-2|,又∵S△ABP=2S△AOB,∴2y−2=2×4.解得y=6或y=-2.∴点P的坐标为(0,6)或(0,-2).5.(1)(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式,得−2k+b=0,b=6.解得k=3,b=6.∴直线MN的函数解析式为y=3x+6;(3)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3.∴点A(﹣1,3).∴点C(0,3).∵AB⊥x轴,AC⊥y轴,∠BOC=90°,∴四边形ABOC为矩形,OB=1,OC=3.∴四边形ABOC的面积=1×3=3.6.(1)联立{y=12x,y=−x+6,解之得{x=4,y=2.∴A(4,2)由y=-x+6,当x=0,y=6,∴C(0,6).∴S△OAC=12×6×4=12;(2)当△OMC的面积是△OAC的面积的34时,∴M点的横坐标是34×4=3,当点M在线段OA上时,把x=3代入y=12x得y=32,则此时M(3,32);当点M在线段AC上时,把x=3代入y=-x+6得y=3,则此时M(3,3).综上所述,M的坐标为(1,32)或(3,3).7.C.8.(8,5).9.(1)由y=﹣32x+92,当y=0时,x=3.∴点D(3,0),当y=3时,x=1.∴点E(1,3).(2)如图1,①当点P在OD段时,此时0≤t≤32,S =12×PD ×OC =12×3t −2t ×3=﹣3t +92;②当点P 在DA 段时,此时32<t ≤2,同理可得S =3t ﹣92;③当点P (P ′)在AB 段时,此时2<t ≤72,S =S 梯形DABE ﹣S △ADP ′﹣S △BEP ′=6﹣12×1×(2t ﹣4)﹣12×3×(7﹣2t )=2t ﹣52;故S =−3t +92,0≤t ≤323t −92,32<t ≤22t −52,2<t ≤72;(3)在x 轴上取点D 的对称点D ′(5,0),连接D ′E 交AB 于点P ,则此时PD +PE 的值最小,将点E ,D ′的坐标代入一次函数解析式y =kx +b ,得5k +b =0,k +b =3.解得k =−34,b =154.故直线EP 的解析式为y =﹣34x +154.。
一次函数与面积问题
一次函数常与三角形或四边形的面积相结合进行考查,两种类型的题目比较常见:(1)由函数图像求面积;(2)由面积求点坐标。
遇到第一种类型题目时,找准三角形的底和高是解题的关键,特别是遇到钝角三角形。
如果无法直接求解,可以利用割补法、铅锤法等方法进行转化。
遇到第二种类型题目时,要特别注意,很容易出错,不要忘记使用绝对值。
01类型一:由函数图像求图形面积例题1:如图,直线l1:y=-3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,-1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积.分析:求l2的函数解析式,利用待定系数法,已知点B(4,0)、点C (3,-1.5),代入解析式中求出K、b得值即可得到一次函数解析式。
求△ABD的面积,三角形有一边在x轴上,求三角形的面积可直接利用三角形的面积公式,选择x轴上的线段AB为底,那么点D纵坐标的绝对值即为三角形的高,因此需要求出点B坐标。
点B是两直线的交点,联立方程组即可求得点B坐标。
本题主要是有函数图像求得三角形的面积,属于基础题。
02类型二:由面积求点坐标例题2:如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC 的面积是△OAC的面积的14?若存在,求出此时点M的坐标;若不存在,请说明理由.分析:(1)由点C和点A的坐标,利用待定系数法即可求得函数的解析式;(2)求△AOC的面积,由题可知该三角形可选OC作为底,点A的横坐标的绝对值即为该三角形的高,点A与点C坐标已知,可通过三角形的面积公式直接求出。
(3)当△OMC的面积是△OAC的面积的1/4时,根据面积公式即可求得M的横坐标的绝对值,然后代入解析式即可求得M的坐标.由面积求点坐标时,一定要注意绝对值的使用,注意分情况进行讨论。
一次函数中的面积问题
一次函数中的面积问题姓名:一、基础图形面积问题1、如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),求AOB ∆的面积2、如图,直线AB :1+=x y 与x 轴、y 轴分别交于点A 、B ,直线CD :2-=kx y 与x 轴、y 轴分别交于点C 、点D ,直线AB 与直线CD 交于点P ,若,4.5=∆APD S 求k3、4、在平面直角坐标系xOy 中,直线y =﹣2x +4与坐标轴所围成的三角形的面积等于5、的面积6、直线21y x =+和直线2y x =-+与x 轴分别交与A 、B 两点,并且两直线相交与点C,(1)求△ABC 的面积,(2)求四边形CDOB 的面积7、如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (6,0),与y 轴交于点B (0,﹣3), 与正比例函数y =2x 的图象相交于点C .(1)求此一次函数的解析式;(2)求出△OBC 的面积;(3)点D 在此坐标平面内,且知以O 、B 、C 、D 为顶点四边形是平行四边形,请直接写出符合条件的点D 的坐标.二、面积倍分、相等问题1、如图,已知直线y =x +3的图象与x ,y 的轴交于B ,A 两点,直线l 经过A 点,与线段OB 交于点C 且把△AOB 面积分为2:1两部分.(1)求线段OA ,OB 的长;(2)求直线l的解析式.O2、如图,在平面直角坐标系中,直线y=kx+b与x轴、y轴分别交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°.(1)求直线y=kx+b的解析式;(2)求出△ABC的面积;(3)若P(1,m)为坐标系中的一个动点,连结P A,PB.当△ABC与△ABP面积相等时,求m的值.3、综合与探究:如图,直线l1的表达式为y=﹣3x+3,与x轴交于点C,直线l2交x轴于点A,OA=4,l1与l2交于点B,过点B作BD⊥x轴于点D,BD=3.(1)求点C的坐标;(2)求直线l2的表达式;(3)求S△ABC的值;(4)在x轴上是否存在点P,使得S△ABP=2S△ABC?若存在,请直接写出点P的坐标;若不存在,请说明理由.三、分论讨论1、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。
沪教版八年级 一次函数中的面积问题,带答案
1.能由一次函数的知识求有关图形的面积;2.能由已知图形的面积解决一次函数的有关问题; 3.体会一次函数的有关面积问题的解决思路.(此环节设计时间在10—15分钟)回顾上次课的预习思考内容,要求学生先画出一次函数的大致图形再解题.1.直线1y x =--与x 轴相交于点 ,与y 轴相交于点 ,与坐标轴围成的三角形面积为 .2.一次函数的图像经过(3,5),(—4,—9),则此一次函数的解析式为 ,一次函数与坐标轴围成的三角形面积为 .3.直线34y x =-+与直线21y x =-相交于P ,直线34y x =-+与x 轴相交于点A ,直线21y x =- 与x 轴相交于点B ,交点P 的坐标为 ,△ABP 面积为 . 参考答案:1.(—1,0),(0,—1),12; 2.21y x =-,14; 3.4(,0)3,1(,0)2,(1,1),512; 归纳总结:一次函数与坐标轴围成的面积可以推到出相应公式:22b S k∆=(此环节设计时间在50-60分钟)案例1:问题1:如图,已知直线l :22y x =-+与直线m :y x =交于点T ,求直线l 和直线m 与x 轴所围成的图形面积。
参考答案:解:由题意:(3,0),(0,3)A B - ∴1922AOBS OA OB =⋅= ∴11113232BOC AOBSOB C D S =⋅==∴11C D = 代入3y x =+得1(1,2)C -, 设直线l 的解析式:y kx = 代入1(1,2)C -得2k =- ∴直线l 的解析式2y x =- 同理:2(2,1)C -,∴直线l 的解析式12y x =-试一试:已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分。
若△AOB 被分成的两部分面积比为1:5,求k 和b 的值.参考答案:22,33k b =-=或2,2k b ==-此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。
专题07 一次函数中的面积问题精讲(解析版)
专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。
一次函数面积问题专题(含答案解析)
一次函數面積問題1、如图,一次函数的图像与*轴交于点B〔-6,0〕,交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。
2、直线y=*+3的图像与*轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两局部,求直线a的函数解析式。
3、直线PA是一次函数y=*+n的图像,直线PB是一次函数y=-2*+m〔m>n>0〕的图像,〔1〕用m、n表示A、B、P的坐标〔2〕四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O〔0,0〕、A〔2,1〕、B〔10,1〕,直线CD⊥*轴且△AOB面积二等分,假设D〔m,0〕,求m的值5、点B在直线y=-*+1上,且点B在第四象限,点A〔2,0〕、O〔0,0〕,△ABO的面积为2,求点B的坐标。
6、直线y=-*+1与*轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P〔a,〕在第二象限,△ABP的面积与△ABC 面积相等,求a的值.7、如图,两直线y=0.5*+2.5和y=-*+1分别与*轴交于A、B两点,这两直线的交点为P〔1〕求点P的坐标〔2〕求△PAB的面积8、直线y=a*+b〔b>0〕与y轴交于点N,与*轴交于点A且与直线y=k*交于点M 〔2,3〕,如图它们与y轴围成的△MON的面积为5,求〔1〕这两条直线的函数关系式〔2〕它们与*轴围成的三角形面积9、两条直线y=2*-3和y=5-*〔1〕求出它们的交点A的坐标〔2〕求出这两条直线与*轴围成的三角形的面积10、直线y=*+3的图像与*轴、y轴交于A、B两点,直线l经过原点,与线段AB 交于点C,把△AOB的面积分为2:1的两局部,求直线l的解析式。
11、直线y=2*+3与直线y=-2*-1与y轴分别交于点A、B〔1〕求两直线交点C的坐标〔2〕求△ABC的面积〔3〕在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,假设不能请说明理由。
中考 函数专题12 一次函数-面积问题(学生版)
专题12 一次函数-面积问题函数的学习中,自然离不开点、线、面,如求点的坐标、直线、曲线解析式、图形的面积,并且点、线、面之间的相互转化,本专题以一次函数为背景下求多边形面积,即由点或线的条件下求图形的面积,反之,也可以由面积求点的坐标,由面积求直线或曲线的解析式等,本专题的面积问题的巩固,为后面学习函数综合题的面积问题有极大帮助!一、单选题1.(2020·广西博白·期末)如图,矩形ABCD 中,AB =4,BC =3,动点E 从B 点出发,沿B ﹣C ﹣D ﹣A 运动至A 点停止,设运动的路程为x ,△ABE 的面积为y ,则y 与x 的函数关系用图象表示正确的是( )A .B .C .D . 2.(2020·广西灵山·期末)一次函数24y x =-+的图象与x 轴、y 轴的交点分别为A B 、,则OAB ∆的面积是( )A .12B .1C .2D .43.(2020·广西大化·初二期末)若直线4y x b =-+与两坐标轴围成的三角形的面积是5,则b 的值为( )A .±B .±C .D .- 4.(2020·山东枣庄·初三其他)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .4二、填空题5 .(2020·甘肃省庆阳市第五中学初二期末)已知直线8y kx =+与轴和轴所围成的三角形的面积是4,则k 的值是________.6.(2020·湖南隆回·初三二模)一次函数24y x =-的图象与x 轴,y 轴所围成的三角形面积S =__________.7.(2020·湖北曾都·初二期末)若直线y=kx+b (k≠0)的图象经过点(0,2),且与坐标轴所围成的三角形面积是2,则k 的值为_______8.(2020·长沙市南雅中学初二期末)函数 y=2x+6 的图象与 x 、y 轴分别交于 A 、B 两点,坐标系原点为 O ,求△ABO 的面积___________.9.(2020·湖南渌口·初二期末)已知一次函数y =kx +4(k <0)的图象与两坐标轴所围成的三角形的面积等于8,则k 的值为_____.10.(2019·山西初二期末)如图所示,点A (﹣3,4)在一次函数y =﹣3x +b 的图象上,该一次函数的图象与y 轴的交点为B ,那么△AOB 的面积为_____.三、解答题11.(2020·福建宁化·期中)已知直线l 的表达式为y=﹣x+8,与x 轴交于点B ,点P (x ,y )在直线l 上,且x >0,y >0,点A 的坐标为(6,0).(1)求出B 点的坐标;(2)设△OPA 的面积为S ,求S 与x 的函数关系式(并写出自变量的取值范围).12.(2020·甘肃徽县·初二期末)如图,直线l 1的解析式为y =﹣x +2,l 1与x 轴交于点B ,直线l 2经过点D (0,5),与直线l 1交于点C (﹣1,m ),且与x 轴交于点A(1)求点C 的坐标及直线l 2的解析式;(2)求ABC 的面积.13.(2020·湖北下陆·初二期末)在平面直角坐标系中,原点为O ,已知一次函数的图象过点A (0,5),点B (-1,4)和点P (m ,n ).(1)求这个一次函数的解析式;(2)当n =2时,求直线 AB ,直线 OP 与 x 轴围成的图形的面积;(3)当OAP △的面积等于OAB 的面积的2倍时,求n 的值.14.(2020·昆明市官渡区第一中学初二月考)已知一次函数22y x =--.(1)画出函数图象;(2)求图象与x 轴、y 轴的交点A 、B 的坐标; (3)求图象与坐标轴围成的图形的面积.15.(2018·安徽初二期末)如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数24y x =-+的图象.(1)求A 、B 、P 三点坐标;(2)求PAB △的面积;(3)已知过P 点的直线把PAB △分成面积相等的两部分,求该直线解析式.16.(2019·山东初一期末)如图,已知一次函数y =−x +2的图像与y 轴交于点A ,一次函数y =kx +b 的图像过点B(0,4),且与x 轴及y =−x +2的图像分别交于点C 、D ,D 点坐标为(−23,n). (1)求n 的值及一次函数y =kx +b 的解析式.(2)求四边形AOCD 的面积.17.(2019·内蒙古初二期中)如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C . (1)写出点A 、B 、C 的坐标;(2)求此一次函数的解析式;(3)求△AOC 的面积.18.(2019·内蒙古初三月考)一次函数CD :y kx b =-+与一次函数AB :22y kx b =+,都经过点B (-1,4).(1)求两条直线的解析式;(2)求四边形ABDO 的面积.19.(2017·山东省济南兴济中学初二单元测试)两个一次函数的图象如图所示,(1)分别求出两个一次函数的解析式;(2)求出两个一次函数图象的交点C 坐标;(3)求这两条直线与y 轴围成△ABC 的面积.20.(2020·安徽初二期末)在平面直角坐标系xOy 中,ABC ∆如图所示,点()()()3,2,1,1,0,4A B C -.(1)求直线AB 的解析式;(2)求ABC ∆的面积;(3)一次函数32y ax a =++(a 为常数).21.(2020·湖北房县·初二期末)如图1,直线l :y =12x +2与x 轴交于点A ,与y 轴交于点B .已知点C (﹣2,0).。
初中数学求一次函数图形的面积15道题题专题训练含答案
初中数学求一次函数图形的面积15道题题专题训练含答案 学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,平面直角坐标系中,过点(0,6)C 的直线BC 与直线OA 相交于点(4,2)A -,动点M 在线段OA 和射线AC 上运动.(1)求直线BC 的表达式.(2)求OAC ∆的面积.(3)直接写出使OMC ∆的面积是OAC ∆面积的14的点M 坐标.2.已知:2y -与x 成正比例,且2x =时,8y =.(1)求y 与x 之间的函数关系式;(2)求函数图像与坐标轴围成的面积.3.已知直线1:33l y x =-和直线23:62l y x =-+相交于点A . (1)求点A 坐标;(2)若1l 与x 轴交于点B ,2l 与x 轴交于点C ,求ABC 面积.4.在平面直角坐标系中,已知直线l :y =﹣12x+2交x 轴于点A ,交y 轴于点B ,直线l 上的点P(m ,n)在第一象限内,设△AOP 的面积是S .(1)写出S 与m 之间的函数表达式,并写出m 的取值范围.(2)当S =3时,求点P 的坐标.(3)若直线OP 平分△AOB 的面积,求点P 的坐标.5.直线AC与线段AO如图所示:(1)求出直线AC的解析式;(2)求出线段AO的解析式,及自变量x的取值范围(3)求出△AOC的面积6.在平面直角坐标系中,直线l与x轴、y轴分别交于点A、B(0,4)两点,且点C(2,2)在直线l上.(1)求直线l的解析式;(2)求△AOB的面积;7.在直角坐标系中,一条直线经过A (﹣1,5),P (2,a ),B (3,﹣3).(1)求直线AB 的函数表达式;(2)求a 的值;(3)求△AOP 的面积.8.如图,直线11:l y x =和直线22:26l y x =-+相交于点A ,直线2l 与x 轴交于点B ,动点P 在线段OA 和射线AB 上运动.(1)求点A 的坐标;(2)求AOB 的面积;(3)当POB 的面积是AOB 的面积的13时, 求出这时点P 的坐标.9.如图,直线1l 的函数解析式为24y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l 、2l 交于点C .(1)求直线2l 的函数解析式;(2)求ADC ∆的面积;(3)在直线2l 上是否存在点P ,使得ADP ∆面积是ADC ∆面积的1.5倍?如果存在,请求出P 坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,O 为坐标原点,直线1l :12y x =与直线,2l :6y x =-+交于点A ,2l 与x 轴交于B ,与y 轴交于点C .(1)求OAC 的面积;(2)若点M 在直线2l 上,且使得OAM △的面积是OAC 面积的34,求点M 的坐标.11.如图,已知直线:l y ax b =+过点()2,0A -,()4,3D .(1)求直线l 的解析式;(2)若直线4y x =-+与x 轴交于点B ,且与直线l 交于点C .①求ABC ∆的面积;②在直线l 上是否存在点P ,使ABP ∆的面积是ABC ∆面积的2倍,如果存在,求出点P 的坐标;如果不存在,请说明理由.12.如图,直线1l 的解析表达式为3+3y x =-,且1l 与x 轴交于点D ,直线2l 经过点A ,点B ,直线1l ,2l 交于点C .(1)求直线2l 的解析表达式;(2)求ADC 的面积;(3)在直线2l 上存在异于点C 的另一点P ,使得ADP △的面积等于ADC 面积,请直接写出点P 的坐标.13.如图,在平面直角坐标系中,过点()60B ,的直线AB 与直线OA 相交于点()42A ,,动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式.(2)求OAC ∆的面积.(3)是否存在点M ,使OMC ∆的面积是OAC ∆的面积的12?若存在求出此时点M 的坐标;若不存在,说明理由.14.点()P x y ,在第一象限,且8x y +=,点A 的坐标为()60,,设OPA ∆的面积为S .(1)用含x 的表达式表示S ,写出x 的取值范围,画出函数S 的图象;(2)当点P 的横坐标为5时,OPA ∆的面积为多少?(3)OPA ∆的面积能否大于24?为什么?15.(本题满分10分) 如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求△AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,△ABP 的面积是92,求点P 的坐标.参考答案1.(1) 6y x =+ (2)12 (3) 1(1,)2-、()1,5-、()1,7【解析】【分析】(1)利用待定系数法即可求得函数的解析式;(2)利用三角形的面积公式即可求解;(3)当OMC 的面积是OAC 的面积的14,求出M 点的横坐标,分别按照题意代入表达式即可; 【详解】解:(1) 设直线AB 的解析式是y kx b =+,根据题意得: 0642k b k b +=⎧⎨-+=⎩解得:16k b =⎧⎨=⎩, 则直线的解析式是:6y x =+; (2)164122OAC S ∆=⨯⨯=; (3) 设OA 的解析式是y mx =,则42m -=, 解得:12m =-, 则直线的解析式是:12y x =-, 当OMC 的面积是OAC 的面积的14时, ∴M 的横坐标是±1, 在12y x =-中,当1x =-时,12y = ,则M 的坐标是1(1,)2-; 在6y x =+中, 当1x =-则5,y = 则M 的坐标是()1,5.-在6y x =+中,当1x =时,7y =,则M 的坐标是()1,7.综上所述:M 的坐标是:111),2(M -或()21,5M -或()31,7M .【点睛】本题考查一次函数综合题.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
第四章一次函数培优专题一次函数中的面积问题训练北师大版2024—2025学年八年级上册
第四章一次函数培优专题一次函数中的面积问题训练北师大版2024—2025学年八年级上册一、直线与两标轴所成三角形面积例1.已知一次函数4=xy与x轴,y轴分别交于A,B两点,求三角形AOB的2-面积变式1.一次函数过点(2,1)和点(3,0)求它与坐标轴围成的三角形的面积.变式2.如图,一次函数的图象经过点A(2,3),交y轴于点B,交x轴于点C.(1)求点B、C的坐标;(2)在x轴上一动点P,使P A+PB最小时,求点P的坐标;(3)在条件(2)下,求△ABP的面积.二、利用解析式求三角形面积或已知面积求解析式例2.直线b kx y +=过点A (-1,5)和点)5,(-m B 且平行于直线x y -=,O 为坐标原点,求AOB ∆的面积.变式1.求直线y =2x -7,直线1122y x =-+与y 轴所围成三角形的面积.变式2.如图,所示,一次函数b kx y +=的图像经过A ,B 两点,与x 轴交于C 求:(1)一次函数的解析式;(2)AOC ∆的面积变式3直线b x y +=2与坐标轴围成的三角形的面积是9,求b变式4.已知直线2+-=x y 与x 轴、y 轴分别交于A 点和B 点,另一条直线 b kx y +=)0(≠k 经过点)0,1(C ,且把AOB ∆分成两部分(1)若AOB ∆被分成的两部分面积相等,则k 和b 的值(2)若AOB ∆被分成的两部分面积比为1:5,则k 和b 的值三、已知三角形面积求点的坐标例3.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数的图象的交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.变式1.如图,在平面直角坐标系中,直线分别与x轴、y轴相交于点A、点B,直线CE与AB相交于点C(2,m),与x轴相交于点D,与y轴相交于点E(0,﹣1),点P是x轴上一动点.(1)求直线CE的表达式;(2)求△BCE的面积;(3)当△CDP的面积等于△BCE面积的一半时,请求出点P的坐标.变式2.设一次函数y =kx +b (k ,b 为常数,k ≠0)的图象过A (1,3),B (﹣5,﹣3)两点.(1)求该函数表达式;(2)若点C (a +2,2a +1)在该函数图象上,求a 的值;(3)设点P 在y 轴上,若S △ABP =15,求点P 的坐标.变式3.如图,点A 的坐标为(1,3),点B 的坐标为(2,0),过点C (﹣2,0)作直线l 交AO 于D ,交AB 于E ,且使△ADE 和△DCO 的面积相等.(1)求△AOB 的面积.(2)求直线l 的函数解析式.变式4.如图,直线与x 轴交于点A (4,0),与y 轴交于点B ,点C 是OA 的中点.(1)求出点B 、点C 的坐标及b 的值;(2)在y 轴上存在点D ,使得S △BCD =S △ABC ,求点D 的坐标;变式5.如图,已知直线l1:y=﹣3x+6与x轴交于点A,与y轴交于点B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠ABC=90°,直线l2经过A,C两点.(1)求A,B两点的坐标;(2)求直线l2的函数表达式;(3)若E为x轴正半轴上一点,△ABE的面积等于△ABC的面积,求E点坐标;变式6.如图,一次函数y=kx+b的图象过点A(3,6),B(0,3),与x轴相交于点C.(1)求一次函数的表达式;(2)求点O到直线AC的距离;(3)若直线l与直线AC平行,与y轴交于点P,且△APC的面积等于△AOC 的面积(点P与点O不重合),求直线l所对应的函数表达式.变式7.如图,在平面直角坐标系中,直线y=2x+8与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(8,0).(1)求直线BC的解析式;(2)如图(1),点G是线段BC上一动点,当G点距离y轴3个单位时,求△ACG的面积;变式8.已知直线l1:y=kx﹣4(k>0)分别与x轴,y轴交于A,B两点,直线l2:与y轴交于点C,与直线l1交于点D.(1)如图1,点D的横坐标为4,若点E是l1:y=kx﹣4(k>0)上一动点,①求直线l1的函数表达式;②连接CE,若△ECD的面积为4,求E的坐标;变式9.如图1,已知直线l与x轴交于点A(a,0),与y轴交于点B(0,b),且a,b满足,以A为直角顶点在第一象限内作等腰Rt△ABC,其中上∠BAC=90°,AB=AC.(1)求直线l的解析式和点C的坐标;(2)如图2,点M是BC的中点,点P是直线l上一动点,连接PM、PC,求PM+PC的最小值,并求出当PM+PC取最小值时点P的坐标;(3)在(2)的条件下,当PM+PC取最小值时,在直线PM上是否存在一点Q,使?若存在,直接写出点Q的坐标;若不存在,请说明理由.变式10.如图1,在平面直角坐标系中,一次函数与x轴交于点B,与y 轴交于点A,点C为线段AB的中点,过点C作DC⊥x轴,垂足为D.(1)求A、B两点的坐标;(2)若在直线AB上有一点M,使得△OBM的面积为9,求点M的坐标;变式11.如图1,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y 轴上,连接AB.(1)求直线AB的解析式;(2)如图2,点P为直线AB上一动点,若S△APC =S△AOC,求点P的坐标;(3)如图3,点Q为直线AB上一动点,当∠BCQ=∠BAO时,求点Q的坐标.、变式12.如图,已知直线AB:y=kx+b与x轴交于点,与y轴交于点C(0,3),且与直线y=x相交于点A.(1)求直线AB的表达式和点A的坐标.(2)如图1,点D在直线y=x上,且横坐标为2,点Q为射线BC上一动点,若,请求出点Q的坐标.。
一次函数面积问题专题(含答案)
一次函數面積問題1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。
2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。
3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的图像,(1)用m、n表示A、B、P的坐标(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。
6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。
11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B(1)求两直线交点C的坐标(2)求△ABC的面积(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。
一次函数压轴题专题突破6:一次函数与面积问题(含解析)
一次函数压轴题之面积问题1.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2.如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.(1)求△AOB的面积;(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.3.直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求点B的坐标及k的值;(2)求证:AC⊥BC;(3)点M为直线BC上一点(与点B不重合),设点M的横坐标为x,△ABM的面积为S.①求S与x的函数关系式;②当S=6时,求点M的坐标.4.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.5.已知y关于x的一次函数y=mx+2﹣2m(m≠0且m≠1),其图象交x轴于点A,交y轴于点B.(0为坐标系的原点)(1)若OB=6,求这时m的值;(2)对于m≠0的任意值,该函数图象必过一定点,请求出定点的坐标;(3)是否存在m的值,使△OAB的面积为8?若存在,求出m的值;若不存在,请说明理由.6.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.(1)A点坐标为,B点坐标为;(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O 出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.(3)若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.7.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.8.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.9.如图,直线OC、BC的函数关系式分别是:y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3).(1)求点C的坐标,并回答当x取何值时y2<y1?(2)P点在运动过程中,当△COP为等腰三角形时,求点P的坐标;(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.10.如图,点A(0,1)、B(2,0),点P从(4,0)出发,以每秒2个单位长度沿x轴向坐标原点O匀速运动,同时,点Q从点B出发,以每秒1个单位长度沿x轴向坐标原点O匀速运动,过点P作x轴的垂线l,过点Q作AB的垂线l2,它们的交点为M.设运动的时间为t(0<t<2)秒(1)写出点M的坐标(用含t的代数式表示);(2)设△MPQ与△OAB重叠部分的面积为S,试求S关于t的函数关系式及t的取值范围.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A 作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.(1)用含t的式子表示点E的坐标为;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.13.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO﹣OB﹣BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒个单位长度的速度沿y轴向上平移,移动过程中直线l 分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO﹣OB﹣BA运动一周回到点A 时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:(1)求A、B两点的坐标;(2)当t为何值时,点P与点E重合?(3)当t为何值时,点P与点F重合?(4)当点P在AO﹣OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.14.如图1,直线y=﹣2x+8分别交y轴、x轴于A、B两点.(1)求点A、B的坐标:(2)如图1,点P为线段AB上的动点(点P不与点A、B重合),过点P作PE⊥x轴于点E,作PF⊥y轴于点F,求矩形PEOF的面积S1与点P的横坐标m之间的函数关系式,并求出当m为何值时,S1最大,最大值是多少?(3)在(2)的条件下,当S1最大时,将直线l从与直线AB重合的位置出发,沿y轴负方向向下平移a(0<a≤8)个单位,设直线l扫过矩形PEOF的面积为S2,求S2与a之间的函数关系式,并在图2中画出他们之间的函数关系图象(画出草图即可).15.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O 点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是(,),E点坐标是(,);(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x 之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.16.如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.17.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.18.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,2),C(3,0).动点P从O点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P点作PQ⊥直线OA,垂足为Q.设P点移动的时间为t秒(0<t≤7),△OPQ与直角梯形OABC重叠部分的面积为S.(1)写出点B的坐标:;(2)当t=7时,求直线PQ的解析式,并判断点B是否在直线PQ上;(3)求S关于t的函数关系式;(4)连接AC.是否存在t,使得PQ分△ABC的面积为1:3?若存在,直接写出t的值;若不存在,请说明理由.19.如图,梯形OABC中,BC∥AO,∠BAO=90°,B(﹣3,3),直线OC的解析式为y=﹣x,将△OBC 绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.(1)求证:点O1在x轴上;(2)将点O1运动到点M(﹣4,0),求∠B1MC的度数;(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.20.如图(1)(2),直线y=﹣x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)若点M的横坐标是a,则点M的纵坐标是(用含a的代数式表示)(2)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(3)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(4)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为b(0<b<4),正方形O′CMD与△AOB重叠部分的面积为S.试求S与b的函数关系式并画出该函数的图象.21.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO 与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.22.如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a <4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象.23.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.如图a,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线函数式为,AD =8,矩形ABCD沿DB方向以每秒一个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经B到达终点C,用了14秒.(1)求矩形ABCD周长;(2)如图b,当P到达B时,求点P坐标;(3)当点P在运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,①如图c,当P在BC上运动时,矩形PEOF的边能否与矩形ABCD的边对应成比例?若能,求出时间t的值,若不能,说明理由;②如图d,当P在AB上运动时,矩形PEOF的面积能否等于256?若能,求出时间t的值,若不能,说明理由;25.如图,等腰Rt△ABC中,∠ACB=90°,在直角坐标系中如图摆放,点A的坐标为(0,2),点B的坐标为(6,0).(1)直接写出线段AB的中点P的坐标为;(2)求直线OC的解析式;(3)动点M、N分别从O点出发,点M沿射线OC以每秒个单位长度的速度运动,点N沿线段OB以每秒1个长度的速度向终点B运动,当N点运动到B点时,M、N同时停止运动,设△PMN的面积为S(S≠0)运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围.26.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (﹣15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC 重合.得到△ACD.(1)求直线AC的解析式;(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.27.如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程两根,且OA<AB.(1)求直线AB的解析式;(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B 落在x轴上,对应点为E,设点C的坐标为(x,0).①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).28.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.29.如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,﹣1)和(0,﹣5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.(1)写出A,B两点的坐标,并求直线AB的解析式;(2)如图2,将△AOB沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).①当x为何值时,线段DE平分△AOB的面积;②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).30.如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t ≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.31.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?32.如图,在平面直角坐标系中,两个函数的图象交于点A.动点P从点O开始沿OA 方向以每秒1个单位的速度运动,运动时间是t.作PQ∥X轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S,如图1.(1)求点A的坐标.(2)当t 为何值时,正方形PQMN的边MN恰好落在x轴上?如图2.(3)当点P在线段OA上运动时,①求出S与运动时间t(秒)的关系式.②S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.33.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.34.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D →C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.1.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).2.【解答】解:(1)如图1,∵直线y=﹣2x+4与x轴、y轴分别相交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4.∴S AOB=OA•OB=×2×4=4,即△AOB的面积是4;(2)∵△DOC≌△AOB,∴OD=OA=2,∴D(0,2).故设直线CD的解析式为y=kx+2(k≠0).∵C(﹣4,0)则0=﹣4k+2,解得,k=,∴直线CD的解析式为y=x+2.又∵点P是直线CD与直线AB的交点,∴,解得,∴点P的坐标是(,).(3)如图2,设P(x,y),又∵点C的坐标为(﹣4,0),∴OC=4,∵S△COP=S△AOB,∴OC×|y|=4,即|y|=2,解得,y=±2,∵P是直线AB上一点,∴点P的坐标为:(1,2)或(3,﹣2).3.【解答】解:(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得:k=﹣;(2)OA=,OC=3,则AC=2,则∠AOC=30°,∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°,∴AC⊥BC;(3)①直线BC的表达式为:y=﹣x+3,则点M(x,﹣x+3),S=×AB×|y M|=4×|﹣x+3|=6±2x,②S=6,解得:x=0,故点M(0,3).4.【解答】解:(1)令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=﹣x﹣…①,则点E(0,﹣),直线AD的表达式为:y=﹣3x+2…②,联立①②并解得:x=1,即点D(1,﹣1),点B、E、D的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN=S△BCM==NB×k=NB,解得:NB=,故点N(﹣,0)或(,0).5.【解答】解:(1)OB=6,即2﹣2m=±6,解得:m=﹣2或4;(2)y=mx+2﹣2m=m(x﹣2)+2,当x=2时,y=2,故定点坐标为(2,2);(3)存在,理由:OA=||,OB=|2﹣2m|,S△OAB=×OA×OB=||×|2﹣2m|=8,解得:m=﹣1或3+2或3﹣2.6.【解答】解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,故答案为:(6,0)、(0,8);(2)由题意得:点P(2t,8﹣4t),则x=2t,y=8﹣4t,故点P所在的直线表达式为:y=8﹣2x;(3)①当点Q在AB下方时,将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:y=﹣x+b,将点P的坐标代入上式得:=﹣×+b,解得:b=,故函数的表达式为:y=﹣x+,当x=0时,y=,当y=0时,x=,即点Q(0,)或(,0).当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).7.【解答】解:(1)不变,理由:一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B,则点A、B的坐标分别为(﹣3,0)、(0,3),S△OPB=OB×x P=×3×2=3;(2)S四边形APOB=S△ABO+S△AOP=×AO×BO+AO×(﹣m)=3(3﹣m)=﹣m+,S△ABP=S四边形APOB﹣S△BOP=﹣m+﹣3=6,解得:m=﹣3.8.【解答】解:(1)将点A、B坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=2x﹣4,直线CD的表达式为:y=﹣x+5…①,则点C、D的表达式分别为:(5,0)、(0,5),联立直线AB表达式与直线CD表达式:y=﹣x+5并解得:x=3,故点E(3,2);(2)如图,设点M(m,2m﹣4),过点M作MN⊥CD交于点N,则MN=3,∵MN⊥CD,∴直线MN表达式中的k值为﹣1,设直线MN的表达式为:y=﹣x+b′,将点M坐标代入上式并解得:直线MN的表达式为:y=x+(m﹣4)…②,联立①②并解得:x=,则点N(,),MN2=(m﹣)2+(﹣2m+4)2=(3)2,解得:m=1或5(舍去),故点M(1,﹣2);(3)①如图2(左侧图),当2≤t≤3时,图象到达O′Q′P′A′的位置,OA=2,OB=4,∵GA′∥OB,则=2,则GA′=2AA′则S=AA′×A′G=AA′×AA′tanα=(t﹣2)2;②3<t≤4时,如图3,设A′P′交直线CD于点H,S=S梯形AA′P′Q′﹣S△EHP′=(t+t+2﹣3)×2﹣(t+2﹣3)=t+;③如图4,4<t≤5时,图象到达O′′Q′′P′′A′′的位置,直线BE交O″Q″于点H′,直线CD交A″P″于点G′,则AA″=t,AO″=t﹣2,A″C=3﹣t,H′O″=2AO″=2(t﹣2),G′A″=A″C=3﹣t,S△AO″H′=×AO″×O″H′=(t﹣2)2,同理:S△A″CG′=(3﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣2)2﹣(3﹣t)2=﹣t2+7t﹣,故:S=.9.【解答】解:(1)将y1=x和y2=﹣2x+6联立并解得:x=2,故点C(2,2),则OC=2,当x>2时,y2<y1;(2)y1=x,则∠COB=45°,①当CO=CP时,则点C的横坐标对应在x轴上的点为OP的中点,故点P(4,0);②当OC=OP时,PO=OC=2,故点P(2,0);③当OP=CP时,如下图,则OD=CO,OP====2,故点P(2,0);(3)CP将△COB分成的两部分面积之比为1:2,则OP=OB或OB,故点P(1,0)或(2,0).10.【解答】解:(1)由题意得:P(4﹣2t,0),Q(2﹣t,0),∴PQ=2﹣t,∵△OAB∽△QPM,∴=2,∴PM=2PQ=4﹣2t,∴M(4﹣2t,4﹣2t);(2)设l2与AB的交点为C,l1与AB的交点为D,易得直线AB对应的解析式为y=﹣x+1,∴4﹣2t=﹣(4﹣2t)+1,解得:t=;(i)当0<t≤1时,如图1所示,在Rt△OAB中,AB=,由△OAB∽△CQB,得到,∴S=S△CQB=××1×2=;(ii)当1<t<时,如图2所示,PD=2t﹣2,由△OAB∽△PDB,得到PB=t﹣1,∴S=S四边形CQPD=S△CQB﹣S△PDB==•(2t﹣2)•(t﹣1)═﹣+2t﹣1;(iii)当≤t<2时,S=S△PQM=PQ•PM=•(2﹣t)•(4﹣2t)=t2﹣4t+4.11.【解答】解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.【解答】解:(1)∵点B坐标为(0,8),∴OB=8.∵AD=OB,EF垂直平分AD,∴AE=4.∴BE=t+4.∴点E的坐标为(t+4,8);(2)如图所示;过点D作DH⊥OF,垂足为H.∵AC⊥OA,∴∠OAC=90°.∴∠BAO+∠EAC=90°.又∵∠BOA+∠BAO=90°,∴∠EAC=∠BOA.又∵∠OBA=∠AEC,∴△OBA∽△AEC.∴,即.∴EC=.∴点C的坐标为(t+4,8﹣)∵∠OCD=180°,∴点C在OD上.∵CF∥DH,∴,即解得:,(舍去).所以当t=4﹣4时,∠OCD=180°.(3)当0<t<16时,三角形OCF的面积=×OF•FC=(t+4)(8t)=,当t>16时,三角形OCF的面积=×OF•FC=(t+4)(t﹣8)=,∴s与t的函数关系式为s=.13.【解答】解:(1)令x=0,得y=12,令y=0,得x=9∴与y轴交点B的坐标为(0,12),与x轴交点A的坐标为(9,0);(2)点P在OA上运动的时间为9÷3=3秒,点E在OB上移动的距离为3×=4,点P和点E重合的时间为:3+4÷(4﹣)=秒,当t=秒,点P与点E重合;(3)点P在OA、OB上运动的时间和为9÷3+12÷4=6秒,点E在OB上移动的距离为6×=8,AB==15∵EF∥OA∴△BEF∽△BOA∴=即=解得BF=5,则点F运动的速度为(15﹣5)÷6=个单位/秒,∴点P与点F重合的时间为5÷(5+)+6=秒;(4)∵EF∥OA∴△BEF∽△BOA=即=EF=9﹣t①当点P在OA上运动,即0<t≤3;S=×(9﹣t)×t=﹣t2+6t;②当点P在OB上运动,即3<t<,S=×(9﹣t)×[t﹣4(t﹣3)]=﹣t2﹣18t+54.③当<t<6时,S=×(9﹣t)×[4(t﹣3)﹣t]=t2+18t﹣54.14.【解答】解:(1)在y=﹣2x+8中,令x=0,解得y=8,则A的坐标是(0,8);令y=0,解得x=4,则B的坐标是(4,0);(2)在y=﹣2x+8中令x=m,则y=﹣2m+8则S1=m(﹣2m+8),即S1=﹣2m2+8m,当m=﹣=2时,S1有最大值是﹣2×22+8×2=8,此时P的坐标是(2,4);(3)∵P的坐标是(2,4),∴S矩形PEOF=8,E的坐标是(2,0),F的坐标是(0,4),过F且平行于AB的直线解析式是:y=﹣2x+b,把(0,4)代入得:b=4,则解析式是y=﹣2x+b,在y=﹣2x+4中,令y=0,解得:x=2,则一定经过点E.则当0<a≤4时,直线l扫过矩形PEOF的部分是直角三角形,设向下平移a个单位长度,则直线的解析式是:y=﹣2x+8﹣a,设与PF交于点M,在y=﹣2x+8﹣a中令y=4,解得:x=2﹣a,则M的坐标是(2﹣a,4),则PM=a;设与PE交于点N,在y=﹣2x+8﹣a中令x=2,解得:y=4﹣a,则N的坐标是(2,4﹣a),则PN=a,则S1=PM•PN=×a•a=a2;当4<a≤8时,设直线与y轴交点是G,则OG=8﹣a,设与x轴的交点是H,则OH=(8﹣a)=4﹣a,S△OGH=OG•OH=(8﹣a)•(4﹣a)=(8﹣a)2.则S1=8﹣(8﹣a)2.即S1=﹣a2+4a﹣8.15.【解答】解:(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处,∴∠OAD=∠EAD=45°,DE=OD,∴OA=OD,∵OA=2,∴OD=2,∴D点坐标是(2,0),DE=OD=2,∴E点坐标是(2,2),故答案为:(2,0),(2,2);(2)存在点M使△CMN为等腰三角形,理由如下:由翻折可知四边形AODE为正方形,过M作MH⊥BC于H,∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,。
一次函数之面积问题(讲义及答案)
一次函数之面积问题(讲义)➢知识点睛1.坐标系中处理面积问题,要寻找并利用横平竖直的线,通常有以下三种思路:①公式法(规则图形);②割补法(分割求和、补形作差);③转化法(例:同底等高).2.坐标系中面积问题的处理方法举例①割补法——铅垂法求面积:B()2APB B AS PM x x=⋅⋅-△②转化法——借助平行线转化:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系中,已知A(2,3),B(4,2),则△AOB的面积为___________.2.如图,点A,B在直线74y kx=+上,点A的坐标为(-1,3),点B的横坐标为3,则△AOB的面积为___________.3.如图,直线y=-x+4与x轴、y轴分别交于点A,B,点P的坐标为(-2,2),则S△PAB=___________.4.如图,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与正比例函数23y x的图象的交点,则△AOB的面积为___________.5.如图,直线l1:y=x+1与x轴、y轴分别交于点A,B,直线l2:y=kx-2与x轴、y轴分别交于点C,D,直线l1,l2相交于点P.若S△APD=92,则k的值为__________.6.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),则四边形OABC的面积为___________.7.如图,在平面直角坐标系中,已知点A(2,1),点B(8,4),点C(m,2m-3)在直线AB上方,若△ABC的面积为9,则m的值为________.8.如图,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为18,则点C的坐标为__________.9.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),点P为坐标轴上一点,若S△ABP =S△ABC,则点P的坐标为__________.10.如图,在平面直角坐标系中,一次函数y=2x+4的图象与x轴、y轴分别交于点A,B,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式;(2)若点P是直线AM上一点,使得S△ABP =S△AOB,请直接写出点P的坐标.【参考答案】1. 42.7 23.84.55.5 26.247. 48.(-3,9)9.(0,52),(5,0),(-1,0),(0,12-)10.(1)直线AM的函数解析式为y=x+2;(2)P1(2,4),P2(-6,-4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函數面積問題
1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。
·
2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。
<
3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)
的图像,
(1)用m、n表示A、B、P的坐标
(2)四边形PQOB的面积是,AB=2,求点P的坐标
(
4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB
面积二等分,若D(m,0),求m的值
\
5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。
\
6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,BAC=90°,点P(a,)在第二象限,△ABP的面积与△ABC 面积相等,求a的值.
`
~
7、如图,已知两直线y=+和y=-x+1分别与x轴交于A、B两点,这两直
线的交点为P
(1)求点P的坐标
(2)求△PAB的面积
$
8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求
(1)这两条直线的函数关系式
(2)它们与x轴围成的三角形面积
"
9、已知两条直线y=2x-3和y=5-x
(1)求出它们的交点A的坐标
(2)求出这两条直线与x轴围成的三角形的面积
]
10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。
$
11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B
(1)求两直线交点C的坐标
(2)求△ABC的面积
,
(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。
12、已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b
】
(k≠0)经过点C(1,0),且把△AOB分为两部分,
(1)若△AOB被分成的两部分面积相等,求k和b的值
(2)若△AOB被分成的两部分面积为1:5,求k和b的值
|
13、直线y=-x+3交x,y坐标轴分别为点A、B,交直线y=2x-1于点P,直线y=2x-1交x,y坐标轴分别为C、D,求△PAC和△PBD的面积各是多少
14、直线1l的解析式为y=-3x+3,且1l与x轴交于点D,直线2l经过点A(4,0),
B(3,),直线1l,2l交于点C
\
(1)求点D的坐标
(2)求直线2l的解析式
(3)求△ADC的面积
(4)在直线2l上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,直接写出P的坐标
,
15、已知直线L l:y=k1x+b1经过点(-1,6)和(1,2),它和x轴、y轴分别交
于点B和点A,直线L l:y=k2x+b2经过点(2,-4)和(0,-3),它和x轴、y 轴的交点分别是D和C
(1)求直线L l,L2的解析式
(2)求四边形ABCD的面积
(3)设直线L1,L2交于点P,求△PBC的面积
/
答案:1、A(-4,5) OA:y=-x
2、C(-2,1)a:y=-x或C(-1,2)a:y=-2x
3、(1)A(-n,0)B(m,0)P(,)
(2)m=2,n=1,P(,)
4、m=10-2
5、B(3,-2)
6、a=4-
7、P(-1,2),S PAB=6
8、(1)y=-x+5 y= (2)
9、(1)A(,),(2)
10、l:y=--x 或l:y=-2x
11、(1)点C(-1,1)(2)S=2 (3)点P(2,-5)或(-4,7)。