(完整word版)二元一次方程组的应用方案选择问题
初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)
初中数学二元一次方程组的应用题型分类汇编——方案决策问题4(附答案)1.威立到小吃店买水饺,他身上带的钱恰好等于15 粒虾仁水饺或20 粒韭菜水饺的价钱,若威立先买了9 粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.122.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载。
租车方案有()A.4种B.3种C.2种D.1种3.“保护好环境,拒绝冒黑烟。
”某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.则每辆A型车的售价是()A.14万元B.18万元C.22万元D.26万元4.小明在某商店购买商品A,B共两次,这两次购买商品A,B的数量和费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购物 4 3 93第二次购物 6 6 162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种6.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为张,2元的贺卡为张,那么、所适合的一个方程组是()A.B.C.D.7.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.8.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有()A.2种B.3种C.4种D.5种9.某花农培育甲种花木10株,乙种花木8株,共需成本6400元;培育甲种花木4株,乙种花木5株,共需成本3100元。
二元一次方程组的12种应用题型归纳(可编辑修改word版)
二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
二元一次方程组的解法及其应用
二元一次方程组的解法及其应用二元一次方程组是一类基础的数学问题,在现代科技和工业的发展中应用广泛。
在我们日常生活中,二元一次方程组的解法和应用也是非常常见的。
本文将针对二元一次方程组的解法和应用进行详细讲解。
一、二元一次方程组的定义二元一次方程组是由两个二元一次方程组成的方程组,其形式如下:a1x + b1y = c1a2x + b2y = c2其中x,y为未知数,a1、a2、b1、b2、c1、c2为已知系数,且a1,a2,b1,b2不全为0。
二、二元一次方程组的解法二元一次方程组的解法有数学方法和代数方法两种。
数学方法:数学方法是利用代数学、运算学、几何学等知识进行计算、分析和推理的方法,通常利用消元法或代入法。
代数方法:代数方法采用常数向量、矩阵论、行列式以及线性代数等代数方法来解决问题。
以下是二元一次方程组的两种解法:1. 消元法消元法是常见的二元一次方程组的解法,通常通过消去一个未知数从而得到另一个未知数的解,可以将二元一次方程组简化为一元一次方程,从而得到未知数的解。
一般来说,选择待消去的未知数是通过系数相等得到的。
以以下方程组为例,进行消元法的求解:3x + 2y = 72x - 4y = -10首先将第一个方程乘以2,得到:6x + 4y = 14然后将第二个方程乘以3,得到:6x - 12y = -30接下来将第二个方程的式子加到第一个方程上,得到:6x + 4y = 14+ 6x - 12y = -30得到:12x - 8y = -16将式子化简,得到:3x - 2y = -4将其与第一个方程式子相乘,得到:6x + 4y = 14- 3x - 2y = -4得到:3x = 10x = 10/3将x代入第一个方程,得到:3(10/3) + 2y = 7y = (7 - 10) / 2得到y = -3/2故解为(x, y) = (10/3, -3/2)。
2. 代入法代入法又称替换法,通常直接代入一个方程式子中,从而解出另一个未知数。
二元一次方程组的实际问题解析
二元一次方程组的实际问题解析在数学中,二元一次方程组是由两个未知数的一次方程组成的。
它可以用来解决各种实际问题,如物理、经济和工程等领域中的模型建立与求解。
本文将从实际问题的角度出发,分析二元一次方程组的求解方法及其应用。
一、二元一次方程组的基本形式二元一次方程组的一般形式为:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,x和y为未知数,a₁、b₁、c₁、a₂、b₂、c₂为已知数或系数。
二、求解方法二元一次方程组的求解方法有多种,常见的包括代入法、消元法和矩阵法。
1. 代入法:代入法是通过将一个方程的一个变量表示为另一个方程的变量,然后代入另一个方程中进行求解。
具体步骤如下:(1)选择一个方程,将其中一个变量表示为另一个方程的变量。
(2)将所得结果代入另一个方程中,得到一个只含有一个变量的方程。
(3)求解得到一个变量的值。
(4)将求得的变量值代入任意一个方程中,求解得到另一个变量的值。
2. 消元法:消元法是通过联立两个方程,通过加减运算,将其中一个变量消去,从而得到一个只含一个变量的方程,然后进行求解。
具体步骤如下:(1)通过乘以适当的倍数,使得两个方程的系数相等或倍数关系。
(2)将等式相减,得到一个只含有一个变量的方程。
(3)求解得到该变量的值。
(4)将求得的变量值代入任意一个方程中,求解得到另一个变量的值。
3. 矩阵法:矩阵法是通过使用矩阵运算的方法求解二元一次方程组。
具体步骤如下:(1)将二元一次方程组的系数矩阵和常数矩阵表示出来。
(2)计算系数矩阵的逆矩阵。
(3)将逆矩阵与常数矩阵相乘,得到未知数的矩阵。
(4)得到未知数的矩阵后,将其转换为方程的形式,即得到方程的解。
三、应用实例二元一次方程组的实际应用非常广泛,下面举例说明:1. 物理问题:假设有一便士和一美分的价值总和为21美分,而两枚硬币的总价值为30美分。
我们可以用二元一次方程组来解决这个问题。
设x为便士的数量,y为美分的数量,则有方程组:x + y = 21x + 5y = 30通过求解这个方程组,我们可以得到便士的数量和美分的数量。
教材二元一次方程组 应用题Microsoft Word 文档
二元一次方程组 应用题(1)【实际问题解法指导】第一步:审题划出等量关系 第二步:解设出两个未知数第三步:根据等量关系列出方程组 第四步:解出方程组的解并检验第五步:答题 【审 设 找 列 解 验 答】1、张翔从学校出发骑自行车去县城,中途因道路施工步行一段时间,1.5h后到达县城。
他骑车的速度是15km/h,步行的平均的速度是5km/h,路程全长20km。
他汽车与步行各用了多少时间?2、某班去看演出,甲种票每张24元,乙种票每张18元。
如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?3、有48支队520名运动员参加篮、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一种比赛,篮、排球队各有多少支参赛?4、一支部队第一天行军4小时,第二天行军5小时。
两天共行军98km,且第一天比第二天少走2km,求第一天和第二天行军的平均速度各是多少?5、顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,求到两地旅游的人数各式多少?6、1号仓与二号仓库共存粮450吨现从1号仓库运出存粮的60%从二号仓库运出存粮的40%,结果二号仓库所余的粮食比一号仓库的粮食多30吨。
1号仓库与二号仓库原来各存粮食多少吨?7、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小瓶两种产品各多少瓶?二元一次方程组 应用题(2)8、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头。
现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?9、2台大收割机和5台小收割机工作2小时收割小麦3.6公顷,3台大收割机和两台小收割机工作5小时收割小麦8公顷,1台大收割机和1台小收割机各收割小麦多少公顷?10、运输360吨化肥,装载了6节火车皮与15辆汽车;运输440吨化肥,装载了8节火车皮与10辆汽车,每节火车与每辆汽车平均各装多少吨化肥?11、一种蜂王精有大小盒两种包装,3大盒4小盒工装108瓶,2大盒3小盒共装76瓶,大盒与小盒各装多少瓶?12有大小两种货车。
二元一次方程组的解法及应用
二元一次方程组的解法及应用在数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解二元一次方程组的过程非常重要,不仅可以帮助我们求解实际问题,还可以培养我们的逻辑思维和分析能力。
本文将介绍二元一次方程组的解法以及其在实际生活中的应用。
一、二元一次方程组的解法解二元一次方程组的常用方法有三种:代入法、消元法和等式法。
下面将分别介绍这三种方法的具体步骤。
1. 代入法代入法是解二元一次方程组最简单的方法之一。
其基本思想是将一个方程的解代入另一个方程中,从而得到另一个方程只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)选择一个方程,将其中的一个未知数用另一个未知数的表达式代替。
(2)将代入后的方程代入另一个方程中,得到只含有一个未知数的一次方程。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入代入步骤(1)中的方程,求解得到第二个未知数的值。
通过多次代入和求解,可以得到整个二元一次方程组的解。
2. 消元法消元法是解二元一次方程组的另一种常用方法。
其基本思想是通过将方程组中某个方程的两边乘以适当的系数,使得两个方程的某个未知数的系数相等或者互为相反数,然后将这两个方程相加或相减,从而消去某个未知数,求解另一个未知数的值。
具体步骤如下:(1)通过适当的乘法将两个方程的某个未知数的系数相等或互为相反数。
(2)将这两个方程相加或相减,消去某个未知数。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入其中一个方程,求解得到第二个未知数的值。
通过多次消元和求解,可以得到整个二元一次方程组的解。
3. 等式法等式法是解二元一次方程组的另一种有效的方法。
其基本思想是通过将两个方程进行相减或相加,得到只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)通过适当的乘法或加减法将两个方程相减或相加,得到一个只含有一个未知数的一次方程。
初中数学二元一次方程组的应用题型分类汇编——方案决策问题3(附答案)
(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?
【详解】
设每头牛值金 两,每头羊值金 两,则依据题意得
.
故选C.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
5.D
【解析】
【分析】
设B、C两种车分别租a辆、b辆.然后根据三种情况:A型号租0辆或1辆或2辆,列方程进行讨论.
【详解】
设B、C两种车分别租a辆、b辆.
(1)求每台A种、B种设备各多少万元;
(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台.
21.为了奖励校运会优秀运动员,学校决定用1200元购买篮球和排球两种奖品若干个.其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有_____.
27.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需________元.
28.根据下图给出的信息,则每束鲜花价格的价格分别为____.
参考答案
1.B
【解析】
【分析】设购买篮球x个,排球y个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y的方程,由x、y均为非负整数即可得.
(1)求每个篮球和每个排球的销售利润;
二元一次方程(组)应用题专题讲解及练习(附答案)
实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
初中数学二元一次方程组的应用题型分类汇编——方案决策问题1(附答案)
初中数学二元一次方程组的应用题型分类汇编——方案决策问题1(附答案)1.某车间一个工人将一根长为100cm的钢材裁剪成规格为6cm与10cm的两种钢条(假设裁剪中没有消耗,并允许有不超过2cm的余料),则该工人裁剪的方案有()A.3种B.4种C.5种D.6种2.铭铭要用20元钱购买笔和本,两种物品都必须都买,20元钱全部用尽,若每支笔3元,每个本2元,则共有几种购买方案()A.2 B.3 C.4 D.53.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.154.“欢乐购”元旦促销活动即将到来,小芳的妈妈计划花费1000元,全部用来购买价格分别为80元和120元的两种商品若干件,则可供小芳妈妈选择的购买方案有:A.4种B.5种C.6种D.7种5.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有()A.4种B.3种C.2种D.1种6.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x 块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A.12042x yx y+=⎧⎨=⨯⎩B.12024x yx y+=⎧⎨⨯=⎩C.12024x yx y+=⎧⎨=⨯⎩D.12024x yx y+=⎧⎨⨯=⎩7.我国古典数学文献《增删算法统宗·六均输》中这样一道题:甲、乙两人一同放牧,两人暗地里数羊,如果乙给甲9只羊,则甲的羊数为乙的两倍;如果甲给乙9只羊,则两人的羊数相同,设甲有羊x只,乙有羊y只,根据题意,可列方程组为()A.92(9)99x yx y-=+⎧⎨-=+⎩B.2(9)999x yx y+=-⎧⎨-=+⎩C.92(9)99x yx y+=-⎧⎨-=+⎩D.92(9)99x yx y-=+⎧⎨+=-⎩8.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.19.“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有()A.7种B.6种C.5种D.4种10.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种11.某鞋店有甲、乙两款鞋各30双,甲鞋每双200元,乙鞋每双50元,该店促销的方式为:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.打烊后得知.此两款鞋共卖得2750元,还剩鞋共25双,设剩甲鞋x双,乙鞋y双,则依题意可列出方程组12.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.13.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.14.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.15.临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取120出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货量不低于总进货量的15,则豆沙粽最多购进__袋.16.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货__吨.17.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种18.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有______种购买方案.19.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.20.秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有_______种.21.为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?22.春晓中学为开展“校园科技节”活动,计划购买A型、B型两种型号的航模.若购买8个A型航模和5个B型航模需用2200元;若购买4个A型航模和6个B型航模需用1520元.求A,B两种型号航模的单价分别是多少元.23.某新建成学校举行“美化绿化校园”活动,计划购买A、B两种花木共300棵,其中A花木每棵20元,B花木每棵30元.(1)若购进A,B两种花木刚好用去7300元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量的1.5倍,且购买A、B两种花木的总费用不超过7820元,请问学校有哪几种购买方案?哪种方案最省钱?24.某蔬菜加工公司先后两批次收购洋葱共100吨.第一批洋葱价格为4000元/吨;因洋葱大量上市,第二批价格跌至1000元/吨.这两批洋葱共用去16万元.(1)求两批次购进洋葱各多少吨;(2)公司收购后对洋葱进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?25.小陈第一次购买学习用品情况的明细表如下:因污损(表中●处)导致部分数据无法识别,根据下表,解答下列问题:(1)小陈购买圆规、笔记本各多少?(2)若小陈再次购买笔记本和HB铅笔两种学习用品,共花费14元,问有几种不同的购买方案?写出这些方案.26.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋? 27.慧秀中学在防“非典”知识竞赛中,评出一等奖4人,二等奖6人,三等奖20人,学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)若一等奖,二等奖、三等奖的奖品分别是喷壶、口罩和温度计,购买这三种奖品共计花费113元,其中购买喷壶的总钱数比购买口罩的总钱数多9元,而口罩的单价比温度计的单价多2元,求喷壶、口罩和温度计的单价各是多少元?(2)若三种奖品的单价都是整数,且要求一等奖的单价是二等奖单价的2倍,二等奖的单价是三等奖单价的2倍,在总费用不少于90元而不足150元的前提下,购买一、二、三等奖奖品时它们的单价有几种情况,分别求出每种情况中一、二、三等奖奖品的单价.28.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.29.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.30.为庆祝祖国70周年华诞,阳光超市销售甲、乙两种庆祝商品,该超市若同时购进甲、乙两种商品各10件共花费400元;若购进甲种商品30件,购进乙种商品15件,将用去750元;(1)求甲、乙两种商品每件的进价;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为15元,乙种商品每件的售价40元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?参考答案1.D【解析】【分析】设6cm 的钢条有x 条,10cm 的钢条有y 条,根据题意,列出关于x ,y 的二元一次方程,结合x ,y 都是正整数,即可得到答案.【详解】设6cm 的钢条有x 条,10cm 的钢条有y 条,由题意得:610100x y +=或61099x y +=或61098x y +=,∵x ,y 都是正整数,∴57x y =⎧⎨=⎩或104x y =⎧⎨=⎩或151x y =⎧⎨=⎩或38x y =⎧⎨=⎩或85x y =⎧⎨=⎩或132x y =⎧⎨=⎩ ∴该工人裁剪的方案有6种.故选D .【点睛】本题主要考查二元一次方程的实际应用,根据等量关系,列出二元一次方程,是解题的关键.2.B【解析】【分析】设购买x 支笔,y 个本,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结x ,y 均为正整数即可求出结论.【详解】解:设购买x 支笔,y 个本,依题意,得:3x +2y =20,∴y =10-32x . ∵x ,y 均为正整数,∴1127x y =⎧⎨=⎩,2244x y =⎧⎨=⎩,3361x y =⎧⎨=⎩, ∴共有3种购买方案.故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的基础,用一个变量表示另一个变量,进行整数解的讨论是解题的关键.3.B【解析】【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x y、的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【详解】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:316320x yx y+=⎧⎨+=⎩①②,方程(①+②)÷2,得:2x+2y=18.故选:B.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.A【解析】【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【详解】设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得2523xy-=.因为x是正整数,所以当x=2时,y=7.当x =5时,y =5.当x =8时,y =3.当x =11时,y =1.即有4种购买方案.故选:A .【点睛】本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.5.C【解析】【分析】设有鸡x 只,有鸭y 只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡x 只,鸭y 只,根据题意,得10080660x y +=,整理,得:5433x y +=, ∴3354x y -=, ∵x 、y 必须是正整数, ∴3354x -≥,且335x -必须是偶数,即x 为奇数, ∴2905x ≤≤,且x 为奇数, 则x =1,3,5,当1x =时,7y =,符合题意;当3x =时,184y =,不是整数,不符合题意,舍去. 当5x =时,2y =,符合题意.所以,这背鸡鸭只数可能的方案有2种.故选:C .【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况.6.D【解析】【分析】设用x 块板材做桌子,用y 块板材做椅子,根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.【详解】解:设用x 块板材做桌子,用y 块板材做椅子,∵用100块这种板材生产一批桌椅,∴x +y =100 ①,生产了x 张桌子,4y 把椅子,∵使得恰好配套,1张桌子4把椅子,∴2x =4y ②,①和②联立得:12024x y x y +=⎧⎨⨯=⎩, 故选:D .【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.7.C【解析】【分析】设甲放x 只羊,乙放y 只羊,根据“如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同”列出方程组解答即可.【详解】解:设甲放x 只羊,乙放y 只羊,由题意得92(9)99x y x y +=-⎧⎨-=+⎩, 故选C .【点睛】此题考查二元一次方程组的实际运用,根据数量的变化,找出题目蕴含的数量关系是解决问题的关键8.C【解析】【分析】设5人一组的有x 个,6人一组的有y 个,列出方程,再令x 为大于等于1的整数,逐一进行计算,即可得出答案.【详解】设5人一组的有x 个,6人一组的有y 个,根据题意可得:5x +6y =40,当x =1,则y =356(不合题意); 当x =2,则y =5;当x =3,则y =256(不合题意); 当x =4,则y =103(不合题意); 当x =5,则y =52(不合题意); 当x =6,则y =53(不合题意); 当x =7,则y =56(不合题意); 当x =8,则y =0;故有2种分组方案.故选:C .【点睛】本题考查的是列方程,解题关键是根据题目意思列出含x 和y 的方程.9.D【解析】【分析】设购买8元的商品数量为x ,购买12元的商品数量为y ,根据总费用是100元列出方程,求得正整数x 、y 的值即可.【详解】解:设购买8元的商品数量为x ,购买12元的商品数量为y ,依题意得:8x+12y =100,整理,得因为x 是正整数,所以当x =2时,y =7当x =5时,y =5当x =8时,y =3当x =11时,y =1即有4种购买方案,选:D【点睛】本题考查了二元一次方程的应用.对于此类题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.10.B【解析】【分析】 设购买A 品牌足球x 个,购买B 品牌足球y 个,根据总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可求出结论.【详解】解:设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60751500x y +=,∴4205y x =-. Q x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B.【点睛】本题主要考查二元一次方程的解的问题,这类题往往涉及到方案的种类,是常考点.11.25{200(30)50[30(30)]2750 x yx x y+=-+---=.【解析】试题分析:设剩甲鞋x双,乙鞋y双,由题意得,25{200(30)50[30(30)]2750 x yx x y+=-+---=.考点:由实际问题抽象出二元一次方程组.12.3【解析】【分析】设可以购买x个篮球,y个排球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合y为正整数、x为非负整数,此题得解.【详解】解:设可以购买x个篮球,y个排球,依题意,得:120x+90y=1200,∴x=10﹣34y.∵y为正整数,x为非负整数,∴74xy=⎧⎨=⎩,48xy=⎧⎨=⎩,112xy=⎧⎨=⎩.∴共有3种购买方案.故答案为:3.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.13.15【解析】【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩,解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.14.45435 3x y x y +=⎧⎨-=⎩ 【解析】【分析】根据总费用列出一个方程,根据单价关系列出一个方程,联立方程即可.【详解】由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立得45435 3x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程的应用,根据题意列出方程是关键.15.360.【解析】【分析】根据题意,设购进的豆沙粽为x 袋,白粽y 袋,则蛋黄粽为(1000)x y --袋,根据等量关系列式进行求解即可得解.【详解】设购进的豆沙粽为x 袋,白粽y 袋,则蛋黄粽为(1000)x y --袋, 于是,取出的豆沙粽的个数为128205x x ⨯=个;取出的白粽的个数为1312205y y ⨯=个;取出的蛋黄粽的个数为13(1000)6(1000)2010x y x y --⨯=--个; 因此A 套装的套数为:214510x x ÷=套,B 套装的套数为:33(1000)2(1000)1020x y x y --÷=--套, 根据两种套装的白粽个数等于取出的白粽的个数得:13344(1000)10205x x y y ⨯+⨯--=, 整理得:x +6y =3000,又∵蛋黄粽的进货量不低于总进货量的15, ∴1100010005x y --≥⨯, 把x +6y =3000,代入1100010005x y --≥⨯中, 解得:x ≤360,x 为正整数,因此x =360.故答案为:360.【点睛】本题主要考查了二元一次方程及二元一次不等式以及变量数值得确定,熟练掌握相关方程及不等式得解是解决本题得关键.16.6.5【解析】设大货车一次运x 吨,小货车一次运y 吨,根据两种运货情况各列一个方程,组成方程组求解即可.【详解】设大货车一次运x 吨,小货车一次运y 吨,依题意有2315.55635x y x y +=⎧⎨+=⎩①②, ②-①得3x +3y =19.5,∴x +y =4+6.5=6.5(吨).故答案为:6.5.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.17.B【解析】【分析】设一等奖个数x 个,二等奖个数y 个,根据题意,得6x+4y=34,根据方程可得三种方案;【详解】设一等奖个数x 个,二等奖个数y 个,根据题意,得6434x y +=,使方程成立的解有17x y =⎧⎨=⎩,34x y =⎧⎨=⎩,51x y =⎧⎨=⎩, ∴方案一共有3种;故选:B .【点睛】此题考查二元一次方程的应用,解题关键在于列出方程18.两【解析】设购买甲种体育用品x件,购买乙种体育用品y件,根据“甲种体育用品每件20元,乙种体育用品每件30元,共用去150元”列出方程,求解方程的正整数解即可得答案.【详解】设购买甲种体育用品x件,购买乙种体育用品y件,依题意得:20x+30y=150,即2x+3y=15,由于x、y均为正整数,所以33xy=⎧⎨=⎩或61xy=⎧⎨=⎩,即有两种购买方案,故答案是:两.【点睛】本题考查了二元一次方程的应用,二元一次方程的正整数解,弄清题意,找准等量关系正确列出方程是解题的关键.19.62【解析】【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.20.6【解析】【分析】可设3人的帐篷有x顶,2人的帐篷有y顶.根据两种帐篷容纳的总人数为30人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【详解】解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15-1.5x,因为x、y均为非负整数,所以15-1.5x≥0,解得:0≤x≤10,从0到10的偶数共有6个,所以x的取值共有6种可能.故答案是:6.【点睛】此题主要考查了二元一次方程的应用,解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.21.(1)40元,55元;(2)708元【解析】【分析】(1)设租用男装一天x元,租用女装需要y元,根据4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元列方程组求解即可;(2)根据(1)中所求的结果,按9折和8折优惠求出实际需支付租金即可.【详解】(1)设租用男装一天x元,租用女装需要y元,由题意得,46490 610790 x yx y+=⎧⎨+=⎩,解得:4055 xy=⎧⎨=⎩,答:租用男装一天40元,租用女装需要55元;(2)根据题意得:5400.912550.8708⨯⨯+⨯⨯=(元).答:演出当天租用服装实际需支付租金为708元.【点睛】本题考查了二元一次方程组的应用,关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.A型航模的单价为200元/台,B型航模的单价为120元/台.【解析】【分析】设A型航模的单价为x元/台,B型航模的单价为y元/台,根据“购买8个A型航模和5个B型航模需用2200元;购买4个A型航模和6个B型航模需用1520元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设A型航模的单价为x元/台,B型航模的单价为y元/台,依题意,得:852200 461520 x yx y+=⎧⎨+=⎩,解得:200120 xy=⎧⎨=⎩.答:A型航模的单价为200元/台,B型航模的单价为120元/台.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(1)A种花木170棵,B种花木130棵;(2)方案三最省钱【解析】【分析】(1)设购买A 种花木x 棵,B 种花木y 棵,根据“A ,B 两种花木共100棵、购进A ,B 两种花木刚好用去8000元”列方程组求解可得;(2)设购买A 种花木a 棵,则购买B 种花木(300-a )棵,根据“B 花木的数量不少于A 花木的数量的1.5倍且购买A 、B 两种花木的总费用不超过7820元”即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,进而可得出各购买方案,再根据总价=单价×购进数量求出各购买方案所需总费用,比较后即可得出结论.【详解】解:(1)设购买A 种花木x 棵,B 种花木y 棵,根据题意,得:30020307300x y x y +=⎧⎨+=⎩,解得:170130x y =⎧⎨=⎩. 答:购买A 种花木170棵,B 种花木130棵;(2)设购买A 种花木a 棵,则购买B 种花木(300-a )棵,根据题意,得:()300 1.520303007820a a a a -≥⎧⎨+-≤⎩, 解得:118≤a≤120,∴学校共有三种购买方案.方案一:购买118棵A 种花木,182棵B 种花木;方案二:购买119棵A 种花木,181棵B 种花木;方案三:购买120棵A 种花木,180棵B 种花木.方案一所需费用118×20+182×30=7820(元),方案二所需费用119×20+181×30=7810(元),方案三所需费用120×20+180×30=7800(元).∵7820>7810>7800,∴方案三最省钱.故答案是:(1)A 种花木170棵,B 种花木130棵;(2)方案三最省钱【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等24.(1)第一批购进洋葱20吨,第二批购进洋葱80吨;(2)精加工数量应为75吨,最大利润是85000元【解析】【分析】(1)设第一批购进洋葱x 吨,第二批购进洋葱y 吨,构建方程组即可解决问题;(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨,由精加工数量不多于粗加工数量的三倍求出m 的取值范围,根据总利润w=精加工的利润+粗加工的利润列出函数解析式,利用一次函数的性质即可解决问题.【详解】解:(1)设第一批购进洋葱x 吨,第二批购进洋葱y 吨.由题意10040001000160000x y x y +=⎧⎨+=⎩, 解得2080x y =⎧⎨=⎩, 答:第一批购进洋葱20吨,第二批购进洋葱80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m≤3(100-m),解得m≤75,利润w=1000m+400(100-m)=600m+40000,∵600>0,∴w 随m 的增大而增大,∴m=75时,w 有最大值为85000元.答:精加工数量应为75吨,最大利润是85000元.【点睛】本题考查了二元一次方程组,一次函数,一元一次不等式等知识的应用,解答本题的关键是读懂题意,设出未知数,找出合适的数量关系,列方程组和一次函数解析式求解. 25.(1)圆规1个,笔记本2本;(2)3种不同的购买方案,方案见解析。
二元一次方程组解应用题方案
列方程组解应用题的常见题型
? (11) 数字问题:首先要正确掌握自然数、 奇数偶数等有关的概念、特征及其表示 (12) 几何问题:必须掌握几何图形的性 质、周长、面积等计算公式
? (13) 年龄问题:抓住人与人的岁数是同 时增长的
讲解
? (分配调运问题) ? 某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人
? (2) 产品配套问题:加工总量成比例 ? (3) 速度问题:速度×时间=路程 ? (4) 航速问题:此类问题分为水中航速和
风中航速两类 ? 1. 顺流(风):航速=静水(无风)中的
速度+水(风)速 ? 2. 逆流(风):航速=静水(无风见题型
? (5) 工程问题:工作量=工作效率×工作时间 一般分 为两种,一种是一般的工程问题;另一种是工作总量是单 位一的工程问题
? (6) 增长率问题:原量×(1+增长率)=增长后的量, 原量×(1+减少率)=减少后的量
? (7) 浓度问题:溶液×浓度=溶质 ? (8) 银行利率问题:免税利息=本金×利率×时间,税
后利息=本金×利率×时间—本金×利率×时间×税率 ? (9) 利润问题:利润=售价—进价,利润率=(售价—进
价)÷进价×100% ? (10) 盈亏问题:关键从盈(过剩)、亏(不足)两个
x+
=
讲解
? (分配问题)某幼儿园分萍果,若每人3个,
则剩2个,若每人4个,则有一个少1个,问
幼儿园有几个小朋友? 解:设幼儿园有x
个小朋友,萍果有y个
题中
的两个相等关系:1、萍果总数=每人分3个
+
可列方程为:
2、萍果总数=
可列方程为:
讲解
? (浓度分配问题)要配浓度是45%的盐水
二元一次方程组的应用问题有何解题技巧
二元一次方程组的应用问题有何解题技巧在我们的数学学习中,二元一次方程组是一个非常重要的知识点,而能够熟练掌握其在应用问题中的解题技巧,更是提升数学能力的关键。
首先,要理解什么是二元一次方程组。
简单来说,就是由两个含有两个未知数的一次方程所组成的方程组。
比如:x + y = 5 和 2x y =1 这样的两个方程组合在一起,就是一个二元一次方程组。
那么,在解决应用问题时,第一步就是要仔细审题。
这就像我们要去一个陌生的地方,首先得搞清楚要去的目的地在哪里,以及沿途可能会遇到的情况。
比如说,题目中可能会描述两个不同的数量关系,比如购买物品的数量和价格,或者行程中的速度和时间等等。
我们要把这些关键信息找出来,明确题目中给出了哪些条件,要求的是什么。
接下来,就是设未知数。
这一步很关键,设得好可以让后面的计算更加简便。
一般来说,我们可以根据题目中的问题,选择比较容易表示其他量的未知数。
比如,如果题目问的是两种物品的单价,我们就可以设这两种物品的单价分别为 x 元和 y 元。
然后,根据题目中的条件列出方程组。
这需要我们把题目中的数量关系转化为数学语言。
比如,“甲物品的价格加上乙物品的价格等于100 元”,就可以写成“x + y =100”。
再比如,“甲物品的价格比乙物品的价格多 20 元”,就可以写成“x y =20”。
通过这样的方式,把题目中的所有条件都转化为方程,组成方程组。
在列出方程组之后,就是求解方程组了。
求解的方法有很多种,常见的有代入消元法和加减消元法。
代入消元法,就是把一个未知数用含另一个未知数的式子表示出来,然后代入另一个方程,从而消去一个未知数,求出另一个未知数的值,再把求出的值代入求出的式子,求出第一个未知数的值。
比如说,对于方程组 x + y = 5 和 2x y = 1,我们可以由第一个方程得到 x = 5 y,然后把 x = 5 y 代入第二个方程 2(5 y) y = 1,就可以求出 y 的值,再把 y 的值代入 x = 5 y 求出 x 的值。
二元一次方程组的解法与应用
二元一次方程组的解法与应用Introduction:二元一次方程组是数学中常见的求解问题。
本文将介绍二元一次方程组的解法和应用,并通过具体例子进行说明。
1. 解法一:代入法1.1 原理:将一个方程的未知数表示成另一个方程的已知数,代入另一个方程中,从而得到一个只含有一个未知数的方程。
1.2 步骤:a. 选择一个方程,解出其中一个未知数。
b. 将得到的未知数的表达式代入另一个方程中。
c. 解出剩下的未知数。
1.3 例子:考虑以下二元一次方程组:2x + 3y = 7 (方程1)x - 2y = -1 (方程2)a. 方程2中的未知数x可以表示为x = -1 + 2y。
b. 将x的表达式代入方程1中,得到2(-1 + 2y) + 3y = 7。
c. 化简上述方程,解出y的值为y = 2。
d. 将y = 2代入x = -1 + 2y中,解出x的值为x = 3。
因此,该方程组的解为x = 3,y = 2。
2. 解法二:消元法2.1 原理:通过加减运算,将方程组中的某一未知数的系数相等的两个方程进行相减,消去这个未知数的项,从而得到只含有另一个未知数的方程。
2.2 步骤:a. 选择两个方程,使得其中一个未知数的系数相等。
b. 将两个方程相减,消去这个未知数的项。
c. 解出剩下的未知数。
2.3 例子:考虑以下二元一次方程组(与例子1相同):2x + 3y = 7 (方程1)x - 2y = -1 (方程2)a. 方程1乘以2得到4x + 6y = 14。
方程2乘以3得到3x - 6y = -3。
b. 将上述两个方程相减,得到(4x + 6y) - (3x - 6y) = 14 - (-3),化简得到x = 3。
c. 将x = 3代入任意一个原始方程(如方程1),得到2(3) + 3y = 7,解出y = 2。
因此,该方程组的解为x = 3,y = 2。
3. 应用一:几何问题3.1 例子:平面几何问题中,经常涉及到二元一次方程组的解法。
数学人教版七年级下册8.2 选择合适的方法解二元一次方程组
课题
选择合适的方法解二元一次方程组
教ห้องสมุดไป่ตู้目标
能根据实际方程的特点,选择最合适的方法解二元一次方程组。
教学重点:
灵活运用代入法、加减法解二元一次方程组
教学难点:
灵活运用各种方法正确地解二元一次方程组
教学程序
教学内容
方法与措施
一、练习反馈
二、自学讨论:
1、解二元一次方程组的方法有哪些?它们的的基本思路是什么?
3
6
2、具备什么特点的二元一次方程组适宜用代入法求解?具备什么特点的二元一次方程组适宜用加减法求解?
3、选择合适的方法解下列方程组,并说明选择的理由。
① ②
③ ④
⑤ ⑥
在解方程组时,应根据题中系数的构成情况灵活选用方法,一般说来:①当方程组中有一个方程的某一个未知数的系数绝对值是1或方程组中有一个方程的常数项是0,此时用代入法较简捷;②当方程组中两个方程的某一个未知数的系数绝对值相等或方程组中两个方程的某一个未知数的系数成整数倍,此时用加减法较简捷。
教学内容
方法与措施
三、交流提升:
1、用合适的方法解方程组:
(1) (2)
(3) (4)
2、关于x,y的方程组 的解x,y的和等于2,求m的值及方程组的解。
3、甲、乙两同学同时解方程组 ,甲正确解得 ;乙因抄错c,解得 .你能求出a,b,c的值吗?
四、梳理巩固
五、达标抽测
《义务教育新课程导学案》P26自主检测题.
二元一次方程组的运用6(方案问题)
解:设进乙种电视m台,乙种电视n台,由题意得:
m n 50 m 87.5 解得: n 37.5 2100 m 2500 n 90000
(舍去)
4、某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机, 出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场 的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的 方案中,为使获利最多,你选择哪种进货方案?
解:设进甲种电视X台,乙种电视Y台,由题意得:
x y 50 解得: 1500x 2100y 90000
x 25 y 25
4、某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机, 出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场 的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的 方案中,为使获利最多,你选择哪种进货方案?
∴租用45座客车6辆更合算
3.长风乐园的门票价格规定如下表所列。
购买人数 每人门
100人以上 9元
某校初一(1)、(2)两个班共104人去游长风乐园,其中(1)班人数较少,不到50人,(2)班人 数较多,有50多人。经估算,如果两班都以班为单位分别购票,则一共应付1240元;如 果两班联合起来,作为一个团体购票,则可以节省不少钱。问两班各有多少名学生? 分析:(1)班人数+(2)班人数=104人 ;(1)班单独购票的价钱+(2)班单独购票的价钱=1240元 解:设(1)班有x人,(2)班有y人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的应用方案选择与设计问题
1、某商场计划拨款9万元从厂家购进50太电视机,已知该厂家生产三种不同幸好的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请伱研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时利润最多,你选择哪一种进货方案?
2、某球迷协会组织36名球迷拟租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可利用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空坐,也不超载。
(1)请你给出三种不同的租车方案;
(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最小的租车方案,并简述伱的理由.
3、我国北方为严重缺水地区,某市在确保居民正常生活用水的情况下,采用不同的水费收取标准强制居民节约用水,规定每户居民每月用水不超过6m3时,水费按a 元/ m3若超过6m3,,则超过不分按c元/ m3收取。
某户居民今年3月份用水5 m3,交水费7.5元,4月份用水9 m3交水费27元。
(1)求a、c 的值;
(2)若该用户居民5月份用水8 m3,则应交水费多少元?
4、长沙市某公园的门票价格如下表所示:
某校初三年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人。
如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元,问:甲乙两班分别有多少人?
5、为庆祝“六一”儿童节,某市中小学统一组织文艺汇演。
甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出。
下面是某厂给出的演出服装的价格表:
如果两所学校分别单独购买服装,一共应付5000元。
(1)如果甲、乙两校联合起来购买服装,那么比各自购买共可以节省多少钱?(2)甲、乙两所学校各有多少学生准备参加演出?
(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案。
6、柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
(1)若物资全部用甲乙两种车型来运送,运费需要6400元,问分别需要甲乙两
种车型各几辆?
(2)为了节省运费,该地政府打算用甲乙丙三种车型同时参与运送,已知它们总
车辆数为14辆,你能求出它们三种车型的辆数吗?此时运费又是多少元?
7、甲乙两班的学生到集市购买苹果,苹果的价格如下:
甲班分两次购买苹果70千克(第二次多于第一次)共付189元,而乙班则一次性购买苹果70千克
求:(1)乙班比甲班少付多少钱?(2)甲班第一次,第二次分别购买苹果多少千克?
8、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。
该加工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨。
受人员限制,两种加工方式不可同时进行。
受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
为此,该厂设计了两种可行方案:
方案一:尽可能多地制成奶片,其余直接销售鲜奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为哪种方案获利最多?为什么?
9、北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台.已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示.有关部门计划用8000元运送这些仪器,请你设计一种方案,使武汉、重庆能得到所需仪器,而且运费正好够用.。