高二数学周测7
高二数学上立体几何周测
高二数学上 周测一、 选择题(每小题5分,共50分)1.三个互不重合的平面能把空间分成n 部分,则n 所有可能值为 ( )A .4、6、8B .4、6、7、8C .4、6、7D .4、5、7、82.已知三个球的体积之比为1:8:27,则它们的表面积之比为 ( ) A .1:2:3 B .1:4:9 C .2:3:4 D .1:8:27 3.3.如图,正方体1111A B C D A B C D -中,E ,F 分别为棱AB ,1C C 的中点,在平面11AD D A 内且与平面1D E F 平行的直线( ) A .有无数条 B .有2条C .有1条D .不存在4.在△ABC 中,∠ACB =90°,点P 是平面ABC 外一点,PA =PB =PC ,AC =12,P 到平面ABC 的距离为8,则P 到BC 的距离为 ( )A . 6B . 8C . 10D . 125.直平行六面体的底面是菱形,一个底面面积为4,两个对角面面积分别为5和6,那么它的体积为 ( )A .302B .30C .152D . 1546.6.两相同的正四棱锥组成如图所示的几何体,可放棱长 为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有( )A .1个B .2个C .3个D .无穷多个7.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1, S 2,则必有( )A .S 1<S 2B .S 1>S 2ABCDA 1B 1C 1D 1EFDBAOEFC .S 1=S 2D .S 1,S 2的大小关系不能确定8.如果//αβ,AB 和CD 是夹在平面α、β之间的两条线段,AB ⊥CD ,且AB =2,直线AB与平面α成300角,那么线段CD 的取值范围是 ( )A .⎪⎪⎭⎫⎝⎛334,332 B .[)+∞,1 C .⎥⎦⎤⎢⎣⎡332,1 D .⎪⎪⎭⎫⎢⎣⎡+∞,3329.设球O 的半径是1,A 、B 、C 是球面上三点,已知A 到B 、C 两点的 球面距离都是2π,且二面角B-OA-C 的大小是3π,则从A 点沿球面经B 、C 两点再回到A 点的最短距离是 (A)67π (B)45π (C )34π (D)23π10、如图,1l、2l是互相垂直的异面直线,MN 是它们的公垂线段。
高二数学试卷附答案解析
高二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,的值为3.25B .线性相关关系较强,的值为0.83C .线性相关关系较强,的值为-0.87 D.线性相关关系太弱,无研究价值 2.已知函数在上满足,则曲线在处的切线方程是( )A .B .C .D .3.关于复数,给出下列判断: ①;②;③;④.其中正确的个数为( ) A .1 B .2 C .3 D .4 4.直线被圆截得的弦长等于( )A .B .C .D .5.已知函数的导数为,()A. B. C. D.6.7.设椭圆与函数的图象相交于两点,点为椭圆上异于的动点,若直线的斜率取值范围是,则直线的斜率取值范围是()A. B. C. D.8.已知实数、满足约束条件,则的最大值为( ) A.24 B.20 C.16 D.129.设满足约束条件,则目标函数的取值范围为()A. B. C. D.10.设,,则是成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.数列的通项公式,则该数列的前()项之和等于。
A. B. C. D.12.已知等差数列的公差为,且成等比数列,则等于()A.-4 B.-6 C.-8 D.813.下列命题中,真命题是()A.B.C.的充要条件是D.是的充分条件14..已知f(x),g(x)都是定义在R上的函数,f(x)=a x×g(x),(a>0且a¹1),,在有穷数列{}(n=1,2,¼,10)中,任取正整数k(1£k£10),则数列{}前k项和大于的概率是( )A. B. C. D.15.函数的图象在点处的切线的斜率等于()A. B.1 C. D.16.设等差数列的前项和为,若,则()A.63B.45C.36D.2717.设,,则的大小关系()A. B. C. D.18.若a,b在区间[0,]上取值,则函数f(x)=ax3+bx2+ax在R上有两个相异极值点的概率是()A. B. C. D.1-19.“有些指数函数是减函数,是指数函数,所以是减函数”上述推理()A.大前提错误 B.小前提错误 C.推理形式错误 D.以上都不是20.()A. B. C. D.二、填空题21.设n 为正整数,f (n)=1+++…+,计算得f(2)=,f(4)>2,f(8)> ,f(16)>3,观察上述结果,可推测一般的结论为_________________.22.若函数存在有零点,则m的取值范围是__________;23.200辆汽车经过某一雷达测速地区,时速频率分布直方图如图所示,则时速不低于的汽车数量为_________.24.已知数列的前项和,则数列的通项公式为___________.25.下列几个命题:①方程有一个正实根,一个负实根,则;②和表示相同函数;③ 函数是非奇非偶函数; ④方程有两解,则其中正确的有___________________. 26. 双曲线上的点P 到点(5,0)的距离为8.5,则点P 到左准线的距离为___ ____.27.函数的图象如图2所示,则。
河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)
高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。
枝江一中高二数学测试卷7
枝江一中高二数学测试题(7)一、选择题:1、一个容量100的样本,其数据的分组与各组的频数如下表 组别 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]频数1213241516137则样本数据落在(10,40)上的频率为( )A. 0.13B. 0.39C. 0.52D. 0.642、若tan α=sin cos αα= ( )A.2 C.3 D.43、已知等差数列}{n a 的前13项之和为39,则876a a a ++等于 ( )A .6B .9C . 12D .184、 在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 5、将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,则异面直线AE 、BC 所成角的正切值为 ( )A .2B .22C .2D .21 6、已知函数()f x 是定义在R 上的奇函数,其最小正周期为3, 且3(0,)2x ∈时,2()log (31),f x x =+则(2009)f = ( ) A .4 B .2 C . -2 D .2log 77、若点P 是ABC ∆的外心,且0,120PA PB PC C λ++=∠=︒,则实数λ的值为 ( )A .12 B .12- C .1 D .1- 8、已知某算法的流程图如图所示,若将输出的 (x , y ) 值依次记为(x 1 , y 1 ),(x 2 , y 2 ),……(x n , yn ),…….程序结束时,共输出(x , y )的组数为( )A.1004B.1005C.1006D.10079、已知方程abx x x x b a x a x 则且的两根为2121210,,01)2(<<<=+++++的取值范围( )A .)32,2(-- B .)21,2(-- C .]32,2(--D .]21,2(--10、过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、B ,AOB ∆被圆分成四部分(如图),若这四部分图形面积满足S S S S +=+ⅠⅢⅡⅣ,则直线AB 有( )(A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条Ⅰ二、填空题:11、从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 . (第8题图) 12、把一颗骰子投掷两次,第一次出现的点数记为m ,第二次出现的点数记为n ,方程组⎩⎨⎧=+=+2323y x ny mx 只有一组解的概率是13、实数x ,y 满足不等式组x 30y 10x y 10+≥⎧⎪-≤⎨⎪--≤⎩的最大值是 .14、设某几何体的三视图如右(尺寸的长度单位为m ).则该几何体的体积为 3m15、一个棱长为a 的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内可以任意转动,则正方体棱长最大为 .三、解答题:16、当实数,x y 满足条件||||1x y +<时,求变量μ=的取值范围.17、 一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C 舒适型 100 150 z 标准型300450600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (1) 求z 的值.(2) 用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3) 用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6,8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.18、已知向量)3,cos 2(2x a =→-,)2sin ,1(x b =→-,函数→-→-⋅=b a x f )(, (Ⅰ)求函数)x (f 的最小正周期和值域;(Ⅱ)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值.19、已知边长为6的正方形ABCD 所在平面外一点P ,PD ⊥ 平面ABCD ,PD=8,(1)连接PB 、AC ,证明:PB ⊥ AC ; (2)连接PA ,求PA 与平面PBD 所成的角的正弦值; (3)求点D 到平面PAC 的距离.20、设2224()log log 1f x a x b x =++,(,a b 为常数).当0x >时,()()F x f x =,且()F x 为R 上的奇函数.(Ⅰ)若1()02f =,且()f x 的最小值为0,求()F x 的表达式;(Ⅱ)在(Ⅰ)的条件下,2()1()log xf x kg x +-=在[]2,4上是单调函数,求k 的取值范围.21、已知正项数列}{n a 的前n 项和为n S ,n a 3为方程01222=-+n S x x 的一根)(*N n ∈. (1)求数列}{n a 通项公式n a ;(2)设2n n n b a -=,求数列{}n b 的前n 项的和n T ; (3)求证:当2≥n 时,222111122212<++++nn na a a .枝江一中高二数学测试题(7)参考答案二、填空题: 11、 3/4 12、 17/18 13、 5 14、 4 15 三、解答题:.16、作出可行域,转化成定点(-2,0)到可行域内动点距离,可求取值范围为(1,3)17、解: (1).设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,所以n=2000. z=2000-100-300-150-450-600=400(2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以40010005m=,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.18、 (1)()2sin(2)1,,[1,3]6f x x T ππ=++=- (2)22,1,2,6C a b a b π=+===19、(1)证明:连接BD ,在正方形ABCD 中,AC ⊥ BD , 又PD ⊥平面ABCD ,所以,PD ⊥AC , 所以AC ⊥平面PBD ,故PB ⊥ AC.(2)解:因为AC ⊥平面PBD ,设AC 与BD 交于O ,连接PO ,则∠APO 就是PA 与平面PBD所成的角, 在∆APO 中,AO=32,AP = 10所以 sin ∠APO =1023 (3)解:连接PC ,设点D 到平面PAC 的距离为h ,则有V D –PAC =V P –ACD ,即:31⨯ S ∆PAC ⨯ h =61⨯PD ⨯AD ⨯DC 在∆PAC 中,显然PO ⊥AC ,PO=82h =414124 所以点D 到平面PAC 的距离为41412420、(1)解:222()log log 1f x a x b x =++ 由1()02f =得10a b -+=,∴222()log (1)log 1f x a x a x =+++若0a =则2()log 1f x x =+无最小值.∴0a ≠.欲使()f x 取最小值为0,只能使204(1)04a a a a >⎧⎪⎨-+=⎪⎩,得1a =,2b =.∴222()log 2log 1f x x x =++得0x <则0x ->,∴222()()log ()2log ()1F x f x x x =-=-+-+ 又()()F x F x -=-,∴222()log ()2log ()1F x x x =-----又(0)0F = ∴222222log 2log 1(0)()0(0)log ()2log ()1(0)x x x F x x x x x ⎧++>⎪⎪-==⎨⎪-----<⎪⎩(2)2222log 2log 11()log x x k g x x+++-=22log 2log kx x =++.[2,4]x ∈.得2log x t =.则2ky t t=++,[1,2]t ∈. k=0或k<0时g(x)为单调增函数,k>0时,214 1.41k k k k ≤∴≥≤≥≤,或综上所述,或21、解: (1)∵原方程01222=-+n S x x 有一根为n a 3 ∴012692=-+n n n S a a 即n n n a a S 2342+=………①…令1=n ,1211234a a a += ∴321=a 或01=a ∵0>n a ∴321=a 当2≥n 时,1211234---+=n n n a a S ………②① -②得:121222334---+-=n n n n n a a a a a即0)32)((11=--+--n n n n a a a a ∵0>n a ∴321=--n n a a …∴n n a n 3232)1(32=⨯-+= 满足321=a ∴)(32*N n n a n ∈=…… (2)142332n n n T -+=- (3)记222)2(1)1(11n n n C n ++++=则22211)22(1)12(1nn n C C n n -+++=-+ 0]21)22(1[]21)12(1[2222<-++-+=n n n n ∴1+>n n C C∴221C C C C n n n <<<<-- 即1446116191412=++=≤C C n ∴])2(1)1(11[4911122222212n n n a a a nn n++++=++++ 222166636461144614949=<=⨯≤=n C。
高2011级高二上数学周测题七
高2011级高二上数学周测题(七)姓名 成绩一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在本题后的括号中.)1、不论a 为何实数,直线(a+3)x+(2a -1)y+7=0恒过定点 ( )A .(0,0)B .(-3,21) C .(-2,1) D .(-1,-1) 2≥0 表示的平面区域是( )3、过点(10,-4) A. 0100512=-+y x B. 05825=--y x C. 08136=-+y x D. 010513=-+y x4、椭圆12222=+b y a x 和k by a x =+2222()0>k 具有 ( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴 5、过P(1,2),且与点A(2,3)和B(4,-5)的距离相等的直线方程是( )A.064=-+y x B. 064=-+y xC. 0640723=-+=-+y x y x 或D. 0640732=-+=-+y x y x 或6、下列命题(1)两直线平行,则其斜率相等(2)两直线垂直,则其斜率之积为-1(3)过点(-1,-1)且斜率为2的直线方程为211=++x y (4)垂直于x 轴的直线平行于y 轴,其中真命题的个数为( ) A 、0 B 、1 C 、2 D 、37、过点A(2,2),B(5,3),C(3,-1)三点的圆的方程是( )A.0822=-+x y x B.0222=-+y y x C.02822=--+y x y x D.0122822=+--+y x y x 8、若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41B .22C .42D . 219、直线012=++y x 被圆()()251222=-+-y x 截得的弦长为( )A 、20B 、 52C 、54D 、4010、若实数x,y 满足等式04222=+-+y x y x ,则y x 2-的最大值是( )A.23 B.8 C.10 D. 2511、已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( ) A .516 B .566 C .875D .87712、与直线y=x+1关于直线y=2x 对称的曲线方程是( )A. 1-=x y 4B.0357=+-y xC.057=--y xD. 0542=+-y x 二、填空题(每小题4分,共16分,把答案填在题中横线上.)13、过原点且垂直于直线0=++c by ax 的直线方程为 。
2022-2023学年吉林省长春市高二下学期基础教育质量监测能力抽测数学试题【含答案】
2022-2023学年吉林省长春市高二下学期基础教育质量监测能力抽测数学试题一、单选题1.已知复数(其中i 是虚数单位),则z 在复平面内对应的点的坐标是( )1i iz +=A .(1,1)B .(1,-1)C .(-1,1)D .(-1,-1)【答案】B【分析】利用复数的除法求得复数,然后利用几何意义求得z 在复平面内对应的点的坐标.z 【详解】复数,1i i z +=()21i i 1ii +==-则z 在复平面内对应的点的坐标是(1,-1),故选:B.2.幂函数的图象过点,则( )()f x x α=12⎛ ⎝(2)f =AB .C .D212【答案】A【解析】先求得,然后求得的值.α()2f 【详解】由于幂函数的图象过点,所以,()f x x α=12⎛ ⎝12111222αα⎛⎫⎛⎫==⇒= ⎪ ⎪⎝⎭⎝⎭所以,所以()12f x x=()1222f ==故选:A3.下列函数定义域为且在定义域内单调递增的是 ()0,∞+()A .B .C .D .xy e=1πy log x=-y =12y log x=【答案】B【分析】根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.【详解】解:根据题意,依次分析选项:对于A ,,为指数函数,其定义域为R ,不符合题意;xy e =对于B ,,为对数函数,定义域为且在定义域内单调递增,符合题意;1ππy log x log x=-=()0,∞+对于C ,,不符合题意;y =[)0,∞+对于D ,,为对数函数,定义域为且在定义域内单调递减,不符合题意;12y log x=()0,∞+故选B .【点睛】本题考查函数的定义域以及单调性的判定,涉及对数函数的性质,属于基础题.4.若集合,,则下列结论正确的是( ){}21A x x =-<{}(1)(4)0B x x x =--≥A .B .C .D .A B ⋂=∅A B =R A B ⊆R B A⊆ 【答案】A【分析】解不等式求得集合A 、B ,然后逐一验证所给选项即可.【详解】,{}{}{}2112113A x x x x x x =-<=-<-<=<<,,{}{}(1)(4)014B x x x x x x =--≥=≤≥或{}R14B x x =<< ,选项A 正确;A B ⋂=∅,选项B 错误;{}34A B x x x ⋃=<≥或不是的子集,选项C 错误;A B ,选项D 错误.R A B⊆ 故选:A .5.为不断满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场正计划进行升级改造.改造的重点工程之一是新建一个长方形音乐喷泉综合体,该项目由长方形核心喷泉区(阴影部分)和四周绿化带组成.规1111D C B A ABCD 划核心喷泉区的面积为,绿化带的宽分别为和(如图所示).当整个项目占地ABCD 21000m 2m 5m 面积最小时,则核心喷泉区的长度为( )1111D C B A BCA .B .C .D .20m 50m 100m【答案】B【解析】设,得到的值,进而求得矩形面积的表达式,利用基本不等式求得面BC x =CD 1111D C B A 积的最小值,,而根据基本不等式等号成立的条件求得此时的长.BC【详解】设,则,所以BC x =1000CD x =11111000(10)(4)A B C D S x x=++,100001040(4x x =++10401440≥+=当且仅当,即时,取“”号,100004x x =50x ==所以当时,最小.50x =1111A B C D S 故选:B .【点睛】本小题主要考查矩形面积的最小值的计算,考查利用基本不等式求最值,属于基础题.6.将函数的图象向右平移单位后,所得图象对应的函数解析式为( )24y x π⎛⎫=+ ⎪⎝⎭12πA .B .5212y x π⎛⎫=- ⎪⎝⎭5212y x π⎛⎫=+ ⎪⎝⎭C .D .212y x π⎛⎫=- ⎪⎝⎭212y x π⎛⎫=+ ⎪⎝⎭【答案】D【分析】先将函数中x 换为x-后化简即可.24y x π⎛⎫+ ⎪⎝⎭12π【详解】化解为2(124y x ππ⎛⎫-+ ⎪⎝⎭212y x π⎛⎫=+ ⎪⎝⎭故选D【点睛】本题考查三角函数平移问题,属于基础题目,解题中根据左加右减的法则,将x 按要求变换.7.设是直线,是两个不同的平面,那么下列判断正确的是( )l αβ、A .若,则.B .若,则.,∥∥l l αβαβ∥,l l αβ⊥∥αβ⊥C .若,则.D .若,则.,l αβα⊥⊥l β ,l αβα⊥∥l β 【答案】B【分析】根据各选项中线面、面面的位置关系,结合平面的基本性质判断线面、面面关系即可.【详解】对于A ,若,,则可能平行、相交,A 错误;//l αl //β,αβ对于B ,若,过的平面且,则,而即,又,则,B //l αl γm γα= //l m l β⊥m β⊥m α⊂αβ⊥正确;对于C ,若,,则或,C 错误;αβ⊥l α⊥l //βl β⊂对于D ,若,,则或或线面相交,D 错误.αβ⊥//l αl //βl β⊂故选:B 8.已知向量,,则下列说法正确的是( )()2,1a =()3,1b =-A .B .向量在向量上的投影向量是//a ba bC .D .与向量方向相同的单位向量是24a b += a【答案】D【分析】利用向量平行的坐标表示判断A ;根据投影向量定义求向量在向量上的投影向量判断a bB ;应用向量数量积运算律求判断C ;由单位向量定义求与向量方向相同的单位向量判断2a b+ a D.【详解】A :由,故不成立,错;211(3)⨯≠⨯-//a bB :由,错;1||cos ,2||||||b a b b a a b bb b b ⋅⋅=⋅=-C :,则,错;2222445204025a b a a b b +=+⋅+=-+=25a b += D :与向量方向相同的单位向量是,对.a||a a = 故选:D9.如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,则下列结论正确的是A .PB ⊥ADB .平面PAB ⊥平面PBC C .直线BC ∥平面PAED .直线CD ⊥平面PAC【答案】D【分析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】因为AD 与PB 在平面ABC 内的射影AB 不垂直,所以A 答案不正确.过点A 作PB 的垂线,垂足为H ,若平面PAB ⊥平面PBC ,则AH ⊥平面PBC ,所以AH ⊥BC.又PA ⊥BC ,所以BC ⊥平面PAB ,则BC ⊥AB ,这与底面是正六边形不符,所以B 答案不正确.若直线BC ∥平面PAE ,则BC ∥AE ,但BC 与AE 相交,所以C 答案不正确.故选D.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.10.已知函数若方程f (x )=m 有4个不同的实根x 1,x 2,x 3,x 4,且()()22log 113816,3x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩x 1<x 2<x 3<x 4,则()(x 3+x 4)=( )1211+x x A .6B .7C .8D .9【答案】C【分析】画出f (x )的图象,由对称性可得x 3+x 4=8,对数的运算性质可得x 1x 2=x 1+x 2,代入要求的式子,可得所求值.【详解】作出函数f (x )的图象如图,()221138163log x x x x x ⎧-≤⎪=⎨-+⎪⎩,<,>f (x )=m 有四个不同的实根x 1,x 2,x 3,x 4且x 1<x 2<x 3<x 4,可得x 3+x 4=8,且|log 2(x 1﹣1)|=|log 2(x 2﹣1)|,即为log 2(x 1﹣1)+log 2(x 2﹣1)=0,即有(x 1﹣1)(x 2﹣1)=1,即为x 1x 2=x 1+x 2,可得()(x 3+x 4)=x 3+x 4=8.1211x x +故选C .【点睛】本题考查分段函数的图象和应用,考查图象的对称性和对数的运算性质,属于中档题.二、填空题11.求值:______.sin 75cos 75︒⋅︒=【答案】.14【详解】分析:直接应用正弦函数的二倍角公式即可.详解: sin75cos75︒⋅︒=011sin150.24=故答案为.14点睛:本题主要考查同角三角函数的基本关系、二倍角的正弦公式的应用,属于基础题.一般,,这三者我们成为三姐妹,结合,可以知sin cos sin cos αααα+-,sin *cos αα22sin cos 1αα+=一求三.12.有一道数学难题,在半小时内,甲、乙能解决的概率都是,丙能解决的概率是,若3人试1213图独立地在半小时内解决该难题,则该难题得到解决的概率为___.【答案】56【分析】根据独立事件的乘法公式和概率的性质求解.【详解】设“在半小时内,甲、乙、丙能解决该难题”分别为事件A ,B ,C ,“在半小时内解该难题得到解决”为事件D ,则,,,表示事件“在半小时内没有解决该难题”,1()()2P A P B ==1()3P C =D A B C = D ,D ABC =所以,1121()()(((2236P D P ABC P A P B P C ====;5()1(6P D P D =-=故答案为:.5613,则这个圆锥的外接球体积为______________.【答案】【分析】由圆锥的侧面积得出圆锥的底面半径,设出球的半径,根据题意得出关系式求出球的半径,进而得出球的体积.【详解】解:设圆锥的底面半径为,r ,侧面积,解得,r=r =所以,圆锥的高h =设球半径为R ,球心为,其过圆锥的轴截面如图所示,O 由题意可得,,即,解得222()R h R r-+=22)3R R +=R =所以,.34R 3V π==故答案为:.三、双空题14.直线:截圆的弦为,则的最小值为l 10mx y -+=224640x y xy ++-+=MN MN __________,此时的值为__________.m 【答案】21【分析】设圆心到直线的距离为,则l dd然后由MN =MN ==进而利用均值不等式可求解【详解】可化简为,224640xy x y ++-+=22(2)(3)9x y ++-=设圆心到直线的距离为,则l d dMN====,当时,有最小值,当时,没===m>MNm<MN有最小值,所以,当且仅当时,等号成立,此时,1=mm1m=故答案为:①2;②1【点睛】关键点睛:解题关键在于求出MN==答案,属于中档题四、解答题15.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.[50,60),[60,70),[70,80),[80,90),[90,100](1)求图中a的值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.【答案】(1)0.01a=(2)众数为,平均数为7575.5(3)84【分析】(1)由频率分布直方图的性质,列出方程,即可求解;可得,()0.020.0250.035101a a++++⨯=(2)根据频率分布直方图的中众数的概念和平均数的计算公式,即可求解;(3)因为50到80的频率和为0.65,50到90的频率和为0.9,结合百分数的计算方法,即可求解.【详解】(1)解:由频率分布直方图的性质,可得,()0.020.0250.035101a a ++++⨯=解得.0.01a =(2)解:根据频率分布直方图的中众数的概念,可得众数为,75平均数为.0.1550.2650.35750.25850.19575.5⨯+⨯+⨯+⨯+⨯=(3)解:因为50到80的频率和为0.65,50到90的频率和为0.9,所以75%分位数为.0.75(0.10.20.35)8010840.25-+++⨯=16.在中,ABC222.b c a +=(1)求的值;cos A (2)若,,求的值.2B A=b =a 【答案】(1)2).cos A =2【分析】(1)利用余弦定理可求得的值;cos A (2)利用二倍角的正弦公式求出的值,然后利用正弦定理可求得的值.sin B a 【详解】(1)因为在中,,所以,ABC 222b c a +=222c 2os b ca A cb =+=-=(2)由(1)知,,所以02A π<<sin A ==因为,所以2B A=sin sin 22sin cos 2B A A A ====又因为,由正弦定理,可得B =sin sin a bA B =sin 2.sin b Aa B===17.设为奇函数,a 为常数.131()log 1axf x x -=-(1)求a 的值.(2)若,不等式恒成立,求实数m 的取值范围.[2,4]x ∀∈1()3xf x x m⎛⎫+>+ ⎪⎝⎭【答案】(1);(2).1a =-89m <【解析】(1)由奇函数的性质,代入运算后可得,代入验证即可得解;()()0f x f x -+=1a =±(2)转化条件为对于恒成立,令131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-[2,4]x ∀∈,结合函数的单调性求得即可得解.()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪()min g x 【详解】(1)因为为奇函数,131()log 1axf x x -=-则1113331111()()log log log 1111ax ax ax ax f x f x x x x x +-⎡+-⎤⎛⎫⎛⎫-+=+= ⎪⎪⎢⎥------⎝⎭⎝⎭⎣⎦,()21231log 01ax x -==-则,所以即,()22111ax x -=-21a =1a =±当时,,不合题意;1a =()11331()log log 11xf x x -==--当时,,由可得或,满足题意;1a =-131()log 1x f x x +=-101xx +>-1x >1x <-故;1a =-(2)由可得,1()3xf x x m⎛⎫+>+ ⎪⎝⎭131log 113xx x m x ⎛⎫>+ +⎪⎭+⎝-则对于恒成立,131log 113xx x m x +<⎛⎫- ⎝+⎪⎭-[2,4]x ∀∈令,()[]131log ,2,4113xx g x x x x ⎛⎫-+=+⎝⎭∈- ⎪因为函数在上单调递减,12111x y x x +==+--[2,4]所以函数在上单调递增,131log 1xy x +=-[2,4]所以在上单调递增,所以,()g x [2,4]()()1min 32log 182993g x g -===+所以.89m <【点睛】关键点点睛:解决本题的关键是将恒成立问题转化为求函数的最值.18.如图,在正方体中,棱长为2.1111ABCD A B C D -(1)证明:;1AC BD ⊥(2)求二面角的平面角的余弦值.1D AC B --【答案】(1)证明见解析;(2)【分析】(1)连结交于点O ,证明平面,利用线面垂直的性质定理即可证明BD AC AC ⊥1BDD ;1AC BD ⊥(2)连结,证明是二面角的平面角.利用由余弦定理求出的111AD CD OD 、、1BOD ∠1D AC B --1BOD ∠大小即可.【详解】(1)连结交于点O ,在正方形中,,BD AC ABCD AC BD ⊥平面,平面,1DD ⊥ ABCD AC ⊂ABCD ,,,平面,1AC DD ∴⊥1DD BD D = 1DD BD ⊂1BDD 平面,又平面,.AC ∴⊥1BDD 1BD ⊂ 1BDD 1AC BD ∴⊥(2)连结.111AD CD OD 、、在正方体中,,O 是线段的中点,,1111ABCD A B C D -11AD CD =AC 1D O AC ⊥在中,,,ABC AB BC =BO AC ⊥是二面角的平面角.1BOD ∴∠1D AC B --在中,1BOD △2BD BO ====1BD ===1OD ===由余弦定理得:1cos BOD ∴∠==即二面角的平面角的余弦值为1D AC B --。
全国高二高中数学同步测试带答案解析
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答).4.210的正约数有________个.5.计算C 82+C 83+C 92=________.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答).8.若C 12n =C 122n-3,则n =________.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示).13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法?2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法?7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?全国高二高中数学同步测试答案及解析一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________. 【答案】41【解析】分三类:一年级比赛的场数是C 52,二年级比赛的场数是C 82,三年级比赛的场数是C 32,再由分类计数原理求得总赛场数为C 52+C 82+C 32=41.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________. 【答案】26【解析】由C 41·C 31+C 31·C 21+C 41·C 21=26.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答). 【答案】266【解析】由题知,按钱数分10元钱,可有两大类,第一类是买2本1元,4本2元的共C 32C 84种方法;第二类是买5本2元的书,共C 85种方法. ∴共有C 32C 84+C 85=266(种).4.210的正约数有________个. 【答案】16【解析】由于210=2×3×5×7,则2、3、5、7中的任意一个数,或两个数之积,或三个数之积,或四个数之积,都是210的约数.又1也是一个约数,所以约数共有C 41+C 42+C 43+C 44+1=16(个).5.计算C 82+C 83+C 92=________. 【答案】120【解析】C 82+C 83+C 92=(C 82+C 83)+C 92 =C 93+C 92=C 103==120.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形. 【答案】C m 2·C n 2【解析】分别从一组m 条中取两条,从另一组n 条中取两条,可组成平行四边形,即共有C m 2·C n 2个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答). 【答案】140【解析】分两步:第一步,安排周六,有C 种方案;第二步,安排周日,有C 43种方案,故共有C 73C 43=140(种)不同的安排方案.8.若C 12n =C 122n-3,则n =________. 【答案】3或5【解析】由C 12n =C 122n-3,得n =2n -3或n +2n -3=12, 解得n =3或n =5.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种. 【答案】140【解析】当甲、乙两人都参加时,有C 82=28(种)选法; 当甲、乙两人中有一人参加时, 有C 83·C 21=112(种)选法.∴不同的挑选方法有28+112=140(种).10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种. 【答案】210【解析】每条东西向街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段是走南北方向的),共有C 106=C 104=210(种)走法.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________. 【答案】16【解析】分两类:①含有甲C 21C 42,②不含有甲C 43, 共有C 21C 42+C 43=16种.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示). 【答案】7【解析】设餐厅至少还需准备x 种不同的素菜. 由题意,得C 52·C x 2≥200,从而有C x 2≥20. 即x(x -1)≥40.∴x 的最小值为7.13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种. 【答案】70【解析】满足题设的情形分为以下2类:第一类,从4名教师选1人,又从5名学生中任选2人,有C 41C 52种不同选法; 第二类,从4名教师选2人,又从5名学生中任选1人,有C 42C 51种不同选法. 因此共有C 41C 52+C 42C 51=70(种)不同的选法.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法? 【答案】756【解析】解:法一 可分三类:①A ,B ,C 三人均不入选,有C 95种选法; ②A ,B ,C 三人中选一人,有C 31·C 94种选法; ③A ,B ,C 三人中选二人,有C 32·C 93种选法. 由分类计数加法原理,共有选法C 95+C 31·C 94+C 32·C 93=756(种).法二 先从12人中任选5人,再减去A ,B ,C 三人均入选的情况,即共有选法C 125-C 92=756(种).2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形? 【答案】216【解析】解:我们把从共线的4个点取点中的多少作为分类的标准: 第一类:共线的4个点中有2个点作为三角形的顶点,共有C 42·C 81=48(个)不同的三角形; 第二类:共线的4个点中有1个点作为三角形的顶点,共有C 41·C 82=112(个)不同的三角形; 第三类:共线的4个点中没有点作为三角形的顶点,共有C 83=56(个)不同的三角形. 由分类计数原理,不同的三角形共有48+112+56=216(个).3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 【答案】(1)161700 (2)9506 (3)9604 (4)57036【解析】解:(1)所求不同的抽法数,即从100个不同元素中任取3个元素的组合数,共有C 1003==161700(种).(2)抽出的3件中恰好有一件是次品这件事,可以分两步完成: 第一步,从2件次品中任取1件,有C 21种方法; 第二步,从98件正品中任取2件,有C 982种方法. 根据分步计数原理,不同的抽取方法共有 C 21·C 982=2×=9506(种).(3)法一 抽出的3件中至少有一件是次品这件事,分为两类: 第一类:抽出的3件中有1件是次品的抽法,有C 21C 982种; 第二类:抽出的3件中有2件是次品的抽法,有C 21C 981种. 根据分类计数原理,不同的抽法共有C 21·C 982+C 22·C 981=9506+98=9604(种).法二 从100件产品中任取3件的抽法,有C 1003种,其中抽出的3件中没有次品的抽法,有C 983种.所以抽出的3件中至少有一件是次品的抽法,共有C 1003-C 983=9604(种). (4)完成题目中的事,可以分成两步: 第一步,选取产品,有C 21C 982种方法;第二步,选出的3个产品排列,有A 33种方法. 根据分步计数原理,不同的排列法共有 C 21C 982A 33=57036(种).4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值. 【答案】n =2 【解析】解:20×=4(n +4)×+15(n +3)(n +2)即:=+15(n +3)(n +2)∴(n +5)(n +4)(n +1)-(n +4)(n +1)·n =90, 即5(n +4)(n +1)=90,∴n 2+5n -14=0,即n =2或n =-7, ∵n≥1且n ∈Z ,∴n =2.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出. 【答案】(1)60 (2)120 (3)99 【解析】解:(1)C 52·C 42=60. (2)C 51·C 43+C 52·C 42+C 53·C 41=120. (3)120-=99.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法? 【答案】(1)20 (2)62【解析】解:(1)先派3人进第一间屋,再让其余3人进第二间屋,有:C 63·C 33=20(种).(2)按第一间屋子内进入的人数可分为五类:即进一人、进2人、进3人、进4人、进5人,所以方法总数:C 61C 55+C 62C 44+C 63C 33+C 64C 22+C 65C 11=62(种).7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种? 【答案】84【解析】解:由于每队至少抽1辆,故问题转化为从7个车队中抽3辆车,可分类计算. 第一类:3辆车都从1个队抽,有C 71种; 第二类:3辆车从2个队抽,有A 72种; 第三类:3辆车从3个队抽,有C 73种.由分类计数原理,共有C 71+A 72+C 73=84(种).。
2024-2025学年上海华二附中高二上学期数学周测试卷及答案(2024.09)
1华二附中2024学年第一学期高二年级数学测试2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.直线l 上存在两点在平面α上,则l α(填一符号). 2.函数324y sin x π⎛⎫=+ ⎪⎝⎭的圆频率是 .3.已知{}n a 是等差数列,若75230a a −−=,则9a 的值是 .4.两条异面直线所成角的取值范围是 .5.已知复数z a i =−的实部与虚部相等,则z i −= .6.函数213y tan x π⎛⎫=−+ ⎪⎝⎭的对称中心是 .7.三个互不重合的平面能把空间分成 . 8.数列{}n a 满足1111,12n n a a a +==−,则2024a = . 9.在ABC ∆中,::5:7:8sinA sinB sinC =,则该三角形外接圆与内切圆的面积之比是 . 10.如图,摩天轮的半径为50m,圆心O 距地面的高度为60m.已知摩天轮按逆时针方向匀速转动,每15min 转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.则游客进舱5min 时他距离地面的高度为 m.11.已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边,AB AC 于,M N 两点,设,(0,0)AM x AB AN yAC x y ==>>,则4x y +的最小值为 .12.对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,则实数ω的取值范围是 .2二、选择题(本大题共有4题,满分18分,第13,14题每题4分,第15,16题每题5分) 13.设扇形的圆心角为α,半径为r ,弧长为l ,而积为S,周长为L ,则下列说法不正确的 是( ).A.若,r α确定,则,L S 唯一确定B.若,l α确定,则L S 唯一确定C.若,S L 确定,则,r α唯一确定D.若,1S 确定,则,r α唯一确定14.过正方体1111ABCD A B C D −的顶点A 作直线l ,使l 与棱1,,AB AD AA 所成的角都相等,这样的直线l 可以作( ).A.1条B.2条C.3条D.4条15.数列{}{},n n a b 满足21,32n n n a b a n n ⋅==++,则{}n b 的前10项之和等于( ). A.13 B.512 C.12 D.712 16.如图所示,角02x ,π⎛⎫∈ ⎪⎝⎭的终边与单位圆O 交于点(),10,P A ,PM x ⊥轴,AQ x ⊥轴,M 在x 轴上,Q 在角x 的终边上.由正弦函数、正切函数定义可知,sin ,tan x x 的值别等于线段,MP AQ 的长,且ΔOAP ΔOAQ OAP S S S <<扇形,则下列结论不正确的是( ). A.函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点B.函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点C.函数y sinx x =−有3个零点D.函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有13三、解答题(本大题满分78分)本大题共有5题, 17.(本题满分14分,第1小题6分,第2小题8分) 已知3,052sin ,π⎛⎫α=α∈ ⎪⎝⎭. (1)求23sin π⎛⎫α+ ⎪⎝⎭的值;(2)在平面直角坐标系xOy 中,以Ox 为始边,已知角β的终边与角α的终边关于y 轴对称,求()cos α+β的值.18.(本题满分14分,第1小题6分,第2小题8分)如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,14,AA P =为线段11B D 上一点. (1)求证:AC BP ⊥;(2)当P 为线段11B D 的中点时,求点A 到平面PBC 的距离.419.(本题满分14分,第1小题6分,第2小题8分)在直角梯形ABCD 中,//,90,224AB CD DAB AB AD DC ∠====,点F 是BC 边上的中点. (1)若点E 满足2DE EC =,且EF AB AD =λ+μ,求λ+μ的值; (2)若点P 是线段AF 上的动点(含端点),求AP DP ⋅的取值范围.20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 如图,正方体的棱长为1,''B C BC O ⋂=,求: (1)AO 与''A C 所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)B OA C −−的度数.521.(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 若有穷数列{}n a 满足:10ni i a ==∑且11ni i a ==∑,则称其为"n 阶01−数列".(1)若"6穷01−数列"为等比数列,写出该数列的各项;(2)若某"21k +阶01−数列"为等差数列,求该数列的通项(121n a n k ≤≤+,用,n k 表示); (3)记"n 阶01−数列"{}n a 的前k 项和为()123k S k ,,,,n =,若存在{}123m ,,,,n ∈,使12m S =,试问:数列{}()123i S i ,,,,n =能否为"n 阶01−数列"?若能,求出所有这样的数列{}n a ;若不能,请说明理由.6参考答案一、填空题1.⊂;2.2;3.3;4.0,2π⎛⎤⎥⎝⎦;5. 6.,1,46k k Z ππ⎛⎫+∈ ⎪⎝⎭; 7.4678或或或; 8.2; 9.499; 10.85; 11.94 12.13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭11.已知ABC ∆中,过中线AD 的中点E 任作一条直线分别交边,AB AC 于,M N 两点,设,(0,0)AM x AB AN yAC x y ==>>,则4x y +的最小值为 . 【答案】94 【解析】()12AD AB AC =+,且E 为AD 的中点,()1124AE AD AB AC ∴==+,11,,(0,0),AM x AB AN y AC x y AB AM AC AN x y==>>∴==,,,M E N 三点共线,11144x y∴+=, ()1111944111444444y x x y x y x y x y ⎛⎫∴+=++=+++++= ⎪⎝⎭…故答案为:94 12.对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,则实数ω的取值范围是 . 【答案】13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭【解析】对任意0,4π⎡⎤ϕ∈⎢⎥⎣⎦,函数()()f x sin x =ω+ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递增,12,222ππ∴⨯π−∴ωω厔 ①0ω>时,此时,()02,y sin x <ω=ω+ϕ…单调递增,可得222,22k k Z k ππω+ϕ≥−+π∈ππω+ϕ≤π⎧⎪⎪⎨⎪⎩+⎪,则22222k k ⎧⎪⎪⎨⎪⎪ππϕ≥π−−ωπϕ≤+−ω⎩ππ71120,,24441kk ⎧ω≤−+π⎪⎡⎤ϕ∈∴⎨⎢⎥⎣⎦⎪ω≥−⎩当0k =时,可得104<ω≤; ②0ω<时,此时,20−ω<…,()y sin x =ω+ϕ单调递增, 即()y sin x =−−ω−ϕ在区间2,π⎡⎤π⎢⎥⎣⎦上单调递减;可得222322,k k Z k ππ−ω−ϕ≥+ππ−πω−ϕ≤π⎧⎪⎪∈⎨⎪+⎪⎩,则222322k k ⎧⎪⎪⎨⎪⎪ππϕ≤−π−ω−πϕ≥π−πω⎩−− 14120,,3422k k ⎧ω≤−−−⎪π⎪⎡⎤ϕ∈∴⎨⎢⎥⎣⎦⎪ω≥−−⎪⎩当0k =时,可得32ω=−; 综上,则实数ω的取值范围是13042,⎛⎤⎧⎫⋃−⎨⎬ ⎥⎝⎦⎩⎭.二、选择题13.C 14.D 15.B 16.C15.数列{}{},n n a b 满足21,32n n n a b a n n ⋅==++,则{}n b 的前10项之和等于( ). A.13 B.512 C.12D.712 【答案】B【解析】由题意得()()12,n a n n =++()()11112112n n b a n n n n ===−++++1210b b b ∴++⋯⋯+11111123341112=−+−+⋯⋯+−11521212=−= 综上所述,答案选择:B16.如图所示,角02x ,π⎛⎫∈ ⎪⎝⎭的终边与单位圆O 交于点(),10,P A ,PM x ⊥轴,AQ x ⊥轴,M 在x 轴上,Q 在角x 的终边上.由正弦函数、正切函数定义可知,sin ,tan x x 的值别等于线段,MP AQ 的长,且ΔOAP ΔOAQ OAP S S S <<扇形,则下列结论不正确的是( ).8A.函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点B.函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点C.函数y sinx x =−有3个零点D.函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有1【答案】C【解析】对于选项A ,函数()g x y tanx sinx x ==++在22,ππ⎛⎫− ⎪⎝⎭为增函数,又()00g =,即函数y tanx sinx x =++在22,ππ⎛⎫− ⎪⎝⎭内有1个零点,即选项A 正确;对于选项B ,函数()f x y tanx x ==−,则()21'1f x cos x =−,则函数在3,2222,,ππππ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭为减函数,又()3300,0,042f f f ππ⎛⎫⎛⎫=<> ⎪ ⎪⎝⎭⎝⎭,即函数在3,2222,,ππππ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭各有一个零点, 即函数y tanx x =−在32222,,ππππ⎛⎫⎛⎫−⋃ ⎪ ⎪⎝⎭⎝⎭内有2个零点,即选项B 正确;对于选项C ,因为y sinx x =−,则'10y cosx =−…,即函数为减函数, 又当0x =时,0y =,即函数y sinx x =−有1个零点,即选项C 错误;对于选项D,当02x ,π⎛⎫∈− ⎪⎝⎭时,sin tanx x <,即2y tanx =,显然无零点,当02x ,π⎛⎫∈ ⎪⎝⎭时,sin tanx x >,即2y sinx =,显然无零点,又当0x =时,0y =,即函数y tanx sinx tanx sinx =+−−在22,ππ⎛⎫− ⎪⎝⎭内有1个零点,即选项D 正确,故选C三.解答题 17.(1)(2)1− 18.(1)证明略(219.(1)112− (2)1,810⎡⎤−⎢⎥⎣⎦20.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)9如图,正方体的棱长为1,''B C BC O ⋂=,求: (1)AO 与''A C 所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)B OA C −−的度数.【答案】(1)30(2(3)90 【解析】(1)连接'AB ,则由正方体性质,可得''AB AC B C ====且O 为'B C 的中点,所以1'2OC B C ==AO OC ⊥,所以12OC sin OAC AC ∠===,故30OAC ∠=,又由正方体性质可知'//'AA CC 且''AA CC =,所以四边形''AA C C 是平行四边形, 所以//''AC A C 所以OAC ∠是AO 与''A C 所成角,故AO 与''A C 所成角的度数为30; (2)如图,在平面''BCC B 内作OE BC ⊥交BC 于点E ,连接AE , 由正方体性质可知平面''BCC B ⊥平面ABCD ,又平面''BCC B ⋂平面,ABCD BC OE =⊂平面''BCC B ,所以OE ⊥平面ABCD , 所以E 为BC 中点,AE 为AO 在平面ABCD 上的射影, 所以OAE ∠为OA 与平面ABCD 所成的角, 由题意,在Rt OAE ∆中,12OE BE ==,AE ==所以1OEtan OAEAE∠===所以AO与平面ABCD;(3)由(1)知AO OC⊥,又由正方体性质可知AB⊥平面''BB C C,而OC⊂平面''BB C C,所以AB OC⊥,又,,AO AB A AO AB⋂=⊂平面ABO,所以OC⊥平面ABO,又OC⊂平面AOC,所以平面ABO⊥平面AOC,所以B OA C−−的度数为90.21.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)若有穷数列{}n a满足:10niia==∑且11niia==∑,则称其为"n阶01−数列".(1)若"6穷01−数列"为等比数列,写出该数列的各项;(2)若某"21k+阶01−数列"为等差数列,求该数列的通项(121na n k≤≤+,用,n k表示);(3)记"n阶01−数列"{}n a的前k项和为()123kS k,,,,n=,若存在{}123m,,,,n∈,使12mS=,试问:数列{}()123iS i,,,,n=能否为"n阶01−数列"?若能,求出所有这样的数列{}na;若不能,请说明理由.【答案】(1)111111,,,,,666666−−−或1111111,,,,,666666−−−;(2)当0d>时,()()*1211nna n N,n kk k k∴=−∈≤++当0d<时,()()*1211nna n N,n kk k k=−+∈≤++(3)数列{}()123iS i,,,,n=不为"n阶01−数列".【解析】(1)设123456,,,,,a a a a a a成公比为q的等比数列,显然1q≠,则有123456a a a a a a+++++=,得()6111a qq−=−,解得1q=−,由1234561a a a a a a+++++=,得161a=,解得116a=±,1011所以数列为111111,,,,,666666−−−或1111111,,,,,666666−−−;(2)设等差数列()12321,,,,1k a a a a k +…的公差为d ,123210,k a a a a +++++=()()11221210,0,2k k dk a a kd +∴++=+=即120,,k k a a d ++=∴=当0d =时,矛盾, 当0d >时,(23211212k k k a a a a a ++++++==−++)k a +()1122k k kd d −∴+=,即()11d k k =+, 由()11100,1k a a k k k +=+⋅=+得即11,1a k =−+ ()()()111111n na n k k k k k ∴=−+−⋅=+++()*121n N ,n k k−∈≤+ 当0d <时,同理可得()1122k k kd d −+=−,即()11d k k =−+由10k a +=得()1101a k k k −⋅=+,即111a k =+ ()()()111111n na n k k k k k ∴=−−⋅=−+++()*121n N ,n k k+∈≤+ 综上所述,当0d >时,()()*1211n n a n N ,n k k k k∴=−∈≤++当0d <时,()()*1211n n a n N ,n k k k k=−+∈≤++(3)记12,,,n a a a 中非负项和为A ,负项和为B ,则0,1A B A B +=−=,得1111,,2222k A B B S A ==−−=≤≤=,即()11232k S k ,,,,n ≤=,若存在{}123m ,,,,n ∈,使12m S =,可知:1210,0,,0,0m m a a a a +厖厔21210,,0,,2m n m m n a a a a a ++++++=−且剟1,0,0;k k k m a S ∴时剟厖 1,0,0k k n m k n a S S +<=时剟?123123n n S S S S S S S S ∴++++=++++12又1230n S S S S ++++=与1231n S S S S ++++=不能同时成立数列{}()123i S i ,,,,n =不为"n 阶01−数列".。
新教材2021_2022学年高二数学下学期暑假巩固练习7随机变量及其分布二
2021-2022学年高二数学下学期暑假巩固练习7 随机变量及其分布(二)一、单选题.1.某市有甲乙两个工厂生产同一型号的汽车零件,零件的尺寸分别记为,X Y ,已知,X Y 均服从正态分布,()211~,X N μσ,()222~,Y N μσ,其正态分布密度曲线如图所示,则下列结论中正确的是( )A .甲工厂生产零件尺寸的平均值大于乙工厂生产零件尺寸的平均值B .甲工厂生产零件尺寸的平均值小于乙工厂生产零件尺寸的平均值C .甲工厂生产零件尺寸的稳定性高于乙工厂生产零件尺寸的稳定性D .甲工厂生产零件尺寸的稳定性低于乙工厂生产零件尺寸的稳定性2.有20个零件,其中16个一等品,4个二等品,若从这些零件中任取3个,那么至少有1个是一等品的概率是( )A .12164320C C CB .21164320C C C C .21316416320C C C C +D .343201C C -3.已知随机变量X ,Y 满足8X Y +=,若()10,0.6X B ,则()E Y ,()D Y 分别为( )A .6,24.B .6,56.C .2,24.D .2,56.4.已知两个正态密度函数()()()222,1,2x i i i x x i μσϕ--=∈=R 的图象如图所示,则( )A .12μμ<,12σσ<B .12μμ>,12σσ<C .12μμ<,12σσ>D .12μμ>,12σσ>5.在()*n n ∈N 次独立重复试验中,每次试验的结果只有A ,B ,C 三种,且A ,B ,C 三个事件之间两两互斥.已知在每一次试验中,事件A ,B 发生的概率均为25,则事件A ,B ,C 发生次数的方差之比为( ) A .5:5:4B .4:4:3C .3:3:2D .2:2:16.考察下列两个问题:①已知随机变量(),XB n p ,且()4E X =,()2D X =,记()1P X a ==;②甲、乙、丙三人随机到某3个景点去旅游,每人只去一个景点,设A 表示“甲、乙、丙所去的景点互不相同”,B 表示“有一个景点仅甲一人去旅游”,记()|P A B b =,则( )A .311,22a b ==B .4211,22a b ==C .511,22a b ==D .6211,22a b ==7.有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的正品数的数学期望值是( ) A .Mn N⋅B .N MnN- C .()1M n N-⋅D .()1N Mn N--⋅8.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是05., 则()01P ξ<<≈( ) 附:若()2,N ξμσ,则()0.6827P X μσμσ-<<+≈,()220.9545P X μσμσ-<<+≈.A .01587.B .01359.C .02718.D .03413.二、多选题.9.下列随机变量中,服从超几何分布的有( ) A .抛掷三枚骰子,向上面的点数是6的骰子的个数XB .有一批种子的发芽率为70%,任取10颗种子做发芽试验,试验中发芽的种子的个数XC .盒子中有3个红球、4个黄球、5个蓝球,任取3个球,不是红球的个数XD .某班级有男生25人,女生20人,选派4名学生参加学校组织的活动,班长必须参加,其中女生的人数X10.一个口袋内有12个大小、形状完全相同的小球,其中有n 个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于827,则n 的值可能为( ) A .5B .6C .7D .811.一射手对同一目标独立地进行4次射击,已知至少命中1次的概率为8081,则下列结论正确的是( ) A .该射手第一次射击命中的概率为13 B .该射手第二次射击命中的概率为23C .该射手4次射击中恰好命中1次的概率为881 D .该射手4次射击中至多命中1次的概率为1912.设随机变量ξ服从正态分布()0,1N ,则下列结论正确的是( ) A .()()()()0P a P a P a a ξξξ<=<+>-> B .()()()210P a P a a ξξ<=<-> C .()()()120P a P a a ξξ<=-<> D .()()()10P a P a a ξξ<=-≥>三、填空题.13.已知随机变量ξ服从正态分布()2,N μσ,若()()31P P ξξ>=<,则μ=______.14.为了监控某种食品的生产包装过程,检验员每天从生产线上随机抽取()*k k ∈N 包食品,并测量其质量(单位:g ).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布()2,N μσ.假设生产状态正常,记ξ表示每天抽取的k 包食品中其质量在(3,3)μσμσ-+之外的包数,若ξ的数学期望()0.05E ξ>,则k 的最小值为________.附:若随机变量X 服从正态分布()2,N μσ,则(33)0.9973P X μσμσ-<<+≈.15.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图所示的为一幅唐朝的投壶图,假设甲、乙是唐朝的两位投壶游戏参与者,且甲、乙每次投壶投中的概率分别为11,23,每人每次投壶相互独立.若约定甲投壶2次,乙投壶3次,投中次数多者胜,则乙最后获胜的概率为_________.四、解答题.16.网上购物已经成为一种重要的消费方式.某网络公司通过随机问卷调查,得到不同年龄段的网民在网上购物的情况,并从参与的调查者中随机抽取了150人.经统计得到如下表格:若把年龄大于或等于15而小于35岁的视为青少年,把年龄大于或等于35而小于65岁的视为中年人,把年龄大于或等于65岁的视为老年人,将频率视为概率.(1)在青少年、中年人、老年人中,哪个群体网上购物的概率最大?(2)现从某市青少年网民(人数众多)中随机抽取4人,设其中网上购物的人数为X,求X的分布列及期望.17.甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的8道题,规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选.(1)求甲恰有2个题目答对的概率; (2)求乙答对的题目数X 的分布列;(3)试比较甲,乙两人平均答对的题目数的大小,并说明理由.18.口琴是一种大众熟知的方便携带的乐器.独奏口琴有三种,分为半音阶口琴(有按键)、复音口琴、十孔口琴(又名布鲁斯口琴、蓝调口琴).“口琴者联盟”团队为了解口琴爱好者的练琴情况,提高口琴爱好者的音乐素养,推动口琴发展,在全国范围内进行了广泛调查.“口琴者联盟”团队随机调查了200名口琴爱好者每周的练琴时间x (单位:小时)并绘制如图所示的频率分布直方图.(1)由频率分布直方图可以看出,目前口琴爱好者的练琴时间x 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s (同一组的数据用该组区间中点值代表),据此,估计1万名口琴爱好者每周练琴时间在160分钟到320分钟的人数;(2)从样本中练琴时间在[0.5,1.5)和[5.5,6.5)内的口琴爱好者中用分层抽样的方法抽取8人,再从这8人中随机抽取4人进行培训,设Y 表示抽取的4人中练琴时间在[5.5,6.5)内的人数,求Y 的分布列和数学期望.参考数据:样本方差21.78s =43≈,()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,330.997()3P X μσμσ-<≤+=.参考答案一、单选题. 1.【答案】C【解析】由随机变量,X Y 均服从正态分布,()211~,X N μσ,()222~,Y N μσ, 结合正态概率密度函数的图象,可得12μμ=,12σσ<,即甲工厂生产零件尺寸的平均值等于乙工厂生产零件尺寸的平均值, 甲工厂生产零件尺寸的稳定性高于乙工厂生产零件尺寸的稳定性, 故选C . 2.【答案】D【解析】全部都是二等品的概率为34320C C ,故至少有1个是一等品的概率为343201C C -,故选D . 3.【答案】C 【解析】∵()10,0.6XB ,∴()100.66E X =⨯=,()100.60.4 2.4D X =⨯⨯=. ∵8X Y +=,∴8Y X =-,∴()()()882E Y E X E X =-=-=,()()()8 2.4D Y D X D X =-==, 故选C . 4.【答案】A【解析】正态曲线关于直线x μ=对称,且在x μ=由题图易得12μμ<,因为()1x ϕ的图象更“瘦高”,()2x ϕ的图象更“矮胖”,则12σσ<, 故选A . 5.【答案】C【解析】根据,,A B C 事件的互斥性可得:每一次试验中,事件C 发生的概率为15, 设事件A ,B ,C 发生的次数分别为随机变量,,X Y Z ,则有:2~,5X B n ⎛⎫ ⎪⎝⎭,2~,5Y B n ⎛⎫ ⎪⎝⎭,1~,5Z B n ⎛⎫ ⎪⎝⎭,则事件A ,B ,C 发生次数的方差分别为625n ,625n ,425n , 故事件A ,B ,C 发生次数的方差之比为3:3:2,故选C . 6.【答案】C 【解析】问题①,由()()()412E X np D X np p ==⎧⎪⎨=-=⎪⎩,解得1,82p n ==,则()171885118112222a P X C ⎛⎫⎛⎫===⋅⋅== ⎪⎪⎝⎭⎝⎭.问题②,根据题意,事件B 的可能情况有()123212n B C =⨯=种, 事件AB 发生的可能情况为()33n AB A =种,所以,()()()331231|22n AB A b P A B n B C ====⨯.故选C . 7.【答案】B【解析】由题意,有N 件产品,其中有M 件次品,从中不放回地抽n 件产品, 则抽到正品数X 服从超几何分布,所以抽到的正品数的数学期望值是()N MD X n N-=⋅,故选B . 8.【答案】B【解析】若函数()22f x x x ξ=+-没有零点,∴二次方程220x x ξ+-=无实根,∴()440∆ξ=-⨯-<,∴1ξ<-.又∵()22f x x x ξ=+-没有零点的概率是05.,∴()10.5P ξ<-=.由正态曲线的对称性知1μ=-, ∴()1,1N ξ-,∴1μ=-,1σ=,∴2μσ-=-,0μσ+=,23μσ-=-,21μσ+=, ∴()200.6827P ξ-<<≈,()310.9545P ξ-<<≈,∴()()()10131202P P P ξξξ<<=-<<--<<⎡⎤⎣⎦()10.95450.68270.13592≈⨯-=, 故选B .二、多选题. 9.【答案】CD【解析】AB 是重复试验问题,服从二项分布,不服从超几何分布,故AB 不符题意;CD 符合超几何分布的特征,样本都分为两类,随机变量X 表示抽取n 件样本中某类样本被抽取的件数,服从超几何分布, 故选CD . 10.【答案】ABC【解析】设每次取到红球的概率为()01p p <<,由题意得()22248C 127p p ->,即()219p p ->,解得1233p <<, 因为12np =,所以()124,8n p =∈,所以5n =或6或7, 故选ABC . 11.【答案】BCD【解析】设该射手命中的概率为p ,则至少命中1次的概率为()4801181p --=,解得23p =, 则该射手每一次射击命中的概率都为23,故A 错误,B 正确; 该射手4次射击中恰好命中1次的概率为3142133C ⎛⎫⨯⨯ ⎪⎝⎭881=,故C 正确;该射手4次射击中至多命中1次的概率为41813819⎛⎫+= ⎪⎝⎭,故D 正确,故选BCD . 12.【答案】BD【解析】因为()()P a P a a ξξ<=-<<,所以A 不正确; 因为()()P a P a a ξξ<=-<<()()()()()()()1P a P a P a P a P a P a ξξξξξξ=<-<-=<->=<--<()21P a ξ=<-,所以B 正确,C 不正确;因为()()1P a P a ξξ<+≥=,所以()()()10P a P a a ξξ<=-≥>,所以D 正确,故选BD .三、填空题. 13.【答案】2【解析】因为随机变量ξ服从正态分布()2,N μσ, 所以正态密度函数图象关于x μ=对称, 因为()()31P P ξξ>=<,所以3122μ+==, 故答案为2. 14.【答案】19【解析】依题意(33)0.9973P X μσμσ-<<+≈,所以在(3,3)μσμσ-+之外的概率10.99730.0027P =-=, 则(),0.0027B k ξ,则()0.0027E k ξ=,因为()0.05E ξ>,所以0.00270.05k >,解得50018.5227k >≈, 因为*k ∈N ,所以k 的最小值为19, 故答案为19. 15.【答案】1754【解析】若乙只投中1次,则甲投中0次时乙获胜,其概率为12231111(1)(1)3329C ⋅-⋅-=;若乙只投中2次,则甲投中0次或1次时乙获胜,其概率为22213211111()(1)[(1)]33222C C ⋅--+⨯16=; 若乙投中3次,则乙必获胜,其概率为311()327=,综上所述:乙最后获胜的概率为1115117962716254++==,故答案为1754.四、解答题.16.【答案】(1)青少年网上购物的概率最大;(2)分布列见解析,期望为3.【解析】(1)由题表中的数据知,青少年网上购物的概率为12334531545604+==+, 中年人网上购物的概率为35153534530883=++++,老年人网上购物的概率为27, 因为35324837>>,所以青少年网上购物的概率最大.(2)由题意及(1)知,X 可能取值为0,1,2,3,4,34,4X B ⎛⎫~ ⎪⎝⎭,()404110C 4256P X ⎛⎫=== ⎪⎝⎭,()1314311231C 4425664P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()22243154272C 44256128P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()3134********C 4425664P X ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,()4443814C 4256P X ⎛⎫=== ⎪⎝⎭.故X 的分布列为()434E X =⨯=.17.【答案】(1)216625;(2)见解析;(3)甲平均答对的题目数小于乙平均答对的题目数.【解析】(1)∵甲在备选的10道题中,答对其中每道题的概率都是35,∴选中的4个题目甲恰有2个题目答对的概率22243221655625P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.(2)由题意知乙答对的题目数X 的可能取值为2,3,4,()2228410282221015C C P X C ====,()13284101128321015C C P X C ====,()4841070142103C P X C ====,X 的分布列为:(3)∵乙平均答对的题目数8116234151535EX =⨯+⨯+⨯=, 甲答对题目34,5Y B ⎛⎫ ⎪⎝⎭,甲平均答对的题目数312455EY =⨯=. EX EY >,∴甲平均答对的题目数小于乙平均答对的题目数.18.【答案】(1)6827人;(2)分布列见解析,3.【解析】(1)这200名口琴爱好者每周的练琴时间的平均时间10.0320.130.240.3550.1960.0970.044x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,由于样本方差2 1.78s =,所以,结合题意知4μ=,2 1.78σ=,∴~(4,1.78)X N ,43σ=≈, 48433-=小时160=分钟,416433+=小时320=分钟, 44(44)0.682733P X -<≤+=,100000.68276827⨯=, 可以估计1万名口琴爱好者每周练琴时间在160分钟到320分钟的人数约为6827人.(2)由频率分布直方图可知,练琴时间在[0.5,1.5),[5.5,6.5)内的口琴爱好者人数比例为0.03:0.091:3=, 用分层抽样的方法抽取8人,则练琴时间在[0.5,1.5)内的有2人,练琴时间在[5.5,6.5)内的有6人. ∴Y 的所有可能取值为2,3,4,则2262483(2)14C C P Y C ===,3162484(3)7C C P Y C ===,()4062483414C C P Y C ===, ∴Y 的分布列为:故()234314714E Y =⨯+⨯+⨯=.。
高二数学 周测试卷(含答案解析)
(2)求二面角 的平面角的余弦值。(理科做)
求点F到平面ABE的距离。(文科做)
21.已知椭圆 的,离心率为 , 是其焦点,点 在椭圆上。
(Ⅰ)若 ,且 的面积等于 。求椭圆的方程;
(Ⅱ)直线 交椭圆于另一点 ,分别过点 作直线 的垂线,交 轴于点 ,
当 取最小值时,求直线 的斜率。
22.已知函数
(1)曲线 在点 处的切线方程为 ,求 的值;
(2)当 时, ,试求 的取值范围。
参考答案及评分标准
一、选择题:共12小题,每小题5分,共60分.
题号
1
2
3
4
5
6
7
8
9
10
11
12
选项
B
B
A
A
D
A
A
D
B
C
D
C
1.选B.【解析】∵ , ,∴ ,故选B.
2.选B.【解析】∵ ,对应的点为 在第二象限,故选B.
……………………………………5分
(Ⅱ)
函数的图象为:
当 时, ,依题意, ,则
∴ 的取值范围是 …………………………………………………………10分
18.(Ⅰ)∵ 由正弦定理得
∴
即 ,易知 ,且 ,
上式两边除以 ,得 ……………………………………6分
(Ⅱ)∵ ,∴ ,
由 ,又 , ,得
而
∴ …12分
19.(12分)
二、填空题共4小题,每小题5分,共20分.
13.填 .【解析】如图可知 的最小值是 .
14.填 .【解析】由题意得四面体 是底面边长为 的正三角形,侧棱 垂直底面,且 , , ,则外接球球心在过底面中心垂直于底面的垂线上,且到底面的距离等于 的一半,∴
高二理科数学周测试题(4-7)
广州市汾水中学高二年级理科数学周练题(共14题)1.(2012年南京市调研题)命题“若a b <,则a c b c +<+”的逆否命题是( )A. 若a c b c +<+,则a b >B. 若a c b c +>+,则a b >C. 若a c b c +≥+,则a b ≥D. 若a c b c +<+,则a b ≥2.(2013年广东省六校联考(理))若 '0()3f x =-,则000()(3)lim h f x h f x h h →+--=( )A .3-B . 12-C .9-D .6-3.(2013年成都市诊断题)复数z=534+i,则z =( ) A .25 B .5 C .1 D .74.(长沙市雅礼中学高三月考试题)用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A . 假设至少有一个钝角B .假设至少有两个钝角C.假设没有一个钝角 D.假设没有一个钝角或至少有两个钝角5. (佛山一中高三月考试题)有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点.以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确6. (2013年广州市三校联考)以下有四种说法,其中正确说法的个数为:( )(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2) “a b >”是“22a b >”的充要条件;(3) “3x =”是“2230x x --=”的必要不充分条件;(4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个7.(2013年揭阳市模拟试题)01-⎰(x 2+2 x +1)dx =__________8.(2008年海南宁夏高考试题(理))已知向量(0,1,1)a =-,(4,1,0)b =,||29a b λ+=且0λ>,则λ= __________9.(2010年肇庆市综合测试试题) 已知点P 到点(3,0)F 的距离比它到直线2x =-的距离大1,则点P 满足的方程为 .10.(2011年惠州市质检题)如果椭圆193622=+y x 的弦被点(4,2)平分,则这 条弦所在的直线方程是________________11.(选修2-1,p96复习题二,B 组2题改编)已知椭圆的顶点与双曲线221412y x -=的焦点重合,它们的离心率之和为135,若椭圆的焦点在x 轴上,求椭圆的方程.12. 已知、a b R ∈,a b e >>(其中e 是自然对数的底数),求证:a b b a >. (提示:可考虑两边取对数并用分析法找思路)13.(2013年广东省十校联考)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1) 计算1a ,2a ,3a ,4a ;(2) 猜想n a 的表达式,并用数学归纳法证明你的结论.14.(2008年安徽省高考试题(理))如图,在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离.15.(综合题·广东省六校联考)设p :函数)4lg()(2a x ax x f +-=的定义域为R ; q :不等式ax x x +>+222 ,对∀x ∈(-∞,-1)上恒成立,如果命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围.。
华科附中2024届高二上数学周测训练(7)(教师版)
华科附中2024届高二(上)数学周测(7)一、单项选择题(每小题5分,共40分.每小题只有1个正确选项.)1.直线tan 4x π=-的倾斜角是( )A. 0B.2π C.34π D.4π 【解析】Btan4x π=-=-1,直线与x 轴垂直,故倾斜角为2π,选B. 2.已知方程221104x y t t +=--表示的曲线是椭圆,则t 的取值范围( )A .()4,7B .()()4,77,10⋃C .()7,10D .()4,10【解析】B因为方程221104x y t t +=--表示的是椭圆,则⎪⎩⎪⎨⎧-≠->->-41004010t t t t 即10774<<<<x x 或,故选B.3.抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( )A .A 与B 互斥 B .A 与B 对立C .()23P A B +=D .()56P A B += 【解析】C当向上的点数为1时,事件A 与事件B 都发生,则A 与B 不互斥也不对立;3264)(==+B A P ,故选C. 4.向量()2,1,a x =,()2,,1b y =-,若5a =,且a b ⊥,则x y +的值为( ) A .1- B .1C .4-D .4【解析】C 因为5a =ab ⊥,所以⎩⎨⎧-==⎩⎨⎧=-+=++4045142y x x y x 解得,因此4-=+y x ,选C.5.下列命题中不正确的是( )A .一组数据1,2,3,3,4,5的平均数,众数,中位数相同B .有A ,B ,C 三种个体按3∶1∶2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量为30 C .若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D .一组数6,5,4,3,3,3,2,2,2,1的85%分位数为5 【解析】B1,2,3,3,4,5的平均数、众数、中位数都为3,故选项A 正确;A ,B ,C 三种个体按3∶1∶2的比例分层抽样调查,如果抽取的A 个体数为9,则样本容量应该为1821339=++÷,故选项B 错误;乙组数据的方差为4.4,4.4>5,则数据乙较稳定,故选项C 正确;6,5,4,3,3,3,2,2,2,1从小到大进行排列为1,2,2,2,3,3,3,4,5,6,因为108.585%10=⨯,则85%分位数为第9位数,为5.故选项D 正确. 6.若样本12,,,n a x a x a x +++的平均值是5,方差是3,样本1212,12,,12n x x x +++的平均值是9,标准差是b ,则( ) A .1,6a b == B .2,6a b ==C .2,3a b ==D .1,23a b ==【解析】D 因为样本12,,,na x a x a x +++的平均值是5,方差是3,样本1212,12,,12nx x x +++的平均值是9,标准差是b ,则32,132921522==⎪⎩⎪⎨⎧=⋅=+=+b a b x x a 解得故选D7.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为63,直线0ax by -=与圆221:04M x y mx +-+=相切,则实数m 的值是( )A .±1B .2±C .4±D .8± 【解析】B圆221:04M x y mx +-+=转化为标准方程为414)2222-=+-m y m x ((12>m ),由题意知解得2±=m ,故选B 8.如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,414236222222-=+⋅==+=m ba ma a c e cb a若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ). A .23,33⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33,43⎡⎤⎢⎥⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【解析】A如图,设正方体棱长为1,()11101A PAC λλ=≤≤,则111A P AC λ=, 以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴 建立空间直角坐标系.则()()111,0,0,0,1,0,,,022A C O ⎛⎫⎪⎝⎭,故()111,1,0AC AC ==-,()1,,0A P λλ=-,又()11,0,1A ,则()1,,1P λλ-,所以11,,122OP λλ⎛⎫=-- ⎪⎝⎭.在正方体1111ABCD A B C D -中,可知体对角线1B D ⊥平面11A BC , 所以()11,1,1DB =是平面11A BC 的一个法向量,所以1222111122sin cos ,1113163222OP DB λλθλλλ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以当12λ=时,sin θ取得最大值33,当0λ=或1时,sin θ取得最小值23. 所以23sin ,33θ⎡⎤∈⎢⎥⎣⎦. 故选:A.二.多选题( 每小题5分,共20分 )9.给出以下命题,其中不正确的是( )A .直线的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =--,则⊥B .平面、的法向量分别为()10,1,3=n ,()21,0,2=n ,则∥C .平面经过三个点A (1,0,-1),B (0,-1,0),C (-1,2,0),向量()1,,=n u t 是平面的法向量,则D .直线的方向向量为()1,1,2a =-,直线的方向向量为12,1,2⎛⎫=- ⎪⎝⎭b ,则与垂直【解析】ABC因为0=⋅n a ,故αα⊂l l 或//,故选项A 错误;l l ααβαβαα1=+t u l m l m因为Rn n ∈≠λλ,21,所以两直线不平行,因此两平面不平行,故选项B 错误;设平面α的法向量为),,(t u x n =,因为35,34,31,1,0,122-11-1-=+===⎪⎩⎪⎨⎧=⋅=⋅==t u t u x n AC n AB AC AB 所以解得令则),,(),,,(,故C 选项错误因为0=⋅b a ,所以m l ⊥,故选项D 正确.10.一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个正八面体,把它与地面接触的面上的数字记为X ,则{}1,2,3,4,5,6,7,8X ∈,定义事件:{}{}1,2,3,4A X X =∈,事件:{}{}1,5,6,7B X X =∈,事件:{}{}1,5,6,8C X X =∈,则下列判断正确的是( ) A .()1P A B +=B .()38P BC =C .()()()()P ABC P A P B P C =D .A ,B ,C 两两相互独立【解析】BC87)(=+B A P ,A,B,C 两两不相互独立,显然.故选BC. 11.已知直线l :()()121440m x m y m -+--+=和圆C :22(2)(1)9x y -+-=,下列说法正确的是( ) A .直线l 恒过定点()4,0B .圆C 被x轴截得的弦长为C .直线被圆截得的弦长存在最大值,且最大值为4 D .直线被圆截得的弦长存在最小值,且最小值为4【解析】AD由()()121440m x m y m -+--+=,得()2440m x y x y +---+=,联立24040x y x y +-=⎧⎨--+=⎩,得40x y =⎧⎨=⎩,无论m 为何值,直线l 恒过定点()4,0,故A 正确;在22(2)(1)9x y -+-=中,令0y =,得2x =±C 被x轴截得的弦长为B 错误; 当直线l 过圆心C (2,1)时,直线被圆截得的弦长最大,最大值为6,此时直线方程为122y x =-+,故C 错误;设(4,0)P ,易知P 在圆内,当直线l PC ⊥时,直线l 被圆截得的弦长最小,且最小值为4=,故D 正确. 故选:AD12.已知点P 是椭圆C :22116x y +=上的动点,Q 是圆D :()2211x y ++=上的动点,则( )A .椭圆C 15B .椭圆C 的短轴长为1C .椭圆C 的右焦点为F ,则FQ 152D .PQ 的最小值为2 【解析】AC在椭圆C :22116x y +=中,长半轴长4a =,短半轴长1b =,半焦距2215c a b -,椭圆C 的离心率15e =,短轴长22b =,A 正确,B 不正确; 椭圆C 的右焦点为(15,0)F ,圆D 的圆心(1,0)D -,半径1r =,而点Q 在圆D 上,于是得max ||||152FQ FD r =+,C 正确;由2222(1)1116x y x y ⎧++=⎪⎨+=⎪⎩消去y 得22(1)16x x +=,解此方程得1244,53x x =-=-,因此,椭圆C 与圆D 有公共点,于是得PQ 的最小值为0,D 不正确. 故选:AC三.填空题(每小题5分,共20分)13.已知椭圆2214x y m +=的焦距等于2,则实数m 的值为 。
高二上学期数学周测卷(含答案详解)
2020至2021学年高二(上)数学周测试卷姓名 学号 班级一、选择题1.在平面ABCD 中,A (0,1,1),B (1,2,1),C (-1,0,-1),若向量a =(x ,y ,z ),且a 为平面ABC 的法向量,则y 2等于( )A .2B .0C .1D .3 答案 C解析 AB →=(1,1,0),AC →=(-1,-1,-2), 由a 为平面ABC 的法向量知 ⎩⎪⎨⎪⎧a ·AB → =0,a ·AC → =0,即⎩⎪⎨⎪⎧x +y =0,-x -y -2z =0,令x =-1,则y =1,∴y 2=1.2.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83 D. 103答案 D解析 P A →=(1,2,-4),又平面α的一个法向量为n =(-2,-2,1), 所以P 到α的距离为|P A →·n ||n |=|-2-4-4|3=103.3.若点A (2,3,2)关于Ozx 平面的对称点为A ′,点B (-2,1,4)关于y 轴的对称点为B ′,点M 为线段A ′B ′的中点,则|MA |等于( ) A.30 B .3 6 C .5 D.21 答案 C解析 ∵点A (2,3,2)关于Ozx 平面的对称点为A ′, ∴A ′(2,-3,2),∵点B (-2,1,4)关于y 轴的对称点为B ′,∴B ′(2,1,-4), ∵点M 为线段A ′B ′的中点, ∴M (2,-1,-1),∴|MA |=(2-2)2+(-1-3)2+(-1-2)2=5.4.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值为( )A. 3 B .2 3 C .3 3 D .43 答案 B解析 ∵△POF 2是面积为3的正三角形, ∴34c 2=3,解得c =2. ∴P (1,3),代入椭圆方程可得1a 2+3b2=1,与a 2=b 2+4联立解得b 2=2 3.5.过点P (-2,4)作圆C :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与切线l 平行,则切线l 与直线m 间的距离为( ) A .4 B .2 C.85 D.125答案 A解析 根据题意,知点P 在圆C 上, ∴切线l 的斜率k =-1k CP =-11-42+2=43,∴切线l 的方程为y -4=43(x +2),即4x -3y +20=0.又直线m 与切线l 平行, ∴直线m 的方程为4x -3y =0. 故切线l 与直线m 间的距离d =|0-20|42+(-3)2=4.6.若椭圆的焦距与短轴长相等,则此椭圆的离心率为( ) A.15 B.55 C.12 D.22 答案 D解析 依题意,2c =2b , 所以b =c ,所以a 2=b 2+c 2=2c 2, 所以e 2=12,又0<e <1,所以e =22.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的实轴长为( )A. 3 B .3 C .2 3 D .6 答案 D解析 由题意,双曲线的一条渐近线为y =-ba x ,即bx +ay =0,设双曲线的右焦点为F (c ,0),c >0, 则c 2=a 2+b 2,所以焦点到渐近线的距离d =|bc |a 2+b2=bcc =b =3, 又离心率e =ca=2,所以a =3,所以双曲线C 的实轴长为2a =6.8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被点⎝⎛⎭⎫b 2,0分成5∶3的两段,则此椭圆的离心率为( )A.1617B.41717C.45D.255 答案 D解析 依题意得c +b2c -b 2=53,所以c =2b ,所以a =b 2+c 2=5b , 所以e =c a =2b 5b=255.9.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且|PF 2|=815|F 1F 2|,则△PF 1F 2的面积为( ) A.803 B.12 C .2 D .4 答案 A解析 ∵在双曲线C :x 29-y 216=1中,a =3,b =4,c =5,∴F 1(-5,0),F 2(5,0),|F 1F 2|=10. ∵|PF 2|=815|F 1F 2|=163,∴|PF 1|=2a +|PF 2|=6+163=343. ∴在△PF 1F 2中,cos ∠PF 1F 2=⎝⎛⎭⎫3432+102-⎝⎛⎭⎫16322×343×10=1517, ∴sin ∠PF 1F 2=817,∴△PF 1F 2的面积为12×343×10×817=803.10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -2)2+y 2=6相交于A ,B 两点,且|AB |=4,则此双曲线的离心率为( ) A .2 B.533 C.355 D.2答案 D解析 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为bx -ay =0,∵|AB |=4,r =6,∴圆心(2,0)到渐近线的距离为2, 即2bb 2+a 2=2, 解得b =a ,∴c =a 2+b 2=2a , ∴此双曲线的离心率为e =ca= 2.11.已知双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1D.x 28-y 24=1 答案 B解析 由题意,得⎩⎪⎨⎪⎧a =2,2a +2b =2×2c ,a 2+b 2=c 2,解得a =2,b =2.易知双曲线的焦点在y 轴上,所以双曲线的标准方程为y 24-x 24=1.12.已知圆C 1:x 2+y 2-2mx +m 2=4,圆C 2:x 2+y 2+2x -2my =8-m 2(m >3),则两圆的位置关系是( )A .相交B .内切C .外切D .外离答案 D解析 将两圆方程分别化为标准方程得到圆C 1:(x -m )2+y 2=4 ;圆C 2:(x +1)2+(y -m )2=9 ,则圆心C 1(m ,0),C 2(-1,m ) ,半径r 1=2,r 2=3 ,两圆的圆心距|C 1C 2|=(m +1)2+m 2=2m 2+2m +1>2×32+2×3+1=5=2+3 , 则圆心距大于半径之和,故两圆外离.13.圆x 2+y 2=4上的点到直线4x -3y +25=0的距离的取值范围是( ) A .[3,7] B .[1,9] C .[0,5] D .[0,3]答案 A解析 x 2+y 2=4,圆心(0,0),半径r =2, 圆心到直线4x -3y +25=0的距离d =|0-0+25|42+(-3)2=5,所以圆上的点到直线的距离的最小值为5-2=3,最大值为5+2=7,所以圆上的点到直线的距离的取值范围为[3,7].14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 答案 A解析 双曲线的一条渐近线方程为y =b a x ,即bx -ay =0,x 2+y 2-6x +5=0变形为(x -3)2+y 2=4, ∴圆心为(3,0),r =2, ∴|3b |a 2+b 2=2, ∴3b =2c ,∴9(c 2-a 2)=4c 2, ∵c =3,∴a 2=5,b 2=4, ∴双曲线方程为x 25-y 24=1.15.已知直线l :(a +1)x +ay +a =0(a ∈R )与圆C :x 2+y 2-4x -5=0,则下列结论正确的是( )A .存在a ,使得l 的倾斜角为90°B .存在a ,使得l 的倾斜角为135°C .存在a ,使直线l 与圆C 相离D .对任意的a ,直线l 与圆C 相交,且a =1时相交弦最短 答案 AD解析 选项A ,当a =0时,直线方程为x =0,此时倾斜角为90°,A 正确;选项B ,当倾斜角为135°时,直线斜率为-1,即-a +1a =-1,解得a 为空集,B 错误;选项C ,圆C 的圆心为C (2,0),半径r =3,若直线与圆相离,则圆心到直线的距离为|(a +1)×2+a |(a +1)2+a2>3,整理得9a 2+6a +5<0,不等式无解,C 错误; 选项D ,直线过定点M (0,-1),此点在圆内,所以直线与圆恒相交,当直线CM 与直线l 垂直时,直线CM 和直线l 的斜率之积等于-1,即-a +1a ×0-(-1)2-0=-1,解得a =1,此时弦长最短,D 正确.16.已知曲线C :mx 2+ny 2=1.( )A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线 答案 ACD解析 对于A ,当m >n >0时,有1n >1m >0,方程化为x 21m +y 21n =1,表示焦点在y 轴上的椭圆,故A 正确.对于B ,当m =n >0时,方程化为x 2+y 2=1n,表示半径为1n的圆,故B 错误. 对于C ,当m >0,n <0时,方程化为x 21m -y 2-1n =1,表示焦点在x 轴上的双曲线,其中a =1m,b =-1n,渐近线方程为y =±-m n x ;当m <0,n >0时,方程化为y 21n -x 2-1m =1,表示焦点在y 轴上的双曲线,其中a =1n,b =-1m,渐近线方程为y =±-mnx ,故C 正确. 对于D ,当m =0,n >0时,方程化为y =±1n,表示两条平行于x 轴的直线,故D 正确.二、填空题17.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a .因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝⎛⎭⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±b a x =±22x ,即x ±2y =0.18.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________. 答案3解析 根据双曲线的对称性,不妨设点P 在第一象限,则⎩⎪⎨⎪⎧ |PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,解得⎩⎪⎨⎪⎧|PF 1|=4a ,|PF 2|=2a . 又∵|F 1F 2|=2c ,∴|PF 2|最小. 在△PF 1F 2中,由余弦定理,得(4a )2+4c 2-4a 22×4a ×2c =cos 30°,∴23ac =3a 2+c 2.等式两边同除以a 2,得e 2-23e +3=0, 解得e = 3.19.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为________.答案 x 22-y 28=1解析 由题意可得,a 2=m ,b 2=m +6, 则实轴长为2m ,虚轴长为2m +6, 由题意有2m ×2=2m +6, 解得m =2,代入x 2m -y 2m +6=1,可得双曲线方程为x 22-y 28=1.20.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为14,则双曲线x 2a 2-y 2b2=1的渐近线方程为________.答案 y =±154x 解析 因为e =c a =14,不妨设a =4,c =1,则b =15,所以对应双曲线的渐近线方程为y =±b a x =±154x .三、解答题21.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5, 故设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则有⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=c 2,解得a 2=3,b 2=2.所以双曲线的标准方程为x 23-y 22=1.(2)不妨设M 点在右支上,则有|MF 1|-|MF 2|=2 3 , 又|MF 1|+|MF 2|=63,故解得|MF 1|=43,|MF 2|=23, 又|F 1F 2|=25,因此在△MF 1F 2中,|MF 1|边最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|F 1F 2||MF 2|<0 ,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.22.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点A (2,1),离心率为22,过点B (3,0)的直线l 与椭圆交于不同的两点M ,N . (1)求椭圆的方程;(2)若|MN |=322,求直线MN 的方程. 解 (1)由题意有4a 2+1b 2=1,e =c a =22,a 2-b 2=c 2,解得a =6,b =3,c =3, 所以椭圆方程为x 26+y 23=1.(2)由直线MN 过点B 且与椭圆有两交点,且直线MN 的斜率必存在. 可设直线MN 方程为y =k (x -3),代入椭圆方程整理得(2k 2+1)x 2-12k 2x +18k 2-6=0,Δ=24-24k 2>0,得k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12k 22k 2+1,x 1x 2=18k 2-62k 2+1,|MN |=(x 1-x 2)2+(y 1-y 2)2 =(k 2+1)(x 1-x 2)2 =(k 2+1)[(x 1+x 2)2-4x 1x 2] =322,解得k =±22,满足k 2<1, 所以所求直线方程为y =±22(x -3). 23.已知椭圆x 24+y 29=1及直线l :y =32x +m .(1)当直线l 与该椭圆有公共点时,求实数m 的取值范围; (2)求直线l 被此椭圆截得的弦长的最大值.解 (1)由⎩⎨⎧y =32x +m ,x 24+y29=1,消去y ,并整理得9x 2+6mx +2m 2-18=0.① Δ=36m 2-36(2m 2-18)=-36(m 2-18). 因为直线l 与椭圆有公共点, 所以Δ≥0,解得-32≤m ≤3 2.故所求实数m 的取值范围为[-32,32]. (2)设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 由①得x 1+x 2=-6m9,x 1x 2=2m 2-189,故|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+⎝⎛⎭⎫322·⎝⎛⎭⎫-6m 92-4×2m 2-189=133·-m 2+18, 当m =0时,直线l 被椭圆截得的弦长的最大值为26.。
高二数学周练试题(含解析)
【2019最新】精选高二数学周练试题(含解析)第Ⅰ卷(选择题60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b=( )A. B. C. 2 D. 3【答案】D【解析】,代入方程得到故选D;2. 中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1-sin A),则A=( )A. B. C. D.【答案】C【解析】因为,由余弦定理得,,移项得到,,得到 A=.故选C;点睛:利用上b=c得到,再得到,最终得到角.3. 在内,分别为角所对的边,成等差数列,且,,则的值为( )A. 1B. 2C. 3D. 4【答案】C【解析】成等差数列,故,,,得到故选C;4. 在等差数列中,,其前项和为,若,则()A. -2012B. -2013C. 2012D. 2013【答案】B【解析】等差数列其前n项和为,是等差数列,公差为,,,,故,代入,得到 -2013.点睛:是等差数列,则是等差数列,利用这个结论,得到。
5. 已知数列的前项和,则的值为( )A. B. C. D.【答案】A【解析】∵Sn=1﹣5+9﹣13+17﹣21+…+(﹣1)n﹣1(4n﹣3)∴S15=(1﹣5)+(9﹣13)+…(49﹣53)+57=(﹣4)×7+57=29S22=(1﹣5)+(9﹣13)+(17﹣21)+…+(81﹣85)=﹣4×11=﹣44 S31=(1﹣5)+(9﹣13)+(17﹣21)+…+(113﹣117)+121=﹣4×15+121=61∴S15+S22﹣S31=29﹣44﹣61=﹣76故选:A.点睛:利用数列相邻的两项结合和为定值﹣4,把数列的两项结合一组,根据n 的奇偶性来判断结合的组数,当n为偶数时,结合成組,每组为﹣4;当为奇数时,结合成組,每组和为﹣4,剩余最后一个数为正数,再求和.6. 对任意等比数列{an},下列说法一定正确的是( )A. a1,a3,a9成等比数列B. a2,a3,a6成等比数列C. a2,a4,a8成等比数列D. a3,a6,a9成等比数列【答案】D考点:等比数列的性质7. 设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=( )A. 31B. 32C. 63D. 64【答案】C【解析】试题分析:由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C考点:等比数列的前n项和.8. 如图所示,在△ABC中,已知,角C的平分线CD把三角形面积分为两部分,则cosA等于( )A. B. C. D. 0【答案】C【解析】∵A:B=1:2,即B=2A,∴B>A,∴AC>BC,∵角平分线CD把三角形面积分成3:2两部分,∴由角平分线定理得:BC:AC=BD:AD=2:3,∴由正弦定理得:,整理得:,则cosA= .故选C点睛:由A与B的度数之比,得到B=2A,且B大于A,可得出AC大于BC,利用角平分线定理根据角平分线CD将三角形分成的面积之比为3:2,得到BC与AC之比,再利用正弦定理得出sinA与sinB之比,将B=2A代入并利用二倍角的正弦函数公式化简,即可求出cosA的值.9. 根据下列情况,判断三角形解的情况,其中正确的是( )A. a=8,b=16,A=30°,有两解B. b=18,c=20,B=60°,有一解C. a=5,c=2,A=90°,无解D. a=30,b=25,A=150°,有一解【答案】D【解析】试题分析:A.a=8,b=16,A=30°,则B=90°,有一解;B.b=18,c=20,B=60°,由正弦定理得解得,因为,有两解;C.a =5,c=2,A=90°,有一解; D.a=30,b=25,A=150°,有一解是正确的.故选D.考点:三角形解得个数的判断.10. 如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向上,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行30 min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A. 20(+) n mile/hB. 20(-) n mile/hC. 20(+) n mile/hD. 20(-) n mile/h【答案】B【解析】由题意知SM=20,∠NMS=45°,∴SM与正东方向的夹角为75°,MN与正东方向的夹角为,60°∴SNM=105°∴∠MSN=30°,△MNS中利用正弦定理可得,,MN=n mile,∴货轮航行的速度v=n mile/h.故选:B.点睛:由题意知SM=20,∠SNM=105°,∠NMS=45°,∠MSN=30°,△MNS 中利用正弦定理可得,代入可求MN,进一步利用速度公式即可.11. 等差数列前项和为,已知则()A. B.C. D.【答案】B【解析】试题分析:因为两式相加得,故所以,又两式相减,易得,,故,选B.考点:等差数列点评:本题多项式为载体考查等差数列,关键是能结合等式合理变形得出,从而求解,属中档题.12. 已知定义在上的函数是奇函数且满足数列满足,(其中为的前项和),则A. B. C. D.【答案】C【解析】∵函数f(x)是奇函数∴f(﹣x)=﹣f(x)∵f(﹣x)=f(x),∴f(﹣x)=﹣f(﹣x)∴f(3+x)=∴f(x)是以3为周期的周期函数.∵数列{an}满足a1=﹣1,,∴a1=﹣1,且Sn=2an+n,∴a5=﹣31,a6=﹣63∴f(a5)+f(a6)=f(﹣31)+f(﹣63)=f(2)+f(0)=f(2)=﹣f(﹣2)=3故选C.点睛:先由函数f(x)是奇函数,f(﹣x)=f(x),推知f(3+x)=f(x),得到f(x)是以3为周期的周期函数.再由a1=﹣1,且Sn=2an+n,推知a5=﹣31,a6=﹣63计算即可.第Ⅱ卷(填空题、解答题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的横线上.13. 在等差数列中,当且仅当时, 取得最大值,且,则使的n的最大值是________.【答案】11【解析】因为,所以又因为当且仅当时, 取得最大值,所以故答案为11.14. 设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则q=________.【答案】【解析】试题分析:由已知可得,,两式相减得即,解得或(舍),答案为.考点:等比数列的性质与应用15. 在△ABC中,角A,B,C所对的边分别为a,b,c,若tan A=7tan B,,则c=___________.【答案】4【解析】∵tanA=7tanB,可得:sinAcosB=7sinBcosA,整理可得:8a2﹣8b2=6c2,①又②∴联立①②即可解得c=4.点睛:由已知利用同角三角函数基本关系式,余弦定理可得8a2﹣8b2=6c2,结合已知=3,即可解得c的值...................【答案】129【解析】设数列{an}的首项为a1,公比为q,由已知得2a3=a4+a5,∴2a1q2=a1q3+a1q4∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2,当q=1时,与Sk=33,Sk+1=﹣63矛盾,故舍去,∴q=﹣2,∴Sk=,Sk+1=,解之得qk=﹣32,a1=3,∴Sk+2=,故答案为:129.点睛:根据a4,a3,a5成等差数列,求出公比q,代入Sk=33,Sk+1=﹣63,求出qk﹣1代入Sk+2即可求出结果.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 在中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.(Ⅰ)求角A的值;(Ⅱ)求sin B-cos C的最大值.【答案】(1) ;(2)1.【解析】试题分析:由正弦定理得(a+b+c)(b+c-a)=3bc,再由余弦定理得b2+c2-a2=bc,∴cos A=,A=。
高二数学周测试卷(含答案)
2019-2020学年度文科数学周测试卷本试卷分第I卷和第II卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:分卷I一、选择题(共12小题,每小题5.0分,共60分)1.设集合M={xl(x+3)(x-2)<0},则MAN等于()A.(1.2)B.U.2JC.(2.3JD.[2.3]2.已知i为虚数单位,复数z=l+2i,z与5共辘,则zf等于()A.3B.V3C.V5D.53.(2O18・全国III)若sina=f则cos2a等于()A.5B.IC.~lD.4.为了得到函数y=3sin(2x+§,XGR的图象,只需把函数y=3sin(x+5.XER的图象上所有点的()A. 横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的?倍,纵坐标不变C. 纵坐标伸长到原来的2倍,横坐标不变D. 纵坐标缩短到原来的!倍,横坐标不变5. 设向量c=(2.0), h=(l,l).则下列结论中正确的是()A,lal=ISI B.a b=0 C.all b D.(a—b)b6.函数y=log a(x-l)+2(a>09Hl)的图象恒过点()A.(1.2)B.(2,2)C.(23)D.(4.4)7.圆"+尸=4截直线岳+y—2旧=0所得的弦长为()10.某中学有高中生3 500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为。
的样本,已知从高中生中抽取70人,则”为()A.100B. 150C.200D.25011.己知定义在R上的可导函数人x)的导函数为f(x),满足/VX/OO,且y(x+2)为偶函数,f(4)=l,则不等式f(x)<e的解集为()A.(一2,+cc)B. (O.+对C.(1,+oc)D.(4,+oo)12.己知直线/的参数方程为为参数.t£R)・极坐标系的极点是平而直角坐标系的原点。
高二数学简单几何体测试卷试题
二中高二数学简单几何体测试卷单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明2021. 3一、选择题: (每一小题5分, 一共60分)1. 用一个平面去截正方体,所得的截面不可能...是 ( ) 〔A 〕六边形 〔B 〕菱形 〔C 〕梯形 〔D 〕直角三角形2. 一个简单多面体的各个顶点处都有三条棱,那么顶点数V 与面数F 满足的关系式是( )〔A 〕2F+V=4 〔B 〕2F -V=4 〔C 〕2F+V=2 〔D 〕2F -V=23. 直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,那么四棱锥B-APQC 的体积为 ( )〔A 〕2V 〔B 〕3V 〔C 〕4V 〔D 〕5V4. 三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,那么以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 ( ) 〔A 〕4π 〔B 〕3π 〔C 〕2π 〔D 〕32π 5. 斜棱柱底面和侧面中矩形的个数最多可有 ( ) 〔A 〕2个 〔B 〕3个 〔C 〕4个 〔D 〕6个6. 球面的三个大圆所在平面两两垂直,那么以三个大圆的交点为顶点的八面体的体积与球体积之比是 ( ) 〔A 〕2∶π 〔B 〕1∶2π 〔C 〕1∶π 〔D 〕4∶3π7. 如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,那么C 1在底面ABC 上的射影H 必在 ( )〔A 〕直线AB 上 〔B 〕直线BC 上 〔C 〕直线AC 上 〔D 〕△ABC 内部ABCA 1B 1C 1ABC DA 1B 1C 1D 1P Q〔第7题图〕 (第8题图)8. 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a,那么三棱锥P -BDQ 的体积为 ( )〔A 〕3363a 〔B 〕3183a 〔C 〕3243a 〔D 〕无法确定 9. 球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,那么此球的体积为( ) 〔A 〕33312cm π 〔B 〕33316cm π 〔C 〕3316cm π 〔D 〕3332cm π10. 如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外外表,用一根细铁丝缠绕,组成10个螺旋,假如铁丝的两端恰好落在圆柱的同一条母线上,那么铁丝长度的最小值为 ( ) 〔A 〕61cm 〔B 〕157cm 〔C 〕1021cm 〔D 〕1037cm 11. 四棱锥P -ABCD 的底面为平行四边形,设x =2PA 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,那么x ,y之间的关系为 ( ) 〔A 〕x >y 〔B 〕x =y 〔C 〕x <y 〔D 〕不能确定12. 如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,那么该棱柱体积的最小值为 ( ) 〔A 〕34 〔B 〕33 〔C 〕4 〔D 〕3ABCA 1B 1C 1二、填空题: (每一小题4分, 一共16分)13. 球面上有3个点, 其中任意两点的球面间隔 都等于大圆周长的61, 经过这3点的小圆的周长为4 , 那么这个球的半径为_____________14. 如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P-AEB恒为定值〔写上你认为正确的一个答案即可〕.ABCDEPABCDEM〔第14题图〕 〔第15题图〕15. 如图,在四棱锥E -ABCD 中,底面ABCD 为梯形,AB ∥CD ,2AB =3DC ,M 为AE 的中点,设E-ABCD 的体积为V ,那么三棱锥M -EBC 的体积为 .16. 如图,在透明材料制成的长方体容器ABCD —A 1B 1C 1D 1内灌注一些水,固定容器底面一边BC于桌面上,再将容器倾斜度的不同,有以下命题:〔1〕水的局部始终呈棱柱形;〔2〕水面四边形EFGH 的面积不会改变;〔3〔4〕当容器倾斜如下图时,BE ·BF三、解答题: (12分×5+14=74分)17.(此题12分)一圆柱被一平面所截,截口是一个椭圆.椭圆的长轴长为5,短轴长为4,被截后几何体的最短侧面母线长为1,求该几何体的体积。
上海市青浦高级中学2023-2024学年高二上学期12月质量检测数学试卷
上海市青浦高级中学2023-2024学年高二上学期12月质
量检测数学试卷
学校:___________姓名:___________班级:___________考号:___________
二、单选题
13.已知直线1
:10l ax y ++=与直线2:20l x ay +-=,则“12l l //”是“1a =”的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
14.设a ,b 表示空间的两条直线,α表示平面,给出下列结论:
(1)若//a b 且b a Ì,则//a a
(2)若//a a 且b a Ì,则//a b
(3)若//a b 且//a a ,则//b a
(4)若//a a 且//b a ,则//a b
其中不正确的个数是( )
A .1
B .2个
C .3个
D .4个
15.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
(1)求椭圆的标准方程;
(2)若以线段PQ 为直径的圆过点2F ,求直线l 的方程;
(3)若AQ AP l =uuu r uuu r ,求实数l 的取值范围.。
高二数学学探诊测试卷答案
高二数学学探诊测试卷答案1、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>42、28.下列计算结果正确的是()[单选题] *A.(a3)4=a12(正确答案)B.a3?a3=a9C.(﹣2a)2=﹣4a2D.(ab)2=ab23、24.下列各数中,绝对值最大的数是()[单选题] *A.0B.2C.﹣3(正确答案)D.14、6.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点( ) [单选题]* A.(-3,2)B.( 3/2,-1)C.(2/3,-1)(正确答案)D.( -2/3,1)5、21、在中,为上一点,,且,则(). [单选题] *A. 24B. 36C. 72(正确答案)D. 966、9.如图,下列说法正确的是()[单选题] *A.直线AB与直线BC是同一条直线(正确答案)B.线段AB与线段BA是不同的两条线段C.射线AB与射线AC是两条不同的射线D.射线BC与射线BA是同一条射线7、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数8、花粉的质量很小,一粒某种植物花粉的质量约为000037毫克,已知1克=1000毫克,那么000037毫克可用科学记数法表示为[单选题] *A. 7×10??克B. 7×10??克C. 37×10??克D. 7×10??克(正确答案)9、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12010、17. 的计算结果为()[单选题] *A.-7B.7(正确答案)C.49D.1411、22、在平面直角坐标系中,已知点P,在轴上有点Q,它到点P的距离等于3,那么点Q的坐标是()[单选题] *(0,3)(0,5)(0,-1)(0,5)或(0,-1) (正确答案)12、下列各对象可以组成集合的是()[单选题] *A、与1非常接近的全体实数B、与2非常接近的全体实数(正确答案)C、高一年级视力比较好的同学D、与无理数相差很小的全体实数13、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)14、8.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()[单选题] *A.+2B.-3C.+9D.-8(正确答案)15、19.对于实数a、b、c,“a>b”是“ac2(c平方)>bc2(c平方) ; ”的()[单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件16、4.同一条直线上三点A,B,C,AB=4cm,BC=2cm,则AC的长度为()[单选题] *A.6cmB.4cm或6cmC.2cm或6cm(正确答案)D.2cm或4cm17、按顺时针方向旋转形成的角是(). [单选题] *A. 正角B. 负角(正确答案)C. 零角D. 无法判断18、下列计算正确是()[单选题] *A. 3x﹣2x=1B. 3x+2x=5x2C. 3x?2x=6xD. 3x﹣2x=x(正确答案)19、16.若过多边形的每一个顶点只有6条对角线,则这个多边形是()[单选题] * A.六边形B.八边形C.九边形(正确答案)D.十边形20、函数y= 的最小正周期是()[单选题] *A、B、(正确答案)C、2D、421、6.数学文化《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向西走9米记作米,则米表示()[单选题] *A向东走5米(正确答案)B向西走5米C向东走4米D向西走4米22、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数23、下列运算正确的是()[单选题] *A. a2?a3=a?B. (﹣a3)2=﹣a?C. (ab)2=ab2D. 2a3÷a=2a2(正确答案)24、在0°~360°范围中,与-120°终边相同的角是()[单选题] *240°(正确答案)600°-120°230°25、14.命题“?x∈R,?n∈N*,使得n≥x2(x平方)”的否定形式是()[单选题] * A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?x∈N*,使得n<x2C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2(正确答案)26、49.若(x+2)(x﹣3)=7,(x+2)2+(x﹣3)2的值为()[单选题] *A.11B.15C.39(正确答案)D.5327、25.下列式子中,正确的是()[单选题] *A.﹣|﹣8|>7B.﹣6<|﹣6|(正确答案)C.﹣|﹣7|=7D.|﹣5|<28、3.课间操时,小华、小军、小刚的位置如图.小华对小刚说:“如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成()[单选题] *A.(5,4)B(4,5)C(3,4)D(4,3)(正确答案)29、12.已知点P(m,n),且mn>0,m+n<0,则点P在() [单选题] *A.第一象限B.第二象限C.第三象限(正确答案)D.第四象限30、7. 3位同学准备去学校饭堂吃午饭,学校饭堂有2个,则不同的去法共有( )种.[单选题] *A. 2+3=5种B.2×3=6种C.3×3=9种D.2×2×2=8种(正确答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学周测7
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若椭圆的一个焦点是,则实数( )
A .
B .
C .
D .
2.直线1:60l x my ++=和()2:2320l m x y m -++=平行,则m 的值为( ) A .1-或3
B .3
C .1-
D .1或3-
3.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是( ) A .4x +3y =0 B .4x -3y =0或x +y +1=0 C .4x -3y =0 D .4x +3y =0或x +y +1=0
4.若双曲线(,)的一条渐近线方程为,
则其离心率为( ) A
B .
C
D .
5.已知椭圆
的焦点在轴上,且焦距为,则等于( ) A .4 B .5 C .7 D .8
6.已知离心率为的双曲线(,)与椭圆有公共焦点,则双曲线的方程为( )
A .
B .
C .
D . 7.已知双曲线的一条渐近线是,则双曲线的离心率是( )
A .
B
C .
D .
8.已知圆2
2
:10210C x y y +-+=与双曲线22
221(0,0)x y a b a b
-=>>的渐近线相切,则该
双曲线的离心率是( ) A
B .5
3
C .
52
D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,
有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9.已知点,点,直线:(其中),若直线与线段有公共点,则可能的取值是( ) A .
B .
C .
D .
22
55x ky +=(0,2)k =521
1152522
31mx ny -=0m >0n >2y x =2
2
22
1102
x y m m +=--y 4m 222221x y a b -=0a >0b >22
184
x y +
=221412x y -
=221124x y -=22
13y x -=2213
x y -=2
2
2:1y C x b
-=y =C 234)0,2(A )0,2(-B l 04)1()3(=--++λλλy x λ∈R l AB λ0124
10.已知点是双曲线的右支上一点,双曲线的左、右焦点,的面积为,则下列说法正确的有( )
A .点的横坐标为
B .的周长为
C .小于
D .的内切圆半径为
11.已知双曲线C :22
221(0,0)x y a b a b
-=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则
能使双曲线C 的方程为22
1169
x y -=的是( )
A .离心率为5
4
B .双曲线过点95,4⎛⎫
⎪⎝⎭
C .渐近线方程为340±=x y
D .实轴长为4
12.1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的
向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( ) A .卫星向径的取值范围是[a ﹣c ,a +c ]
B .卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间
C .卫星向径的最小值与最大值的比值越大,椭圆轨道越扁
D .卫星运行速度在近地点时最大,在远地点时最小 三、填空题:本大题共4小题,每小题5分.
13.已知向量(1,2)=-a ,(,1)m =b .若向量+a b 与a 垂直,则m =__.
14.已知点在双曲线()上,则双曲线的离心率是 .
15.已知圆和点,是圆上一点,线段的垂直平分线
交于点,则点的轨迹方程为_________.
16.已知直线l :y kx =被圆C :()()2
2
124x y -++=截得的弦长为23则k =______,圆C 上到直线l 的的距离为1的点有______个.
P 22
:1169x y E -
=12F F E 12PF F △20P 203
12PF F △803
12F PF ∠π312PF F △3
2
15)22
2:112
x y C a -
=0a >C 22
:(3)48C x y ++=(3,0)B P BP CP M M
四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演
算步骤.
17.(本小题满分10分)在①其中一条渐近线方程为y=x ,②等轴双曲线,③,这三个条件中任选一个,补充在下面问题中;双曲线过点. (1)求双曲线的标准方程;
(2)求该双曲线焦点坐标和焦点到渐近线的距离. 注:如果选择多个条件分别解答,则按第一个解答计分.
18.(本小题满分12分)已知双曲线. (1)若,求双曲线的焦点坐标、顶点坐标和渐近线方程; (2)若双曲线的离心率为,求实数的取值范围.
19.(本小题满分12分)已知椭圆()的离心率为,,是椭圆的左、右焦点,短轴长为. (1)求椭圆的方程;
(2)过右焦点的直线与椭圆相交于,两点,若
,求直线的方程.
e =(4,22
:15
x y E m -
=4m =E E e ∈m 2222:1x a C y b +=0a b >>1F 2
F
2C 2F l C A B OAB △l
20.(本小题满分12分)已知椭圆()222210x y a b a b +=>>F 是其右焦
点,直线y kx =与椭圆交于A ,B 两点,8AF BF +=. (1)求椭圆的标准方程;
(2)设()3,0Q ,若AQB ∠为锐角,求实数k 的取值范围.
21.(本小题满分12分)已知圆22:410()C x y x ay a R +-++=∈,过定点(0,1)P 作斜
率为1-的直线交圆C 于A
B 、两点,P 为AB 的中点. (1)求实数a 的值;
(2)从圆外一点M 向圆C 引一条切线,切点为N ,且有MN =,求MN 的最小值.
22.(本小题满分12分)已知椭圆2222:1(0)x y a b a b Γ+=>>过点,设椭圆Γ的上顶点
为B ,右顶点和右焦点分别为A ,F ,且56
AFB π
∠=.
(1)求椭圆Γ的标准方程;
(2)设直线:(1)l y kx n n =+≠±交椭圆Γ于P ,Q 两点,设直线BP 与直线BQ 的斜率分别为BP k ,
BQ k ,若1BP BQ k k +=-,试判断直线l 是否过定点?若过定点,求出该定点的坐标;若不过定点,
请说明理由.。