初中数学最值问题集锦 几何地定值与最值
专题13 几何中的最值与定值问题 -突破中考数学压轴题学霸秘笈大揭秘(学生版)
专题13 几何中的最值与定值问题【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短”结合“垂线段最短”.【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ 周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ 的最小值是线段FQ.第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.图4 图5 图6【典例分析】例1 如图1,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ; (2)求证:AD AE为定值;(3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.图1例2如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1例3 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;图1例4如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例5如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC . (1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为 54 ,求a 的值;(3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图【变式训练】一、单选题1.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A.3B.1+C.1+3D.1+2.如图,已知,以为圆心,长为半径作,是上一个动点,直线交轴于点,则面积的最大值是()A.B.C.D.3.如图,矩形ABCD 中,AB=4,AD=3,P 是边CD 上一点,将△ADP沿直线AP对折,得到△APQ.当射线BQ交线段CD于点F时,DF的最大值是()A.3B.2C.47--D.454.如图,由两个长为,宽为的全等矩形叠合而得到四边形,则四边形面积的最大值是()A.15B.16C.19D.205.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB是,则BE+EF的最小值是A.4B.4.8C.5D.5.46.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足,则PC+PD 的最小值为()A.B.C.6 D.7.在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE则CD+DE的最小值为()A.8B.C.D.二、解答题8.问题发现:()如图①,中,,,,点是边上任意一点,则的最小值为__________.()如图②,矩形中,,,点、点分别在、上,求的最小值.()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.9.问题提出:如图1,在Rt△AB C中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.10.已知二次函数y=x2+2bx+c(b、c为常数).(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.11.已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P 为AB 边上一点以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请问对角线PQ 的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P 为直线DC 上任意一点,延长PA 到E ,使AE=AP ,以PE 、PB 为边作平行四边形PBQE ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.12.(本题满分12分)(1)【问题】如图1,点A 为线段BC 外一动点,且BC a =, 6AB =.当点A 位于__________时线段AC 的长取得最大值,且最大值为__________(用含a 、b 的式子表示).(2)【应用】点A 为线段B 除外一动点,且3BC =, 1AB =.如图2所示,分别以AB 、AC 为边, 作等边三角形ABD 和等边三角形ACE ,连接CD 、BE . ①请找出图中与BE 相等的线段,并说明理由. ②直接写出线段BE 长的最大值.(3)【拓展】如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =, PM PB =, 90BPM ∠=︒.请直接写出线段AM 长的最大值及此时点P 的坐标.13.如图,已知中,,边上的高,四边形为内接矩形.当矩形是正方形时,求正方形的边长.设,矩形的面积为,求关于的函数关系式,当为何值时有最大值,并求出最大值.14.如图,抛物线与坐标轴相交于、、三点,是线段上一动点(端点除外),过作,交于点,连接.直接写出、、的坐标;求抛物线的对称轴和顶点坐标;求面积的最大值,并判断当的面积取最大值时,以、为邻边的平行四边形是否为菱形.15.如图,抛物线过O、A、B三点,A(4,0)B(1,-3),P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)直线PQ与x轴所夹锐角的度数,并求出抛物线的解析式.(2)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PD.DQ的最大值.16.问题提出(1)如图1,点A 为线段BC 外一动点,且BC=a ,AB=b ,填空:当点A 位于 时,线段AC 的长取得最大值,且最大值为 (用含a ,b 的式子表示). 问题探究(2)点A 为线段BC 外一动点,且BC=6,AB=3,如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE ,找出图中与BE 相等的线段,请说明理由,并直接写出线段BE 长的最大值. 问题解决:(3)①如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=90°,求线段AM 长的最大值及此时点P 的坐标.②如图4,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若对角线BD ⊥CD 于点D ,请直接写出对角线AC 的最大值.17.如图14,AB 是O 的直径,,2AC BC AB ==,连接AC .(1)求证:045CAB ∠=; (2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,BD AB BD =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由. 18.如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在AF 上运动时; ①判断OEM MDN ∆∆是否成立?请说明理由;②设ME NCk MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由; (2)拓展:如右图,当动点M 在FB 上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由) 19.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2)P(m ,t)为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.20.如图,在平面直角坐标系中,抛物线12++=bx ax y 交y 轴于点A ,交x 轴正半轴于点)0,4(B ,与过A 点的直线相交于另一点)25,3(D ,过点D 作x DC ⊥轴,垂足为C .11(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O 、C 重合),过P 作x PN ⊥轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求PCM ∆面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为,是否存在,使以点N D C M 、、、为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.。
最值问题归纳
最值问题是初中数学的重要内容,是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,无论是代数题还是几何题都有最值问题。
数形结合的思想贯穿始终。
一、代数中的最值问题1、代数求最值方法 ①利用一次函数的增减性一次函数(0)y kx b k =+≠的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;实际问题中,当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
1、某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?②配方法,利用非负数的性质2、(1)求二次三项式223x x -+的最小值(2)设a 、b 为实数,那么222a ab b a b ++--的最小值为_______。
③判别式法3、(1)求2211x x x x -+++的最大值与最小值。
(2),x y 为实数且x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。
④零点区间讨论法4、求函数|1||4|5y x x =--+-的最大值。
⑤基本不等式性质222()020a b a ab b -≥∴-+≥即222a b ab +≥,仅当a b =时,等号成立由此可推出222a b ab +≤(0,0)2a ba b +≤≥≥⑥夹逼法通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为夹逼法。
5、不等边三角形的两边上的高分别为4和12且第三边上的高h 为整数,那么此高h 的最大值可能为________。
⑦二次函数模型(中考第23题,应用题)该题基本来自课本3个探究例题不断的变化、加深:探究1:商品定价 探究2:磁盘计算(含圆) 探究3:拱桥问题 变化趋势:前几年武汉中考主要考查经济类问题,求最经济、最节约和最高效率等这种类型的考题(探究1的演变);近2年变化为建立函数模型解决实际问题(探究2、3的演变),即利用二次函数的对称性及增减性,确定某范围内函数的最大或最小值。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
第八课解析几何中的最值定值对称问题
二轮复习之八解析几何中的最值、定值、对称问题一、最值问题 (1)函数法例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。
练习:若(,0)A a ,P 为双曲线221169x y -=上一点,若P 为双曲线左顶点时,AP 长度最小,则_____________∈a(2)不等式法例2、已知:21,F F 是椭圆)0(12222>>=+b a b y a x 的两个焦点,P 是椭圆上任一点。
证明:(1)当P 为椭圆短轴端点时,三角形21F PF 面积最大。
(2)当P 为椭圆短轴端点时,21F PF ∠最大。
练习:设21,F F 是椭圆1422=+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ∙的最大值是(3)几何法例题:函数8x 4x 73x 6x y 22+-+++=的最小值为____________。
练习:函数1)4x (25)4x (y 22++-+-=的最大值为M ,最小值为N ,则M -N=_________ 二、定值问题例题:如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹。
练习:在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.三、对称问题 (1)代入法对称例题:已知双曲线C :1222=-y x ,点M (0,1),设P 是双曲线上的点,Q 是点P 关于原点的对称点,记t =的范围求t ,∙练习:曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.(2)解析法对称例题:已知椭圆方程为13422=+y x ,试确定实数m 的取值范围,使得椭圆上有不同的两点关于直线m x y +=4对称。
精彩初中几何最值问题全总结
一、基本图形余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定。
例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。
例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差。
中考数学专题训练:定值和最值问题解析版
定值问题解析版1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ 中,由勾股定理得:PC=()2222PQ CQ 252-=-=4,∴OC=OP+P C=4+4=8。
又∵矩形AOCD ,A (0,4),∴D(8,4)。
t 的取值范围为:0<t <4。
(2)结论:△AEF 的面积S 不变化。
∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。
∴CE CQ AD DQ =,即CE t 84t =-,解得CE=8t4t-。
由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。
S=S 梯形AOCF +S △FCE -S △AOE =12(OA+CF )•OC+12CF•CE-12OA•OE =12 [4+(8-t )]×8+12(8-t )•8t 4t --12×4×(8+8t 4t-)。
化简得:S=32为定值。
所以△AEF 的面积S 不变化,S=32。
(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。
(完整)初中数学“最值问题”_集锦.doc
“最”集●平面几何中的最⋯⋯⋯⋯⋯⋯⋯01●几何的定与最⋯⋯⋯⋯⋯⋯⋯⋯⋯07●最短路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14● 称⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18●巧作“ 称点”妙解最⋯⋯⋯⋯⋯22●数学最的常用解法⋯⋯⋯⋯⋯⋯⋯26●求最⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29●有理数的一多解⋯⋯⋯⋯⋯⋯⋯⋯⋯34●4 道典⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯37●平面几何中的最在平面几何中,我常常遇到各种求最大和最小的,有它和不等式系在一起,称最.如果把最和生活中的系起来,可以达到最、最和最高效率.下面介几个例.在平面几何中,当某几何元素在定条件,求某几何量(如段的度、形的面、角的度数)的最大或最小,称最。
最的解决方法通常有两种:(1)用几何性:① 三角形的三关系:两之和大于第三,两之差小于第三;② 两点段最短;③ 直外一点和直上各点的所有段中,垂段最短;④ 定中的所有弦中,直径最。
⑵运用代数法:① 运用配方法求二次三式的最;② 运用一元二次方程根的判式。
例 1、A、B 两点在直 l 的同,在直L 上取一点 P,使 PA+PB最小。
分析:在直 L 上任取一点 P’, A P’, BP’,在△ ABP’中 AP’+BP’> AB,如果 AP’+BP’= AB,则 P’必在线段 AB上,而线段AB 与直线 L 无交点,所以这种思路错误。
取点 A 关于直线 L 的对称点 A’,则 AP’= AP,在△ A’BP 中 A’P’+B’P’> A’B, 当 P’移到 A’B与直线 L 的交点处 P 点时A’P’+B’P’= A’B,所以这时 PA+PB最小。
1 已知 AB是半圆的直径,如果这个半圆是一块铁皮, ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形 ABDC的周长最大 ( 图 3- 91) ?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于 AB∥ CD,必有AC=BD.若设 CD=2y,AC=x,那么只须求梯形 ABDC的半周长 u=x+y+R的最大值即可.解作 DE⊥AB于 E,则2 2 2x =BD=AB·BE=2R· (R-y) =2R -2Ry,所以2 2所以求 u 的最大值,只须求 -x +2Rx+2R最大值即可.2222 2-x +2Rx+2R=3R-(x-R)≤ 3R,上式只有当 x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点 C, D,这时,梯形的底角恰为 60°和 120°.2 . 如图 3-92 是半圆与矩形结合而成的窗户,如果窗户的周长为8 米(m) ,怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+π x=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3.已知 P 点是半圆上一个动点,试问 P在什么位置时, PA+PB最大 ( 图 3-93) ?分析与解因为 P 点是半圆上的动点,当 P 近于 A 或 B 时,显然 PA+PB渐小,在极限状况 (P 与 A 重合时 ) 等于 AB.因此,猜想 P 在半圆弧中点时, PA+PB取最大值.设P 为半圆弧中点,连 PB,PA,延长 AP到 C,使 PC=PA,连 CB,则 CB是切线.为了证 PA+PB最大,我们在半圆弧上另取一点 P′,连 P′A,P′B,延长 AP′到C′,使P′C′=BP′,连 C′B,CC′,则∠ P′ C′ B=∠P′BC=∠ PCB=45°,所以 A,B,C′, C 四点共圆,所以∠ CC′A=∠CBA=90°,所以在△ ACC′中, AC>AC′,即 PA+PB>P′A+P′B.4如图 3- 94,在直角△ ABC中,AD是斜边上的高, M,N 分别是△ ABD,△ ACD的内心,直证连结 AM, BM,DM,AN, DN,CN.因为在△ ABC中,∠ A=90°, AD⊥BC于 D,所以∠ ABD=∠ DAC,∠ ADB=∠ADC=90°.因为 M,N分别是△ ABD和△ ACD的内心,所以∠1=∠ 2=45°,∠ 3=∠4,所以△ ADN∽△ BDM,又因为∠ MDN=90° =∠ADB,所以△ MDN∽△ BDA,所以∠BAD=∠MND.由于∠ BAD=∠ LCD,所以∠MND=∠LCD,所以 D, C, L, N四点共圆,所以∠ALK=∠NDC=45°.同理,∠ AKL=∠1=45°,所以 AK=AL.因为△AKM≌△ ADM,所以AK=AD=AL.而而从而所以 S △ABC≥S△AKL.5.如图 3-95.已知在正三角形 ABC内( 包括边上 ) 有两点 P,Q.求证: PQ≤ AB.证设过 P,Q的直线与 AB,AC分别交于 P1,Q1,连结 P1C,显然, PQ≤P1Q1.因为∠ AQ1P1+∠ P1 Q1 C=180°,所以∠ AQ1P1和∠ P1Q1 C中至少有一个直角或钝角.若∠ AQ1P1≥90°,则PQ ≤ P1Q1≤AP1≤AB;若∠ P1Q1C≥90°,则PQ ≤ P1Q1≤P1C.同理,∠ AP1C 和∠ BP1C 中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则P 1C≤BC=AB.对于 P,Q两点的其他位置也可作类似的讨论,因此,PQ≤ AB.6.设△ ABC是边长为 6 的正三角形,过顶点 A 引直线 l ,顶点 B,C到 l 的距离设为 d 1,d2,求 d1+d2的最大值 (1992 年上海初中赛题 ) .解如图 3-96,延长 BA到 B′,使 AB′=AB,连 B′C,则过顶点 A 的直线 l 或者与BC相交,或者与 B′C相交.以下分两种情况讨论.(1)若 l 与 BC相交于 D,则所以只有当 l ⊥BC时,取等号.(2)若 l ′与 B′C相交于 D′,则所以上式只有 l ′⊥ B′C 时,等号成立.7.如图 3-97.已知直角△ AOB中,直角顶点 O在单位圆心上,斜边与单位圆相切,延长AO, BO分别与单位圆交于 C,D.试求四边形 ABCD面积的最小值.解设⊙ O与 AB相切于 E,有 OE=1,从而即AB≥ 2.当 AO=BO时, AB有最小值 2.从而所以,当 AO=OB时,四边形 ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、 极端位置,直接计算等方法, 先探求出定值, 再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 ( 如线段长度、角度大小、图形面积 ) 等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法; 2.几何定理 ( 公理 ) 法; 3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性 ( 目标不明确 ) ,解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法. 【例题就解】【例 1】 如图,已知 AB=10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作等边△ APC 和等边△ BPD ,则 CD 长度的最小值为 .思路点拨 如图,作 CC ′⊥ AB 于 C ,DD ′⊥ AB 于 D ′,2221DQ ⊥CC ′, CD=DQ+CQ , DQ= AB 一常数,当 CQ 越小, CD 越小,2本例也可设 AP=x ,则 PB=10 x ,从代数角度探求 CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1) 中点处、垂直位置关系等;(2) 端点处、临界位置等.【例 2】 如图,圆的半径等于正三角形 ABC 的高,此圆在沿底边 AB 滚动,切点为T ,⌒MTN 为的度数()圆交 AC 、BC 于 M 、N ,则对于所有可能的圆的位置而言, A .从 30°到 60°变动 B .从 60°到 90°变动C .保持 30°不变D .保持 60°不变思路点拨 先考虑当圆心在正三角形的顶点 C 时, 其弧的度数,再证明一般情形,从而作出判断. 注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变 化的元素运动到特定的位置,使图形变化为特殊图形时, 研究的量取得定值与最值.【例 3】 如图,已知平行四边形 ABCD ,AB= ,BC=b ( a > b ) ,P 为 AB 边上的一动点,a直线 DP 交 CB 的延长线于 Q ,求 AP+BQ 的最小值.思路点拨xx的代数式表示, 运用不等式 a 2b 22ab( 当设 AP= ,把 AP 、BQ 分别用且仅当 a b 时取等号 ) 来求最小值.7AC 与 BM 相交于 K ,直线 CB 与 AM 相交于点 N ,证明:线段 AK 和 BN 的乘积与 M 点的选择无关.思路点拨 即要证 AK · BN 是一个定值,在图形中△ ABC 的边长是一个定值,说明 AK ·BN 与 AB 有关,从图知 AB 为2△ ABM 与△ ANB 的公共边,作一个大胆的猜想, AK ·BN=AB ,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例 5】 已知△ XYZ 是直角边长为 1 的等腰直角三角形 ( ∠Z=90°) ,它的三个顶点分别在等腰 Rt △ABC(∠C=90° ) 的三边上,求△ ABC 直角边长的最大可能值.思路点拨 顶点 Z 在斜边上或直角边 CA(或 CB)上,当顶点 Z 在斜边 AB 上时,取 xy 的中点,通过几何不等关系求出直角边的最大值, 当顶点 Z 在(AC 或 CB)上时,设 CX=x ,CZ=y ,建立 x , y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题, 即适当地选取变量, 建立几何元素间的函数、 方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1) 利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2) 构造二次函数求几何最值.学力训练1.如图,正方形 ABCD 的边长为 1,点 P 为边 BC 上任意一点(可与 B 点或 C 点重合),分别过 B 、 C 、 D 作射线 AP 的垂线,垂足分别是 B ′、 C ′、 D ′,则 BB ′+CC ′ +DD ′的最大值为 ,最小值为 .2.如图,∠ AOB=45°,角内有一点 P , PO=10,在角的两边上有两点 Q , R(均不同于 点 O),则△ PQR 的周长的最小值为 .3.如图,两点 A 、 B 在直线 MN 外的同侧, A 到 MN 的距离 AC=8, B 到 MN 的距离 BD=5, CD=4,P 在直线 MN 上运动,则 PA PB 的最大值等于 .4.如图,A 点是半圆上一个三等分点, B 点是弧 AN 的中点, P 点是直径 MN 上一动点,⊙ O 的半径为 1,则 AP+BP 的最小值为 ( )A .1B.2C . 2D. 3 125.如图,圆柱的轴截面 ABCD 是边长为 4 的正方形,动点 P 从 A 点出发,沿看圆柱的 侧面移动到 BC 的中点 S 的最短距离是 ( )A . 2 1 2B . 2 1 4 2C . 4 1 2D . 2 4 26.如图、已知矩形 ABCD ,R ,P 户分别是 DC 、BC 上的点, E ,F 分别是 AP 、RP 的中点,当 P 在 BC上从 B 向 C 移动而 R不动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段 EF的长不改变D.线段EF的长不能确定7.如图,点 C 是线段 AB上的任意一点 (C 点不与 A、B 点重合 ) ,分别以 AC、BC为边在直线 AB的同侧作等边三角形 ACD和等边三角形 BCE, AE与 CD相交于点 M,BD与 CE 相交于点 N.(1)求证: MN∥ AB;(2) 若 AB的长为 l0cm,当点 C 在线段 AB上移动时,是否存在这样的一点 C,使线段MN的长度最长 ?若存在,请确定 C 点的位置并求出 MN的长;若不存在,请说明理由.(2002 年云南省中考题 )8.如图,定长的弦 ST在一个以 AB为直径的半圆上滑动, M是 ST 的中点, P 是 S 对AB作垂线的垂足,求证:不管 ST 滑到什么位置,∠ SPM是一定角.9.已知△ ABC是⊙ O的内接三角形, BT为⊙ O的切线, B 为切点, P 为直线 AB上一点,过点 P 作 BC的平行线交直线 BT 于点 E,交直线 AC于点 F.(1)当点 P 在线段 AB上时 ( 如图 ) ,求证: PA·PB=PE·PF;(2)当点 P 为线段 BA延长线上一点时,第 (1) 题的结论还成立吗 ?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为 4 的正方形截去一角成为五边形 ABCDE,其中 AF=2,BF=l,在AB上的一点 P,使矩形 PNDM有最大面积,则矩形 PNDM的面积最大值是 ( ) A.8 B.12C.25D.14211.如图,AB是半圆的直径,线段 CA上 AB于点 A,线段 DB上 AB于点 B,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形 ACPDB的最大面积是 ( )A.22B.12C.32D.3 212.如图,在△ ABC中, BC=5,AC=12, AB=13,在边 AB、 AC上分别取点 D、E,使线段 DE将△ ABC分成面积相等的两部分,试求这样线段的最小长度.13.如图, ABCD是一个边长为 1 的正方形, U、V 分别是 AB、CD上的点, AV与 DU 相交于点 P, BV与 CU相交于点 Q.求四边形 PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0 米的圆,问如何设计 ( 求出两喷水器之间的距离和矩形的长、宽 ) ,才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场( 平面图如图所示 ) .其中,正方形 MNPQ与四个相同矩形 ( 图中阴影部分 ) 的面积的和为800 平方米.的代数式表示y 为.(1) 设矩形的边 AB= ( 米) ,AM=y ( 米) ,用含xx(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为 2100 元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为 105 元;在四个三角形区域上铺设草坪,平均每平方米造价为 40 元.①设该工程的总造价为 S( 元) ,求 S 关于工的函数关系式.②若该工程的银行贷款为 235000 元,仅靠银行贷款能否完成该工程的建设任务 ?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金 73000 元,问能否完成该工程的建设任务 ?若能,请列出所有可能的设计方案;若不能,请说明理由.( 镇江市中考题 )16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积( 精确到21m) .参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短” 为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上 A、B二点之间的最短路线如何求呢?我们用过A、B 两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上 A、 B两点之间不超过半个圆周的弧线就是所求的 A、 B 两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从 A 地出发,去 B 地取情报.在去 B 地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点 A 关于河岸的对称点 A ′,即作 AA′垂直于河岸,与河岸交于点 C,且使 AC=A′C,连接 A′B 交河岸于一点 P,这时 P 点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P 点的另一点 P′,连接 P′A,P′B, P ′ A′.∵P′A+P′B=P′A′+P′B> A′B=PA′ +PB=PA+PB,而这里不等式 P ′ A′+ P′ B> A′ B 成立的理由是连接两点的折线段大于直线段,所以 PA+PB是最短路线.此例利用对称性把折线 APB化成了易求的另一条最短路线即直线段 A′ B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上 A 点,爬到邻近的另一面墙壁β上的 B 点捕蛾,它解:我们假想把含B 点的墙β顺时针旋转90°(如下页右图),使它和含A 点的墙α处在同一平面上,此时β转过来的位置记为β′,B 点的位置记为B′,则A、B′之间最短路线应该是线段 AB′,设这条线段与墙棱线交于一点 P,那么,折线 4PB就是从 A 点沿着两扇墙面走到 B 点的最短路线.证明:在墙棱上任取异于 P 点的 P′点,若沿折线 AP′ B走,也就是沿在墙转 90°后的路线 AP′ B′走都比直线段 APB′长,所以折线 APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体 ABCD— A′B′C′D′中, AB=4,A′ A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到 B 点,问这只小虫怎样爬距离最短?(见图( 1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、 B 两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D ′ B 间的最短路线就是连结这两点的直线段,这样,从 D′点出发,到 B 点共有六条路线供选择.①从 D′点出发,经过上底面然后进入前侧面到达 B 点,将这两个面摊开在一个平面上(上页图( 2)),这时在这个平面上 D′、 B 间的最短路线距离就是连接 D′、 B 两点的直线段,它是直角三角形 ABD′的斜边,根据勾股定理,D′ B2 =D′A2+AB2=( 1+2)2+42 =25,∴ D′ B=5.②容易知道,从D′出发经过后侧面再进入下底面到达 B 点的最短距离也是5.③从 D′点出发,经过左侧面,然后进入前侧面到达 B 点.将这两个面摊开在同一平面上,同理求得在这个平面上 D′、 B 两点间的最短路线(上页图( 3)),有:D′ B2=22+(1+4)2 =29.④容易知道,从 D′出发经过后侧面再进入右侧面到达 B 点的最短距离的平方也是29.⑤从 D′点出发,经过左侧面,然后进入下底面到达 B 点,将这两个平面摊开在同一平D′ B2 =( 2+4)2+12=37.⑥容易知道,从 D′出发经过上侧面再进入右侧面到达 B 点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达 B 点(上页图( 2)),或者经过后侧面然后进入下底面到达 B 点的路线是最短路线,它的长度是 5 个单位长度.利用例 2、例 3 中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上 A 和 B 两点之间的最短路线问题(下左图),同样可以把 A、 B 两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接 A、B 成线段 AP1P2B,P1、P2 是线段 AB与两条侧棱线的交点,则折线AP1P2B就是 AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在 A 点,绕一周之后终点为 B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线 AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时, A′、 B′分别与 A、B 重合),连接 AB′,再将上页右图还原成上页左图的形状,则 AB′在圆柱面上形成的曲线就是连接 AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图, A、 B 在同一母线上, B 为 AO的中点,试求以 A 为起点,以 B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时, A′、 B′分别与 A、 B 重合),在扇形中连 AB′,则将扇形还原成圆锥之后, AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的 A 点爬到桶内的 B 点去寻找食物,已知A 点沿母线到桶口C 点的距离是12 厘米,B 点沿母线到桶口D 点的距离是8 厘米,而 C、D两点之间的(桶口)弧长是 15 厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于 B 点在里面,不便于作图,设想将 BD延长到 F,使 DF=BD,即以直线 CD为对称轴,作出点 B 的对称点 F,用 F 代替 B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长 BD到 F,使 DF=BD,即作点 B 关于直线 CD 的对称点 F,连结 AF,交桶口沿线 CD于 O.因为桶口沿线 CD是 B 、F 的对称轴,所以 OB=OF,而 A、F 之间的最短线路是直线段AF,又AF=AO+OF,那么A、B 之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O 点后,转向桶内 B 点爬去.延长 AC到 E,使 CE=DF,易知△ AEF是直角三角形, AF 是斜边, EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2=( 12+8)2+ 152= 625=252,解得 AF=25.即蚂蚁爬行的最短路程是25 厘米.例7 A 、B 两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使 A、 B 两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从 A 点作河岸的垂线,并在垂线上取 AC等于河宽,就相当于把河宽预先扣除,找出 B、C 两点之间的最短路线,问题就可以解决.解:如上图,过 A 点作河岸的垂线,在垂线上截取 AC的长为河宽,连结 BC交河岸于 D 点,作 DE垂直于河岸,交对岸于 E 点, D、E 两点就是使两村行程最短的架桥地点.即两村的最短路程是 AE+ED+ DB.例8 在河中有 A、 B 两岛(如下图),六年级一班组织一次划船比赛,规则要求船从 A 岛出发,必须先划到甲岸,又到乙岸,再到 B 岛,最后回到 A 岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作 A、B 关于甲岸线、乙岸线的对称点 A′和 B′,连结 A′、B′分别交甲岸线、乙岸线于 E、F 两点,则 A→ E→ F→ B→ A 是最短路线,即最短路程为: AE+EF+FB+BA.证明:由对称性可知路线 A→ E→F→B 的长度恰等于线段 A′ B′的长度.而从 A 岛到甲岸,又到乙岸,再到 B 岛的任意的另一条路线,利用对称方法都可以化成一条连接 A′、B′之间的折线,它们的长度都大于线段 A ′B′,例如上图中用“·—·—·”表示的路线A→E′→ F′→ B 的长度等于折线 AE′F′ B 的长度,它大于 A′B′的长度,所以 A→E → F→ B→ A 是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。
定值与最值问题
{{定值与最值问题}}
1.定值问题
解析几何中的定值问题的证明可运用函数的思想方法来解决。
证明过程可总结为“标量-函数-定值”,具体操作程序如下:
(1)选择适当的量为变量
(2)把要证明为定值的量表示成上述变量的函数
(3)把得到的函数解析化简,消去变量得到定值
求定值问题常见的方法有两种:
(1)从特殊入手、求出定值,再证明这个值与变量无关。
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。
2.求最值问题常见的两种方法:
(1)几何法:题中给出的条件有明显的几何特征,则考虑用图像性质来解决,这是几何法。
(2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值。
求函数的最值常见的方法有配方法、判别式法、基本不等式法、单调法、三角换元法等。
3.求定值、最值等圆锥曲线综合问题要四重视:
(1)重视定义在解题中的作用
(2)重视平面几何只是在解题中的作用
(3)重视根与系数的关系在解题中的作用
(4)重视曲线的几何特征与方程的代数特征在解题中的作用。
初中数学定值定点最值问题
初中数学定值定点最值问题初中数学定值定点和最值问题是中考数学压轴题常考考点,对于定值定点问题可以采用特殊点,特殊值和特殊位置确定其值是多少,然后采用一般法去证明,最值问题一般是线段的和与差,最常用的方法是“化折为直”比如常见的“将军饮马问题”、“胡不归问题”、“阿氏圆问题”、“隐圆问题”。
例1.对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m+1,4﹣2m),则符合条件的点P的坐标为.变式1.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则写出符合条件的点P的坐标:.变式2.若对于任意非零实数a,抛物线y=ax2+ax﹣6a总不经过点P(m﹣2,m2﹣9),写出符合条件的点P的坐标:.变式3.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0,2x0﹣6),写出符合条件的点P的坐标:.变式4.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(m﹣3,m2﹣16),写出符合条件的点P的坐标:.变式5.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5)写出符合条件的点P的坐标:.变式6.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),写出符合条件的点P的坐标:.例2.已知抛物线y=ax2﹣2anx+an2+n+3的顶点P在一条定直线l上.求直线l的解析式;例3.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.例4.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.例5.如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.例6.如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG ∥AB,交HM的延长线于点G,若AC=8,AB=6,求四边形ACGH周长的最小值例7如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0).若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.例8.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例9.如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB的值最小,则点P的坐标是.例10.如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.当△OAB的面积为15时,P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.例11.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.例12.如图一所示,在平面直角坐标系中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE ⊥BC于点E,作PF∥AB交BC于点F.当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.。
初中数学“最值问题”集锦 曲老师 用
曲老师推荐中考数学专题之:初中数学“最值问题”集锦目录:●平面几何中的最值问题 (01)●几何的定值与最值 (07)●最短路线问题 (14)●对称问题 (18)●巧作“对称点”妙解最值题 (22)●数学最值题的常用解法 (26)●求最值问题 (29)●有理数的一题多解 (34)●4道经典题 (37)●平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。
⑵运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。
例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。
分析:在直线L上任取一点P’,连结A P’,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。
取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。
1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,所以所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.-x2+2Rx+2R2=3R2-(x-R)2≤3R2,上式只有当x=R时取等号,这时有所以2y=R=x.所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?分析与解设x表示半圆半径,y表示矩形边长AD,则必有???????2x+2y+πx=8,若窗户的最大面积为S,则把①代入②有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.3. 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则∠P′C′B=∠P′BC=∠PCB=45°,所以A,B,C′,C四点共圆,所以∠CC′A=∠CBA=90°,所以在△ACC′中,AC>AC′,即PA+PB>P′A+P′B.4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC ≥2S△AKL.证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以∠1=∠2=45°,∠3=∠4,所以△ADN∽△BDM,又因为∠MDN=90°=∠ADB,所以△MDN∽△BDA,所以∠BAD=∠MND.由于∠BAD=∠LCD,所以??∠MND=∠LCD,所以D,C,L,N四点共圆,所以∠ALK=∠NDC=45°.同理,∠AKL=∠1=45°,所以AK=AL.因为△AKM≌△ADM,所以AK=AD=AL.而而从而所以 S△ABC ≥S△AKL.5. 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.6. 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.7. 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为●几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB 为边作等边△APC和等边△BPD,则CD长度的最小值为.思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,DQ⊥CC′,CD2=DQ2+CQ2,DQ=21AB一常数,当CQ越小,CD越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 . 2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点, ⌒ ⌒⊙O 的半径为1,则AP+BP 的最小值为( ) A .1 B .22 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD 是一个边长为1的正方形,U 、V 分别是AB 、CD 上的点,AV 与DU 相交于点P ,BV 与CU 相交于点Q .求四边形PUQV 面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ 与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x (米),AM=y (米),用含x 的代数式表示y 为 .(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S 关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.(镇江市中考题)16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案●最短路线问题通常最短路线问题是以“平面内连结两点的线中,直线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.在本讲所举的例中,如果研究问题的限制条件允许已知的两点在同一平面内,那么所求的最短路线是线段;如果它们位于凸多面体的不同平面上,而允许走的路程限于凸多面体表面,那么所求的最短路线是折线段;如果它们位于圆柱和圆锥面上,那么所求的最短路线是曲线段;但允许上述哪种情况,它们都有一个共同点:当研究曲面仅限于可展开为平面的曲面时,例如圆柱面、圆锥面和棱柱面等,将它们展开在一个平面上,两点间的最短路线则是连结两点的直线段.这里还想指出的是,我们常遇到的球面是不能展成一个平面的.例如,在地球(近似看成圆球)上A、B二点之间的最短路线如何求呢?我们用过A、B两点及地球球心O的平面截地球,在地球表面留下的截痕为圆周(称大圆),在这个大圆周上A、B两点之间不超过半个圆周的弧线就是所求的A、B两点间的最短路线,航海上叫短程线.关于这个问题本讲不做研究,以后中学会详讲.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法.例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,请你在图中标出来.解:要选择最节省时间的路线就是要选择最短路线.作点A关于河岸的对称点 A′,即作 AA′垂直于河岸,与河岸交于点C,且使AC=A′C,连接A′B交河岸于一点P,这时 P点就是饮马的最好位置,连接 PA,此时 PA+PB就是侦察员应选择的最短路线.证明:设河岸上还有异于P点的另一点P′,连接P′A,P′B, P′A′.∵P′A+P′B=P′A′+P′B>A′B=PA′+PB=PA+PB,而这里不等式 P′A′+P′B>A′B成立的理由是连接两点的折线段大于直线段,所以PA+PB是最短路线.此例利用对称性把折线APB化成了易求的另一条最短路线即直线段A′B,所以这种方法也叫做化直法,其他还有旋转法、翻折法等.看下面例题.例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.例3 长方体ABCD—A′B′C′D′中,AB=4,A′A=2′,AD=1,有一只小虫从顶点D′出发,沿长方体表面爬到B点,问这只小虫怎样爬距离最短?(见图(1))解:因为小虫是在长方体的表面上爬行的,所以必需把含D′、B两点的两个相邻的面“展开”在同一平面上,在这个“展开”后的平面上 D′B间的最短路线就是连结这两点的直线段,这样,从D′点出发,到B点共有六条路线供选择.①从D′点出发,经过上底面然后进入前侧面到达B点,将这两个面摊开在一个平面上(上页图(2)),这时在这个平面上D′、B间的最短路线距离就是连接D′、B两点的直线段,它是直角三角形ABD′的斜边,根据勾股定理,D′B2=D′A2+AB2=(1+2)2+42=25,∴D′B=5.②容易知道,从D′出发经过后侧面再进入下底面到达B点的最短距离也是5.③从D′点出发,经过左侧面,然后进入前侧面到达B点.将这两个面摊开在同一平面上,同理求得在这个平面上D′、B两点间的最短路线(上页图(3)),有:D′B2=22+(1+4)2=29.④容易知道,从D′出发经过后侧面再进入右侧面到达B点的最短距离的平方也是29.⑤从D′点出发,经过左侧面,然后进入下底面到达B点,将这两个平面摊开在同一平面上,同理可求得在这个平面上D′、B两点间的最短路线(见图),D′B2=(2+4)2+12=37.⑥容易知道,从D′出发经过上侧面再进入右侧面到达B点的最短距离的平方也是37.比较六条路线,显然情形①、②中的路线最短,所以小虫从D′点出发,经过上底面然后进入前侧面到达B点(上页图(2)),或者经过后侧面然后进入下底面到达B点的路线是最短路线,它的长度是5个单位长度.利用例2、例3中求相邻两个平面上两点间最短距离的旋转、翻折的方法,可以解决一些类似的问题,例如求六棱柱两个不相邻的侧面上A和B两点之间的最短路线问题(下左图),同样可以把A、B两点所在平面及与这两个平面都相邻的平面展开成同一个平面(下右图),连接A、B成线段AP1P2B,P1、P2是线段AB与两条侧棱线的交点,则折线AP1P2B就是AB间的最短路线.圆柱表面的最短路线是一条曲线,“展开”后也是直线,这条曲线称为螺旋线.因为它具有最短的性质,所以在生产和生活中有着很广泛的应用.如:螺钉上的螺纹,螺旋输粉机的螺旋道,旋风除尘器的导灰槽,枪膛里的螺纹等都是螺旋线,看下面例题.例4 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A点,绕一周之后终点为B点,问沿什么线路嵌金线才能使金线的用量最少?解:将上左图中圆柱面沿母线AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A′、B′分别与A、B重合),连接AB′,再将上页右图还原成上页左图的形状,则AB′在圆柱面上形成的曲线就是连接AB且绕一周的最短线路.圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.例5 有一圆锥如下图,A、B在同一母线上,B为AO的中点,试求以A为起点,以B 为终点且绕圆锥侧面一周的最短路线.解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.例6 如下图,在圆柱形的桶外,有一只蚂蚁要从桶外的A点爬到桶内的B点去寻找食物,已知A点沿母线到桶口C点的距离是12厘米, B点沿母线到桶口 D点的距离是8厘米,而C、D两点之间的(桶口)弧长是15厘米.如果蚂蚁爬行的是最短路线,应该怎么走?路程总长是多少?分析我们首先想到将桶的圆柱面展开成矩形平面图(下图),由于B点在里面,不便于作图,设想将BD延长到F,使DF=BD,即以直线CD为对称轴,作出点B的对称点F,用F代替B,即可找出最短路线了.解:将圆柱面展成平面图形(上图),延长BD到F,使DF=BD,即作点B关于直线CD 的对称点F,连结AF,交桶口沿线CD于O.因为桶口沿线CD是 B、F的对称轴,所以OB=OF,而A、F之间的最短线路是直线段AF,又AF=AO+OF,那么A、B之间的最短距离就是AO+OB,故蚂蚁应该在桶外爬到O点后,转向桶内B点爬去.延长AC到E,使CE=DF,易知△AEF是直角三角形,AF是斜边,EF=CD,根据勾股定理,AF2=(AC+CE)2+EF2 =(12+8)2+152=625=252,解得AF=25.即蚂蚁爬行的最短路程是25厘米.例7 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短.分析因为桥垂直于河岸,所以最短路线必然是条折线,直接找出这条折线很困难,于是想到要把折线化为直线.由于桥的长度相当于河宽,而河宽是定值,所以桥长是定值.因此,从A点作河岸的垂线,并在垂线上取AC等于河宽,就相当于把河宽预先扣除,找出B、C两点之间的最短路线,问题就可以解决.解:如上图,过A点作河岸的垂线,在垂线上截取AC的长为河宽,连结BC交河岸于D点,作DE垂直于河岸,交对岸于E点,D、E两点就是使两村行程最短的架桥地点.即两村的最短路程是AE+ED+DB.例8 在河中有A、B两岛(如下图),六年级一班组织一次划船比赛,规则要求船从A岛出发,必须先划到甲岸,又到乙岸,再到B岛,最后回到A岛,试问应选择怎样的路线才能使路程最短?解:如上图,分别作A、B关于甲岸线、乙岸线的对称点A′和B′,连结A′、B′分别交甲岸线、乙岸线于E、F两点,则A→E→F→B→A是最短路线,即最短路程为:AE +EF+FB+BA.证明:由对称性可知路线A→E→F→B的长度恰等于线段A′B′的长度.而从A岛到甲岸,又到乙岸,再到B岛的任意的另一条路线,利用对称方法都可以化成一条连接A′、B′之间的折线,它们的长度都大于线段 A′B′,例如上图中用“·—·—·”表示的路线A→E′→F′→B的长度等于折线AE′F′B的长度,它大于A′B′的长度,所以A→E →F→B→A是最短路线.●对称问题教学目的:进一步理解从实际问题转化为数学问题的方法,对于轴对称问题、中心对称问题有一个比较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。
2020年中考数学压轴解答题13 几何中的最值与定值问题 (学生版)
备战2020中考数学之解密压轴解答题命题规律专题13 几何中的最值与定值问题【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短”结合“垂线段最短”.【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ的最小值是线段FQ.第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.图4 图5 图6【典例分析】【例1】如图1,△ABC是边长为8的等边三角形,AD⊥BC于点D,DE⊥AB于点E.(1)求证:AE=3EB(2)若点F是AD的中点,点P是BC边上的动点,连接PE,PF,如图2所示,求PE+PF的最小值及此时BP 的长;(3)在(2)的条件下,连接EF,当PE+PF取最小值时,△PEF的面积是______.【例2】问题探究()1请在图①的正方形ABCD的对角线BD上作一点P,使PA PC+最小;()2如图②,点P为矩形ABCD的对角线BD上一动点,AB2=,BC3=点E为BC边的中点,请作一点+最小,并求这个最小值;P,使PE PC问题解决()3如图③,李师傅有一块边长为1000米的菱形采摘园ABCD,AC1200=米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离;若不存在,请说明理由.【例3】在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ;(3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【例4】如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.【例5】如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.【例6】在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B ,C ,已知A (﹣1,0),C (0,3).【变式训练】一、单选题1.如图,APB △中,4,3AP BP ==,在AB 的同侧作正ABD △、正APE V 和正BPC △,则四边形PCDE 面积的最大值是( )A .12B .15C .20D .252.如图,在Rt ABC ∆中, 90BAC =︒∠,45ACB ∠=︒,22AB =,点P 为BC 上任意一点,连结PA ,以PA ,PC 为邻边作平行四边形PAQC ,连结PQ ,则PQ 的最小值为( )A .2B .2C .22D .43.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.已知:AB 是O e 的直径,AD ,BC 是O e 的切线,P 是O e 上一动点,若10AD =,4OA =,16BC =,则PCD ∆的面积的最小值是( )A .36B .32C .24D .10.45.⊙O 是半径为1的圆,点O 到直线L 的距离为3,过直线L 上的任一点P 作⊙O 的切线,切点为Q ;若以PQ 为边作正方形PQRS,则正方形PQRS 的面积最小为( )A .7B .8C .9D .106.在△ABC 中,AB=BC,点D 在AC 上,BD=6cm,E ,F 分别是AB ,BC 边上的动点,△DEF 周长的最小值为6 cm,则ABC ∠=( )A .20°B .25°C .30°D .35°7.如图,已知点(1,3)A -,(5,1)B -,点(,0)P m 是x 轴上一动点,点Q 是y 轴上一动点,要使四边形ABPQ 的周长最小,m 的值为( )A .3.5B .4C .7D .2.58.如图,四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N,使三角形AMN 周长最小时,则∠AMN+∠ANM 的度数为( )A .80°B .90°C .100°D .130°二、填空题9.如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是______________.10.如图,△ABC 中,AB=8,AC=5,BC=7,点D 在AB 上一动点,线段CD 绕点C 逆时针旋转60°得到线段CE,AE 的最小值为________11.在Rt △ABC 中,∠BAC =90,AB =AC ,AD ⊥BC 于点D ,P 是线段AD 上的一个动点,以点P 为直角的顶点,向上作等腰直角三角形PBE ,连接DE ,若在点P 的运动过程中,DE 的最小值为3,则AD 的长为____.12.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.13.如图,在半径为2的⊙O 中,弦AB ⊥直径CD ,垂足为E ,∠ACD =30°,点P 为⊙O 上一动点,CF ⊥AP 于点F . ①弦AB 的长度为_____;②点P 在⊙O 上运动的过程中,线段OF 长度的最小值为_____.14.如图,矩形ABCD 中,6AB =,8BC =,M 是AD 边上的一点,且2AM =,点P 在矩形ABCD 所在的平面中,且90BPD ∠=︒,则PM 的最大值是_________.三、解答题15.如图,在平面直角坐标系中,矩形OABC 的两边OA OC 、分别在x 轴、y 轴的正半轴上,8,4OA OC ==.点P 从点O 出发,沿x 轴以每秒2个单位长的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段CP 的中点绕点P 按顺时针方向旋转90o ,得点D ,点D 随点P 的运动而运动,连接DP DA 、.(1)请用含t 的代数式表示出点D 的坐标. (2)求t 为何值时,DPA ∆的面积最大,最大为多少?(3)在点P 从O 向A 运动的过程中,DPA ∆能否成为直角三角形?若能,求t 的值:若不能,请说明理由. (4)请直接写出整个运动过程中,点D 所经过的长度.16.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
初中几何动点最值问题难题集锦
初中几何动点最值问题难题集锦初中几何动点最值问题是初中数学中的一道难题类型。
动点最值问题考察动点在几何形状内运动时,某一量的最大值或最小值的求解方法。
下面是一些初中几何动点最值问题的难题集锦。
1.【问题描述】在一个矩形ABCD中,点P动态地沿着矩形的边移动,求线段AP的最长长度。
【解答】假设矩形ABCD的边长为a和b(a<b),点P动态地沿着矩形的边移动。
我们可以观察到,当点P处于矩形的顶点A或D时,线段AP的长度为a;当点P处于矩形的顶点B或C时,线段AP的长度为b。
因此,线段AP的最长长度为b。
2.【问题描述】在一个圆形O内,点P动态地沿着圆的周长移动,求线段OP的最长长度。
【解答】设圆的半径为r,点P动态地沿着圆的周长移动。
根据三角形的性质,可以知道线段OP的长度最长时,点P应该位于圆的周长上的与点O相对的点,即直径上的点。
因此,线段OP的最长长度为2r。
3.【问题描述】在一个正方形ABCD内,点P动态地沿着正方形的边移动,求线段BP的最长长度。
【解答】设正方形ABCD的边长为a,点P动态地沿着正方形的边移动。
由于线段BP的长度等于点P距离B点的距离,所以线段BP的最长长度为正方形的对角线长度,即√2a。
4.【问题描述】在一个等腰直角三角形ABC中,点P动态地沿着三角形的边移动,求线段AP的最长长度。
【解答】设等腰直角三角形ABC的等腰边长为a,点P动态地沿着三角形的边移动。
可以观察到,当点P处于顶点B或C 时,线段AP的长度为a;当点P处于顶点A时,线段AP的长度为0。
因此,线段AP的最长长度为a。
5.【问题描述】在一个梯形ABCD中,点P动态地沿着梯形的边移动,求线段CP的最长长度。
【解答】设梯形ABCD的上底长为a,下底长为b(a>b),点P动态地沿着梯形的边移动。
可以观察到,当点P处于梯形的底端点C或顶端点D时,线段CP的长度为0;当点P处于梯形的上底端点A时,线段CP的长度为ab。
初中数学几何最值问题
初中数学几何最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]初中数学几何最值问题在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,各地中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析,希望对大家有所帮助.最值问题的解决方法通常有如下6大类:1.三角形的三边关系例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.2.两点间线段最短例2 如图2,圆柱底面半径为2cm,高为9 cm,点,A B分别是回柱两底面圆周上的点,且,A B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线长度最短为 .` 3.垂线段最短例3 如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC 上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是____________•4.利用轴对称例4.如上右图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)例5 如图5,正方形ABCD,4AB=,E是BC的中点,点P是对角线AC上一动点,则PE PB+的最小值为 .5.利用二次函数例6在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.6利用圆中直径是最长的弦例7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.同步练习1.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD 边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为___________.2.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。
第二十三讲 平面几何的定值与最值问题(含解答)-
第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β.那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR>AP+BP.∵RP′+AP′>AR.∴AP′+BP′=AP′+RP′+RB>AR+BP>AP+BP.不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理”.【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证: abcS是定值.(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值.点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值.平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式).例2 如图,已知⊙O的半径R=33,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?解析当O′落在OA的连线段上(即⊙A与线段OA的交点B时)OO′最短,且最短长度为33-3 ;当O′落在OA的延长线上(即⊙O与OA的延长线交点C时)OO′最长,且最长的长度为33+3 .点评⊙O′是一个动圆,满足条件的⊙O′有无数个,但由于⊙O′过A点,所以⊙O′的圆心O′在以A为圆心半径为3的⊙A上.【好题妙解】佳题新题品味例1 如图,已知P为定角O的角平分线上的定点,过O、P•两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.证明连结AP、BP,由于它们为有相同圆周角的弦,AP=PB,不妨记为r.•另记x1=OA,x2=OB.对△POA应用余弦定理,得x12+OP2-2OP·cos∠AOP·x1=r2.故x1为方程x2-2OP·cos 12∠AOB·x+(O P2-r2)=0的根,同理x2亦为其根.因此x1,x2为此方程的两根,由韦达定理,得x1+x2=2OP(12∠AOB)是定值.点评当x 1=x 2时,x 1+x 2为此定值,事实上此时OP 一定是直径.例2 如图,在矩形ABCD 中,AB=8,BC=9,⊙O 与外切,且⊙O 与AB 、BC•相切.⊙O ′与AD 、CD 相切,设⊙O 的半径为x,⊙O 与⊙O ′的面积的和为S,求S•的最大值和最小值. 解析 设⊙O ′的半径为y,过O 与O ′分别作CD 与BC 的垂线OH,O ′F,•垂足分别为H,F,OH 、O ′F 交于点E,则有:O ′E=8-(x+y),OE=9-(x+y) 由勾股定理可得:(x+y)2=[8-(x+y)]2+[9-(x+y)]2. 整理,得(x+y-29)(x+y-5)=0,由题意知1≤x ≤4,∴x+y=5,y=-x+5,∴S=πx+πy=π(2x-10x+25),=2π[(x-52)2+254], 故当x=52时,S min =252π; 当x=4时,S=17π.点评先由已知求出⊙O ′的半径也⊙O 的半径x 之间的关系,然后再根据面积公式写出S 与x 之间的关系,这个关系就是一个函数关系,再通过函数的性质得解.中考真题欣赏例 (南京市中考题)如图,⊙O 1与⊙O 2内切于点P,又⊙O 1切⊙O 2•的直径BE 于点C,连结PC 并延长交⊙O 2于点A,设⊙O 1,⊙O 2的半径分别为r 、R,且R ≥2r.•求证:PC ·AC 是定值.解析 若放大⊙O 1,使⊙O 1切⊙O 2的直径于点O 2(如图), 显然此时有PC ·AC=PO 2·AO 2=2r ·R(定值). 再证明如图的情况:连结C O 1,PO 2,• 则PO 2•必过点O 1,•且O 1C ⊥BE,得CO 2=22121O O O C -=22R Rr -,从而BC=R+22R Rr -,EC=R-22R Rr -.所以PC ·AC=EC ·BC=2Rr,故PC ·AC 是定值. 点评解答几何定值问题时,可先在符合题目条件的前提下用运动的观点,从特殊位置入手,找出相应定值,然后可借助特殊位置为桥梁,完成一般情况的证明.竞赛样题展示例1 (第十五届江苏省初中数学竞赛题)如图,正方形ABCD的边长为1,•点P为边BC 上任意一点(可与点B或点C重合),分别过点B、C、D作射线AP的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.解析∵S△DPC= S△APC =12 AP·CC′,得S 四边形BCDA= S△ABP+ S△ADP+ S△DPC= 12AP(BB′+DD′+CC′),于是BB′+CC′+DD′=2 AP.又1≤AP≤2,故2≤BB′+CC′+DD•′≤2,∴BB′+CC′+DD′的最小值为2,最大值为2.点评本题涉及垂线可考虑用面积法来求.例2 (2000年“新世纪杯”广西竞赛题)已知△ABC内接于⊙O,D是BC•或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD.AE为定值.证明如图 (1),当点D是BC上任意一点且∠BAE=∠CAD时,连结BE,则∠E=∠C,∠BAE=∠CAD,∴△ABE∽△ADC.∴AB AEAD AC=,即AD·AE=AB·AC为定值.如图 (2),当点D在BC的延长线上时,∠BAE=∠CAD.此时,∠ACD=∠AEB.∴△AEB∽△ACD,∴AB AE AD AC=即AD·AE=AB·AC为定值.综上所述,当点D在BC边上或其延长线上时,只要∠CAD=∠BAE,总有AD·AE为定值. 点评先探求定值,当AD⊥BC,AE为圆的直径时,满足∠BAE=∠CAD这一条件,•不难发现△ACD ∽△AEB,所以AD·AE=AB·AC,因为已知AB,AC均为定值.•再就一般情况分点D•在BC上,点D在BC的延长线上两种情况分别证明.全能训练A级1.已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.2.已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.3.⊙O 1与⊙O 2相交于P 、Q 两点,过P 作任一直线交⊙O 1于点E,交⊙O 2于点F.求证:∠EQF 为定值.4.以O 为圆心,1为半径的圆内有一定点A,过A 引互相垂直的弦PQ,RS.求PQ+RS 的最大值和最小值.5.如图,已知△ABC 的周长为2p,在AB 、AC 上分别取点M 和N,使MN•∥BC,•且MN 与△ABC 的内切圆相切.求:MN 的最值.CABMNA 级(答案)1.定长为圆的直径;2.利用特殊位置探求定值(当PC 构成直径时)是两圆的半径). 3.因∠E,∠F 为定角(大小固定)易得∠EQF 为定值.4.如图,设OA=a(定值),过O 作OB ⊥PQ,OC ⊥RS,B 、C 为垂足, 设OB=x,OC=y,0≤x ≤a,(0≤y ≤a),且x 2+y 2=a 2. 所以所以∴(PQ+RS)2=4(2-a 2+而x 2y 2=x 2(a 2-x 2)=-(x 2-22a )2+44a . 当x 2=22a 时,(x 2y 2)最大值=44a .此时;当x 2=0或x 2=a 2时,(x 2y 2)最小值=0,此时(PQ+RS )最小值=2(). 5.设BC=a,BC 边上的高为h,内切圆半径为r. ∵△AMN ∽△ABC,2MN h r BC h -=,MN=a(1-2rh),• 由S △ABC =rp,∴r=2ABC S ahp p∆=, ∴MN=a(1-a p )=p ·a p (1-a p )≤p 2(1)2aa p p⎡⎤+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=4p ,当且仅当a p =1-a p ,即a=2p 时,取等号,∴MN 的最大值为4p.B级1.如图1,已知正方形ABCD的边长为3,点E在BC上,且BE=2,点P在BD上,则PE+PC的最小值为( )A.23B. 13C. 14D.15E D CAB PSQA B PM(1) (2) (3)2.用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,•则在所构成的梯形中,中位线长的最大值是__________.3.如图2,⊙O的半径为2,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB•延长线上任一点,QS⊥OP于S,则OP·OS=_______.4.已知,如图3,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE•、•MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是( •)A.定直线B.经过定点C.一定不过定点D.以上都有可能5.如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,•又PQ与⊙A 相切,切点为D,且交⊙O于P、Q.求证:AP·AQ为定值.6.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点B•的一直线和两圆分别相交于点C 和D,设此两圆的半径为R 1,R 2.求证:AC:AD=R 1:R 2.B 级(答案)1.B.∵A 、C 关于BD 对称,连结AE 交BD 于P,此时PE+PC=AE 最短.2.11.5 (1)当上底为7,下底分别为14,13,9时,中位线长分别为10.5,10,8; (2)当上底为9和13时,均构不成梯形.3.连结OQ 交AB 于M,则OQ ⊥AB.连结OA,则OA ⊥AQ. ∵∠QMP=∠QSP=90°,∴S,P,•Q,M 四点共圆,故OS ·OP=OM ·OQ. 又∵OM ·OQ=OA 2=2,∴OS ·OP=2.4.B.由图可知直线MN 可看作⊙O 和⊙O ′的割线, 当M 在点A 时,直线MN 变为⊙O•′的切线, 当M 在点B 时,直线MN 变为⊙O 的切线.这两种情况是以AB•为直角边的等腰直角三角形的两直角边所在的直线,交点是第三个顶点M.M 是AB 的中点时,MN 是AB•的垂直平分线,也过第三个顶点,所以选B. 5.如图,作⊙O 的直径AB,连结AD. ∵PQ 切⊙A 于D,∴AD ⊥PQ, ∴AP ·AQ=AD ·AB.•而AD=r,AB=2R,∴AP ·AQ=2Rr 为定值.6.作AN ⊥CD,垂足为点N,连结AB,有AC.AB=AN.2R1,① AB ·AD=AN ·2R 2 .② ①÷②,得12R AC AD R ,∴AC:A D=R 1:R 2.。
中考数学专题复习几何中的最值与定值问题公开课PPT课件
A
A
P
图(2-1) P
图(2-2)
P1
BC BC源自解:把△APB绕点A顺时针旋转600,使AB与AC重合,得△ACP1,连结 PP1,则△APP1是正三角形,PP1=AP=AP1=2,P1C=PB=3,当P、P1、 C不在一直线上时, PC<PP1+P1C=2+3=5,只有当P、P1、C在一直线 上时,PC之间的距离在到最大值,这个最大值是PP1+P1C=5。
例5. 如图,在ΔABC中,D、E分别是BC、
AB上的点,且∠1=∠2=∠3 ,如果ΔABC、
求Δ证E:BD的、最Δ小A值DC是的5周。长依次为m,m1,m2,
4
A
E
3
2
1
j
B
D
C
图(1-1)
课后练习
1.如图,在Rt△ABC中,∠ACB=90°,AC =BC=2,以BC为直径的半圆交AB于 点D,P是CD上的一个动点,连结AP, 则AP的最小值是_______.
例 3. 如图,在△ABC中,BC=5,AC=12, AB=13,在边AB、AC上分别取点D、E,使 线段DE将△ABC分成面积相等的两部分,试求 这样线段的最小长度.
例4.已知△XYZ是直角边长为1的等腰直角三角形 (∠Z=90°),它的三个顶点分别在等腰 Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的 最大可能值.
D B
E
当C、A、E三点共线 时,CD的值最大。 CD的最大值是a+b.
A
图(6-1)
D
C
F E
k O
A
图 ( 6-2)
j
B
C
例2 如图,正方形ABCD的边长为1,•点P为边BC上任意 一点(可与点B或点C重合),分别过点B、C、D作射线AP 的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的 最大值和最小值.
初中数学几何模型与最值问题10专题-一次函数在实际应用中的最值问题(含答案)
初中数学几何模型与最值问题专题10 一次函数在实际应用中的最值问题【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.3、有A B、两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A B、两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.专题10 一次函数在实际应用中的最值问题答案【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?【分析】(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x +20,解得x=4(h).【解析】(1)210(2)①y=10x.②y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).故当x为4 h时,甲、乙两队所挖的河渠长度相等.2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?【分析】本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500时,y2<y1.【解析】观察图象,得:(1)每月行驶的路程小于1 500 km时,租国有出租车公司的车合算;(2)每月行驶的路程为1 500 km时,租两家车的费用相同;(3)如果每月行驶的路程为2 600 km,那么这个单位租个体车主的车合算.析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处函数值相等3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.【分析】考查综合利用一次函数的相关知识解决问题的能力.解法一:∵余油量y与行驶路程x的关系图象是一条直线,∴可设关系式为y=kx+b(k≠0).由图象可知y=kx+b经过两点(0,100)和(500,20),则有b=100,20=500k+b.把b=100代入20=500k+b,得20=500k+100,解得k=-425.∴直线的解析式为y=-425x+100.当y=100时,x=0;当y=84时,x=100.由图表可知,油箱中的余油量从100 L到84 L,行驶时间是1 h,行驶路程是100 km. ∴A型汽车的速度为100 km/h.解法二:由图表可知:A型汽车每行驶1 h的路程耗油16L.由图象可知:A型汽车耗油80 L所行驶的路程为500 km.可设汽车耗油16 L所行驶的路程为x km,则500∶80=x∶16,解得x=100.∴A型汽车1 h行驶的路程为100 km.∴它的速度为100 km/h.【小结】有时,我们利用一次函数的图象求一元一次方程的近似解.3、有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【解析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则4030201800a b b a -=⎧⎨-=⎩,解得:300260a b =⎧⎨=⎩ 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则 300260(90)4023400y x x x =+-=+①2(90)x x ≤-①60x ≤①y 随x 的增大而增大①当60x =时,y 取最大值25800度.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得3212054210x y x y +=⎧⎨+=⎩,3015x y =⎧∴⎨=⎩,∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-,152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【解析】(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:5 23110 x yx y-=⎧⎨+=⎩,解这个方程组得:2520xy=⎧⎨=⎩,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得4(500)522.418(500)10000 m mm m⎧>-⎪⎨⎪+-≤⎩,解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,①有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.①W=8t+900中W随x的增大而增大,①当t=30时,W取最小值,此时用于拍照的费用最多,①为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【解析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.①2小时完成8公顷小麦的收割任务,且总费用不超过5400元,①,解得:5≤m≤7,①有三种不同方案.①w=200m+4000中,200>0,①w值随m值的增大而增大,①当m=5时,总费用最小,最小值为5000元答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【解析】(1)设购进篮球m个,排球n个,根据题意得:6080504200m nm n+=⎧⎨+=⎩,解得:4020mn=⎧⎨=⎩.答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,①y与x之间的函数关系式为:y=5x+1200.(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:512001400 8050(60)4300 xx x+≥⎧⎨+-≤⎩,解得:40≤x≤1303.①x取整数,①x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.①在y=5x+1200中,k=5>0,①y随x的增大而增大,①当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?【解析】(1)①由题意得:y=300x﹣600;①由题意得:y=[300﹣12(x﹣10)]x﹣600,即y=﹣12x2+420x﹣600;(2)依题意有:﹣12x2+420x﹣600=3000,解得x1=15,x2=20.故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);当x>10时,y=﹣12x2+420x﹣600=﹣12(x2﹣35x)﹣600=﹣12(x﹣17.5)2+3075,①当x=17.5时,y有最大值.但x只能取整数,①x取17或18.显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【解析】(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:23450{2275x yx y+=+=,解得:75{100xy==.答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,①18﹣n≥2n且18﹣n≤4n,① 185≤n≤6,①n非负整数,①n=4,5,6,相应的18﹣n=14,13,12;①购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A 品种芒果6箱,B品种芒果12箱总费用最少.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何的定值与最值
几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或
几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本
方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,
先探求出定值,再给出证明.
几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量
(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基
本方法有:
1.特殊位置与极端位置法;
2.几何定理(公理)法;
3.数形结合法等.
注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这
是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数
形结合、特殊与一般相结合、
逻辑推理与合情想象相结合等思想方法.
【例题就解】
【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以
AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .
思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,
DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2
1AB 一常数,当CQ 越小,CD 越小,
本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.
注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特
殊位置与极端位置是指:
(1)中点处、垂直位置关系等;
(2)端点处、临界位置等.
【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度
数( )
⌒
A .从30°到60°变动
B .从60°到90°变动
C .保持30°不变
D .保持60°不变
思路点拨 先考虑当圆心在正三角形的顶点C 时,
其弧的度数,再证明一般情形,从而作出判断.
注:几何定值与最值问题,一般都是置于动态背景下,
动与静是相对的,我们可以研究问题中的变量,考虑当变
化的元素运动到特定的位置,使图形变化为特殊图形时,
研究的量取得定值与最值.
【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上
的一动点,直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.
思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运
用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.
【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘
积与M 点的选择无关.
思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC
的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为
△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,
从而我们的证明目标更加明确.
注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证
明问题.
【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的
三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可
能值.
思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,
取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)
上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大
⌒
值.
注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函
数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:
(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;
(2)构造二次函数求几何最值.
学力训练
1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C
点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′
+CC ′+DD ′的最大值为 ,最小值为 .
2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均
不同于点O),则△PQR 的周长的最小值为 .
3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的
距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .
4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN
上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )
A .1
B .2
2 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿
看圆柱的侧面移动到BC 的中点S 的最短距离是( )
A .212π+
B .2412π+
C .214π+
D .242π+
6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、
RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )
A .线段EF 的长逐渐增大
B .线段EF 的长逐渐减小
C .线段EF 的长不改变
D .线段EF 的长不能确定
7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.
(1)求证:MN∥AB;
(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.
(2002年云南省中考题)
8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.
9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.
(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;
(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.
10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )
25 D.14
A.8 B.12 C.
2
11.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( ) A.2
3+
3+ D.2
1+ C.2
2+ B.2
12.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.
13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV 与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?
15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面
积的和为800平方米.
(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于工的函数关系式.
②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.
③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.
(镇江市中考题)
16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).
参考答案。