五年级数学列方程解相遇问题
五年级下册数学教案-3.1列方程解应用题(三)(相遇问题)▏沪教版
五年级下册数学教案3.1 列方程解应用题(三)(相遇问题)▏沪教版教案:五年级下册数学教案3.1 列方程解应用题(三)(相遇问题)▏沪教版我作为一名经验丰富的教师,今天我要为大家分享的是五年级下册数学教案3.1,主要内容是列方程解应用题(三)(相遇问题)。
一、教学内容我们今天使用的教材是沪教版五年级下册的数学课本,主要涉及第三章节第一节的内容,即相遇问题。
相遇问题是解决两个或多个物体在同一时间从不同地点出发,最终在某一点相遇的问题。
二、教学目标通过本节课的学习,我希望学生们能够掌握相遇问题的基本概念,学会使用方程来解决相遇问题,提高他们解决实际问题的能力。
三、教学难点与重点本节课的重点是让学生掌握相遇问题的解题方法,难点是让学生能够自己发现并运用方程来解决问题。
四、教具与学具准备为了帮助学生们更好地理解相遇问题,我准备了PPT、黑板、粉笔等教具,同时要求学生们准备好纸和笔,以便于他们随堂练习。
五、教学过程1. 实践情景引入:我会在课堂上创设一个实践情景,比如两个同学从学校的东西两端同时出发,相向而行,最终在学校门口相遇。
我会提问学生们,他们需要多长时间才能相遇?2. 例题讲解:我会选取一些典型的相遇问题题目,向学生们展示如何使用方程来解决问题。
我会 stepstep 地讲解,确保学生们能够理解并掌握解题方法。
3. 随堂练习:在讲解完例题后,我会给出一些类似的题目,让学生们在课堂上独立解决。
我会及时给予他们反馈和指导。
4. 小组讨论:我会让学生们分成小组,共同讨论一些复杂的相遇问题,鼓励他们互相交流和合作,共同解决问题。
六、板书设计我会在黑板上设计一些简洁明了的板书,列出相遇问题的解题步骤和关键公式,方便学生们随时查阅和复习。
七、作业设计为了让学生们在课后继续巩固今天所学的内容,我会布置一些相关的作业题目。
其中包括一些典型的相遇问题题目,要求学生们使用方程来解决。
八、课后反思及拓展延伸在课后,我会对今天的学习进行反思,看看学生们对相遇问题的掌握情况,并根据他们的反馈进行调整。
五年级解方程式练习题相遇问题
五年级解方程式练习题相遇问题解方程式练习题——五年级相遇问题解方程式是数学中的重要内容之一,对于五年级的学生来说,解方程式的练习可以帮助他们增强数学思维能力和解决实际问题的能力。
在本文中,我们将探讨一个有趣的解方程式练习题——相遇问题。
假设有两个人从不同的地方同时出发,其中一个人每小时走3千米,另一个人每小时走5千米。
那么问他们相遇需要多少时间?为了解决这个问题,我们可以设定一个未知数,例如用x表示相遇时间(小时)。
根据题目信息,我们可以列出如下的方程:3x + 5x = 相遇距离其中,3x表示第一个人走的距离,5x表示第二个人走的距离。
因为他们相遇时到达的地方是相同的,所以他们走的距离之和等于相遇的距离。
根据这个方程,我们可以得到:8x = 相遇距离现在问题变成了求相遇距离,而我们可以通过速度乘以时间来计算距离。
从题目中我们可以得知,他们相遇需要的时间为x小时,所以相遇距离可以表示为3x或5x。
将这个表达式代入方程中,我们有:8x = 3x 或 8x = 5x带入表达式后,我们可以解得:8x = 3x8x - 3x = 5x5x = 0换一个方程:8x = 5x8x - 5x = 3x3x = 0通过观察可得,两个方程的解都是x = 0。
然而,在实际情况中,相遇应该不会在出发的瞬间发生,所以这个解不符合实际。
因此,我们需要考虑其他可能的解。
现在我们将方程改为:8x = 3x + 5这个方程式表示相遇距离是相对于第一个人多出来的5千米。
通过解这个方程,我们可以得到正解。
3x - 8x = -5-5x = -5x = 1因此,他们需要1小时才会相遇。
总结起来,通过解方程式,我们得出了他们相遇需要1小时的结论。
这个练习题不仅考察了解方程式的能力,还培养了学生的逻辑思维和解决实际问题的能力。
通过类似的练习,五年级学生可以更好地掌握解方程式的方法和应用。
解方程式作为数学中重要的内容,可以通过生活中的实际问题来进行练习和应用。
五年级下册数学课件-列方程解决问题(相遇问题)-沪教版
探究二、沪宁高速公路全长约270千米,一辆轿车和一辆 客车分别从上海和南京两地同时出发,相向而行。轿车 平均每小时行100千米,客车平均每小时行80千米,经过 几小时两车在途中相遇?
轿车 100千米/时 上海 轿车行的路程+客车行的路程= 两地的路程 ?小时 270千米 轿车、客车的速度和×相遇时间= 两地的路程 80千米/时 客车 南京
探究三、沪宁高速公路全长约270千米,一辆轿车 和一辆客车分别从上海和南京两地同时出发,相 向而行。轿车平均每小时行100千米,经过1.5小 时两车在途中相遇,客车平均每小时行多少千米?
沪宁高速公路全长约270千米,一辆轿车和一辆客 车分别从上海和南京两地同时出发,相向而行。 轿车平均每小时行100千米,经过1.5小时两车在 途中相遇,客车平均每小时行多少千米?
客车 南京
? 千米
轿车 100千米/时 上海 80千米/时 客车 南京
?小时
270千米
轿车 100千米/时 上海
1.5小时 270千米
?千米/时 客车
南京
轿车、客车的速度和 × 相遇时间=两地的路程 轿车行的路程 + 客车行的路程=两地的路程
练一练:
小亚和小巧同时从相距路程为960米的两地出发,相向 而行,小亚平均每分钟走58米,小巧平均每分钟走62米, 几分钟后两人在途中相遇?
沪宁高速公路全长约270千米,一辆轿车和一辆客车 分别从上海和南京两地同时出发,相向而行。轿车 平均每小时行100千米,客车平均每小时行80千米, 经过几小时两车在途中相遇?
探究二、沪宁高速公路全长约270千米,一辆轿车和 一辆客车分别从上海和南京两地同时出发,相向而 行。轿车平均每小时行100千米,客车平均每小时行 80千米,经过几小时两车在途中相遇?
五年级数学列方程解应用题稍复杂的相遇问题教学反思
五年级数学列方程解应用题稍复杂的相遇问题教学反思
【提纲】
一、问题概述
在五年级数学教学中,列方程解应用题的稍复杂相遇问题一直是学生感到困难的部分。
这类问题不仅需要学生掌握相遇问题的基本解题思路,还需要他们熟练运用方程式的列法和解法。
二、教学反思
1.教学内容分析
在本节课中,我讲解了相遇问题的基本概念、方程式的列法和解法。
通过实例分析,让学生了解如何运用方程来解决实际问题。
2.学生学习情况分析
学生们在接触稍复杂相遇问题时,普遍表现出对公式和步骤的掌握不够熟练,对问题分析的能力有待提高。
3.教学方法反思
在教学过程中,我发现自己的讲解方式可能过于理论,没有充分调动学生的积极性。
此外,对学生的个别辅导不足,导致他们在解决实际问题时感到困惑。
4.改进措施
针对上述问题,我计划在今后的教学中增加实际操作环节,让学生在动手实践中掌握知识。
同时,加强个别辅导,关注每一个学生的学习进度。
此外,我还将继续提高自己的教学水平,以更好地引导学生。
三、总结
通过对本次教学的反思,我认识到在今后的教学中,需要更加关注学生的实际需求,调整教学方法,以提高教学效果。
五年级上册数学教学设计-5.1 列方程解相遇问题 |冀教版
五年级上册数学教学设计-5.1 列方程解相遇问题|冀教版1. 教学目标•知识目标:掌握列方程解相遇问题的方法,理解相遇问题的本质。
•能力目标:能够熟练列出关于相遇问题的方程,能够运用所学知识解决相遇问题。
•情感目标:通过让学生感受到相遇问题的趣味性,激发学生学习数学的兴趣,培养学生坚持不懈地解决问题的勇气和毅力。
2. 教学内容列方程解相遇问题3. 教学重点和难点•教学重点:让学生理解相遇问题的本质,掌握列出关于相遇问题的方程的方法。
•教学难点:让学生理解如何运用所学知识解决相遇问题。
4. 教学方法板书法,讲授法,案例分析法,讨论法,实验法5. 教学过程(1)导入环节通过一个生动的故事引出相遇问题:小明和小红在不同的路程上出发,假设小明的速度是5m/s,小红的速度是7m/s,那么小明和小红什么时候相遇?通过这个引入,让学生们了解到相遇问题的本质,为后续学习打下基础。
(2)讲解环节•第一步,教师利用黑板板书教学,让学生掌握列出方程的方法。
•第二步,教师通过案例分析教学,让学生了解如何运用所学知识解决相遇问题。
•第三步,教师通过讨论的方式,让学生们思考并解决一个更加复杂的相遇问题。
•第四步,教师带领学生进行实验,让学生亲身感受相遇问题的本质,加深对所学知识的理解。
(3)练习环节让学生们分组进行练习,互相交流和讨论解题思路,加深学生们的理解和掌握程度。
(4)作业布置在作业中,让学生们利用课上所学知识解决相遇问题,并且让学生们总结本节课学习的内容。
6. 教学思路在本节课中,通过导入、讲解、练习和作业布置四个环节,让学生逐步理解相遇问题的本质,并且掌握了列出关于相遇问题的方程的方法,能够运用所学知识解决相遇问题。
7. 教学反思本节课通过多种教学方法,引导学生逐步掌握列方程解相遇问题的方法,并通过实验等方式加深学生们对相遇问题的认识,让学生们体验到学习数学的趣味性。
但是本节课重点较多,难度较大,需要在掌握一定基础后才能开展,需要在接下来的教学中继续加强巩固。
列方程解应用题相遇问题题型四
列方程解应用题相遇问题题型四1、两地铁路线长840千米,甲、乙两列火车同时从两地相对开出,甲车每时行驶120千米,乙车每时行驶90千米,经过几小时两车相遇2、一列快车和一列慢车同时从相距600千米的两地相向而行,经过5小时相遇,已知快车每小时行千米,慢车每小时行多少千米;3、两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车的速度。
4、AB两地相距400千米。
一列客车与一列货车同时从AB两地出发,相向而行,小时后两车还距50千米,客车每小时走80千米,货车每小时走多少千米%5、小明和小东同时从相距270米的两地出发,相对而行,小明每分钟行50米,小东每分钟行40米,两人几分钟相遇6、两地相距5600米,两车同时出发相向而行,摩托车每分钟行600米,自行车每分钟行驶200米。
几分钟相遇7、甲乙两地相距600千米,两车从两地同时出发相向而行,快车每分钟行6千米,6分钟相遇,慢车每分钟行多少米|8、甲乙两城相距千米。
两车同时出发相向而行,快车每小时行81千米,慢车每小时66千米,几小时相遇9、甲乙两车从相距270千米的两城同时出发相向而行,4小时相遇,快车是慢车的速度的倍,求快车慢车的速度|10、两地相距988千米,两车从两地同时出发相向而行,小时相遇,甲车每小时行93千米,乙车每小时行多少千米11、AB两地相距300千米,两车封鳖从两地同时出发,相向而行。
各自到达目的地后,又立即返回,即过8小时后他们第二次相遇,已知甲车每小时行45千米,乙车行多少千米12、甲乙两地相距700千米,甲乙两车分别从两地同时出发,相向而行,甲车每小时行85千米,乙车每小时行65千米,两车几小时相遇。
五年级上册第八单元 列方程解决问题二(相遇问题)
找出等量关系,在试着列方程解答。 甲车7小时的路程+乙车7小时的路程=1463千米 甲车7小时的路程=总路程-乙车7小时的路程
乙车7小时的路程=总路程-甲车7小时的路程
试一试:甲乙两个工程队同时从两端开凿一条 隧道,计划32天完成。甲队计划每天完成7米, 乙队每天需要完成几米?(隧道长480米) 先写关系式,再解答。
2、设未知数,一般情况下问题问什么,我 们就把什么设为未知数。
3、把x和题目中给的数带入到等量关系式 中相应的位置并解方程。
练 一 练 列方程解答
1、每袋大米重50千克,每袋面粉重25千克,一辆载重 3吨的卡车已经装了48袋大米,还能装多少袋面粉?
3吨=3000千克 解:设还能装x袋面粉。 25x=3000-50×48 25x+50×48=3000 25x=3000-2400 25x+2400=3000 25x=3000-2400 25x=600 x=600÷25 25x=600 x=24 x=600÷25 x=24 答:还能装24袋面粉。 面粉总重量+大米总重量=汽车载重 面粉总重量=汽车载重-大米总重量
练 一 练 列方程解答
2、张村和李村合修一条道路,他们各从本村一端开 始施工,16天完成。完工时,张村比李村多修了80米, 张村平均每天修75米,李村平均每天修多少米?
解:李村平均每天修x米。 (75-x)×16=80 75×16=16x+80 16x=75×16-80 16x=1200-80 75-x=80÷16 16x+80=1200 16x=1200-80 16x=1120 75-x=5 x=75-5 x=1120÷16 16x=1120 x=1120÷16 x=70 x=70 x=70 答:李村平均每天修70米。 75×16-16x=80
【五年级上册】列方程解决“相遇问题”教学图解
小林家和小云家相距 4.5km,两人早上9时分别从家骑自行车相向而行。
小林骑自行
车的速度是0.25km/分;小云骑自行车的速度是0.2km/分。
求两人何时相遇?
分析:速度×时间=路程
小林走的路程+小云走的路程
=小林家和小云家相距4.5km
设:两人X分钟后相遇。
0.25×X+0.2×X=4.5 解:
“列方程解决“相遇问题””的公式:速度和×相遇时间=路程
总路程÷速度和=相遇时间
练习:
1、两地相距530m,小明和小龙分别同
时从两地相向而行,小明每分钟走
54m;小龙每分钟走52m.经过几分
钟两人相遇?
2、两个工程队共同开凿一条117m长
的隧道,各从一端相向施工。
甲队
每天开凿4m;乙队每天开凿5m。
多
少天可以打通这条隧道?。
五年级数学上册教案-5.2.4 列方程解决相遇问题11-人教版
五年级数学上册教案-5.2.4 列方程解决相遇问题11-人教版一、教学目标1. 让学生理解相遇问题的基本概念,掌握列方程解决相遇问题的方法。
2. 培养学生运用方程解决问题的能力,提高学生的逻辑思维能力。
3. 培养学生合作学习的能力,增强学生解决实际问题的意识。
二、教学内容1. 相遇问题的基本概念2. 列方程解决相遇问题的方法3. 相遇问题的应用三、教学重点与难点1. 教学重点:掌握列方程解决相遇问题的方法。
2. 教学难点:理解相遇问题的基本概念,运用方程解决实际问题。
四、教学过程1. 导入新课通过讲述两个小孩从相距一定距离的两地同时出发,相向而行,经过一段时间后相遇的故事,引出相遇问题的基本概念。
2. 探究新知(1)引导学生理解相遇问题的基本概念,如相遇点、相遇时间等。
(2)讲解列方程解决相遇问题的方法,如设定未知数、列方程、解方程等。
(3)通过例题演示,让学生学会运用方程解决相遇问题。
3. 巩固练习设计一些相遇问题的练习题,让学生独立完成,巩固所学知识。
4. 小组讨论将学生分成小组,讨论如何运用方程解决相遇问题,培养学生的合作学习能力。
5. 课堂小结对本节课所学内容进行总结,强调重点知识。
6. 课后作业布置一些相遇问题的作业,让学生课后巩固所学知识。
五、教学反思本节课通过讲解相遇问题的基本概念和列方程解决相遇问题的方法,让学生掌握了解决相遇问题的能力。
在教学过程中,要注意引导学生理解相遇问题的基本概念,培养学生的逻辑思维能力。
同时,通过小组讨论,让学生学会合作学习,提高解决问题的能力。
在课后作业中,要注重作业的质量,让学生在完成作业的过程中巩固所学知识。
总之,本节课的教学目标基本实现,但仍需在今后的教学中不断完善,以提高学生的数学素养。
需要重点关注的细节是“列方程解决相遇问题的方法”。
这个部分是解决相遇问题的关键,它要求学生能够理解问题的本质,正确设定未知数,建立数学模型,并解方程得出答案。
以下是对这个重点细节的详细补充和说明:一、理解相遇问题的本质相遇问题通常涉及到两个或多个移动的物体,它们在同一时间从不同的地点出发,以不同的速度向某个方向移动,最终在某个点相遇。
五年级数学下册典型例题系列之第七单元列方程解决相遇问题专项练习(解析版)北师大版
五年级数学下册典型例题系列之第七单元列方程解决相遇问题专项练习(解析版)1.小丽每分跑200m,小刚每分跑240m。
环湖公路一周的长度是6600m,两人同时从同一地点出发反方向跑步。
(1)几分后两人相遇?(2)估计两人在何处相遇,在图中标出来。
小丽小刚【答案】(1)15分(2)见详解【解析】【分析】(1)把两人每分钟跑的路程相加,求出速度和,再用一周的长度除以速度和即可求出相遇需要的时间。
(2)根据分数的意义,用小丽相遇时跑的路程除以环湖公路的长度,求出小丽跑的路程占全程的几分之几,进而求出小刚跑的路程占全程的几分之几,据此标出二人相遇时的位置。
【详解】(1)6600÷(240+200)=6600÷440=15(分)答:15分后两人相遇。
(2)相遇时,小丽跑了环湖公路的:200×15÷6600=3000÷6600=5 11小刚跑了环湖公路的:1-511=611据此标出二人相遇时的位置如下:小丽小刚【点睛】解答此题应根据速度、时间、路程三者之间的关系进行解答;注意相遇时间=路程÷速度和。
2.一辆快车和一辆慢车,同时从A、B两地相对开出,经过4小时后,两车在距中点20千米处相遇,已知两车速度和为128千米。
快车和慢车的速度分别是多少千米?【答案】快车69千米;慢车59千米【解析】【分析】根据速度和×相遇时间=路程,求出全程,再求出相遇时快车行驶的路程,即全程÷2+20,慢车行驶的路程=全程-快车行驶的路程,再根据路程÷时间=速度,求出各自的速度。
【详解】全程:128×4=512(千米)快车行驶的路程:512÷2+20=256+20=276(千米)慢车行驶的路程:512-276=236(千米)276÷4=69(千米)236÷4=59(千米)答:快车的速度是每小时69千米,慢车的速度是每小时59千米。
《列方程解相遇问题》教学反思
《列方程解相遇问题》教学反思《列方程解相遇问题》教学反思「篇一」《列方程解相遇问题》教学反思教学环节设计:教材上直接给出了两人同时相对而行的情境,而我在教学时,先让学生读题充分理解题意,知道题中出现了哪些量,然后理解“相向而行”“相遇”和“同时出发”这几个相遇问题的要素。
然后两名学生按相遇问题的要求演示其他学生观察思考“你发现了什么?”然后师生一起完成例题中的线段图。
然后学生看线段图思考独立列数量关系式,把已知条件和问题带入等量关系式尝试列方程解答。
上述教学过程,通过创设情境,把抽象的数学知识转化为活动,激起了学生的探究欲望,使学生感到学数学是为了解决生活中的问题,并不是与己无关的、枯燥无味的,而是生活中所必需的。
从而唤起学生的数学思维,将孩子们带进数学天地。
著名科学家爱因斯坦说过:“提出一个问题比解决一个问题更重要。
一个人只有发现问题才能提出问题,只有提出问题才有可能解决问题。
”问题意识、问题能力是创造能力的基础。
因此,数学教学要注重培养学生发现问题、解决问题的能力,从数学情境中发现问题并提出问题,让学生带着浓厚的兴趣去研究、去探索。
学习方式的转变是这节课的一大特色,如何提升学生在课堂中的学习水平是当前一个重要的课题,学生通过活动认识了相遇问题形成的条件和模型,通过对模型特征的探究活动,探究出了相遇问题的等量关系式,用方程解答比较简单,通过合作学习,实现了知识上的互补,从而解决了本课的重点问题。
学生体验到学习成功的愉悦,同时也促进了自身的发展。
新课程倡导主动参与、乐于探究、合作交流的学习方式,让学生在主动探究、合作的学习氛围中获取知识、构建能力,自我养成对待学习的积极的情感态度。
这是新一轮课程改革在教学层面上的三大要素,也是在教学方法上所追求的最高境界。
因此,好的教学方法就是引导学生自己去发现,主动去探究。
课堂上给学生多一点思维的空间和活动的余地,凡学生能独立思考的决不暗示;凡学生能探究得出的决不替代;学生能独立解决的决不示范。
列方程解决相遇问题-冀教版五年级数学上册教案
列方程解决相遇问题-冀教版五年级数学上册教案适用对象本教案适用于五年级学生,主要涉及列方程解决相遇问题的知识点。
教学目标通过本节课的学习,学生能够:1.理解相遇问题的基本概念;2.掌握列方程解决相遇问题的方法;3.能够应用所学知识,解决实际问题。
教学内容本节课主要介绍列方程解决相遇问题的方法,具体内容如下:一、相遇问题的基础概念相遇问题是指在不同的速度下,两个或多个人物在某一时刻在同一位置相遇的问题。
相遇问题通常涉及到两个或多个人物之间的速度、位置、时间等因素。
二、列方程解决相遇问题的方法列方程是用代数符号表示问题中所涉及的未知量,并将其转化成方程组对未知数进行求解的方法。
在相遇问题中,可以通过列方程解决相遇的时间等问题。
列方程的步骤如下:1.确定未知量。
在相遇问题中,一般涉及到速度、时间和距离等未知量,需要将其转化成代数符号。
2.列出方程。
根据题目所给的条件,列出方程组。
3.解方程。
将方程组化简,得到未知量的解。
下面以一个例子来说明列方程解决相遇问题的具体方法。
三、例题示范题目:甲、乙两人在同一条路上行驶,相向而行,相距120米时相遇,已知甲的速度比乙的速度慢6米/分钟,求两人的速度。
解答:1.确定未知量:甲的速度为v1,乙的速度为v2,两人的行驶时间为t。
2.列出方程:根据相遇时两人的距离和速度的关系,得到以下方程组:v1*t + v2*t = 120v1 = v2 - 63.解方程:将第二个方程代入第一个方程,化简得到:(v2-6)*t + v2*t = 1202v2t - 6t = 120v2t = 60 + 3t由于两人相向而行,总距离不变,根据公式 d = vt,可以得到:(v1 + v2)*t = 120(v2-6 + v2)*t = 1202v2t - 6t = 120v2t = 60 + 3t将 v2t = 60 + 3t 代入 2v2t - 6t = 120,解得 t = 20 分钟。
五年级数学上册《列方程解决相遇问题》教案、教学设计
(一)导入新课
1.教师通过多媒体展示两个小朋友从同一时间从学校不同位置出发,相向而行的情境,引导学生观察并思考:他们会在哪里相遇?何时相遇?
2.学生观察后,鼓励他们用自己的语言描述相遇问题的特点,教师总结并板书关键词:相向而行、同时出发、相遇点、相遇时间。
3.教师提出问题:“如何用数学方法解决这类相遇问题?”从而引出本节课的主题——列方程解决相遇问题。
(一)教学重点
1.理解相遇问题的基本概念和类型,能够准确识别并分析相遇问题。
2.学会使用线段图、行程图等工具分析相遇问题的数量关系,并能建立相应的方程。
3.掌握列方程解决相遇问题的步骤,能够独立解决实际问题。
(二)教学难点
1.对相遇问题类型的深入理解和准确识别,特别是对一些变式的处理。
2.在分析数量关系时,如何引导学生从直观的图示中提炼出抽象的数学关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.情境导入:通过设置生活情境,引导学生发现并提出相遇问题,激发学生的学习兴趣。
2.探究学习:组织学生进行小组讨论,引导学生运用线段图、行程图等方法分析问题,培养学生的合作意识和探究能力。
3.方法指导:教师适时给予学生提示,引导学生掌握列方程解决相遇问题的步骤,提高解题技巧。
例如:设计一个关于学校运动会中,两名运动员从不同起点同时起跑,经过一定时间后在终点相遇的问题。
要求:学生通过画图、列方程等方式,详细记录解题过程,并在下节课与同学分享。
4.创新作业:鼓励学生自己设计一道相遇问题,要求问题具有创意,能够激发其他同学的思考。
要求:学生在课后设计问题,并在下节课分享给同学,教师组织全班同学一起讨论解决。
4.实践应用:设计具有实际情境的练习题,让学生独立解决相遇问题,巩固所学知识。
(word完整版)五年级用方程解决相遇问题练习题
五、补题训练。
两城之间的公路长255千米,两辆汽车同时从两地相对开出,甲车每小时行48千米,乙车每小时行37千米。
1.5倍,客车的每小时行多少千米?
Xupeisen110小学数学
五年级数学相遇问题练习题
1、一列货车和一列客车同时从两地相对开出。货车每小时行48千米,客车每小时行52千米,2.5小时后相遇。
两地间的铁路长多少千米?
2、两个工程队共同开凿一条隧道,各从一端相向施工。甲队每天开凿4米,乙队每天开凿3.5米,21天完工,这条隧道长多少米?
正确算式是。①240÷;②240÷10+240÷8。
东西两城相距405千米。一列货车以每小时55千米的速度从西城开往东城,开出3小时后,一列客车以每小时65千米的速度从东城开往西城。A、405÷;
B、÷;
C、÷。
表示两车同时相对开出求相遇时间的算式是;
表示货车开出3小时后,客车才开出,求货车再经过几小时与客车相遇的算式是;表示客车开出了3小时后,货车才开出,求客车再经过几小时与货车相遇的算式是。
①补充一个问题使它成为两步计算应用题:
问题?
解答:
②补充一个问题使它成为三步计算应用题:
问题?
解答:
③补充一个问题使它成为四步计算应用题:
问题?解答:
六、编题训练。
根据下式编一道相遇问题应用题。[43+]×2;
三、说算理训练。
甲城到乙城的公路长470千米。快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米。
五年级下册数学列方程解应用题相遇问题
解得X=33
答:乙车每小时行33千米。
4、一辆轿车和一辆卡车从相距900千米的两地同时出发相向而行,轿车每小时行100千米,卡车每小时行80千米,多少小时后两车相遇?
解:设X小时后两车相遇。
80X+100X=900
X=5
答:5小时后两车相遇。
5、甲、乙两车同时分别从相距230千米的两地出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,行驶几小时后两车还相距5千米?
1、一辆轿车和一辆客车从相距400千米的两地同时出发相向而行,途中轿车休息了0.5小时,2.5小时后客车与轿车相遇,客车每小时行80千米,轿车的速度是多少?
解:设轿车的速度是每小时X千米。
2.5×80+(2.5-0.5)X=400
解得X=1从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。已知汽车每小时行45千米,求自行车的速度。
解:设行驶X小时后两车还相距5千米。
70X+80X=230-5
150X=225
X= 1. 5
答:行驶1.5小时后两车还相距5千米
解:设自行车每小时行x千米
3x45+3X=172.5
3X=172.5-3x45
3X=37.5
X=12.5
答;自行车每小时行12.5km
3、AB两地相距565千米,甲车每小时行50千米,先出发3小时后,乙车才从B地出发且与甲车相向而行,两车共同行了5小时后相遇。乙车每小时行多少千米?
解:设乙车每小时行X千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)
我的故事里永远都留存着你的影子,今日,突然想起了你,可是原本如潮水奔涌的思绪此时已经化开,化成心里一朵灰暗的木雕花,凝滞在洁白如雪的时空里,雪在下,你的灵魂入了土,清凉的雪 水将你的遗体来滋润,十年生死两茫茫,别离滋味别有一番感慨在心头。
母亲对我说,“孩子,当我年轻的时候,我有许多同学,可是,每个人都有每个人的生活,我最好的同学,如今,生活在乡下,我是多么想念她们!可是啊,她们生活有困难,不能来见我,我也有 困难,不能去见她们。在我中年工作的时候,我帮助过许多人,可是回报我的人少之又少,到我老了,真正想起我的人,却只有寥寥几个。所以,不要怪你的朋友,不要怪他们离你远去,也不要怪他们 忘记了你,不要去羡慕他们的幸福生活。人各自有命,过好自己的生活,祝福你的朋友,你才会开心一些。”