高数无穷小、无穷大极限运算法则

合集下载

高数求极限运算法则

高数求极限运算法则

高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。

极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。

因此,高数求极限的运算法则的掌握就显得尤为重要。

一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。

二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。

2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。

3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。

4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。

5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。

6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。

三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。

大一高数函数极限知识点

大一高数函数极限知识点

大一高数函数极限知识点函数极限是高等数学中的重要概念之一,它是分析函数性质和求解各种数学问题的基础。

在大一高数课程中,函数极限是必修内容,下面将介绍几个常见的函数极限知识点。

一、基本极限公式在求解函数极限的过程中,常用的基本极限公式有以下几个:1. 当n趋向于无穷大时,$\lim_{n \to \infty}\frac{1}{n^p} = 0$,其中p是大于0的实数。

2. 当x趋向于无穷大时,$\lim_{x \to \infty}\frac{1}{x^p} = 0$,其中p是大于0的实数。

3. $\lim_{x \to 0}\frac{sinx}{x} = 1$。

4. $\lim_{x \to \infty}(1+\frac{1}{x})^x = e$,其中e是自然对数的底数。

这些基本极限公式在求解各种函数极限时非常常用,熟练掌握它们可以简化计算过程。

二、函数极限的性质函数极限具有一些重要的性质,下面介绍两个常用的性质。

1. 函数极限的唯一性:如果$\lim_{x \to x_0}f(x) = A$,且$\lim_{x \to x_0}f(x) = B$,那么A=B。

即函数在某一点的极限存在时,它的极限值是唯一确定的。

2. 函数极限的四则运算法则:设$\lim_{x \to x_0}f(x) = A$,$\lim_{x \to x_0}g(x) = B$,其中A、B都存在,则有以下四则运算法则:(1)$\lim_{x \to x_0}[f(x) \pm g(x)] = A \pm B$(2)$\lim_{x \to x_0}[f(x) \cdot g(x)] = A \cdot B$(3)$\lim_{x \to x_0}\frac{f(x)}{g(x)} = \frac{A}{B}$,其中B不等于0。

这些性质在计算复杂函数极限时非常有用,可以简化计算步骤。

三、函数极限的求解方法对于一些特殊函数,我们需要使用一些特殊的求解方法来计算其极限。

高数1-3无穷小无穷大与极限运算法则

高数1-3无穷小无穷大与极限运算法则

lim f ( x) A , lim g ( x) B,
且 f ( x) g ( x),

A B .
( P45 定理 5 ) 提示: 令 ( x) f ( x) g ( x)
1.lim(2 x 1)
x 1
x 1 2.lim 2 x 2 x 5 x 3
3
*. 设有分式函数
n n
(1) lim ( xn yn ) A B
n
(2) lim xn yn AB
n
xn A (3) 当 yn 0 且 B 0时, lim n y n B
提示: 因为数列是一种特殊的函数 , 故此定理 可由 定理3 直接得出结论 .
定理 5 :若
3. 求 解法 1 原式 = lim
x x2 1 x
x
lim
x
1 1 1 1 2 1 2 x
1 则 t 0 令t , x 2 1 1 1 1 t 1 原式 = lim 2 1 lim t0 t t0 t t2 t 1 1 lim 2 2 t 0 1 t 1
定理1. 有限个无穷小的和还是无穷小 . 证: 考虑两个无穷小的和 . 设
0 ,
当 当
时,有 时,有
取 min 1 , 2 , 则当 0 x x0 时, 有
2 2
因此
这说明当
时,
为无穷小量 .
定理2.有界函数与无穷小的乘积是无穷小。 推论1.常数与无穷小的乘积是无穷小。
备选题 设
求 解:
是多项式 , 且
利用前一极限式可令
f ( x) 2 x 3 2 x 2 a x b

高数极限1-6

高数极限1-6

∴ ( 2)成立.
f ( x ) A A + α A Bα − Aβ − = Q B α − A β → 0. − = g ( x ) B B + β B B( B + β )
又 Q β → 0, B ≠ 0, ∃ δ > 0, 当0 < x − x 0 < δ时,
1 1 B β < , ∴ B+β ≥ B − β > B − B = B 2 2 2
一、极限运算法则: 极限运算法则
定理1 在同一过程中,有限个无穷小的代数和仍是 定理 在同一过程中 有限个无穷小的代数和仍是 无穷小. 无穷小 注意 无穷多个无穷小的代数和未必是无穷小. 无穷多个无穷小的代数和未必是无穷小.
1 是无穷小, 例如, n → ∞时, 是无穷小, n
1 但 n个 之 和 为 1 不 是 无 穷 小 . n
u →a
则复合函数 f [φ ( x)] 当 x → x0 时的极限也存在,且
x → x0
lim f [φ ( x)] = lim f (u ) = A.
u →a
意义: 意义:x → 源自0lim f [ϕ ( x )]
令u = ϕ(x)
a = limϕ(x)
x→x0
lim f ( u)
u→a →
二、求极限方法举例
xm − xn 7、 lim m x →1 x + xn − 2
练习题答案
-5; 一、1、-5; 5、 5、0; 二、1、2; 1 5、 5、 ; 2 2、 2、3; 6、 6、0; 2、 2、 2 x ; 6、 6、0; 3、 3、2;
1 7、 7、 ; 2 3、-1; 3、-1; m−n 7、 7、 . m+n 1 4、 4、 ; 5 3 30 8、 8、( ) . 2 4、-2; 4、-2 ;

高数函数的极限知识点

高数函数的极限知识点

高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。

2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。

二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。

2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。

3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。

三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。

大一高数极限知识点笔记

大一高数极限知识点笔记

大一高数极限知识点笔记一、基本概念:在数学中,极限是描述一个数列或者函数在逼近某一数值时的行为的概念。

在大一高数中,我们将会学习一些基本的极限知识点,让我们一起来看一看吧!1. 数列的极限数列的极限是指当n趋近于无穷大时,数列的项趋于某个常数L。

即当n趋近于无穷大时,数列的项与L的差趋近于零。

2. 函数的极限函数的极限是指当自变量x趋近于某个数a时,函数的值趋于某个常数L。

即当x趋近于a时,函数f(x)与L的差趋近于零。

二、常见的极限计算方法:在计算极限时,我们常常使用以下几种方法:1. 代入法对于一些简单的函数,在计算极限时我们可以直接将自变量的值代入函数中,得到极限的结果。

2. 分式的化简当函数为分式形式时,我们可以通过化简分式的形式,将其化为更简单的形式来计算极限。

3. 极限的性质极限具有一些基本的运算性质,比如极限的和、差、积、商的性质,我们可以利用这些性质来计算复杂函数的极限。

4. 夹逼定理夹逼定理是一种常用的极限计算方法,它的核心思想是通过找到两个函数夹住待求函数,并且这两个函数的极限相同,从而得到待求函数的极限。

三、常见的极限公式:在计算极限时,我们还可以利用一些常见的极限公式来简化计算,以下是一些常见的极限公式:1. 基本的极限公式- lim(x→0) sin(x)/x = 1- lim(x→∞) (1+1/x)^x = e2. 无穷小与无穷大的极限- lim(x→0) a^x - 1/x = ln(a)- lim(x→0) (1+x)^(1/x) = e3. 三角函数的极限- lim(x→0) (1-cos(x))/x^2 = 1/2- lim(x→0) (sin(x))/x = 1四、总结:通过学习大一高数的极限知识点,我们可以更好地理解数列和函数的极限行为,从而为后续的数学学习打下坚实的基础。

通过掌握极限的基本概念、常见的计算方法以及公式,我们可以更加高效地求解各种复杂的极限题目。

高考高数知识点总结

高考高数知识点总结

高考高数知识点总结高考对于每一个学生来说都是一次重要的考试,而其中的数学科目更是让很多学生头疼的难题。

高考数学中,高等数学是其中一个难点,涵盖的内容较广,涉及的知识点较多。

为了帮助同学们更好地备考高数,下面将对高考高数的知识点进行总结,希望对同学们有所帮助。

一、函数与极限1. 函数的定义域、值域、单调性以及图像的绘制方法。

2. 极限的定义及其性质,常用的极限运算法则。

3. 无穷大与无穷小的概念,无穷小量的比较与性质。

二、导数与微分1. 导数的定义及其几何意义,导数的性质与常用求导法则。

2. 高阶导数的概念,高阶导数与原函数的关系。

3. 微分的概念及其应用,微分的计算与应用。

三、不定积分与定积分1. 不定积分的定义与基本性质,常用的不定积分法则。

2. 定积分的概念及其性质,定积分的计算与应用。

3. 牛顿-莱布尼茨公式与定积分的几何应用。

四、微分方程1. 一阶微分方程的概念与解法,常见的一阶微分方程型。

2. 高阶微分方程的概念与解法,可降阶的高阶微分方程。

3. 变量分离与同解微分方程的解法。

五、向量及其运算1. 向量的定义及其表示方法,向量的加法与数乘。

2. 向量的线性相关性与线性无关性,向量的共线性与垂直性。

3. 平面向量的数量积与向量积,向量积的应用。

六、空间解析几何1. 空间点的位置与坐标,空间直线与平面的位置与方程。

2. 直线的方向向量与点向式方程,直线与平面的位置关系。

3. 空间中直线与直线、直线与平面的位置关系。

七、数列与数学归纳法1. 数列的概念及其相关术语,数列的通项公式与和的计算。

2. 数列的极限与无穷项级数收敛性判定。

3. 数学归纳法及其应用。

以上仅为高考高数知识点总结的一部分,每个知识点都需要彻底理解并进行大量的练习。

除了掌握这些知识点外,同学们还需要注重做题技巧的积累与应用,不断提高解题的速度与准确性。

在备考过程中,要保持积极的心态,相信自己的实力,相信付出一定会有回报。

祝愿所有参加高考的同学们取得优异的成绩!。

高数大一上知识点极限

高数大一上知识点极限

高数大一上知识点极限在大学数学课程中,高等数学是大多数学生必修的一门课程。

而高等数学的核心内容之一就是极限。

极限是数学分析中的重要概念,是理解微积分的基础。

在大一上学期,学生们会学习到一些关于极限的基础知识点,本文将概述这些知识点。

一、函数的极限在高数中,函数的极限是一个基本的概念。

函数的极限可以理解为自变量趋于某个值时,函数取值的趋势。

1. 无穷大与无穷小当自变量趋于正无穷或负无穷时,函数的极限可能会是无穷大或无穷小。

例如,对于函数f(x)=1/x,在x趋于正无穷时,函数的极限是0;而在x趋于0时,极限是正无穷。

函数的无穷大与无穷小的概念对于后续的微积分学习非常重要。

2. 函数的左极限和右极限对于一些特殊函数,比如分段函数,函数的极限可能存在左极限和右极限。

左极限指的是自变量趋于某个值时,函数的极限值从左侧逼近;右极限则相反。

例如,对于函数g(x)=|x|,在x=0这个点,左极限是0,右极限也是0。

3. 基本极限公式在计算极限时,有一些基本的公式可以借助。

例如,当函数中含有多项式时,可以利用多项式的最高次项来确定极限的值。

另外还有三角函数的极限公式等等。

二、极限的性质极限具有一些基本的性质,这些性质对于理解和计算极限非常有帮助。

1. 唯一性函数的极限值在一定条件下是唯一确定的。

也就是说,如果函数在某个点有极限,那么这个极限是唯一的。

2. 有界性如果函数在某个点有极限,那么在某个邻域内,函数的取值是有界的。

这个性质可以通过极限的定义推导出来。

3. 保序性如果函数在某个点的极限存在,那么在该点的邻域内,函数的取值保持一定的顺序关系。

也就是说,如果两个函数f(x)和g(x)在某个点的极限存在,并且在该点的邻域内f(x)≤g(x),那么在该邻域内任意点f(x)≤g(x)。

三、极限的计算方法计算函数的极限是高等数学中的一项重要任务,针对不同的函数,有不同的计算方法。

1. 代入法当函数在某个点的极限存在时,可以直接将自变量代入函数,计算函数的值。

知识点总结高数一

知识点总结高数一

知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。

数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。

函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。

极限的性质包括唯一性、有界性、局部性、夹逼性等。

2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。

3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。

无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。

在极限运算中,无穷小和无穷大的性质十分重要。

4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。

连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。

二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。

求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。

2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。

3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。

微分公式包括基本微分公式、换元法、分部积分法等。

4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。

三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。

高数§1.4 无穷小与无穷大

高数§1.4 无穷小与无穷大
x x0
lim f ( x ) . ( lim f ( x ) ).
x
•讨论
1. 很大很大的数是否是无穷大? 2. 无穷大的精确定义如何叙述?

•提示 lim f ( x) M0 d 0 当0|xx0|d 时有|f(x)|M
lim f ( x ) M0 X0 当|x|>X 时有|f(x)|>M
f ( x) A
对自变量的其它变化过程类似可证 .
x x0
lim 0
6
下页
二、 无穷大 无穷大的定义
如果当xx0(或x)时 对应的函数值的绝对值|f(x)|无限增大 那么称函数f(x)为xx0(或x)时的无穷大。 记为:
x x0
ቤተ መጻሕፍቲ ባይዱ
lim f ( x ) . ( lim f ( x ) ).
15
设 及 是当xx0时的两个无穷小 d10 d20
取d min{d1 d2}
下页
三、无穷小的性质(P42)
•定理1 有限个无穷小的和也是无穷小
例如 当x0时 x与sin x都是无穷小 所以xsin x也是当x0时的无穷小
16
下页
三、无穷小的性质(P42)
•定理1 有限个无穷小的和也是无穷小
•定理2 有界函数与无穷小的乘积是无穷小 证明 设函数 f 在x0的某一去心邻域{x|0|xx0|d1}内有界 即 M0 使当0|xx0|d1时 有|f |M 又设是当xx0时的无穷小 即0 存在d20 使当0|xx0|d2时 有|| 取dmin{d1 d2} 则当0|xx0|d 时 有 |f ||f |||M 这说明f 也是当xx0时的无穷小
1 ( 2) lim f ( x ) 0, 且f ( x ) 0 lim . x x0 x x0 f ( x) ( x ) ( x )

高等数学第3课无穷小量与无穷大量、极限的运算法则4

高等数学第3课无穷小量与无穷大量、极限的运算法则4
定义 2 在自变量的某个变化过程中,绝对值无限增大的函数 称为无穷大量,简称无穷大,记作 lim f (x) .
例如,当 x 1时, 1 无限增大,所以当 x 1时, 1
x 1
x 1
是无穷大,即 lim 1 . x1 x 1
2.无穷大与无穷小的关系
定理 2 在同一变化过程中,无穷大量的倒数必是无穷小量; 非零无穷小量的倒数必是无穷大量.
穷小量;当 x 时, cos x 是无穷小量. 2
例 1 下列变量在自变量怎样的变化过程中为无穷小量:
(1)
x
1 1
;(2)
2x
4
;(3)
2x
;(4)
1 4
x

解 (1)因为 lim 1 0 ,所以当 x 时, 1 为无穷
x x 1
x 1
小量.
(2)因为 lim(2x 4) 0 ,所以当 x 2 时, 2x 4 为无穷 x2
通过测试,了解 学生对知识点的 掌握情况,加深学 生对本节课知识 的印象
第二节课
【教师】讲解极限的四则运算法则,并通过例题讲解介绍其应 用
定理 1 若 limu(x) A , limv(x) B ,则:
(1) lim[u(x) v(x)] limu(x) limv(x) A B ;
(2) lim[u(x) v(x)] limu(x) limv(x) A B ;
x1
lim
x2
3x
2
lim(x2
x1
3x
2)
0
0.
x1 4x 3
lim(4x 3) 4 3
x1
由无穷小量与无穷大量的倒数关系,得
5
3第 课 无穷小量与无穷大量、极限的运算法则

高数函数极限运算法则

高数函数极限运算法则

高数函数极限运算法则函数极限运算是高等数学中一门重要的分支,它有助于阐明定理、证明公式、验证函数形式以及求函数值。

本文从三个方面,分别介绍函数极限的定义、概念及其。

一、定义函数极限运算(Function Limit Computation)是指当函数f(x) 中的x变化时,极限的概念用来表示函数的某些特性,比如这个函数的值的朝向、变化率等,以及这个函数可能到达的最大值或最小值。

在定义上,极限可以用函数f(x)中变量x的极限定义来表示,即:lim〖f(x)〗=L (x→a)其中L是一个常数,a是x的一个值或一组值,表示x→a时,f(x)的值准备趋近于L。

二、概念函数极限运算的目的是确定当x接近某个值(或称为无穷小值)时,f(x)的值是否保持恒定或出现忽略小量变化的趋势。

需要注意的是,在瞬时的情况下,f(x)的值是可以改变的,但是当x接近某个值时,f(x)的值可能保持恒定或是出现小量变化的趋势。

在确定极限的时候,我们需要考虑的概念有:有界极限和无界极限;连续极限和离散极限;对称极限和不对称极限;有穷极限和无穷极限;正极限和负极限等。

此外,在特殊情况下,我们还会考虑复数极限、多元极限和多元函数极限等概念。

三、运算在定义及概念的基础上,我们可以开始探讨运算函数极限的方法,其中包括求取函数极限的量化方法、求取极限的特殊性方法、求取函数极限的图解方法等。

1、量化方法利用量化方法求取函数极限,要从函数f(x)中提取特定的变量x,然后利用极限定义,即lim〖f(x)〗=L (x→a),将f(x)变为L,最后采用代数运算,得出L的值,从而求出极限值。

2、特殊性方法利用特殊性方法求取函数极限,通过分析函数的特殊性,搜索到适用的极限求取方法,再根据某种特殊性求取极限值。

3、图解方法图解方法是求取函数极限的一种最简单的计算方法,这种方法通过绘图的形式,可以根据函数图形的特点,用直观的方式来判断函数极限的值。

综上所述,函数极限运算是高等数学中一门重要的分支,它与函数及其定义、概念及运算有着密切的联系,有助于阐明定理、证明公式、验证函数形式以及求函数值。

专升本高数知识点归纳整理

专升本高数知识点归纳整理

专升本高数知识点归纳整理专升本高数是许多学生在继续深造过程中必须面对的一门重要课程。

它不仅涵盖了高等数学的基础知识点,还包含了一些更高级的数学概念和方法。

以下是对专升本高数知识点的归纳整理:一、极限与连续性- 极限的定义:数列极限、函数极限- 极限的性质:唯一性、有界性、保号性- 极限的运算法则:加、减、乘、除- 无穷小与无穷大- 连续性的定义:函数在某点的连续性- 连续函数的性质:局部有界性、最值定理二、导数与微分- 导数的定义:导数的几何意义、物理意义- 导数的运算法则:和、差、积、商- 高阶导数- 隐函数与参数方程的导数- 微分的概念:一阶微分- 微分中值定理:罗尔定理、拉格朗日中值定理三、积分学- 不定积分:换元积分法、分部积分法- 定积分:定积分的定义、性质、计算- 定积分的应用:面积、体积、物理量- 反常积分:无穷限积分、无界函数积分四、级数- 级数的概念:数项级数、函数项级数- 级数的收敛性:正项级数、交错级数、绝对收敛- 幂级数:泰勒级数、麦克劳林级数- 函数展开:泰勒公式五、多元函数微分学- 偏导数:一阶偏导数、二阶偏导数- 全微分- 多元函数的极值问题- 多元函数的泰勒展开六、多元函数积分学- 二重积分:直角坐标系、极坐标系- 三重积分:空间几何体的积分计算- 曲线积分:第一类曲线积分、第二类曲线积分- 曲面积分:第一类曲面积分、第二类曲面积分七、常微分方程- 一阶微分方程:可分离变量方程、一阶线性微分方程- 高阶微分方程:常系数线性微分方程- 微分方程的应用:物理、工程问题结束语专升本高数的学习是一个系统而深入的过程,需要学生具备扎实的数学基础和良好的逻辑思维能力。

通过不断的练习和思考,学生可以逐步掌握高数的精髓,为今后的学术研究和职业发展打下坚实的基础。

希望以上的知识点归纳整理能够对专升本高数的学习者有所帮助。

大一高数考试必背知识点

大一高数考试必背知识点

大一高数考试必背知识点
在大一高数考试中,准备充分且掌握重要的知识点非常重要。

下面是一些大一高数考试必背的知识点,希望对你有所帮助。

一、函数与极限
1. 函数的定义和性质
2. 极限的定义和性质
3. 极限运算法则
4. 无穷小与无穷大
5. 函数的连续性和间断点
6. 函数的导数和微分
二、导数与微分
1. 导数的定义和性质
2. 导数的四则运算与求导法则
3. 高阶导数和隐函数求导
4. 微分的定义和性质
5. 微分中值定理和罗尔定理
三、积分
1. 不定积分和定积分的概念
2. 基本积分表和常用积分公式
3. 定积分的性质和基本定理
4. 反常积分的概念和判定
5. 曲线的面积与弧长
四、微分方程
1. 微分方程的概念和基本形式
2. 一阶微分方程的解法
3. 高阶线性微分方程及其特解
4. 变量分离法和齐次方程
5. 常系数线性齐次方程
五、多元函数与偏导数
1. 多元函数的定义和性质
2. 偏导数的定义和计算
3. 隐函数的偏导数
4. 方向导数和梯度
5. 极值和最大值最小值
六、空间解析几何
1. 点、直线和平面的方程
2. 空间曲线的参数方程
3. 空间曲面的方程和性质
4. 直线与曲面的位置关系
5. 空间向量的运算和坐标表示
以上是大一高数考试必背的知识点,通过充分理解这些知识点并进行适当的练习和应用,相信你将能够在考试中取得好成绩。

祝你顺利通过考试!。

大一高数求极限的方法总结

大一高数求极限的方法总结

大一高数求极限的方法总结大一高等数学中,求极限是一个非常重要的概念和技巧。

在学习求极限的过程中,我们需要掌握一些基本的方法和技巧。

下面是对一些常用的求极限方法进行总结。

一、无穷小量代换法当我们在求一个函数的极限时,可以将函数中的无穷小量用一个新的无穷小量来代替,从而简化计算。

例如,当求极限lim(x->0)(sinx)/x时,可以将sinx用x来代替,即lim(x->0)x/x=1二、夹逼定理夹逼定理是一种非常常用的求极限方法。

当我们无法直接计算一个函数的极限时,可以通过找到两个已知的函数,使它们的极限分别为L和L’,并且夹在待求函数的极限值周围时,我们可以得出待求函数的极限也为L。

三、洛必达法则洛必达法则是一种非常常用的求导法则,它可以用来求解一些不定型的极限。

当我们在计算一个函数的极限时,如果得到的结果为0/0或者∞/∞的形式,那么我们可以使用洛必达法则来求解极限。

具体做法是对分子和分母同时求导,并再次计算极限,直到得到一个有限的值。

四、泰勒展开法当我们计算一些函数在一点的极限时,可以使用泰勒展开来逼近函数的值。

泰勒展开是将一个函数表示为无限项的级数,通过截取有限项来逼近函数的值。

这样可以大大简化我们的计算过程。

五、换元法有时候我们可以通过进行一些变量的替换来改变函数的形式,从而更容易求解极限。

例如,当我们计算lim(x->0)(3^(2x)-2^x)时,可以令y=2^x,然后再进行计算,就可以得到较为简单的表达式。

六、分数的极限当我们计算一个函数的极限时,如果得到的结果为一个分数形式,可以进行有理化来方便我们的计算。

有理化的方法有分子分母同时乘以一些适当的因式、差化积等。

七、级数化积当我们计算一个函数的极限时,通常可以将函数展开为一个级数,然后进行计算。

例如,当我们计算lim(x->0)(e^x-1)/x时,可以将e^x展开为一个级数,再进行计算。

八、寻找特殊点有时候我们可以通过找到一些特定的点来计算极限。

高数求极限的方法总结

高数求极限的方法总结

高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。

2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。

3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。

4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。

5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。

6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。

7. 自然对数的极限:自然对数的极限是1。

8. e的极限:e是一个常数,其极限是e。

9. 无穷小量的极限:无穷小量的极限为0。

10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。

请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y 1 sin 1 xx
(1) 取 xk
1
2k
2
y( xk ) 2k 2 ,
(2)

xk
1 2k
(k 0,1,2,3,)
当k充分大时, y( xk ) M . (k 0,1,2,3,)
无界,
当 k 充分大时, xk ,
但 y( xk ) 2ksin 2k 0 M .
不是无穷大.
lim
n
xn
A,
lim
n
yn
B
,则有
(n )
A B
(2)
lim
n
xn
yn
AB
(3)
当 yn
0且 B
0时,
lim
n
xn yn
A B
Hint: 因为数列是一种特殊的函数 , 故此定理 可由
直接得出结论 。
求极限方法举例
例1

lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3x 5) lim x 2 lim 3x lim 5
lim 1 0, x x
函数 1 是当x 时的无穷小. x
lim (1)n n n
0,
数列{(1)n }是当n n
时的无穷小.
注意 (1)无穷小是变量,不能与很小的数混淆;
(2)零是可以作为无穷小的唯一的数.
2、无穷小与函数极限的关系:
定理 1 lim f ( x) A f ( x) A ( x), x x0
f (x)

为无穷小, 且
f (x) 0, 则
1 为无穷大. f (x)
(自证)
Note: 据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论.
三、极限运算法则
定理5: 设 lim f ( x) A, lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
第三、四节 无穷小、无穷大 极限运算法则
一、 无穷小 二、 无穷大
三 、 极限 运算法则 四、小结与思考
一、无穷小(Infinite Small)
1.
定义1:
若 (或x
时 )
,
函数

时的无穷小 .
(或x )
则称函数
例如 :
函数

时为无穷小;
函数 当
时为无穷小;
函数

时为无穷小.
再如,
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
1 B(B
)
2 B2
,
有界,
(3)成立.
推论1 如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
常数因子可以提到极限记号外面.
推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
定理6 :若
例如, n 时, 1 是无穷小, n
但 1 1 1 1 不是无穷小. nn n
定理3 有界函数与无穷小的乘积是无穷小.
推论1 在同一过程中,有极限的变量与无穷 小的乘积是无穷小.
推论2 常数与无穷小的乘积是无穷小.
推论3 有限个无穷小的乘积也是无穷小.
例如,当x 0时, x sin 1 , x2 arctan 1
x
x
都是无穷小.
二、 无穷大(Infinite Large)
定义2 . 若任给 M > 0 ,总存在
(正数 X ) , 使对
一切满足不等式
( x X ) 的 x , 总有

则称函数 当
( x ) 时为无穷大, 记作
( lim f ( x) )
x
若在定义中将 ①式改为
( f (x) M ),
其中( x)是当 x x0时的无穷小.
证 必要性 设 lim f ( x) A, 令 ( x) f ( x) A, x x0 则有 lim ( x) 0, f ( x) A ( x). x x0 充分性 设 f ( x) A ( x),
其中 ( x)是当x x0时的无穷小,
则 lim f ( x) lim ( A ( x)) A lim ( x) A.
则记作
( lim f ( x) )
x x0 ( x )
注意:
(1)无穷大是变量,不能与很大的数混淆;
(2)切勿将 lim f ( x) 认为极限存在. x x0
(3)无穷大是一种特殊的无界变量,但是无 界变量未必是无穷大.
例如: 当x 0时, y 1 sin 1 xx
是一个无界变量, 但不是无穷大.
( A B) 0.
(2)成立.
f ( x) A A A B A B A 0. g( x) B B B B(B )
又 0, B 0, 0, 当0 x x0 时,
B , B B B 1 B 1 B
2
22
B(B ) 1 B2 , 故 2
x x0
x x0
x x0
意义 (1)将一般极限问题转化为特殊极限问题 (无穷小);
(2)给出了函数 f ( x) 在 x0 附近的近似表达
式 f ( x) A, 误差为( x).
3、无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数 和仍是无穷小.
注意: 无穷多个无穷小的代数和未必 是无穷小.
例 证明 lim 1 . x1 x 1
证 M 0. 要使 1 M ,
x1
只要 x 1 1 , 取 1 ,
M
M
当0 x 1 1 时, 就有 1 M .
M
x1
1 lim .
x1 x 1
y 1 x1
无穷小与无穷大的关系:
定理4. 在自变量的同一变化过程中,

为无穷大, 则 1 为无穷小 ;
证 lim f ( x) A, lim g( x) B. f ( x) A , g( x) B . 其中 0, 0. 由无穷小运算法则,得
[ f ( x) g( x)] ( A B) 0. (1)成立.
[ f ( x) g( x)] ( A B) ( A )(B ) AB
x2
x2
x2
x2
(lim x)2 3 lim x lim 5
x2
x2
x2
22 3 2 5 3 0,
lim x2
x3 1 x2 3x 5
lim x 3 lim 1
x2
x2
lim( x 2 3x 5)
23 1 3
7. 3
x2
小结: 1. 设 f ( x) a0 x n a1 x n1 an ,则有
相关文档
最新文档