勾股定理期末复习(公开课)精品PPT课件
合集下载
勾股定理期末复习精品PPT课件
![勾股定理期末复习精品PPT课件](https://img.taocdn.com/s3/m/ce919b6369dc5022abea003b.png)
勾股定理复习
知识 梳理
勾股定理
如果直角三角形两直角边分别为a,b, 斜边为c,那么a2 + b2 = c2
B
c a
AC
b
符号语言:
在Rt△ABC中, ∠C=90 ∴a2+b2=c2
练习
1、求出下列直角三角形中未知的边.
17
A
B
2
8 C
(1)
1
30°
A
C
3 (2)
2
2
,字母A,B,C分别代表正方形的面积 (1)若B=225个单位面积,C=400个单位面积, 则A=__6_2_5__个单位面积. (2)若A=225个单位面积,B=81个单位面积, 则C=__1_4_4__个单位面积.
知AB=10cm,BC=6cm,你能求出CE的长
吗?
B
D
A
E
C
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
2、直角三角形两直角边长分别为5和12, 则它 斜边上的高为__________。
3.如图, AC⊥BC ,AB=13, BC=12 ,CD=3 , AD=4 。求:(1)求AC长
(2)求 ADC 的面积。 C 12
B 3 D
13 4
A
4、如图,小颖同学折叠一个直角三角形
知识 梳理
勾股定理
如果直角三角形两直角边分别为a,b, 斜边为c,那么a2 + b2 = c2
B
c a
AC
b
符号语言:
在Rt△ABC中, ∠C=90 ∴a2+b2=c2
练习
1、求出下列直角三角形中未知的边.
17
A
B
2
8 C
(1)
1
30°
A
C
3 (2)
2
2
,字母A,B,C分别代表正方形的面积 (1)若B=225个单位面积,C=400个单位面积, 则A=__6_2_5__个单位面积. (2)若A=225个单位面积,B=81个单位面积, 则C=__1_4_4__个单位面积.
知AB=10cm,BC=6cm,你能求出CE的长
吗?
B
D
A
E
C
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
2、直角三角形两直角边长分别为5和12, 则它 斜边上的高为__________。
3.如图, AC⊥BC ,AB=13, BC=12 ,CD=3 , AD=4 。求:(1)求AC长
(2)求 ADC 的面积。 C 12
B 3 D
13 4
A
4、如图,小颖同学折叠一个直角三角形
精选幻灯片-勾股定理复习23页PPT
![精选幻灯片-勾股定理复习23页PPT](https://img.taocdn.com/s3/m/d80cc93577232f60ddcca1cf.png)
精选幻灯片-勾股定理复习
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
ቤተ መጻሕፍቲ ባይዱ
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
八年级数学:17.章《勾股定理》复习课件 课件共18张PPT
![八年级数学:17.章《勾股定理》复习课件 课件共18张PPT](https://img.taocdn.com/s3/m/9ac583e728ea81c758f57876.png)
∵CD=DE C D
, AD=AD
E ∴ Rt△ACD Rt△AED A ∴ AC=AE 在 Rt△ABC中, AC2+BC2=AB2
2+42=(x+2)2 即 : x 令AC=x,则AB=x+2 ∴ x=3
1 2
B
方程思想
直角三角形中,当无法已知两边求第三 边时,应采用间接求法:灵活地寻找题中 的等量关系,利用勾股定理列方程。
A组 课本P38-39页 B组课本P38-39页1-13题 C组课本P38-39页1-11题
•18
方程 思想 3、已知,如图,在Rt△ABC,∠C=90°,
∠1=∠2,CD=1.5, BD=2.5, 求AC的长.
提示:作辅助线DE⊥AB,利
用平分线的性质和勾股定理。
C
D 1 2
A
B
过D点做DE⊥AB 解: ∵ ∠1=∠2, ∠C=90° ∴ DE=CD=1.5
在 Rt△DEB中,根据勾股定理,得 BE2=BD2-DE2=2.52-1.52=4 ∴ BE=2 在Rt△ACD和 Rt△AED中, x
3)已知∠A=45°,c=8,求a和b
2、直角△的两边长为8和10,求第三的高为
,面积为
.
4.已知三角形的三边长9 ,12 ,15 ,则 这个三角形的最大角是__度 90 ;
5.△ABC的三边长为 9 ,40 ,41 ,则 180 ; △ABC的面积为____
两个命题中, 如果第一个命题的题设是第二个 命题的结论, 而第一个命题的结论又是第二个 命题的题设,那么这两个命题叫做互逆命题. 如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆 定理, 其中一个叫做另一个的逆定理.
, AD=AD
E ∴ Rt△ACD Rt△AED A ∴ AC=AE 在 Rt△ABC中, AC2+BC2=AB2
2+42=(x+2)2 即 : x 令AC=x,则AB=x+2 ∴ x=3
1 2
B
方程思想
直角三角形中,当无法已知两边求第三 边时,应采用间接求法:灵活地寻找题中 的等量关系,利用勾股定理列方程。
A组 课本P38-39页 B组课本P38-39页1-13题 C组课本P38-39页1-11题
•18
方程 思想 3、已知,如图,在Rt△ABC,∠C=90°,
∠1=∠2,CD=1.5, BD=2.5, 求AC的长.
提示:作辅助线DE⊥AB,利
用平分线的性质和勾股定理。
C
D 1 2
A
B
过D点做DE⊥AB 解: ∵ ∠1=∠2, ∠C=90° ∴ DE=CD=1.5
在 Rt△DEB中,根据勾股定理,得 BE2=BD2-DE2=2.52-1.52=4 ∴ BE=2 在Rt△ACD和 Rt△AED中, x
3)已知∠A=45°,c=8,求a和b
2、直角△的两边长为8和10,求第三的高为
,面积为
.
4.已知三角形的三边长9 ,12 ,15 ,则 这个三角形的最大角是__度 90 ;
5.△ABC的三边长为 9 ,40 ,41 ,则 180 ; △ABC的面积为____
两个命题中, 如果第一个命题的题设是第二个 命题的结论, 而第一个命题的结论又是第二个 命题的题设,那么这两个命题叫做互逆命题. 如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆 定理, 其中一个叫做另一个的逆定理.
勾股定理公开课课件
![勾股定理公开课课件](https://img.taocdn.com/s3/m/8aedd090b8f3f90f76c66137ee06eff9aff84963.png)
在解析几何中,勾股定理常用于解决与直角三角形相关的问题,如求长 度、面积等。
在物理学中,勾股定理用于描述弹性杆在受力时的弯曲程度,以及电磁 波的传播方向和强度。
在经济学中,勾股定理可用于评估投资组合的风险和回报,以及预测股 票市场的波动。
THANKS
感谢观看
勾股定理的发展历程
欧几里德在《几何原本》中证明勾股 定理的方法是构造两个直角三角形, 通过比较它们的边长来证明勾股定理 。
20世纪以来,勾股定理的应用范围不 断扩大,涉及物理学、工程学、经济 学等多个领域。
18世纪,欧拉证明了勾股定理的一个 更为简洁的证明方法,该方法基于三 角形的余弦定理。
勾股定理在现代数学中的应用
勾股定理在复数域的应用
总结词
勾股定理在复数域的应用展示了复数和三角函数之间的密切联系,为解决复杂的数学问题提供了新的 思路和方法。
详细描述
在复数域中,勾股定理可以应用于复数和三角函数之间的关系,揭示了它们之间的密切联系。这种应 用为解决复杂的数学问题提供了新的思路和方法,有助于深入理解和掌握复数和三角函数的基本性质 和应用。
勾股定理的表述方式是“勾股定理,两直角边的平方和等于斜边的平方 ”。
03
勾股定理的证明方法
勾股定理的证明方法有多种,其中一种是利用相似三角形的性质来证明
,另一种是利用代数方法来证明。
勾股定理的重要性
在几何学中的应用
勾股定理是几何学中一个重要的定理,它在解决 与直角三角形相关的问题时非常有用。例如,在 计算直角三角形的角度、边长等问题时,勾股定 理都是必不可少的工具。
在工程学中的应用
在工程学中,勾股定理也是非常重要的工具。例 如,在计算建筑物的稳定性、机械运动等问题时 ,都需要用到勾股定理。
在物理学中,勾股定理用于描述弹性杆在受力时的弯曲程度,以及电磁 波的传播方向和强度。
在经济学中,勾股定理可用于评估投资组合的风险和回报,以及预测股 票市场的波动。
THANKS
感谢观看
勾股定理的发展历程
欧几里德在《几何原本》中证明勾股 定理的方法是构造两个直角三角形, 通过比较它们的边长来证明勾股定理 。
20世纪以来,勾股定理的应用范围不 断扩大,涉及物理学、工程学、经济 学等多个领域。
18世纪,欧拉证明了勾股定理的一个 更为简洁的证明方法,该方法基于三 角形的余弦定理。
勾股定理在现代数学中的应用
勾股定理在复数域的应用
总结词
勾股定理在复数域的应用展示了复数和三角函数之间的密切联系,为解决复杂的数学问题提供了新的 思路和方法。
详细描述
在复数域中,勾股定理可以应用于复数和三角函数之间的关系,揭示了它们之间的密切联系。这种应 用为解决复杂的数学问题提供了新的思路和方法,有助于深入理解和掌握复数和三角函数的基本性质 和应用。
勾股定理的表述方式是“勾股定理,两直角边的平方和等于斜边的平方 ”。
03
勾股定理的证明方法
勾股定理的证明方法有多种,其中一种是利用相似三角形的性质来证明
,另一种是利用代数方法来证明。
勾股定理的重要性
在几何学中的应用
勾股定理是几何学中一个重要的定理,它在解决 与直角三角形相关的问题时非常有用。例如,在 计算直角三角形的角度、边长等问题时,勾股定 理都是必不可少的工具。
在工程学中的应用
在工程学中,勾股定理也是非常重要的工具。例 如,在计算建筑物的稳定性、机械运动等问题时 ,都需要用到勾股定理。
《勾股定理》期末复习 —初中数学课件PPT
![《勾股定理》期末复习 —初中数学课件PPT](https://img.taocdn.com/s3/m/b2dd802d4431b90d6d85c706.png)
则BD=
=50 m.
∵△ABD的面积为
∴AE=
=24 m.
4.分别以下列五组数为一个三角形的边长:①6,8,10; ②
13,5,12;③1,2,3;④9,40,41;⑤ , ,
.其中能构成直角三角形的有________组.( B )
A.2
B.3
C.4
D.5
5.已知三角形的三边长分别为12 cm,16 cm,20 cm,则此三角
这个逆命题是____假______(填“真”或“假”)命题.
【例8】下列命题的逆命题是真命题的是 A.对顶角相等
( B)
B.同位角相等,两直线平行
C.全等三角形的对应角相等
D.如果两实数相等,那么它们的平方也相等
变式诊断
1. 求出图M-54-2所示的直角三角形中未知的边.
2.如图M-54-4,在△ABC中,AD⊥BC,∠B=45°,∠C=30°, AD=1,求△ABC的周长.
解:AD=8.
18.如图M-54-12,在△ABC中,AD⊥BC,∠B=45°,∠C=30°, AD=1. (1)求CD的长; (2)求△ABC的面积.
综合提升
19. 如图M-54-13,△ABC的顶点A,B,C在边长为1的正方形网
格的格点上,BD⊥AC于点D.则BD的长为
(C)
A.
B.
C.
D.
解:(1)连接BD.
∵AB=AD=2,∠A=60°,∴△ABD是等边三角形.
∴BD=2,∠ADB=60°.
∵BC= ,CD=4,BD2+CD2=22+42=20,BC2=
∴BD2+CD2=BC2.
∴∠BDC=90°.
∴∠ADC=150°.
勾股定理复习课件整理ppt
![勾股定理复习课件整理ppt](https://img.taocdn.com/s3/m/0f5be098a0c7aa00b52acfc789eb172ded63992d.png)
• 知识点1:(已知两边求第三边) 1.在直角三角形中,若两直角边的长分别为1cm,
2cm ,则斜边长为___.斜边上的高为_____.
2.已知直角三角形的两边长为3、4,则另一条边长是 ________________.
3、三角形ABC中,AB=10,AC=17,BC边上的高线 AD=8,求BC的长?
变式练习: 公园里有一块形如四边形ABCD的草地,测得 BC=CD=10米,∠B=∠C=120°,∠A=45度. 请你求出这块草地的面积.
F
知识点4:利用方程思想解决有关问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
知识点5:勾股定理在立体图形中的应用(二)
(几何体内部最长线段问题)
如图,将一根长24cm的筷子,置于底面直径为 5cm,高为12cm的圆柱形水杯中,设筷子露在 杯子外面的长度是hcm,则h的取值范围是 _____________.
寻找规律性问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
满足 a2b2c2
称为勾股数。
的三个正整数
,
你能写出常用的勾股数吗?
3,4,5; 5,12,13;
6,8,10; 7,24,25;
8,15,17 ;9,40,41
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2cm ,则斜边长为___.斜边上的高为_____.
2.已知直角三角形的两边长为3、4,则另一条边长是 ________________.
3、三角形ABC中,AB=10,AC=17,BC边上的高线 AD=8,求BC的长?
变式练习: 公园里有一块形如四边形ABCD的草地,测得 BC=CD=10米,∠B=∠C=120°,∠A=45度. 请你求出这块草地的面积.
F
知识点4:利用方程思想解决有关问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
知识点5:勾股定理在立体图形中的应用(二)
(几何体内部最长线段问题)
如图,将一根长24cm的筷子,置于底面直径为 5cm,高为12cm的圆柱形水杯中,设筷子露在 杯子外面的长度是hcm,则h的取值范围是 _____________.
寻找规律性问题 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
满足 a2b2c2
称为勾股数。
的三个正整数
,
你能写出常用的勾股数吗?
3,4,5; 5,12,13;
6,8,10; 7,24,25;
8,15,17 ;9,40,41
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
《勾股定理》课件精品 (公开课)2022年数学PPT
![《勾股定理》课件精品 (公开课)2022年数学PPT](https://img.taocdn.com/s3/m/626a73b2336c1eb91b375d0c.png)
C.在Rt△ABC中,∠C=90°,所以a2+b2=c2
D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
2.图中阴影部分是一个正方形,则此正方形的面
积为 36 cm².
8 cm
10 cm
3.在△ABC中,∠C=90°.
(1)若a=15,b=8,则c= 17 .
(2)若c=13,b=12,则a= 5
据说我国著名的数学家华罗庚曾建议“发射”一种勾股 定理的图形(如图).
很多学者认为如果宇宙“人”也拥有文明的话,那么他 们一定会认识这种语言,因为几乎所有具有古代文化 的民族和国家都对勾股定理有所了解.
勾股定理有着悠久的历史:古巴比伦人和古代中国人 看出了这个关系,古希腊的毕达哥拉斯学派首先证明 了这关系,下面让我们一起来通过视频来了解吧:
第十七章 勾股定理
17.1 勾股定理
第1课时 勾股定理
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体 会数形结合的思想.(重点)
2.会用勾股定理进行简单的计算 .(难点)
导入新课
情景引入 其他星球上是否存在着“人”呢?为了探寻这一点,世 界上许多科学家向宇宙发出了许多信号,如地球上人 类的语言、音乐、各种图形等.
0的相反数是___0__. 一个正数的相反数是一个 负数 。 一个负数的相反数是一个 正数 。 一个数的相反数是它本身的数是 __0____.
探究二 相反数的几何意义
思考:在数轴上,画出几组表示相反数的点,并观 察这两个点具有怎样的特征?
-5
-a -1 0 1 a 5
勾股定理全章复习公开课PPT课件
![勾股定理全章复习公开课PPT课件](https://img.taocdn.com/s3/m/f34e85ae7fd5360cbb1adbca.png)
?
么你 发 现 了 什
(6)a=5,b=_____1_2_,c=13
(7)a=____9_,b=40,c=41 (8)a=7,b=_2_4__c=25
Hale Waihona Puke 记一记:(同桌互背)常见的勾股数: 3、4、5; 5、12、13; 6、8、10; 8、15、17; 9、40、41; 7、24、25.
精选ppt课件2021
(2)求
的面积。
12
C
B
3
D
4 13
ADC
A
勾股定理的应用四:构建直角三角形
1.在一棵树的20米的B处有两只猴子,其中一只
猴子爬下树走到离树40米的A处,另一只爬到
树顶D后直接约向A处,且测得AD为50米,求BD
的长.
D
B
C
A
2.如图,小明和小方分别在C处同时出发,小明
以每小时40千米的速度向南走,小方以每小时
=__2_4___ ,斜边上的高=__4_._8__
2.一个直角三角形的面积54,且其中一条直角边
的长为9,则这个直角三角形的斜边长为__1_5__
3.如上图,直角三角形的面积为24,AC=6,则它的
周长为_____2_4__
勾股定理与逆定理的
综合运用
7.如图:AD⊥CD , AC⊥BC ,AB=13, CD=3 ,
bC
6
1.如图,字母A,B,C分别代表正方形的面积
(1)若B=225个单位面积,C=400个单位面积,
则A=__6_2_5__个单位面积.
(2)若A=225个单位面积,B=81个单位面积,
则C=__1_4_4__个单位面积.
第1题
2.已知直角三角形ABC中, ACB90
勾股定理全章复习课ppt课件
![勾股定理全章复习课ppt课件](https://img.taocdn.com/s3/m/6843787e0812a21614791711cc7931b765ce7b36.png)
7.下列线段不能组成直角三角形的是( D )
A.a=8,b=15,c=17
B.a=9,b=12,c=15
C.a= ,b= ,c=
D.a:b:c=2:3:4
B
A.锐角三角形 C. 钝角三角形
B. 直角三角形 D. 等边三角形
9
9.如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,
均收到已触礁搁浅的船C的求救信号, 6分钟后同时到达C地.已
y
E
F
D
C
根据勾股定理列出方程即可解决此
类型问题.
A
x B
13
小结
1、你学到哪些数学知识?
理解原命题、逆命题与逆定理的概念及关系 掌握勾股定理及其逆定理并能运用其解决实际问题
2、你学到哪些数学思想方法?
在运用定理解决问题中,体会分类、方程与转化的思想方法
14
课堂检测
1.已知直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,不能作为直角三角形边长的是( )
A
A
利用勾股定理解决 实际问题:先转化 成数学问题, 找到 直角三角形, 最后 利用勾股定理解决 问题。
7
6.如图,长方体的长为6,宽为4,高为8,点B离点C的距离为2,一只妈蚁 如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
展开(分类)
∴最短路径为10 8
知识运用
四、 勾股定理逆定理及其实际应用
型
5
3.已知一个直角三角形的两条边长是3cm和4cm,求第三条边的长.
答案: 5 cm或 cm.
4.已知在△ABC中, AB=15cm,AC=13cm,高AD=12cm,求BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB
为8cm, 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(
折痕为AE) (1)求BF的长; (2)求EC的长。
A
D
E
B
FC
变式:如图折叠长方形C=5,求折痕EF的长.
第一章 勾股定理
勾股定理
考点1:勾股定理的验证 考点2:求第三边 考点3:求斜边上的高
第一章 股股定理
勾股定理 逆定理
勾股数 逆定理
勾股定理应 用
折叠问题 最短路径问题
勾股定理:
如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2
变形:
c2 = a2 + b2 a2 = c2 — b2
例题:① 3,4, 5 ② 5,12, 13
8,15, 17
④ 7, 24, 25 ⑤ 0.5, 0.12, 0.13 ⑥ 1, 2 , 3
以上各组数中能作为直角三角形边长的有______________
例题:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
c a2 b2 a c2 b2
a
c
b2 = c2 — a2 b c2 a2
b
例题:如图在直角三角形中,a=2,c=4,求b
例题:如图3,分别以Rt △ABC三边为边向外作三个
正方形,其面积分别用S1、S2、S3表示,容易得出S1、
S2、S3之间的关系式______________
.
变式1.如图1-1-3所示的图形中,所有的四边形都 是正方形,所有的三角形都是直角三角形,其中最 大的正方形的边长为7cm,则正方形A,B,C,D的面 积的和是_______
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
勾股数:满足a2+b2=c2的三个正整数,称为勾股数.
(1)由定义可知,一组数是勾股数必须满足两个条件: ①满足a2+b2=c2;②都是正整数.两者缺一不可.
(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满 足a2+b2=c2(但不一定是勾股数),以它们为边长的三角形是 直角三角形,比如以0.3, 0.4 , 0.5
C S3
S2
A
B
S1
图3
变式2:如图4,分别以Rt △ABC三边为边向外作三个
半圆,其面积分别用S1、S2、S3表示,容易得出S1、S2、
S3之间的关系式______________
.
S2 S3
S1
图4
例题、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长 方形;(3)阴影部分是半圆.
勾股数
讲师:XXXXXX XX年XX月XX日
例1:如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB
为8cm, 长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(
折痕为AE) (1)求BF的长; (2)求EC的长。
A
D
E
B
FC
变式:如图折叠长方形C=5,求折痕EF的长.
第一章 勾股定理
勾股定理
考点1:勾股定理的验证 考点2:求第三边 考点3:求斜边上的高
第一章 股股定理
勾股定理 逆定理
勾股数 逆定理
勾股定理应 用
折叠问题 最短路径问题
勾股定理:
如果用a,b,c表示直角三角形的两个直角边和斜 边,那么a2+b2=c2
变形:
c2 = a2 + b2 a2 = c2 — b2
例题:① 3,4, 5 ② 5,12, 13
8,15, 17
④ 7, 24, 25 ⑤ 0.5, 0.12, 0.13 ⑥ 1, 2 , 3
以上各组数中能作为直角三角形边长的有______________
例题:如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12, AD=13, 求四边形ABCD的面积.
c a2 b2 a c2 b2
a
c
b2 = c2 — a2 b c2 a2
b
例题:如图在直角三角形中,a=2,c=4,求b
例题:如图3,分别以Rt △ABC三边为边向外作三个
正方形,其面积分别用S1、S2、S3表示,容易得出S1、
S2、S3之间的关系式______________
.
变式1.如图1-1-3所示的图形中,所有的四边形都 是正方形,所有的三角形都是直角三角形,其中最 大的正方形的边长为7cm,则正方形A,B,C,D的面 积的和是_______
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
勾股数:满足a2+b2=c2的三个正整数,称为勾股数.
(1)由定义可知,一组数是勾股数必须满足两个条件: ①满足a2+b2=c2;②都是正整数.两者缺一不可.
(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满 足a2+b2=c2(但不一定是勾股数),以它们为边长的三角形是 直角三角形,比如以0.3, 0.4 , 0.5
C S3
S2
A
B
S1
图3
变式2:如图4,分别以Rt △ABC三边为边向外作三个
半圆,其面积分别用S1、S2、S3表示,容易得出S1、S2、
S3之间的关系式______________
.
S2 S3
S1
图4
例题、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长 方形;(3)阴影部分是半圆.
勾股数