初中数学试卷模板

合集下载

数学素养大赛试卷初中模板

数学素养大赛试卷初中模板

一、选择题(每题5分,共20分)1. 下列各数中,哪个数是有理数?A. √2B. πC. 3.14D. -√42. 下列哪个图形是轴对称图形?A. 等腰三角形B. 等边三角形C. 长方形D. 正方形3. 已知等差数列的前三项分别是3,5,7,那么这个数列的公差是多少?A. 1B. 2C. 3D. 44. 一个圆的半径增加了20%,那么这个圆的面积增加了多少?A. 20%B. 44%C. 50%D. 80%5. 已知一元二次方程x²-5x+6=0,那么它的两个根分别是多少?A. 2和3B. 1和4C. 2和4D. 1和5二、填空题(每题5分,共20分)6. 已知sinα=0.6,cosα=0.8,那么tanα的值是______。

7. 一个长方形的长是12cm,宽是8cm,那么它的对角线长度是______cm。

8. 在直角坐标系中,点A(2,3)关于y轴的对称点是______。

9. 一个等边三角形的边长是6cm,那么它的周长是______cm。

10. 已知一个数列的前三项分别是2,5,8,那么这个数列的通项公式是______。

三、解答题(每题10分,共30分)11. (1)计算下列表达式的值:(2+3i)-(4-2i)(2)已知复数z=a+bi(a,b为实数),且|z|=√(a²+b²),求复数z的值。

12. (1)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。

(2)在直角坐标系中,点D的坐标为(4,-3),点E的坐标为(-2,1),求线段DE的长度。

13. (1)解一元二次方程:x²-6x+9=0。

(2)已知等差数列的前三项分别是3,5,7,求这个数列的第10项。

四、应用题(每题15分,共30分)14. 甲、乙两辆汽车从相距240km的两地相向而行,甲车的速度是60km/h,乙车的速度是80km/h。

两车相遇后,甲车继续行驶,乙车立即返回。

七年级上册数学 期末试卷(培优篇)(Word版 含解析)

七年级上册数学 期末试卷(培优篇)(Word版 含解析)

七年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab2.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .3.下列运算正确的是 A .325a b ab += B .2a a a +=C .22ab ab -=D .22232a b ba a b -=- 4.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab5.下列立体图形中,俯视图是三角形的是( )A .B .C .D .6.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个 8.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小9.如图所示的几何体的左视图是( )A .B .C .D .10.27-的倒数是( ) A .72 B .72-C .27D .27-11.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,712.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .13.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分 B .3点30分 C .6点45分 D .9点 14.-3的相反数为( )A .-3B .3C .0D .不能确定15.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________. 17.计算:3-|-5|=____________.18.已知23a b -=,则736a b +-的值为__________.19.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.20.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 21.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.22.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________. 23.如果方程21(1)20m m x --+=是一个关于x 的一元一次方程,那么m 的值是__________.24.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).27.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么? 28.解方程:(1)()()210521x x x x -+=+-(2)1.7210.70.3 x x--=29.解方程:(1)5(x﹣1)+2=3﹣x(2)21211 36x x-+=-30.下图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用块小正方体搭成的.31.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A=80°,则∠A的半余角的度数为;(2)如图1,将一长方形纸片ABCD沿着MN折叠(点M在线段AD上,点N在线段CD 上)使点D落在点D′处,若∠AMD′与∠DMN互为“半余角”,求∠DMN的度数;(3)在(2)的条件下,再将纸片沿着PM折叠(点P在线段BC上),点A、B分别落在点A′、B′处,如图2.若∠AMP比∠DMN大5°,求∠A′MD′的度数.32.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,若这样的几何体最少要个a小正方体,最多要b个小正方体,则+a b的值为___________.33.画图题:已知平面上点A B C D 、、、,用刻度尺按下列要求画出图形:(保留画图痕迹,不要求写画法)(1)画直线BD ,射线 C B(2)连结AD 并延长线段AD 至点 F ,使得DF AD =.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.36.如图,数轴上点A、B表示的点分别为-6和3(1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.37.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.38.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()26120a b-++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.39.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C是线段AB上的一点,M是AC的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0n a b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论. 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.2.D【解析】 【分析】根据余角、补角的定义计算. 【详解】根据余角的定义,两角之和为90°,这两个角互余. D 中∠1和∠2之和为90°,互为余角. 故选D . 【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.D解析:D 【解析】 【分析】根据整式的加减,合并同类项得出结果即可判断. 【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确, 故选D. 【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.4.A解析:A 【解析】 【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案. 【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意. 故选A . 【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.5.C【解析】【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.B解析:B【解析】【分析】根据正方体的表面展开图的常见形式即可判断.【详解】选项A、C 、D经过折叠均不能围成正方体;只有B能折成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.7.B解析:B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.9.A解析:A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A . 10.B解析:B【解析】【分析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.11.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.12.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.13.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.14.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.15.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可. 【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a解析:-4,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a=-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.17.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.18.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.19.【解析】【分析】设输入的数是x ,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±解析:2±【解析】【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷3=1,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷3=1,x 2-1=3,x=±2,故答案为:±2.【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程. 20.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次 解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】 本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键.21.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12 (180°-64°)=58°. 【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°, 故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.23.-1【解析】【分析】根据一元一次方程的定义可得出,,求解即可.【详解】解:由题意可得,,,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义解析:-1【解析】【分析】 根据一元一次方程的定义可得出2m 11-=,m 10-≠,求解即可.【详解】 解:由题意可得,2m 11-=,m 10-≠,解得,m=-1.故答案为:-1.【点睛】本题考查的知识点是一元一次方程的定义,熟记方程定义是解此题的关键.24.【解析】【分析】根据题意表达出,将其代入计算即可.【详解】解:∵代数式的值为 1∴∴∴∴故答案为:【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.解析:1-4【解析】【分析】 根据题意表达出235=44x x +,将其代入2314x x --计算即可. 【详解】解:∵代数式2434x x +-的值为 1∴2434=1x x +-∴243=5x x + ∴235=44x x + ∴23511=1-=-444x x -- 故答案为:1-4 【点睛】本题考查了代数式的求值,掌握整体思想求代数式的值是解题的关键.25.30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB=90°,∠COD=90°,∠AOD=150°,解析:30°.【解析】【分析】观察图形可得:所求∠BOC 的度数恰好是三角板的两个直角的和减去∠AOD 的度数,据此求解即可.【详解】解:因为∠AOB =90°,∠COD =90°,∠AOD =150°,所以∠BOC =∠AOB +∠COD -∠AOD =30°. 故答案为:30°.【点睛】本题以学生常见的三角板为载体,主要考查了角的和差关系,解答的关键是通过观察发现图形中所求角与已知各角的关系.三、解答题26.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】 (1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系.【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t .故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t )解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45)解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60解得:t =10.故答案为5或10. ②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°.【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.27.(1)30°;(2)相等,理由见解析【解析】【分析】(1)根据对顶角相等求出∠BOD的度数,设∠BOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF的度数即可.【详解】(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠AOF=∠AOC,【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.28.(1)x=−43;(2)x=1417.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:2x−x−10=5x+2x−2,移项合并得:-6x=8,解得:x=−43;(2)方程整理得:101720173x x--=,去分母得:30x-21=7(17-20x),移项合并得:170x=140,解得:x=14 17.【点睛】此题考查了解一元一次方程,解一元一次方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.29.(1)x =1;(2)x =32-. 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)先左右两边同时乘以6去掉分母,然后再按照去括号,移项,合并同类项,系数化为1的步骤求解即可.【详解】解:(1)去括号得:5x ﹣5+2=3﹣x ,移项得:5352x x +=+-合并同类项得:6x =6,系数化为1得:x =1;(2)去分母得:2(2x ﹣1)=2x +1﹣6,去括号得:4x ﹣2=2x +1﹣6,移项得:42162x x -=-+合并同类项得:2x =﹣3,系数化为1得:x =32-. 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.30.(1)见解析;(2)9【解析】【分析】(1)根据主视图、左视图和俯视图的定义和几何体的特征画出三视图即可;(2)根据三视图的特征分析该几何体的层数和每层小正方体的个数,然后将每层小正方体的个数求和即可判断.【详解】解:(1)根据几何体的特征,画三视图如下:(2)从主视图看,该几何体有3层,从俯视图看,该几何体的最底层有6个小正方体;结合主视图和左视图看,中间层有2个或3个小正方体,最上层只有1个小正方体,故该几何体有6+2+1=9个小正方体或有6+3+1=10个小正方体,如果只看三视图,这个几何体还有可能是用9块小正方体搭成的,故答案为:9.【点睛】此题考查的是画三视图和根据三视图还原几何体,掌握三视图的定义、三视图的特征和几何体的特征是解决此题的关键.31.(1)35°或125°;(2)45°或75°;(3)10°或130°.【解析】【分析】(1)设∠A的半余角的度数为x°,根据半余角的定义列方程求解即可;(2)设∠DMN为x°.根据折叠的性质和半余角的定义解答即可;(3)分两种情况讨论:①当∠DMN=45°时,∠DMD'=90°,∠AMP=50°,∠DMA'=80°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.②当∠DMN=75°时,∠DMD'=150°,∠AMP=80°,∠DMA'=20°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.【详解】(1)设∠A的半余角的度数为x°,根据题意得:|80°-x|=45°80°-x=±45°∴x=80°±45°,∴x=35°或125°.(2)设∠DMN为x°,根据折叠的性质得到∠D'MN=∠DMN=x°.∴∠AMD'=180°-2x.∵∠AMD′与∠DMN互为“半余角”,∴|180°-2x-x|=45°,∴|180°-3x|=45°,∴180°-3x=45°或180°-3x=-45°,解得:x=45°或x=75°.(3)分两种情况讨论:①当∠DMN=45°时,∠D'MN=45°,∴∠DMD'=90°,∠AMP=∠A'MP=45°+5°=50°,∴∠DMA'=180°-2∠AMP=80°,∴∠A′MD′=∠DMD'-∠DMA'=90°-80°=10°.②当∠DMN=75°时,∠D'MN=75°,∴∠DMD'=150°,∠AMP=∠A'MP=75°+5°=80°,∴∠DMA'=180°-2∠AMP=20°,∴∠A′MD′=∠DMD'-∠DMA'=150°-20°=130°.综上所述:∠A′MD′的度数为10°或130°.【点睛】本题考查了一元一次方程的应用以及折叠的性质.理解“半余角”的定义是解答本题的关键. 32.(1) 10; (2) 主视图、左视图和俯视图见解析;(3) 22.【解析】【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.33.(1)图见解析;(2)图见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)根据题意,画图即可.【详解】解:(1)根据直线和射线的定义:作直线BD和射线C B,如图所示:直线BD和射线C B即为所求;,如下图所示,AD和DF即为所(2)连结AD并延长线段AD至点F,使得DF AD求.【点睛】此题考查的是画直线、射线和线段,掌握直线、射线和线段的定义及画法是解决此题的关键.四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.36.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是。

初中八年级数学试卷的模板

初中八年级数学试卷的模板

一、填空题(每空2分,共20分)1. 若a,b是方程x^2-3x+2=0的两个根,则a+b=______。

2. 在等腰三角形ABC中,AB=AC,若∠BAC=50°,则∠B=______。

3. 若a,b是方程x^2-4x+4=0的两个根,则ab=______。

4. 已知一元二次方程x^2-5x+6=0的两个根分别为x1和x2,则x1+x2=______。

5. 若a,b是方程x^2-3x-4=0的两个根,则a-b=______。

6. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB=______。

7. 若一个数x满足方程x^2-6x+9=0,则x=______。

8. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B=______。

9. 若a,b是方程x^2-2x-3=0的两个根,则ab=______。

10. 已知一元二次方程x^2-4x-12=0的两个根分别为x1和x2,则x1+x2=______。

二、选择题(每题3分,共30分)1. 若a,b是方程x^2-5x+6=0的两个根,则下列哪个选项是正确的?A. a+b=5,ab=6B. a+b=5,ab=3C. a+b=6,ab=5D. a+b=3,ab=52. 在等腰三角形ABC中,AB=AC,若∠BAC=45°,则下列哪个选项是正确的?A. ∠B=45°,∠C=45°B. ∠B=90°,∠C=45°C. ∠B=45°,∠C=90°D. ∠B=90°,∠C=90°3. 若一个数x满足方程x^2-4x+4=0,则x=______。

A. 2B. -2C. 0D. 44. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则下列哪个选项是正确的?A. AB=5cmB. AB=6cmC. AB=7cmD. AB=8cm5. 若a,b是方程x^2-2x-3=0的两个根,则ab=______。

九年级上月考数学试卷含解析

九年级上月考数学试卷含解析

九年级(上)月考数学试卷(10月份)一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A.B.C.D.2.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)3.下列事件是必然事件的是()A.任意买张票,座位号是偶数 B.三角形内角和180度C.明天是晴天D.打开电视正在放广告4.若抛物线y=ax2+bx+c的顶点在第一象限,与x轴的两个交点分布在原点两侧,则点(a,)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.6.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y17.抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠08.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<29.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.10.已知关于x的方程,若a为正实数,则下列判断正确的是()A.有三个不等实数根 B.有两个不等实数根C.有一个实数根 D.无实数根二、认真填一填(本题有6个小题,每小题4分,共24分)11.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.12.二次函数y=x2+2x+3当x 时,y取得最值为,当x 时,y>0.13.已知一次函数y=kx+b,k从1、﹣2中随机取一个值,b从﹣1、2、3中随机取一个值,则该一次函数的图象经过一、二、三象限的概率为.14.设k<0,当二次函数y=的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.15.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.16.已知当x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x2+4x+6的值等于.三、全面答一答(本题有7个小题,共66分)17.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.18.已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.19.已知在平面直角坐标系中有三个点,点A(0,3),B(﹣3,0),C(1,0).(1)求经过A、B、C三点的二次函数解析式;(2)在平面直角坐标系中再找一个点D,使A、B、C、D四点构成一个平行四边形.20.某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)请你用频率估计概率的方法,求出在全校同学中随机抽取一名同学,该名同学做家务时间在50分钟以上的概率是;(3)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.21.某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x 元(x≥70),一周的销售量为y件.(1)写出y与x的函数关系式,并写出x的取值范围.(2)设一周的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.23.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.(1)求A、B、C、D的坐标;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E(m,n)是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.-学年浙江省杭州十五中教育集团九年级(上)月考数学试卷(10月份)参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.袋中有5个红球、4个白球、3个黄球,每一个球除颜色外都相同,从袋中任意摸出一个球是白球的概率()A.B.C.D.考点:概率公式.分析:让白球的个数除以球的总数即为摸到白球的概率.解答:解:∵布袋中装有5个红球、4个白球、3个黄球,共12个球,从袋中任意摸出一个球共有12种结果,其中出现白球的情况有4种可能,∴是白球的概率是=.故答案为:.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)考点:二次函数的性质.分析:根据二次函数的顶点式解析式写出即可.解答:解:∵二次函数y=2(x﹣1)2+3,∴顶点坐标是(1,3).故选:D.点评:本题主要考查了二次函数的性质,二次函数图象的顶点式解析式,如果y=a(x﹣h)2+k,那么函数图象的顶点坐标为(h,k),需要熟记并灵活运用.3.下列事件是必然事件的是()A.任意买张票,座位号是偶数 B.三角形内角和180度C.明天是晴天D.打开电视正在放广告考点:随机事件.分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解答:解:A、任意买张票,座位号是偶数是随机事件,故A错误;B、三角形内角和180度是必然事件,故B正确;C、明天是晴天是随机事件,故C错误;D、打开电视正在放广告是随机事件,故D错误;故选:B.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4.若抛物线y=ax2+bx+c的顶点在第一象限,与x轴的两个交点分布在原点两侧,则点(a,)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:二次函数图象与系数的关系.分析:由抛物线y=ax2+bx+c的顶点在第一象限,与x轴的两个交点分布在原点两侧,可以推出a<0,c>0,从而知道<0,然后即可点(a,)的位置.解答:解;∵抛物线y=ax2+bx+c的顶点在第一象限,与x轴的两个交点分布在原点两侧,∴a<0,c>0,∴<0,∴点(a,)在第三象限.故选C.点评:此题可以借助于草图,采用数形结合的方法比较简单.5.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.考点:列表法与树状图法.专题:图表型.分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解答:解:随机闭合开关S1、S2、S3中的两个出现的情况列表得,所以概率为,故选B.开关 S1S2 S1S3 S2S3结果亮亮不亮点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.6.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1考点:二次函数图象上点的坐标特征.分析:求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.解答:解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.点评:此题考查了二次函数的性质,通常根据开口方向、对称轴,结合草图即可判断函数值的大小.7.(3分)(•大田县)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0考点:抛物线与x轴的交点.专题:压轴题.分析:抛物线y=kx2﹣7x﹣7的图象和x轴有交点,即一元二次方程kx2﹣7x﹣7=0有解,此时△≥0.解答:解:∵抛物线y=kx2﹣7x﹣7的图象和x轴有交点,即y=0时方程kx2﹣7x﹣7=0有实数根,即△=b2﹣4ac≥0,即49+28k≥0,解得k≥﹣,且k≠0.故选B.点评:考查抛物线和一元二次方程的关系.8.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2考点:二次函数与不等式(组).专题:计算题.分析:由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.解答:解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选D.点评:此题考查了二次函数与不等式(组),求出抛物线与x轴另一个交点坐标是解本题的关键.9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.解答:解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.点评:本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.10.已知关于x的方程,若a为正实数,则下列判断正确的是()A.有三个不等实数根 B.有两个不等实数根C.有一个实数根 D.无实数根考点:二次函数的图象;反比例函数的图象.专题:数形结合.分析:先整理方程,把方程的解转化为二次函数y=x2﹣4x+5与y=﹣a(+2)的图象交点问题,然后在同一平面直角坐标系内画出大致图象即可得解.解答:解:方程可化为x2﹣4x+5=﹣a(+2),所以,方程的解的个数等于函数y=x2﹣4x+5与y=﹣a(+2)的交点的个数,函数y=x2﹣4x+5的图象经过第一、二象限,∵a是正实数,∴﹣a是负实数,∴y=﹣a(+2)的图象位于第二、四象限,两个函数图象一定有一个交点,∴方程有一个实数根.故选C.点评:本题考查了二次函数图象与反比例函数图象,把方程的解的个数转化为两个函数图象的交点的个数,正确分析作出函数的大致图象是解题的关键.二、认真填一填(本题有6个小题,每小题4分,共24分)11.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.考点:概率公式.分析:分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.解答:解:∵从1到6的数中3的倍数有3,6,共2个,∴从中任取一张卡片,P(卡片上的数是3的倍数)==.故答案为:.点评:考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.二次函数y=x2+2x+3当x =﹣1 时,y取得最小值为 2 ,当x 全体实数时,y>0.考点:二次函数的最值.分析:对二次函数y=x2+2x+3,a=1>0,有最小值,且在顶点处取得,因此可把二次函数变为顶点式,写出最小值,进一步利用非负数的性质得出y>0,x的取值范围即可.解答:解:∵二次函数y=x2+2x+3=(x+1)2+2,抛物线开口向上,∴二次函数y=x2+2x+3当x=﹣1时,y取得最小值为2;∵(x+1)2≥0,∴(x+1)2+2>0,即x为全体实数时,y>0.故答案为:=﹣1;小;2;全体实数.点评:求二次函数的最值,有三种方法:第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.13.已知一次函数y=kx+b,k从1、﹣2中随机取一个值,b从﹣1、2、3中随机取一个值,则该一次函数的图象经过一、二、三象限的概率为.考点:列表法与树状图法;一次函数图象与系数的关系.专题:压轴题.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该一次函数的图象经过一、二、三象限的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,一次函数的图象经过一、二、三象限的有(1,2),(1,3),∴一次函数的图象经过一、二、三象限的概率为:=.故答案为:.点评:此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.设k<0,当二次函数y=的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式y=x2﹣x﹣.考点:抛物线与x轴的交点.分析:依据二次函数y=的图象与x轴的两个交点A、B间的距离为4,列方程求出k即可.解答:解:设二次函数y=的图象与x轴的两个交点A、B的横坐标分别为x1、x2,x1+x2=﹣2k,x1x2=2k﹣1,∵|x1x1x1﹣x2|==4.∴(x1﹣x2)2=16,变形为:(x1+x2)2﹣4x1•x2=16,∴4k2﹣4(2k﹣1)=16,整理得:k2﹣2k﹣3=0,解得:k1=3,k2=﹣1,∵k<0,∴k=﹣1,∴y=x2﹣x﹣;故答案为:y=x2﹣x﹣.点评:本题主要考查了抛物线与x轴的交点,熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.15.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有 2 个.考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故答案是:2.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.16.已知当x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=6(m+n+1)时,多项式x2+4x+6的值等于18 .考点:二次函数图象上点的坐标特征.分析:先将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n 时,二次函数y=x2+4x+6的值相等,则抛物线的对称轴为直线x=,又二次函数y=x2+4x+6的对称轴为直线x=﹣2,得出=﹣2,化简得m+n=﹣2,即可求出当x=6(m+n+1)=3(﹣2+1)=﹣6时,x2+4x+6的值.解答:解:∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x==,又∵二次函数y=x2+4x+6的对称轴为直线x=﹣2,∴=﹣2,∴3m+3n+2=﹣4,m+n=﹣2,∴当x=6(m+n+1)=6(﹣2+1)=﹣6时,x2+4x+6=(﹣6)2+4×(﹣6)+6=18.故答案为18.点评:本题考查了二次函数的性质及多项式求值,难度中等.将x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等理解为x=2m+n+2和x=m+2n时,二次函数y=x2+4x+6的值相等是解题的关键.三、全面答一答(本题有7个小题,共66分)17.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,所以从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.18.已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.考点:抛物线与x轴的交点;待定系数法求二次函数解析式.专题:计算题.分析:(1)设出二次函数的顶点式y=a(x﹣1)2+4,将点(0,3)代入解析式,求出a 的值即可得到函数解析式;(2)令y=0,据此即可求出函数与x轴交点的横坐标,从而得到图象与x轴交点A、B两点的坐标;(3)由于知道C点坐标,根据A、B的坐标,求出AB的长,利用三角形的面积公式求出三角形的面积.解答:解:(1)设所求的二次函数的解析式为y=a(x﹣1)2+4,把x=0,y=3代入上式,得:3=a(0﹣1)2+4,解得:a=﹣1,∴所求的二次函数解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)当y=0时,0=﹣x2+2x+3,解得:x1=﹣1,x2=3,∴图象与x轴交点A、B两点的坐标分别为(﹣1,0),(3,0),(3)由题意得:C点坐标为(0,3),AB=4,∴S△ABC=×4×3=6.点评:本题考查了抛物线与x轴的交点,利用函数与方程的关系,分别令x=0、y=0,据此即可求出与坐标轴的交点.19.已知在平面直角坐标系中有三个点,点A(0,3),B(﹣3,0),C(1,0).(1)求经过A、B、C三点的二次函数解析式;(2)在平面直角坐标系中再找一个点D,使A、B、C、D四点构成一个平行四边形.考点:待定系数法求二次函数解析式;平行四边形的判定.专题:计算题.分析:(1)由于已知抛物线与x轴的交点坐标,则可设交点式y=a(x+3)(x﹣1),然后把(0,3)代入求出a即可;(2)分类讨论:分别以AC、AB和BC为对角线确定D点坐标,解答:解:(1)设二次函数解析式为y=a(x+3)(x﹣1),把(0,3)代入得a•3•(﹣1)=3,得到a=﹣1,所以=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)如图,D点坐标为(4,3)或(﹣4,3)或(﹣2,﹣3).点评:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为320 ;(2)请你用频率估计概率的方法,求出在全校同学中随机抽取一名同学,该名同学做家务时间在50分钟以上的概率是;(3)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;利用频率估计概率.分析:(1)由条形统计图可得,抽查的学生中平均每天做家务活的时间在40分钟以上(含40分钟)的人数有12+4,总人数有50人,然后可估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数;(2)由条形统计图可得:在全校同学中随机抽取一名同学,该名同学做家务时间在50分钟以上的概率是:;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到甲、乙两名同学的情况,再利用概率公式即可求得答案.解答:解:(1)根据题意得:×1000=320(人);故答案为:320人;(2)根据题意得:在全校同学中随机抽取一名同学,该名同学做家务时间在50分钟以上的概率是:=;故答案为:;(3)画树状图得:∵共有12种情况,恰好抽到甲、乙两名同学的是2种,∴P(恰好抽到甲、乙两名同学)==.点评:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x 元(x≥70),一周的销售量为y件.(1)写出y与x的函数关系式,并写出x的取值范围.(2)设一周的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?考点:二次函数的应用.分析:(1)根据题意可得y=500﹣10(x﹣70);(2)用配方法化简1的解析式,可得y=﹣10(x﹣90)2+9000.当70≤x≤90时,利润随着单价的增大而增大.(3)令y=8000,求出x的实际取值.解答:解:(1)由题意得:y=500﹣10(x﹣70)=1200﹣10x(70≤x≤120);(2)W=(x﹣60)(1200﹣10x)=﹣10x2+1800x﹣72000=﹣10(x﹣90)2+9000当70≤x≤90时,利润随着单价的增大而增大.(3)由题意得:﹣10x2+1800x﹣72000=8000,x2﹣180x+8000=0,即(x﹣80)(x﹣100)=0,x1=80,x2=100,当x=80时,成本=60×[500﹣10×(80﹣70)]=24000>18000不符合要求,舍去.当x=100时,成本=60×[500﹣10×(100﹣70)]=12000<18000符合要求.∴销售单价应定为100元,才能使得一周销售利润达到8000元的同时,投入不超过18000元.点评:此题主要考查了二次函数的应用以及二次函数最值求法,根据已知得出y与x之间的关系是解题关键.22.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.考点:二次函数综合题.专题:压轴题.分析:(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围.解答:解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB===3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,即当m≤时,平移后的抛物线总有不动点.点评:本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、一元二次方程等知识点.在(1)中确定出A、B两点的坐标是解题的关键,在(2)中分别求得AB、AM、BM的长是解题的关键,在(3)中确定出抛物线有不动点的条件是解题的关键.本题考查知识点较为基础,难度适中.23.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.(1)求A、B、C、D的坐标;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E(m,n)是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)令y=0,解关于x的一元二次方程即可得到点A、B的坐标,令x=0,求出y 的值,即可得到点C的坐标,求出抛物线对称轴,然后写出点D的坐标;(2)利用勾股定理求出CD,然后分①点C是顶角顶点时,利用等腰三角形三线合一的性质求解,②点D是顶角顶点时,分点P在点D的上方和下方两种情况写出点P的坐标;(3)利用待定系数法求一次函数解析式求出直线BC的解析式,表示出EF,再根据S△CBF=S +S△BEF列式整理,然后根据二次函数的最值问题解答.△CBE解答:解:(1)令y=0,则﹣x2+x+2=0,解得x1=﹣1,x2=2,所以,A(﹣1,0),B(2,0),令x=0,则y=2,所以,点C(0,2),对称轴为直线x=﹣=,所以,点D(,0);(2)由(1)可知,OC=2,OD=,所以,CD==,①点C是顶角顶点时,由等腰三角形三线合一的性质得,点P的纵坐标为点C的2倍,即2×2=4,所以,点P的坐标为(,4),②点D是顶角顶点时,若点P在点D的上方,则P(,),若点P在点D的下方,则P(,﹣);。

数学创意试卷制作模板初中

数学创意试卷制作模板初中

一、试卷概述1. 试卷名称:XX年级XX学期数学创意试卷2. 试卷适用范围:XX年级全体学生3. 试卷总分:100分4. 考试时间:60分钟二、试卷结构1. 选择题(30分)2. 填空题(20分)3. 计算题(20分)4. 应用题(20分)5. 综合题(10分)三、试题内容1. 选择题(每题2分,共30分)(1)下列各数中,有理数是()A. √2B. πC. 3/4D. 0.1010010001…(2)已知x² - 3x + 2 = 0,则x的值为()A. 1B. 2C. 1或2D. 无解(3)下列函数中,单调递减的是()A. y = x²B. y = 2xC. y = -xD. y = x³(4)若a、b、c为等差数列,且a + b + c = 12,则ab + bc + ca的值为()A. 36B. 27C. 18D. 9(5)已知等比数列{an}的公比为q,若a1 = 3,a3 = 9,则q的值为()A. 1B. 3C. -3D. 22. 填空题(每题2分,共20分)(1)若等差数列{an}的公差为d,首项为a1,则第n项an = ___________。

(2)若等比数列{an}的公比为q,首项为a1,则第n项an = ___________。

(3)若二次函数y = ax² + bx + c的对称轴为x = -1,则a、b、c的关系为:__________。

(4)若直线l的方程为2x - 3y + 1 = 0,则直线l的斜率为:__________。

(5)若圆C的方程为(x - 2)² + (y - 3)² = 9,则圆C的圆心坐标为:__________。

3. 计算题(每题4分,共20分)(1)计算:√(25 - 2√6)。

(2)计算:(a² - b²) ÷ (a + b)。

(3)计算:(x² + 3x + 2) ÷ (x + 1)。

人教版七年级数学上册全册单元试卷(基础篇)(Word版 含解析)

人教版七年级数学上册全册单元试卷(基础篇)(Word版 含解析)

人教版七年级数学上册全册单元试卷(基础篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是.三、解答题(共46分)19.(5分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.20.(6分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED 的度数.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】三角形内角和定理.【专题】压轴题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,再判断三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,5k°.根据三角形内角和定理可知2k°+3k°+5k°=180°,得k°=18°,所以2k°=36°,3k°=54°,5k°=90°.即这个三角形是直角三角形.故选:A.【点评】此类题利用三角形内角和定理列方程求解可简化计算.有一个角是90°的三角形是直角三角形.3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【专题】几何图形问题.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形的性质进行判断即可.【解答】解:①全等三角形的面积相等,说法正确;②全等三角形的周长相等,说法错误;③全等三角形的对应角相等,说法正确;④全等三角形的对应边相等,说法正确;正确的有4个,故选D.【点评】本题考查了对全等三角形的定义和性质的应用,主要考查学生的理解能力和辨析能力,注意:全等三角形的对应边相等,对应角相等.5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.【考点】全等三角形的判定.【分析】三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等,据此判断即可.【解答】解:A、∵a,c边夹角为50°,∴根据SAS可判定两三角形全等,故A正确;B、∵a,c边夹角不一定为50°,∴不能判定两三角形全等,故B错误;C、∵72°角所对的边不相等,∴不能判定两三角形全等,故C错误;D、∵50°和58°的角的夹边不相等,∴不能判定两三角形全等,故D错误;故选:A.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的判定方法.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm【考点】三角形的角平分线、中线和高.【分析】利用中线的定义可知AD=CD,可知△ABD和△BCD的周长之差即为AB和BC的差,可求得答案.【解答】解:∵BD是△ABC的中线,∴AD=CD,∵△ABD周长=AB+AD+BD,△BCD周长=BC+CD+BD,∴△ABD周长﹣△BCD周长=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC=5﹣3=2(cm),即△ABD和△BCD的周长之差是2cm,故选B.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S+S△ACD列出方程求解即可.△ABD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•A D,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值X围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值X围,从而确定绝对值内的代数式的符号,难度不大.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=﹣1,b=3 .【考点】命题与定理.【分析】根据有理数的加法和绝对值的性质,只要a、b异号即可.【解答】解:a=﹣1,b=3时|a+b|=|a|+|b|”是假命题.(答案不唯一,只要a、b是异号两数即可).故答案为:a=﹣1,b=3.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了有理数的加法和绝对值的性质.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是 3 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可知:DE=CD.【解答】解:过点D作DE⊥AB于点E,∵BD平分∠ABC,∠C=∠BED=90°∴DE=CD=3,∴点D到AB的距离为3,故答案为:3【点评】本题考查角平分线的性质,属于基础题型.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为 4 .【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到EA=8,做差后得到BE的长度.【解答】解:∵△ABC中,AB=AC=12,EF为AC的中垂线∴EC=EA=8,BE=12﹣8=4.BE的长为4.故填4.【点评】此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本题的关键.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是19 .【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值X围,再根据第三边是奇数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4而小10.又∵第三根木棒的长是奇数,则应为5,7,9.这样的三角形的周长最大值是3+7+9=19,故答案为19【点评】此题考查了三角形的三边关系,关键是根据第三边大于两边之差而小于两边之和解答.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.【考点】三角形内角和定理.【分析】先根据垂直的定义得出∠BEH=∠HDC=90°,由三角形外角的性质得出∠EBH与∠DCH的度数,再根据三角形内角和定理求出∠HBC+∠HCB的度数,进而可得出∠ABC+∠ACB的度数,由此可得出结论.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEH=∠HDC=90°.∵∠BHC=110°,∴∠EBH=∠DCH=110°﹣90°=20°,∠HBC+∠HCB=180°﹣110°=70°,∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,∴∠A=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是∠1+∠2=2∠A .【考点】三角形内角和定理.【分析】设∠AED的度数为x,∠ADE的度数为y,根据全等三角形的对应角相等,以及平角的定义表示出∠1和∠2,求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:设∠AED的度数为x,∠ADE的度数为y,则∠1=180°﹣2x,∠2=180°﹣2y,∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A,∴关系为:∠1+∠2=2∠A.故答案为:∠1+∠2=2∠A.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.本题解法多样,也可以运用三角形外角性质进行求解.三、解答题(共46分)19.已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.【考点】作图—复杂作图.【分析】先作∠MBN=∠α,再在∠MBN的两边上分别截取AB=a,BC=b,最后连接AC即可.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查了尺规作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,进而得到∠EAD=∠CAB,结合∠CAD=35°,即可求出∠EAD和∠CAB的度数,再结合外角的性质即可求出所求角的度数.【解答】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,又∵且∠CAD=35°,∠EAB=105°,∴∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°,∴∠DFB=∠DAC+∠B=70°+20°=90°,∠BED=∠BFD﹣∠D=90°﹣20°=70°.【点评】本题主要考查了全等三角形的性质,解题的关键是掌握三角形外角的性质,此题难度不大.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,∠C=∠D ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.【考点】全等三角形的判定.【分析】直接利用全等三角形的判定方法,添加:∠C=∠D,进而得出答案.【解答】解:添加条件是∠C=∠D.理由如下:在△ABC与△BAD中,∵∴△ABC≌△BAD(AAS),故答案为∠C=∠D.【点评】本题考查了三角形全等的判定方法,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】设∠ABC=x°,再根据三角形外角的性质得出∠BAD=∠B+∠C=90°+x°,根据AF平分外角∠BAD可知∠DAF=∠BAD=(90°+x°),根据对顶角的性质得出∠EAG=∠DAF=(90°+x°),根据BE平分∠ABC可知∠CBE=∠ABC=x°,故可得出∠AGE的度数,由三角形内角和定理即可得出结论.【解答】解:设∠ABC=x°,∵∠BAD是△ABC的外角,∠C=90°,∴∠BAD=∠ABC+∠C=90°+x°,∵AF平分外角∠BAD,∴∠DAF=∠BAD=(90°+x°),∴∠EAG=∠DAF=(90°+x°).∵BE平分∠ABC,∴∠CBE=∠ABC=x°,∴∠AGE=∠BGC=90°﹣∠CBE=90°﹣x°,∵∠E+∠EAG+∠AGE=180°,即∠E+(90°+x°)+90°﹣x°=180°,解得∠E=45°.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.【考点】角平分线的性质.【分析】(1)分析题意易证得△ADE≌△ADC,则有CD=DE,而BC=BD+DC可求BC的长;(2)根据题意画出图形,利用三角形的面积公式即可得出结论.【解答】解:(1)∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵,∴△ADE≌△ADC(SAS)∴DE=DC,∴BC=BD+DC=BD+DE=2+3=5(cm);(2)如图,∵∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,∴S△ABC=S△AOC+S△AOF+S△BCF=×6a+×9a+×5a=3a+a+a=10a(cm)2.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.【解答】证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.【点评】此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC和CE=CF.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)先根据三角形内角和定理,求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,最后由三角形内角和定理,即可求出∠BPC的度数;(2)先连接AP并延长至D,根据∠ABC与∠ACB的角平分线相交于P,求得∠1=ABC,∠3=∠ACB,最后根据三角形的外角性质,求得∠BPC的度数.【解答】解:(1)∵△ABC中,∠A=112°,∴∠ABC+∠AC B=180°﹣∠A=180°﹣112°=68°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×68°=34°,∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°.(2)如图,连接AP并延长至D,∵∠ABC与∠ACB的角平分线相交于P,∴∠1=ABC,∠3=∠ACB,∵∠BPD是△ABD的外角,∴∠BPD=∠1+∠BAP,同理可得∠CPD=∠3+∠CAP,∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP=ABC+∠ACB+∠BAC=(∠ABC+∠ACB)+α=(180°﹣α)+α=90°+α.【点评】本题考查的是三角形内角和定理,三角形外角性质及角平分线的定义的综合应用,本题解法多样,熟知三角形的内角和定理是解答此题的关键.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

教资初中数学试卷模板

教资初中数学试卷模板

一、单项选择题(每题2分,共20分)1. 下列哪个选项不属于实数的范围?A. 整数B. 小数C. 无理数D. 复数2. 已知等差数列的前三项分别为3、5、7,则该数列的公差为:A. 1B. 2C. 3D. 43. 在直角坐标系中,点A(2,3)关于原点的对称点坐标为:A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)4. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x² + 1D. y = √x5. 在三角形ABC中,已知∠A = 60°,∠B = 45°,则∠C的大小为:A. 75°B. 90°C. 105°D. 120°6. 下列哪个图形的面积可以用公式S = πr²计算?A. 正方形B. 长方形C. 等腰三角形D. 圆7. 若等腰三角形的底边长为6,腰长为8,则该三角形的面积为:A. 24B. 32C. 48D. 648. 下列哪个选项不是一元一次方程?A. 2x + 3 = 7B. 3x - 4 = 5C. x² - 2x + 1 = 0D. 5x + 1 = 2x + 99. 下列哪个图形的对称轴数量最多?A. 等边三角形B. 正方形C. 圆D. 等腰梯形10. 若一个数的平方根是±2,则这个数是:A. 4B. -4C. ±4D. 无法确定二、多项选择题(每题3分,共30分)1. 下列哪些属于实数的范围?A. 整数B. 小数C. 无理数D. 复数2. 下列哪些图形是轴对称图形?A. 等边三角形B. 正方形C. 圆D. 等腰梯形3. 下列哪些函数属于二次函数?A. y = x² + 2x + 1B. y = x³ + 2x + 1C. y = 2x² + 3x + 1D. y = 3/x4. 下列哪些几何图形的面积可以用公式S = πr²计算?A. 正方形B. 长方形C. 等腰三角形D. 圆5. 下列哪些选项是一元一次方程?A. 2x + 3 = 7B. 3x - 4 = 5C. x² - 2x + 1 = 0D. 5x + 1 = 2x + 9三、简答题(每题10分,共20分)1. 简述实数与无理数的概念,并举例说明。

九年级(上)第二次月考数学试卷

九年级(上)第二次月考数学试卷

九年级(上)第二次月考数学试卷一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个4.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .195.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)6.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°7.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19B .19,19C .18,4D .5,48.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .334D .3229.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C 2D .211.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7512.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变13.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°14.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).18.如图,四边形的两条对角线AC 、BD 相交所成的锐角为60︒,当8AC BD +=时,四边形ABCD 的面积的最大值是______.19.若a b b -=23,则ab的值为________. 20.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.21.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 24.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .25.方程290x的解为________.26.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为__________m.27.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.28.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.29.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.30.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像; (2)直接写出不等式221x x x -->+的解集.32.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.33.抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).34.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?35.如图,BD、CE是ABC的高.∽;(1)求证:ACE ABD(2)若BD=8,AD=6,DE=5,求BC的长.四、压轴题36.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.37.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度.39.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =330=______.(直接写出答案).40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.3.C解析:C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.5.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.6.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.7.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD OB OD =-=, ∴BC 3= ∴13333224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=,解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB 有最小值为:2,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.11.D解析:D【解析】【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC 、BE ,在Rt △BCE 中,利用勾股定理即可解决问题.【详解】如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴2234+,∵CD=DB ,∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC , ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,EC=2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.A解析:A【解析】【分析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答.【详解】连接OC ,由题意得,OB =OC =BC ,∴△OBC 是等边三角形,∴∠BOC =60°,∵∠AOB =40°,∴∠AOC =100°,由圆周角定理得,∠ADC =∠AOC =50°,故选:A .【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.14.C解析:C【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键.二、填空题16.3【解析】【分析】把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x2﹣3x =1的一个根,解析:3【解析】【分析】把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.【详解】解:∵m 是方程2x 2﹣3x =1的一个根,∴2m 2﹣3m =1,∴6m 2﹣9m =3(2m 2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S =故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.18.【解析】【分析】设AC=x,根据四边形的面积公式,,再根据得出,再利用二次函数最值求出答案.【详解】解:∵AC、BD 相交所成的锐角为∴根据四边形的面积公式得出,设AC=x ,则BD=8-解析:【解析】【分析】设AC=x,根据四边形的面积公式,1S sin 602AC BD =⨯⨯︒,再根据sin 602︒=得出()1 S 82x x =-. 【详解】解:∵AC 、BD 相交所成的锐角为60︒ ∴根据四边形的面积公式得出,1S sin 602AC BD =⨯⨯︒ 设AC=x ,则BD=8-x所以,())21S 842x x x =-=-+∴当x=4时,四边形ABCD 的面积取最大值故答案为:【点睛】本题考查的知识点主要是四边形的面积公式,熟记公式是解题的关键.19.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.20.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.21.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB是半圆O的直径,∴∠ACB=90︒,∵sin∠CAB=45,∴45 BCAB=,∵AB=10,∴BC=8,∴6 AC===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒,①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图∴1AC BC CE CD =,即1684CE =, ∴CE 1=3, ∵点E 1在射线AC 上,∴AE 1=6+3=9, 同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.2019【解析】【分析】根据m 是方程5x2﹣3x ﹣1=0的一个根代入得到5m2﹣3m ﹣1=0,进一步得到5m2﹣1=3m ,两边同时除以m 得:5m ﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m 是方程5x 2﹣3x ﹣1=0的一个根代入得到5m 2﹣3m ﹣1=0,进一步得到5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3,然后整体代入即可求得答案. 【详解】解:∵m 是方程5x 2﹣3x ﹣1=0的一个根,∴5m 2﹣3m ﹣1=0,∴5m 2﹣1=3m ,两边同时除以m 得:5m ﹣1m =3, ∴15m ﹣3m +2010=3(5m ﹣1m)+2010=9+2010=2019, 故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.24.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.25.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.26.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.27.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.28.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.29.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.30.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.32.(1)详见解析;(2)详见解析;(3)4【解析】【分析】(1)根据“相似对角线”的定义,利用方格纸的特点可找到D 点的位置.(2)通过导出对应角相等证出ABD ∆∽DBC ∆,根据四边形ABCD 的“相似对角线”的定义即可得出BD是四边形ABCD的“相似对角线”.(3)根据四边形“相似对角线”的定义,得出FEH∆∽FHG∆,利用对应边成比例,结合三角形面积公式即可求.【详解】解:(1)如图1所示.(2)证明:80ABC BD,︒∠=平分ABC∠,40,140ABD DBCA ADB︒︒∴∠=∠=∴∠+∠=140,140ADCBDC ADBA BDC,︒︒∠=∴∠+∠∠=∠∴=ABD∴∆∽DBC∆∴BD是四边形ABCD的“相似对角线”.(3)FH是四边形EFGH的“相似对角线”,三角形EFH与三角形HFG相似.又EFH HFG∠=∠FEH∴∆∽FHG∆FE FHFH FG∴=2FH FE FG∴=⋅过点H作EQ FG⊥垂足为Q则3sin60EQ FE︒=⨯=143213432FG EQFG FE∴=∴=16FG FE∴=28FH FE FG∴=⋅=216FH FG FE∴==4FH=。

初中数学试卷展示模板

初中数学试卷展示模板

一、试卷说明1. 本试卷适用于初中一年级至三年级学生。

2. 试卷共分为四个部分,包括选择题、填空题、解答题和附加题。

3. 试卷满分100分,考试时间90分钟。

二、试卷结构1. 第一部分:选择题(共10题,每题2分,共20分)(1)下列各数中,是整数的是()A. 2.5B. 3.14C. -2D. 0.001(2)下列各数中,是正数的是()A. -3B. 0C. 1.5D. -2.3(3)下列各数中,是有理数的是()A. 2/3B. √2C. πD. √-12. 第二部分:填空题(共10题,每题2分,共20分)(1)2的平方根是________。

(2)π的近似值是________。

(3)-5与5的差是________。

(4)下列各数中,绝对值最大的是________。

A. -3B. -2C. 0D. 1(5)下列各数中,是偶数的是________。

A. 3B. 4C. 5D. 63. 第三部分:解答题(共4题,每题10分,共40分)(1)已知x+2=5,求x的值。

(2)计算下列各式的值:a. 3x^2 - 2x + 1b. (2x + 3)(x - 1)(3)解下列方程:a. 2(x - 3) = 4x - 6b. 3x + 4 = 2x + 9(4)已知一个等腰三角形的底边长为6cm,腰长为8cm,求该三角形的面积。

4. 第四部分:附加题(共1题,10分)(1)已知等边三角形的边长为a,求该三角形的面积。

三、答案及解析1. 第一部分:选择题(1)C(2)C(3)A2. 第二部分:填空题(1)±√2(2)3.14(3)-7(4)A(5)B3. 第三部分:解答题(1)x=3(2)a. 3x^2 - 2x + 1 = 3×3^2 - 2×3 + 1 = 27 - 6 + 1 = 22 b. (2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x - 3(3)a. 2(x - 3) = 4x - 62x - 6 = 4x - 62x - 4x = -6 + 6-2x = 0x = 0b. 3x + 4 = 2x + 93x - 2x = 9 - 4x = 5(4)等腰三角形的面积 = 底边长× 高÷ 2高= √(腰长^2 - (底边长÷ 2)^2)高= √(8^2 - (6 ÷ 2)^2) = √(64 - 9) = √55面积= 6 × √55 ÷ 2 = 3√55 cm^24. 第四部分:附加题(1)等边三角形的面积 = (边长^2 × √3) ÷ 4面积= (a^2 × √3) ÷ 4。

九年级(上)第二次月考数学试卷

九年级(上)第二次月考数学试卷

九年级(上)第二次月考数学试卷一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .33.已知二次函数y =ax 2+bx +c (a <0<b )的图像与x 轴只有一个交点,下列结论:①x <0时,y 随x 增大而增大;②a +b +c <0;③关于x 的方程ax 2+bx +c +2=0有两个不相等的实数根.其中所有正确结论的序号是( ) A .①②B .②③C .①③D .①②③4.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58B .58πC .54πD .545.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-26.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+47.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1 B .()1,1-C .()1,1--D .()1,1-8.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.若两个相似三角形的相似比是1:2,则它们的面积比等于( ) A .12B .1:2C .1:3D .1:410.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=11.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变12.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 13.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )A .6B .7C .8D .914.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1915.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.已知∠A =60°,则tan A =_____.17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.18.一元二次方程290x 的解是__.19.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.20.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.21.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .22.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________. 24.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.25.一组数据3,2,1,4,x 的极差为5,则x 为______. 26.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______. 28.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____. 29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 32.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 33.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .34.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.35.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =0四、压轴题36.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.38.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.39.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程230x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程230x -=的两根, ∴, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.3.C解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点, ∴方程ax 2+bx +c =-2有两个不相等的实数根. 故③正确. 故选C. 【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.4.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°, ∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.5.D解析:D 【解析】 【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.6.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 7.A解析:A【解析】【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.8.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.11.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.12.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.14.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.15.C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=53,OB=4,∠AOB=90°,∴AB133===,∴OA+AB1+B1C2=53+133+4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:2020102⨯=10100.故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18.x1=3,x2=﹣3.【解析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.19.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.20.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 21.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.22.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x 可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.28.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.29.y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】解析:y=﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

初中数学试卷答题模板

初中数学试卷答题模板

一、选择题1. 阅读题目,明确题意,确定解题思路。

2. 分析选项,排除明显错误选项。

3. 根据题意和选项,选择正确答案。

例题:下列各数中,是无理数的是()A. 2.3B. 3.14C. √2D. 1.5解答:分析选项,A、B、D均为有理数,C为无理数,故选C。

二、填空题1. 阅读题目,明确题意,确定解题思路。

2. 根据题意,运用公式、定理等知识,求解答案。

3. 检查答案,确保正确。

例题:若a=3,b=-2,则a²+b²的值为()解答:根据题意,代入a和b的值,得a²+b²=3²+(-2)²=9+4=13,故答案为13。

三、解答题1. 阅读题目,明确题意,确定解题思路。

2. 分析题目,确定解题步骤。

3. 根据步骤,运用公式、定理等知识,逐步求解。

4. 检查答案,确保正确。

例题:已知等腰三角形ABC中,AB=AC,AD为底边BC上的高,且BD=4,求AD的长度。

解答:根据题意,作AD⊥BC于点D,由于AB=AC,所以AD也是BC的中线,即BD=CD=4。

根据勾股定理,在直角三角形ABD中,AD²=AB²-BD²。

代入AB=AC=AD,得AD²=AD²-4²,即0=16。

由于AD²=16,所以AD=√16=4。

故AD的长度为4。

四、综合题1. 阅读题目,明确题意,确定解题思路。

2. 分析题目,确定解题步骤。

3. 根据步骤,运用公式、定理等知识,逐步求解。

4. 检查答案,确保正确。

例题:已知二次函数y=ax²+bx+c(a≠0)的图像与x轴有两个交点,且顶点坐标为(1,-3),求该二次函数的表达式。

解答:根据题意,设顶点坐标为(h,k),则h=1,k=-3。

由于顶点坐标为(1,-3),所以二次函数的表达式为y=a(x-1)²-3。

又因为二次函数的图像与x轴有两个交点,所以二次函数有两个实根。

初中数学试卷命题模板

初中数学试卷命题模板

一、试卷结构1. 试卷总分:100分2. 试题类型:选择题、填空题、解答题3. 试题难度:容易、中等、较难4. 试题分布:选择题20题,填空题20题,解答题10题二、选择题(20题,每题2分,共40分)1. 下列选项中,不属于实数的是()A. 1/2B. -√2C. πD. √-12. 已知方程2x-3=5,则x=()A. 4B. -1C. 2D. -23. 若a,b是方程x^2-5x+6=0的两根,则a+b=()A. 5B. -6C. 6D. -54. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)5. 下列分式有意义的是()A. 1/0B. 1/1C. 1/√-1D. 1/√16. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 非等腰三角形7. 已知三角形ABC中,∠A=90°,∠B=45°,则∠C=()A. 45°B. 90°C. 135°D. 180°8. 若a,b是方程2x^2-5x+3=0的两根,则a^2+b^2=()A. 7B. 9C. 8D. 69. 在平面直角坐标系中,点P(3,4)到原点O的距离是()A. 5B. 7C. 9D. 1110. 下列选项中,不是一元一次方程的是()A. 2x+3=7B. x^2-5x+6=0C. 5x-3=2D. 3x+4=011. 若a,b是方程3x^2-6x+3=0的两根,则ab=()A. 1B. 3C. 0D. -112. 在直角坐标系中,点A(-3,2)关于y轴的对称点坐标是()A.(3,-2)B.(-3,2)C.(3,2)D.(-3,-2)13. 若a,b是方程x^2-4x+3=0的两根,则a+b=()A. 4B. -4C. 3D. -314. 下列选项中,不是平行四边形的是()A. 矩形B. 正方形C. 菱形D. 等腰梯形15. 在直角坐标系中,点P(-2,3)到点Q(4,-1)的距离是()A. 5B. 7C. 9D. 1116. 若a,b是方程x^2-2x-3=0的两根,则a^2+b^2=()A. 5B. 6C. 7D. 817. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)18. 下列选项中,不是二次函数的是()A. y=x^2B. y=x^2+1C. y=√xD. y=2x^2-3x+219. 若a,b是方程x^2-6x+9=0的两根,则a+b=()A. 6B. -6C. 3D. -320. 在直角坐标系中,点P(3,4)到点Q(-1,-2)的距离是()A. 5B. 7C. 9D. 11三、填空题(20题,每题2分,共40分)1. 若a,b是方程x^2-4x+3=0的两根,则a+b=______,ab=______。

九年级上册数学 期末试卷(培优篇)(Word版 含解析)

九年级上册数学 期末试卷(培优篇)(Word版 含解析)

九年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3B .6C .5D .72.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 7.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变9.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .310.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣2 11.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .212.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题13.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.14.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.15.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .16.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.17.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.18.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.19.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.20.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.21.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…22.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.23.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.24.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题25.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .26.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.27.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?28.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F是正方形ABCD的边AD上两个动点,满足AE DF.连接交于点,连接CF交BD于点G,连接BE交于点H,若正方形的边长为2,则线段DH长度的最小值是_______.29.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.30.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?31.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ 的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.32.如果一个直角三角形的两条直角边的长相差2cm,面积是242cm,那么这个三角形的两条直角边分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.8.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.10.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.11.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.12.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题13.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB===,∴22228445AB OA OB++=''4AC OA OC=-=.∵'''OB C Psin BAOAB AC∠==,''445C P=,∴4''55C P=∴线段CQ【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.15.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.17.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 19.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.20.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取解析:51-【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==∴90AOD ∠=︒,∴()222222AD OA OD =+==,∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51,51.【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.21.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.22.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和. 【详解】 解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.23.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.24.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题25.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩,∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.26.(1)244y x x =++;(2)①点P 的坐标为()13,1P -,()24,4P -;②()27DN DM DB +=,是定值.【解析】【分析】(1)设函数为()()220y a x a =+≠,把()5,9B -代入即可求解;(2)①先求出直线AB 解析式,求出C’点,得到ABC S ∆,再求出PAB S ∆,设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',得到()',36P x x --,根据三角形面积公式得()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,解出x 即可求解; ②过P 作x 轴的垂线,垂足为点E ,设AE t =,表示出()22,P t t --,故2PE t =,根据//PE BD ,得APE AMD ∆∆,故PE DM AE DA =,即23t DM t =,得到3DM t =.再过P 作BD 的垂线,垂足为点F ,根据 相似三角形的性质得到93DN t =+,可得()DN DM DB +的值即为定值.【详解】(1)解:设()()220y a x a =+≠,把点()5,9B -代入,得()2952a =-+,解得1a =, ∴该抛物线对应的函数表达式为()22244y x x x =+=++.(2)①设直线AB 的函数表达式为y kx b =+,把()2,0A -,()5,9B -代入,得0295k b k b =-+⎧⎨=-+⎩,解得36k b =-⎧⎨=-⎩. ∴直线AB 的函数表达式为36AB y x =--.设直线AB 与y 轴交于点'C ,则点()'0,6C -,∴'10CC =.()15210152ABC S ∆=⨯-⨯=,1115355PAB ABC S S ∆∆==⨯=. 设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',则()',36P x x --, ∴()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦, 13x =-,24x =-,所以点P 的坐标为()13,1P -,()24,4P -.②过P 作x 轴的垂线,垂足为点E ,设AE t =,则()22,P t t--,2PE t =, 由//PE BD ,得APE AMD ∆∆,PE DM AE DA =,即23t DM t =,故3DM t =. 过P 作BD 的垂线,垂足为点F , 由//PF ND ,得BPFBND ∆∆,BF DB PF DN =,即2993t t DN -=-,故93DN t =+. 所以()()939273DN DM DB t t+=+=+,是定值.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.27.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.28.(1)45;(2)25°;(3)51-【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明△ABE 和△DCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明△ADG 和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小.【详解】 (1)如图1,∵AB =AC ,AD =AC ,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,AB CDBADCDAAE DF⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,AD CDADG CDGDG DG⎧⎪∠∠⎨⎪⎩===,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB =180°−90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1,在Rt △AOD 中,OD =根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD−OH .【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.29.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【解析】【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.30.(1)1502y x =-+(2)当x 为10时,超市每天销售这种玩具可获利润2250元(3)当x 为20时w 最大,最大值是2400元 【解析】【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到()213024502w x =--+,根据二次函数的性质得到当30x <时,w 随x 的增大而增大,于是得到结论.【详解】 (1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =,∵每件利润不能超过60元,∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大, ∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元. 【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.31.(1)见解析;(2)56y x=【解析】【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO ,并延长PO 交⊙O 于点C ,连接AC ,根据圆周角定理可得∠PAC =90°,∠C =∠B ,求得∠PAC =∠PQB ,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB 为⊙O 的直径∴∠APB =90°又∵PQ ⊥AB∴∠AQP =90°∴∠AQP =∠APB又∵∠PAQ =∠BAP∴△APQ ∽△ABP .(2)如图②,连接PO ,并延长PO 交⊙O 于点C ,连接AC .∵PC 为⊙O 的直径∴∠PAC =90°又∵PQ ⊥AB∴∠PQB =90°∴∠PAC =∠PQB又∵∠C =∠B (同弧所对的圆周角相等)∴△PAC ∽△PQB ∴=PA PC PQ PB又∵⊙O 的半径为7,即PC =14,且PQ =4,PA =x ,PB =y ∴144x y= ∴56y x=. 【点睛】 本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.32.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.。

初二数学竞赛初中模板试卷

初二数学竞赛初中模板试卷

一、选择题(每题5分,共50分)1. 已知x^2 + 2x - 3 = 0,则x的值为()A. -3,1B. -1,3C. -1,-3D. 1,-32. 在等腰三角形ABC中,底边BC=6,腰AB=AC=8,那么底角B的度数为()A. 30°B. 45°C. 60°D. 75°3. 已知函数y = kx + b,其中k≠0,若k>0,则函数的图像()A. 过一、二、三象限B. 过一、二、四象限C. 过一、三、四象限D. 过一、二、四象限4. 已知a、b、c是等差数列,且a + b + c = 12,b = 4,则a + c的值为()A. 8B. 10C. 12D. 145. 在梯形ABCD中,AD平行于BC,AD=3,BC=5,AB=4,CD=6,则梯形的高为()A. 2B. 3C. 4D. 56. 已知等比数列{an}中,a1=2,q=3,则第n项an的值为()A. 2×3^(n-1)B. 2×3^nC. 2×3^(n+1)D. 2×3^(n-2)7. 已知a、b、c是等差数列,且a + b + c = 15,b = 5,则a + c的值为()A. 5B. 10C. 15D. 208. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角A的度数为()A. 30°B. 45°C. 60°D. 90°9. 已知函数y = (1/2)^x,当x增大时,y()A. 增大B. 减小C. 不变D. 无法确定10. 在等腰三角形ABC中,底边BC=6,腰AB=AC=8,那么底角B的余弦值为()A. √3/2B. √2/2C. 1/2D. √3二、填空题(每题5分,共50分)1. 已知x^2 - 4x + 3 = 0,则x的值为______。

2. 在等腰三角形ABC中,底边BC=6,腰AB=AC=8,那么底角B的度数为______。

初中数学试卷简答题模板

初中数学试卷简答题模板

一、填空题(每空2分,共20分)1. 若a > b,则a - b的符号为_________。

2. 等腰三角形的底角为30°,则顶角为_________。

3. 在直角坐标系中,点P(-3,4)关于原点对称的点的坐标为_________。

4. 分数3/4的倒数是_________。

5. 若x^2 - 5x + 6 = 0,则x的值为_________。

6. 在平面直角坐标系中,直线y = 2x + 1与y轴的交点坐标为_________。

7. 下列图形中,既是轴对称图形又是中心对称图形的是_________。

8. 若a、b、c是等差数列,且a + b + c = 9,则a + c的值为_________。

9. 在三角形ABC中,∠A = 90°,∠B = 45°,则∠C的度数为_________。

10. 若等腰三角形底边长为8,腰长为6,则该三角形的面积为_________。

二、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -3B. 0C. √2D. 1/42. 若x + y = 5,xy = 6,则x^2 + y^2的值为()A. 19B. 20C. 21D. 223. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = 1/xD. y = 3x4. 在直角坐标系中,点(3,-2)到原点的距离是()A. 1B. 2C. 3D. 55. 下列方程中,有唯一解的是()A. 2x + 3 = 0B. 2x + 3 = 2C. 2x + 3 = 3xD. 2x + 3 = 0x6. 若等边三角形的边长为a,则其面积为()A. (a^2√3)/4B. (a^2√3)/3C. (a^2√3)/2D. (a^2√3)/67. 下列图形中,是正多边形的是()A. 正方形B. 正五边形C. 正六边形D. 正七边形8. 若等差数列的首项为a,公差为d,则第n项an的表达式为()A. an = a + (n - 1)dB. an = a - (n - 1)dC. an = a + ndD. an = a - nd9. 下列函数中,是二次函数的是()A. y = x^3B. y = x^2 + 2x + 1C. y = 2x + 3D. y = √x10. 在直角坐标系中,点(2,-3)关于x轴对称的点的坐标为()A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)三、解答题(共50分)1. (10分)已知等腰三角形ABC的底边BC = 8,腰AB = AC = 6,求三角形ABC的面积。

数学初中自制试卷题目模板

数学初中自制试卷题目模板

一、选择题(每题3分,共30分)1. 已知等腰三角形底边长为8cm,腰长为10cm,则该等腰三角形的周长为()A. 16cmB. 24cmC. 28cmD. 32cm2. 下列哪个数是负数?()A. -2.5B. 3/4C. -1/4D. 53. 一个长方形的长是10cm,宽是6cm,它的面积是()A. 60cm²B. 90cm²C. 120cm²D. 150cm²4. 下列哪个图形是轴对称图形?()A. 正方形B. 长方形C. 平行四边形D. 梯形5. 一个数是2的倍数,同时也是3的倍数,那么这个数一定是()A. 5的倍数B. 6的倍数C. 9的倍数D. 12的倍数6. 在下列方程中,x=5是方程的解的是()A. 2x + 3 = 13B. 3x - 2 = 14C. 4x + 1 = 17D. 5x - 3 = 167. 下列哪个数是质数?()A. 29B. 30C. 31D. 328. 下列哪个分数是最简分数?()A. 3/8B. 5/10C. 7/14D. 9/189. 下列哪个数是正数?()A. -2.5B. 3/4C. -1/4D. 510. 在下列函数中,y是x的一次函数的是()A. y = x²B. y = 2x + 3C. y = x³D. y = 5x + 7二、填空题(每题3分,共30分)11. 5的平方根是______。

12. 一个数的倒数是它的______。

13. 下列数中,______是偶数。

14. 一个长方形的长是12cm,宽是5cm,它的周长是______cm。

15. 下列数中,______是正数。

16. 下列图形中,______是轴对称图形。

17. 下列方程中,x=3是方程的解的是______。

18. 下列数中,______是质数。

19. 下列分数中,______是最简分数。

20. 下列函数中,y是x的一次函数的是______。

初中数学试卷模板

初中数学试卷模板

巴中市第五中学 班级 姓名 准考证号……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线………………………座位号:XX 市第五中学201X 年春八年级期中考试数 学 试 题(满分150分 考试时间120分钟)一、选择题(每小题3分,共30分)1.如果 a 2=b 3 ,则bba +的值为( )(A)1 (B) 35 (C)0 (D) 372.计算 11()a a a a -÷-的正确结果是( ).(A )11a + (B )1 (C )11a - (D )-13.分式方程1212x x =--( ). (A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 4.若分式21x +的值为正整数,则整数x 的值为( )(A )0 (B )1 (C )0或1 (D )0或-1 5.如果把分式yx xy+2中的x 和y 都扩大3倍,那么分式的值( ) A .不变 B .缩小3倍 C .扩大6倍 D .扩大3倍6、点P (3,4-)关于x 轴对称的点的坐标是( ) A 、(3,4-) B 、(3-,4-) C 、(3,4) D 、(3-,4)7、正比例函数y kx =与反比例函数ky x=在同一坐标系内的图象大致为( )8、已知(0)b c a c a bk a b c a b c+++===++≠ 则函数y=kx+k 图像一定不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限9、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )A B C D10.在反比例函数x y 1-=图象上有两个点A (x 1,1y )和B(x 2,2y ),若x 1< x 2则( ).A .1y > 2yB .1y < 2yC .1y =2yD .1y 与2y 大小不能确定 二、填空题(每小题3分,共30分) 11.当2||1_______0311x x x x x x+-==--时,分式无意义;当时,值为 12.计算22142a a a -=-- . 13.方程 3470x x=-的解是 . 14.函数y=12x +中,自变量x 的取值范围是 __ . 15.将直线22y x =-+向下平移5个单位,得到直线的解析式是 。

初中数学优秀试卷展示模板

初中数学优秀试卷展示模板

一、试卷名称:XX年级XX学期期中考试数学试卷二、试卷说明:1. 本试卷共分为两部分,第一部分为基础题,第二部分为提高题。

2. 全卷满分100分,考试时间90分钟。

3. 试题内容紧扣课程标准,注重考查学生对基础知识的掌握和运用能力。

三、试卷结构:(一)基础题(共40分)1. 选择题(每题2分,共20分)(1)下列各数中,有理数是:()A. √9B. √16C. √25D. √36(2)若a=-2,b=3,则a+b的值是:()A. 1B. -1C. 5D. -52. 填空题(每题2分,共20分)(1)方程2x-3=7的解为:______。

(2)若一个等腰三角形的底边长为5cm,腰长为6cm,则该三角形的周长为:______cm。

(3)已知直线y=2x+1与y轴的交点坐标为(0,1),则该直线与x轴的交点坐标为:______。

(二)提高题(共60分)1. 解析几何题(每题10分,共30分)(1)已知点A(2,3),点B(-1,4),求线段AB的中点坐标。

(2)直线y=kx+b经过点(1,2)和(-1,-2),求直线方程。

2. 应用题(每题15分,共30分)(1)某工厂生产一批产品,计划每天生产100件,但实际每天生产了120件。

如果要在原计划时间内完成生产任务,每天需要增加多少件?(2)一个长方形的长为10cm,宽为5cm,现要将其分割成若干个相同的小长方形,每个小长方形的面积尽可能大。

请计算每个小长方形的面积。

四、优秀试卷展示:(一)基础题部分1. 选择题:(1)C(2)D2. 填空题:(1)x=5(2)17cm(3)(-1,0)(二)提高题部分1. 解析几何题:(1)中点坐标为(0.5,3.5)。

(2)直线方程为y=-4x-2。

2. 应用题:(1)每天需要增加20件。

(2)每个小长方形的面积为25cm²。

五、总结:本试卷展示了学生在基础知识和提高能力方面的优秀表现。

通过对试卷的分析,可以发现学生在解题过程中掌握了基本概念和运算方法,同时具备了一定的应用能力和创新思维。

初中数学试卷模板带答案

初中数学试卷模板带答案

一、选择题(每题2分,共20分)1. 下列各数中,正数是()A. -3B. 0C. 2D. -5答案:C2. 下列各数中,有理数是()A. πB. √2C. 0D. √-1答案:C3. 下列各数中,无理数是()A. 0.25B. 1/3C. √2D. -3答案:C4. 下列各数中,整数是()A. 0.5B. -1/2C. √4D. 1/4答案:C5. 下列各数中,有理数和无理数的和是()A. 2B. 3C. 5D. 7答案:D6. 下列各数中,正数和负数的差是()A. -1B. 1C. 0D. -2答案:B7. 下列各数中,零和负数的积是()A. 0B. 1C. -1D. -2答案:A8. 下列各数中,正数和正数的商是()A. 1B. -1C. 0D. -2答案:A9. 下列各数中,负数和负数的和是()A. 0B. 1C. -1D. -2答案:B10. 下列各数中,正数和负数的积是()A. 0B. 1C. -1D. -2答案:C二、填空题(每题2分,共20分)11. 若a、b是实数,且a > b,则a + b > ()答案:b12. 若a、b是实数,且a > b,则a - b > ()答案:013. 若a、b是实数,且a > b,则a × b > ()答案:014. 若a、b是实数,且a > b,则a ÷ b > ()答案:115. 若a、b是实数,且a > b,则|a| > |b|()答案:正确16. 若a、b是实数,且a > b,则ab > 0()答案:错误17. 若a、b是实数,且a > b,则a^2 > b^2()答案:正确18. 若a、b是实数,且a > b,则a - b > 0()答案:正确19. 若a、b是实数,且a > b,则a ÷ b > 1()答案:错误20. 若a、b是实数,且a > b,则|a| > |b|()答案:正确三、解答题(每题10分,共30分)21. 简化下列各数:(1)3/5 - 2/3答案:1/15(2)2/7 × 4/5答案:8/35(3)3/4 ÷ 2/3答案:9/822. 求下列各式的值:(1)|-3| + |2| - |-5|答案:0(2)√(4^2 - 3^2)答案:√7(3)(-2)^3 × (-1)^2答案:-823. 解下列方程:(1)2x - 3 = 5答案:x = 4(2)3(x + 2) - 4 = 5x + 1答案:x = -3(3)2x^2 - 5x + 3 = 0答案:x = 1 或 x = 3/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴中市第五中学 班级 姓名 准考证号
……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线………………………
座位号:
XX 市第五中学201X 年春八年级期中考试
数 学 试 题
(满分150分 考试时间120分钟)
一、选择题(每小题3分,共30分)
1.如果 a 2=b 3 ,则b
b
a +的值为( )
(A)1 (B) 35 (C)0 (D) 3
7
2.计算 11
()a a a a -÷-的正确结果是( ).
(A )11a + (B )1 (C )1
1
a - (D )-1
3.分式方程12
12
x x =
--( ). (A )无解 (B )有解x=1 (C )有解x=2 (D )有解x=0 4.若分式
2
1
x +的值为正整数,则整数x 的值为( )
(A )0 (B )1 (C )0或1 (D )0或-1 5.如果把分式
y
x xy
+2中的x 和y 都扩大3倍,那么分式的值( ) A .不变 B .缩小3倍 C .扩大6倍 D .扩大3倍
6、点P (3,4-)关于x 轴对称的点的坐标是( ) A 、(3,4-) B 、(3-,4-) C 、(3,4) D 、(3-,4)
7、正比例函数y kx =与反比例函数k
y x
=
在同一坐标系内的图象大致为( )
8、已知
(0)b c a c a b
k a b c a b c
+++===++≠ 则函数y=kx+k 图像一定不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限
9、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )
A B C D
10.在反比例函数x y 1
-=图象上有两个点A (x 1,1y )和B(x 2,2y ),若x 1< x 2则( ).
A .1y > 2y
B .1y < 2y
C .1y =2y
D .1y 与2y 大小不能确定 二、填空题(每小题3分,共30分) 11.当2||1
_______0311x x x x x x
+-==--时,分式无意义;当时,值为 12.计算
2
21
42a a a -=-- . 13.方程 34
70x x
=
-的解是 . 14.函数y=
1
2
x +中,自变量x 的取值范围是 __ . 15.将直线22y x =-+向下平移5个单位,得到直线的解析式是 。

16.反比例函数k
y
x
与一次函数y kx m 的图象有一个交点是(-1,1),
则它们的另一个交点的坐标是 . 17.当m = 时,方程
3
23-=
--x m
x x 有增根. 18.若关于x 的函数1
(1)m y n x -=+是一次函数,则m= ,n 。

1 9.双曲线()00>>=
x ,k x
k
y 的图象上两点A 、B 作AC ⊥x 轴于C ,BD ⊥x 轴 于D ,那么AOC S ∆和BOD S ∆的关系为
A B C D
……………………………答……………………………………………………题…………………………………………线………………………
……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………
20.如图中的直线ABC 为甲地向乙地打长途电话所需付的电话费y (元)与通话时间x (分钟)之间的函数关系的图象。

当x ≥3时,该图象的解析式为_______;
从图象中可知,通话2分钟需付电话费___________元,通话7分钟需付电 话费__________.
三、计算(共32分,1、2、3题各6分,4、5题各7分) 21、31128)1(332
--+---
22、1-1x+1 +2
1-x
2
23. 22
2242m n m n
m mn
m mn
24.解方程:
x
x -=+-23
21421
25、先化简,再求值:62
393
m m m m -÷
+--,其中m=-2.
四、解答题:(共58分)
26.(8分)已知关于x 、y 的二元一次方程组232
262x y m x y m
-=+⎧⎨-=-⎩的解0,0x y ><且,求m 的取值范
围。

巴中市第五中学 班级 姓名 准考证号
……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线………………………
27.(8分)一天上午8时,小华去县城购物,到下午2时返回家,结合图像回答: (1)小华何时第一次休息?
(2)小华离家最远的距离时多少? (3)返回时平均速度时多少?
(4)请你描述一下小华购物的情况。

28.(8分)某公司到果园购买某种优质水果,果园对购买3000千克以上(含3000千克)的有两种销售方式,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己运回,已知该公司租车从基地到公司的运输费用是5000元
(1) 分别写出该公司两种购买方案的付款y 与所购买的水果量x 之间的函数关系式; (2)当购买量在什么范围时,选择哪种购买方式付款最少?
29.(8分)如图,已知直线y =2x +4与x 轴、y 轴的交点分别为A 、B ,直线y =2x -2与x 轴、y 轴的交点分别为C 、D,求S △ABO 与S △CDO 的面积之和.
30.(10分)已知一次函数y kx b =+的图像经过点A (0,1)和点B (a ,-3a )(a >0),且点B 在反比例函数3
y x
=-的图像上,求a 的值和一次函数的解析式。

B C
A
D y=2x+4 y=2x-2
……………………………答……………………………………………………题…………………………………………线………………………
……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………
31.(8分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码
请你代替小明解决下列问题:
(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?
(2)猜想y 与x 之间满足怎样的函数关系式,并求出y 与x 之间的函数关系式,验证这些点的坐标是否满足函数关系式。

(3)当鞋码是41码时,鞋长是多长?
32.(8分)如图,已知反比例函数y
1k
x
和一次函数y 2=ax+1的图象相交于第一象限内的点A ,且点A 的横坐标为1. 过点A 作AB ⊥x 轴于点B ,△AOB 的面积1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y 2=ax+1的图象与x 轴相交于点C ,求∠ACO 的度数.。

相关文档
最新文档