第4章传热42第二节热传导

合集下载

化工原理第四章(热传导)

化工原理第四章(热传导)
2021/7/31
二、导热系数
1、导热系数定义 由傅立叶定律可知:
Q q
A dt
dt
dx dx
【物理意义】温度梯度为1时,单位时间内通过单位传热面积的 热量(热流密度)。
2021/7/31
【两点讨论】 (1)导热系数在数值上等于单位温度梯度下的热通量。是一个 物性常数,用来表明一种物质传导传热能力大小的一个参数,λ 越大 ,导热性能越好。
【几点讨论】
Q A(t1 t2 )
b
t1
t2
Qb
A
t
t1
Qb
A
(1)传热速率一定时 ,温差与壁厚成正比, 且为线性关系; (2)传热速率一定时 ,温差与导热系数成反 比。
2021/7/31
墙 壁 的 学 问
2021/7/31
Q A(t1 t2 )
b
(1)导热系数λ要小; (2)厚度b要大; (3)面积A要小。
2021/7/31
2021/7/31
λ×102/(Wm-1℃-1)
8
1
7
2
4
6
1-水蒸气
5
2-氧气
5
3-二氧化碳
4
3
3
6
4-空气 5-氮气
6-氩气
2
1 0 200 400
600 800 1000
t /℃
某几 些种 气体气的体导的热热系导数率
三、平面壁的稳态热传导
2021/7/31
【特点】热量传递过程中,传热面 积(A)保持不变。
【两点说明】 (1)温度梯度是向量,其方向指向温度增加的方向;
(2)对于一维稳态热传导:
gradt
dt
dx

4.1 传热概述及热传导

4.1 传热概述及热传导

保温杯内胆与瓶身中间处于真空,
无气体分子,不导热。
27
4.2.1 傅立叶定律(Fourier's Law)
1.固体的导热系数
导热性能与导电性能密切相关,一般而言,良好的导电体必然是良好的导热体,
反之亦然。在所有固体中,金属的导热性能最好。 大多数金属的导热系数与金属温度和纯度有关,即
t , λ
t 0
t 0
非稳态(非定常)传热:间歇生产过程,开、停车阶段。
Q , q, t f x , y , z
本章只讨论稳定传热
17
4.1.3 传热过程 热载体及其选择
选择原则
①载热体的温度易调节控制;
②载热体的饱和蒸气压较低,加热时不易分解; ③载热体的毒性小,不易燃、易爆,不易腐蚀设备;
《化工原理》
第4章 传热
4.1 传热概述及热传导
新课导入
热传递3种方式
热 传 导
热 对 流
热 辐 射
热量传递可以依靠其中的一种方式或几种方式同时进行,净的热流方向总是 从高温处向低温处流动。
2
4.1.1 传热的三种基本方式
热传导
若物体各部分之间借分子、原子和自由电子等微观粒子的热运动 传递热量的过程为热传导(又称导热)。
物质种类
气体
液体
非导固体
金属
绝热材料
W/(m﹒oC) 0.006~0.6 0.07~0.7
0.2~3.0
15~420
﹤0.25
26
4.2.1傅立叶定律(Fourier's Law)
从导热系数的角度分析一下,泡沫箱和保温杯的保温原理。
泡沫箱中存在大量微孔,填充
了大量空气,同时其自身为绝

化工原理第四章传热及传热设备

化工原理第四章传热及传热设备
例:温度升高,气体的粘度μ_____________,导热系数 λ____________(变大,变小,不变)。
物质热导率的大致范围
物质种类
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
4.2 热传导
4.2.1 温度场和温度梯度 温度场:在某一瞬间,空间或物体内所有各点温度分布的总和。 即: t = f (x,y,z,θ) t--温度; x,y,z--空间坐标; θ--时间
温度梯度 :
4.2.2 傅立叶定律( Fourier’s Law)
单位时间内传导的热量Q与温度梯度dt/dx及垂直于热量方向
蓄热体
4、中间载热体式换热器 又称热媒式换热器。 换热原理:将两个间壁式换 热器由在其中循环的载热体 (称为热媒)连接起来,载 热体在高温流体换热器中从 热流体吸收热量后,带至低 温流体换热器传给冷流体。 典型设备:空调的制冷循环、 太阳能供热设备、热管式换 热器等。 适用范围:核能工业、冷冻 技术及工厂余热利用中。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
单程列管式换热器
1 —外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
套管式换热器 1—内管 2—外管
3、蓄热式换热器
4.2 传导
热传导又称导热,是物质借助分子和原子振动及自 由电子运动进行热量传递的过程。
导热过程的特点是:在传热过程中传热方向上无质 点的宏观迁移。

化工原理第四章传热

化工原理第四章传热
化工原理
4-2.2

平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )

1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型

1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理

等温面 在温度场中,温度相同的各点组成的面。
等温面

温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理

多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d

第4章传热-1、2、3

第4章传热-1、2、3

三、传热的基本方式
1、热传导
热量从物体内部温度较高的部分传递到温度较低的 部分或者传递到与之相接触的温度、较低的另一物体的 过程称为热传导,简称导热。 特点:物质间没有宏观位移,只发生在静止物质内的一种 传热方式。 微观机理因物态而异
2、热对流
流体中质点发生相对位移而引起的热量传递,称为热对流 对流只能发生在流体中。 强制对流 用机械能(泵、风机、搅拌等)使流体发生 对流而传热。 自然对流 由于流体各部分温度的不均匀分布,形成 密度的差异,在浮升力的作用下,流体发 生对流而传热
对于n层圆筒壁:
2 L(t1 tn 1 ) t1 tn 1 t1 tn 1 Q= n n = n bi 1 ri 1 ln Ri ri i 1 i i 1 i S mi i 1
Q 2 rlq 1 1 2 r 2lq2 2 r 3lq3
2、蓄热式换热
蓄热式换热器是由热容量较大的蓄热室构成。室中充 填耐火砖作为填料,当冷、热流体交替的通过同一室时, 就可以通过蓄热室的填料将热流体的热量传递给冷流体, 达到两流体换热的目的。
3、间壁式换热
间壁式换热的特点是冷、热流体被一固体隔开,分别 在壁的两侧流动,不相混合,通过固体壁进行热量传递。
流体通过管壁的传热过程
冷、热流体通过间壁的 传热过程分为三步: (1) 热流体将热量传给热
流体侧壁面(对流传热)
(2) 热量由一侧传至另
一侧(热传导);
(3) 热量由壁面传给冷 流体(对流传热);
T1 T2 体
Q1 ( 对流 )
t1
冷 流 体
(1)热流体 管壁内侧 (2)管壁内侧 管壁外侧 (3)管壁外侧 冷流体
t f ( x, y , z )

化工原理王志魁第五版习题解答:第四章 传热

化工原理王志魁第五版习题解答:第四章  传热

第四章传热【热传导】【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。

若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。

现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。

解根据已知做图热传导的热量.28140392Q I V W =⋅=⨯=()12AQ t t bλ=-.().()12392002002280100Qb A t t λ⨯==--()./218W m =⋅℃【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=1.05W/(m·℃),厚度230b mm =;绝热砖层,热导率λ=0.151W/(m·℃);普通砖层,热导率λ=0.93W/(m·℃)。

耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。

(1)根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。

若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。

(2)若普通砖层厚度为240mm ,试计算普通砖层外表面温度。

解(1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。

通过耐火砖层的热传导计算热流密度q 。

()1121q t t b λ=-.()/.W m =-=21051000940274 023绝热砖层厚度2b 的计算()2232q t t b λ=-.().b m =-=201519401300446 274每块绝热砖的厚度为023m .,取两块绝热砖的厚度为.20232046b m =⨯=.。

(2)计算普通砖层的外侧壁温4t 先核算绝热砖层与普通砖层接触面处的温度3t (2)32227404694010530151qb t t λ⨯=-=-=℃习题4-3附图习题4-4附图3t 小于130℃,符合要求。

第二节 热传导

第二节  热传导

第二节热传导一、有关热传导的基本概念只要物体内部有温度差存在,就有热量从高温部分向低温部分传导。

所以研究热传导必须涉及物体内部的温度分布。

1.温度场和等温面温度场:某一瞬间空间中各点的温度分布,称为温度场。

等温面:温度场中同一时刻相同温度各点组成的面称为等温面。

因为空间同一点不能同时具有两个不同的温度,所以不同的等温面彼此不能相交。

2.温度梯度温度梯度是一个点的概念。

温度梯度是一个向量。

方向垂直4tl>二、导热系数1.固体的导热系数九在数值上等于单位温度梯度下的热通量。

九是分子微观运动的宏观表现。

常用的固体导热系数见表4-1。

在所有固体中,金属是最好的导热体。

纯金属的导热系数一般随温度升高而降低。

而金属的纯度对导热系数影响很大,如含碳为1%的普通碳钢的导热系数为45W/m・K,不锈钢的导热系数仅为16W/m・K。

2.液体的导热系数液体分成金属液体和非液体两类,前者导热系数较高,后者较低。

在非金属液体中,水的导热系数最大,除去水和甘油外,绝大多数液体的导热系数随温度升高而略有减小。

一般来说,溶液的导热系数低于纯液体的导热系数。

表4-2和图4-6列出了几种液体的导热系数值。

表4-2液体的导热系数液体温度,°C导热系数,久W/m*K 醋酸50% 20 0.353.气体的导热系数气体的导热系数随温度升高而增大。

在通常的压力范围内,其导热系数随压力变化很小气体的导热系数很小,故对导热不利,但对保温有利。

常见的几种气体的导热系数值见表4-3。

表4-3气体的导热系数三、对流传热1.对流传热的基本概念对流传热是在流体流动进程中发生的热量传递现象,它是依靠流体质点的移动进行热量传递的,帮与流体的流动情况密切相关。

工业上遇到的对流传热,常指间壁式换热器中两侧流体与固体壁面之间的热交换,变化即流体将热量传给固体壁面或者由壁面将热量传给流体的过程称之为对流传热(或称对流给热、放热)。

在第一章流体流动中已指出,流体产生流动的原因可以是流体以外力(如泵、鼓风机等)作用下而造成的强制对流,亦可是由流体内部的温度差而引起流体的密度差产生的自然对流。

化工原理第四章(热传导)

化工原理第四章(热传导)
棉毛
玻璃 云母 硬橡皮 锯屑 软木 玻璃棉
85%氧化镁
50 0-100 0-100
0-100 20
0-100 30 30 50 0 20 30
2020/12/8
0.17 0.15 1.28 1.04 0.12-0.21 0.69 0.047 0.050 1.09 0.43 0.15 0.052 0.043 0.041 0.070
(3)气体的导热系数 【特点】与液体和固体相比,气体的导热系数最小 ,对热传导不利,但却有利于保温、绝热。
2020/12/8
【温度的影响】 气体导热系数随温度升高而增大。
【压力的影响】 (1)在相当大的压强范围内,气体的导热系数随压 强的变化很小,可以忽略不计; (2)当气体压力很高(大于2000大气压)或很低( 低于20毫米汞柱)时,应考虑压强的影响,此时导 热系数随压强增高而增大。
银 钢(1%)
船舶用金属
青铜 不锈钢 石墨
常用固体材料的导热系数
温度, ℃
300 18 100 18 53 100 100 100 18 30
20 0
导热系数W/(m2·℃)
230 94 377 61 48 33 57 412 45 113 189 16 151
石棉板 石棉 混凝土 耐火砖 保温砖 建筑砖 绒毛毯
2020/12/8
3、导热系数的变化规律 【一般规律】导热系数数值的变化范围很大。一般 来说,金属的导热系数最大,非金属固体次之,液 体较小,气体最小。
物质种类
λ
气体 液体
0.006~ 0.07~
0.6
0.7
非导固体 金属
绝热材料
0.2~3.0 15~420 <0.25

天津大学版化工原理第四章热传导ppt 课件

天津大学版化工原理第四章热传导ppt 课件
3
或:
dt dt a bt 2rl dr dr Q ln r =2 at t b t 2 t 2 1 1 l r1 2 175 0.000198 2 128.6 ln =2 0.103180 t 3 180 2 t 3 75 2 导热:Q=-A
y:组分的摩尔分率
二. 平壁的稳定热传导
1、单层平壁的稳定热传导
二. 平壁的稳定热传导 1、单层平壁的稳定热传导 b t2 dt Q dx S dt Q S 0 t1 dx
S (t1 t2 ) t1 t2 t Q b b / S R
传热推动力 传热速率= 传热阻力 若对傅立叶定律进行不定积分 x t Q 传热推动力:温度差
r2 dr t2 dt dt Q S 2rl Q 2l dt r1 r t1 dr dr
t1 t 2 t1 t 2 r2 r1 Q 2l 令rm r2 ln( r2 r1 ) r 2 ln ln r1 r1 2l 2l (r2 r1 ) (t1 t 2 ) 2l (r2 r1 ) (t1 t 2 ) S 2lr 或Q m m r2 r2 (r2 r1 ) ln b ln r1 r1
t 总推动力 (t1 t4 ) Q b b1 b R 总热阻 2 3 1S m1 2 S m 2 3 S m3 也可写为: Q t1 t 4 ln r2 / r1 ln r3 / r2 ln r4 / r3 2l1 2l2 2l3
对n层圆筒壁
例题
• 例4-1 有一燃烧炉,炉壁由三种材料组成。最内层 是耐火砖,中间为保温砖,最外层为建筑砖。已知 • 耐火砖 b1=150mm λ1=1.06W/m· ℃ • 保温砖 b2=310mm λ2=0.15W/m· ℃ • 建筑砖 b3=240mm λ3=0.69W/m· ℃ • 今测得炉的内壁温度为1000℃,耐火砖与保温砖之 间界面处的温度为946℃。试求: • (a)单位面积的热损失; • (b)保温砖与建筑砖之间界面的温度; • (c) 建筑砖外侧温度。

化工原理第四章传热过程超详细讲解

化工原理第四章传热过程超详细讲解

② 冷热流体的出口温度互不受影响,冷流体出口温度t1可能 高于热流体出口温度T2,换热彻底。在Φ、K相同时,A逆<A
并。
2、并流的优点: ① t2<T2, 流体终点温度易控 制,对于易气化、分解、反应和 冷凝而必须控温的流体的换热较 适合。
②Δt1>Δt2,适用于某些连续 操作的管式反应器中进行的放 热反应的热量的移出。
对流给热模型的实质:把复杂的对流
给热过程视为通过滞流内层的热传导
过程。 对流给热模型将间壁传热分解为两个给热和一个导热过程:
T主体 → 过度、滞流层→ 内壁 →外壁 → 滞流、过度层 → t 主体
对流传热 对流传热
传导传热
传导传热
传导传热
Φ1
Φ2
Φ3
二、牛顿给热方程
既然将对流给热视为通过滞流内层的热传导,则对
即逆流传热,可使Φ↑ or A↓ or m↓ .
七、并流与逆流的比较
并流传热的温差Δt前大后小,逆流传热温差Δt始终较
大,故一般有Δtm逆>Δtm并。
1、逆流的优点: ∵Φ=KAΔtm
① 进出口温度相同时,Δtm逆>Δtm并,故在 A、K一定时:
Φ逆/Φ并 =Δtm逆 /Δtm并 >1
即: Φ逆 >Φ并
3、平均温差公式
以并流为例推导平均温差公式: ∵(T-t)与A有关,故须找平均温差(T-t)m =Δ t m, 则需找d(T-t) ~ dA关系,故取一微元面积dA, 在dA 内 视 ( T- t ) 为 常 数 , 在 d A 内 应 用 传 热 速 率 方 程 式 有 :
对冷热流体进行热量衡算有: kg/s (qm)
(1)传热量 Q (2)传热速率Φ=Q/ τ —单位

化工原理课程课件PPT之第四章传热

化工原理课程课件PPT之第四章传热

第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3

《第四章传热》PPT课件

《第四章传热》PPT课件
gradt dt dx
2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)

化工原理 第四章 传热教学内容

化工原理 第四章 传热教学内容

t R
i1 i A
例4-2 P125
多层平壁传热的推动力为总温度差。传热阻力由 各层热阻之和。并且有
t1:t2:t3:t = R1:R2:R3:Ri
25
四、圆筒壁的热传导
1.单层圆筒壁的热传导(稳态)
dr t2 t1
r2
Q
Hale Waihona Puke r1rL26
QAdt2rldt
dr
dr
上式积分可得:
Q
2lt1
ln r2
时的传热速率。
固体导热系数:
固体>液体 >气体
金属的导热系数最大,是热的良导体。
温度↗ ↘
纯度↗ ↗
非金属导热系数较小。
温度↗ ↗ 纯度↗ ↗
对大多数固体: = 0(1+at)= 0 +at
0C时的导热系数
温度系数
17
液体的导热系数: 液态金属(与固态金属性质差不多) 非金属液体:水的导热系数最大
第四章 传热
1
要求:
1.掌握热传导的基本原理、傅里叶定律、平壁与 圆筒壁的稳定热传导计算; 2.掌握对流传热的基本原理及牛顿冷却定律; 3.掌握运用传热速率方程式、热量衡算式、平均 温度差、总传热系数进行传热计算;
2
4.理解对流传热系数的影响因素、关联式及应用 条件; 5.了解间壁换热器的结构特点、应用及强化途径。
21
传热速率
传热推动力 传热阻力
22
2.多层平壁的热传导
Q
b1 b2 b3 t t1
t2 t3 t4 x
23
以三层平壁为例:
QQ 1Q2Q3
Qt1t2 t2 t3 t3t4
b1
b2
b3

热工基础传热学

热工基础传热学
λ——导热系数(热导率 ),
w/(m·k),与物体性质、 温度有关,各向同性与各向异 性之别。 热流密度:
q=Φ/A= λΔt /δ
二、热对流
1、特征:(1)物体相互接触; (2)各部分之间发生相对位移;
(3)依靠微观离子热运动。 (4)固体—流体、 流体—流体 2、热流量与热流密度 热流量:牛顿冷却公式
第四章 热量传递的基本原理
第一节 热量传递的三种基本方式
传热的三种不同形式:热传导、热对流、 热辐射。 一、热传导
1、特征:(1)物体相互接触; (2)各部分之间不发生相对位移; (3)依靠微观离子热运动。
(4)固体—固体、固体—流体、 流 体—流体
2、热流量与热流密度 热流量: Φ= λ AΔt /δ
φ
y
x
c t
1 r t
r r r
1 r2
t
t
.
z z
球坐标系里导热微分方程:
z
t(r,φ,θ) θ
φ
y
x
c t
1 r2
r 2
r
t r
1
r 2 sin 2
t
r
2
1
sin
sin
t
.
2、求解导热微分方程的定解条件
(1)第一类边界条件:已知边界上的温度
例如:tw=const tw=f1(τ)
一维稳态温度场
τ≠const t=f (x,y,z,τ) 非稳态温度场
等温线和等温面
2、温度梯度
t-Δt t t+Δt
lim t t
gradt n
n
n0 n n
q
n
3、傅立叶定律——导热基本定律

化工原理第四章传热

化工原理第四章传热

对于一维温度场,等温面x及(x+Δx)的温度分别为t(x,τ)及
t(x+Δx,τ),则两等温面之间的平均温度变化率为:
t(x x,)t(x,)
t-t t
x
t+t
Q
温度梯度:
dA
gr la it( x m d x ,t) t( x ,) t n
x 0
x
x
温度梯度是向量,其方向垂直于等温面,并以温度增加 的方向为正。
实际上,上述三种传热方式很少单独出现,而往往是相互伴 随着出现的。
冷热流体的接触方式
一、直接接触式
板式塔
二、间壁式 套管换热器
热流体T1
t2
冷流体t1
T2
传热面为内管壁的表面积
列管换热器
热流体T1
t2
冷流体t1
T2
传热面为壳内所有管束壁的表面积
热载体及其选择
加热剂:热水、饱和水蒸气 矿物油或联苯等低熔混合物、烟道气等 用电加热
r1,b2=r3- r2,b3=r4- r3;
➢各层材料的导热系数λ1,λ2,
λ3皆视为常数;
➢层与层之间接触良好,相互
接触的表面温度相等,各等温 面皆为同心圆柱面。
r1 r2 r3 r4
t2t1 t3 t4
多层圆筒壁的热传导计算,可参照多层平壁。 对于第一、 二、三层圆筒壁有
Q2L1
t1 t2 lnr2
解: 根据题意,已知t1=10℃ ,t4=-5℃ ,b1=b3=0.12m, b2=0.10m,λ1= λ3= 0.70w/m•k, λ2= 0.04w/m•k。
按热流密度公式计算q
:q Q t 1 t 4 1 ( 0 5 ) 5 . 2 w / 7 m 2

4.1-传热概述及热传导PPT课件

4.1-传热概述及热传导PPT课件

1.可表示为
Q
(t1
t2 ) b
t R
导热推动力 导热热阻
A
推动力: t (t1 t2 )
热阻: R b
A
2.分析平壁内的温度分布
b
t2
Qdx Adt
0
t1
上限由 x b时,t t2 改为 x x时,t t
定义
通过等温面的导热速率与温度梯度及传热面积成正比, 而热量传递的方向则与温度升高的方向相反。
dQ dA t n
dQ dA t
n
:导热系数,w/(m﹒oC)
Jean Baptiste Joseph Fourier
(1768 –1830)
由于导热方向为温度下降的方向,故需.在右端加一负号。
25
4.2.1 傅立叶定律(Fourier's Law)
4.2.1 傅立叶定律(Fourier's Law)
2.液体的导热系数 金属液体-导热系数λ较高
液体 非金属液体-导热系数λ较低
液态金属的导热系数比一般液体的高,其中熔融的纯钠具有较高的导热系 数。液体的导热系数基本上与压强无关。
a. 在非金属液体中,水的导热系数最大。
b. 金属液体: T↑,λ液↓
适用范围:一般气体介质之间,使用不多。
.
高温流体
低温流体 蓄热体 12
4.1.2 传热过程中冷、热流体的接触方式
➢ 间壁式换热
特点:冷热两种流体被一固体间壁所隔开,
在换热过程中,两种流体互不接触,热量
由热流体通过间壁传给冷流体。
热 流
优点:传热速度较快,适用范围广,热量

的综合利用和回收便利。
缺点:造价高,流动阻力大,动力消耗

环境工程原理 第四章 热量传递

环境工程原理 第四章 热量传递

有利于提高管程流体的流速和对流传热系数,但能量损失增加,传热
温度差小,程数以2、4、6程多见。 管外流体每通过一次壳体成为一个壳程。在管外装有折流板(或挡 板)可以提高壳程流体的流速,以保持较高的传热系数,折流板形式 常用的有弓形和盘环形两种。折流板同时起中间支架作用。
换热器
*列管式换热器
优点:
固体壁面的形状、尺度、方位、粗糙度、是否处于管 道进口段以及是弯管还是直管等。 a c p
(3)流动特征
对流传热
一、影响对流传热的因素
(3)流动特征 流动起因(自然对流、强制对流) 流动状态(层流、湍流) 有无相变化(液体沸腾、蒸汽冷凝) 流体对流方式(并流、逆流、错流)
第四节 辐射传热
浮头补偿 补偿圈补偿 U形管补偿
换热器
选择的原则:
⑴ 不清洁易结垢的物料应选管;
⑵ 需要通过增大流速以提高给热系数的流体应选管; ⑶ 腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀; ⑷ 压力高的流体宜选管程,以防止壳体受压; ⑸ 蒸汽走壳程,冷凝液易于排出;
⑹ 被冷却的流体一般走壳程,便于散热;
⑺ 粘度大流量小流体选壳程,壳程Re>100即可达到湍流。
折流挡板
按一定数目与管束垂直设置;防止短路、增加流速;可 强制流体按规定路径、多次错流经过管束,增加湍动程 度。
t1
t1 T1 T2
T1 T2 t2
t2
热流体 T1
t2
冷流体 t1
T2
换热器
*列管式换热器
冷、热流体两种流体在进行换热时,一种流体通过管内,其行程称
为管程;另一种流体在管外流动,其行程称为壳程。 换热器内通过管内的流体每通过一次管束称为一个管程;管程数多

化工原理 第四章 传热

化工原理 第四章 传热

注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
dt Q S dx x 0,t t1;
x b,t t2; t1 t2
Q
S
b
t1 t2
Q
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
⑴ 给热是集热对流和热传导于一体的耦合过程。 ⑵ R集中在层流内层→ 层流内层厚度↓是强化给热的主要途径。
传热-对流传热
② 热边界层 热边界层→即温度边界层,指壁面附近处具有温度梯度的流体薄层。
dt dQ dS dy w

dQ tw t dS
dt dt tw t dy w t dy w

平板上的热边界层
dt t不变时, t , dy w

⑵ 流体在管内流动时,热边界层与流动边 ⑴ 热边界层边缘处→ 界层类似。不同的是,经历进口段和完全 t t 0.99 t t 发展区后,温度分布随管长渐变为平坦, < ⑵ 热边界层厚度→ 。 继而温度梯度消失,直至传热停止。
dQ T Tw dS
Q S t
R
1 S
① →平均给热系数。 ② 流体温度→流动横截面上的平均温度。 ③ 若热流体走管内,冷流体走环隙, dQ i T Tw dSi o tw t dSo
④ 给热研究的内核→不同给热情况下,α 的大小、影响因素及其计算式。
n
bi
mi
Q

2 πL t1 t4 1 r2 1 r3 1 r4 ln ln ln 1 r1 2 r2 3 r3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热通量q(平壁导热通量)
式4-3通常也可以表达为q=Q/A
得:Q


A
(t2

t1 )

t1


t2
t R
A
平壁内的温度分布:
由:dt Q dx 不定积分得:t Q x C
A
A
即:沿壁厚方向,温度分布为一直线
当λ=f(t)时,沿壁厚方向,温度分布为非线性
4、微波炉加热均匀,热效率高,卫生无污染。加热 原理是利用电能转化为电磁能,再将电磁能转化为内 能。
5、厨房中的电灯,利用电流的热效应工作,将电能 转化为内能和光能。
6、厨房的炉灶(蜂窝煤灶,液化气灶,煤灶,柴灶) 是将化学能转化为内能,即燃料燃烧放出热量。
二、与力学知识有关的现象
1、电水壶的壶嘴与壶肚构成连通器,水面总是相平 的。
输入热流率 输出热流率 热量积累率
对稳态传热:
输入热流率 输出热流率
x/ m 单层平壁的稳态热传导
傅立叶定律: Q A dt
dx
导热系数视为常数, 定积分:Q

dx A
t2 dt
0
t1
得:Q


A
(t2

t1 )

t1 t2


t R
重点
A
传热推动力(温差) 传热阻力(热阻)
1、腌菜往往要半月才会变咸,而炒菜时加 盐几分钟就变咸了,这是因为温度越高,盐的 离子运动越快的缘故。
2、长期堆煤的墙角处,若用小刀从墙上刮 去一薄层,可看见里面呈黑色,这是因为分子 永不停息地做无规则的运动,在长期堆煤的墙 角处,由于煤分子扩散到墙内,所以刮去一层, 仍可看到里面呈黑色。
一、热凉粥或冷饭时,锅内发出”扑嘟、扑嘟” 声音, 并不断冒出气泡来,但一尝,粥或饭并不热,这为什
3、烧水或煮食物时,喷出的水蒸气比热水、热 汤烫伤更严重。因为水蒸气变成同温度的热水、热汤 时要放出大量的热量(液化热)。
4、用砂锅煮食物,食物煮好后,让砂锅离开火炉, 食物将在锅内继续沸腾一会儿。这是因为砂锅离开 火炉时,砂锅底的温度高于100℃,而锅内食物为 100℃,离开火炉后,锅内食物能从锅底吸收热量, 继续沸腾,直到锅底的温度降为100℃为止。
么? 把凉粥或饭烧热与烧开水是不一样的。虽然水是 热的不良身体,对热的传导速度很慢,但水具有很 好的流动性。当锅底的水受热时,它就要膨胀,密 度减小就上浮,周围的凉水就流过来填补,通过这 种对流,就把锅底的热不断地传递到水的各部分而 使水变热。而凉粥或饭,既流动性差又不易传导热。 所以,当锅底的粥或饭吸热后,温度就很快上升, 但却不能很快地向上或四周流动,大量的热就集中 在锅底而将锅底的粥烧焦。因热很难传到粥的上面, 所以上面的粥依然是凉的。加热凉粥或饭时,要在 锅里多加一些水,使粥变稀,增强它的流动性。此 外,还要勤搅拌,强制进行对流,这样可将粥进行 均匀加热。

t1 t4
ln(r2 / r1) ln(r3 / r2 ) ln(r4 / r3)
2L1 2L2 2L3
t
i
R i
其中, Am1

A2 A1 ln A2
A1
Am 2

A3 A2 ln A3
A2
Am3

A4 A3 ln A4
A3
小结
1、平壁稳态热传导(单层、多层) 2、圆筒壁稳态热传导(单层、多层) 3、传热推动力,传热阻力的概念
11、当汤煮沸要溢出锅时,迅速向锅内加冷水 或扬(舀)起汤,可使汤的温度降至沸点以 下。加冷水,冷水温度低于沸腾的汤的温度, 混合后,冷水吸热,汤放热。把汤扬起的过 程中,由于空气比汤温度低,汤放出热,温 度降低,倒入锅内后,它又从沸汤中吸热, 使锅中汤温度降低。
(三)与热学中的分子热运动有关的现象
二、用砂锅煮肉或烧汤时,当汤水沸腾后从炉 子上拿下来,则汤水仍会继续沸腾一段时间,
而铁、铝锅却没这种现象,这是为什么?
因为砂锅是陶土烧制成,而非金属的比热比金属 大得多,传热能力比金属差得多。当砂锅在炉子上 加热时,锅外层温度大大超过100℃,内层温度略 高于100℃。此时,锅吸收了很多热量,储存了很 多热能。将砂锅从炉子上拿下来后,远高于100℃ 的锅的外层就继续向内层传递热量,使锅内的汤水 仍达到100℃而能继续沸腾一段时间,铁、铝锅就 不会出现这种现象(其原因请同学们自己分析)。
结论:
例 4-2
在多层平壁定常导热过程中,各层壁的 温差与其热阻成正比,哪层热阻大,哪层温 差一定大。
举例
t1 t2
a
b
经过两层平壁的稳定热传导,温 度分布如左图所示
问:平壁a和b热阻的大小关系?
t3
Ra> Rb
若a和b的厚度相等,则a和b的 导热系数的大小关系?
λa< λb
三、圆筒壁的稳态热传导
7、煮食物并不是火越旺越快。因为水沸腾后温度不 变,即使再加大火力,也不能提高水温,结果只能 加快水的汽化,使锅内水蒸发变干,浪费燃料。正 确方法是用大火把锅内水烧开后,用小火保持水沸 腾就行了。
8、冬天水壶里的水烧开后,在离壶嘴一定距离才能 看见“白气”,而紧靠壶嘴的地方看不见“白气”。 这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸 气不能液化,而距壶嘴一定距离的地方温度低;壶 嘴出来的水蒸气放热液化成小水滴,即“白气”。
9、油炸食物时,溅入水滴会听到“叭、叭”的响声, 并溅出油来。这是因为水的沸点比油低,水的密度 比油大,溅到油中的水滴沉到油底迅速升温沸腾, 产生的气泡上升到油面破裂而发出响声。
10、当锅烧得温度较高时,洒点水在锅内,就 发出“吱、吱”的声音,并冒出大量的“白 气”。这是因为水先迅速汽化后又液化,并 发出“吱、吱”的响声。
与平壁稳态热传导相比, 相同点:一维稳态导热,Q=常数 不同点: ① 热流方向(径向) ② 传热面积沿径向不同 Ar 2rL ③ 热通量(q Q / A)径向不同
2r1q1 2r2q2 q1 q2 q3
r1
λ t1
r2
t2
单层圆筒壁的导热
1、单层圆筒壁热传导 沿径向取一小薄层,由傅立叶定律:
复习
1、傅立叶定律
Q A dt
dn 2、导热系数
(1)单位 W (/ m K) (2)是物质的物性
(3)金属 非金属 液体 气体
二、通过平壁的定常热传导
1、 单层平壁的稳态热传导
t /℃
条件:平壁、一维稳态导热 内容:热流量计算、温度分布
t1 Q
t2
对平壁做热量衡算:
三、与热学知识有关的现象
(一)与热学中的热膨胀和热传递有关的现象 1、使用炉灶烧水或炒菜,要使锅底放在火苗的外焰,
不要让锅底压住火头,可使锅的温度升高快,是因为火苗 的外焰温度高。
2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成, 是因为木料是热的不良导体,以便在烹任过程中不烫 手。
3、炉灶上方安装排风扇,是为了加快空气对流,使 厨房油烟及时排出去,避免污染空间。

t3
3
3 A
和比定理: Q
t1 t2 t3
1 2 3
1 A 2 A 3 A
t3 b3 3 A 3
t2 t3 t4
x/m
多层平壁稳态导热温度分布
Q
1
t1 t4
2
3

1A 2 A 3 A
t i Ri
多层平壁导热是一种串联的导热过程,串联导 热过程的推动力为各分过程温度差之和,即总温度 差,总热阻为各分过程热阻之和,也就是串联电阻 叠加原则。
Q A dt (2rL) dt
dr
dr
分离变量积分:
Q 2L t1 t2 t1 t2 t
ln r2 ln r2 (/ 2L) R
r1
r1
r1
λ t1
r2
t2
其中,R ln(r2 / r1)
2L
单层圆筒壁的导热
变形:Q 2L (r2 r1) (t1 t2 ) 2 rm L(t1 t2 )
2、菜刀的刀刃薄是为了减小受力面积,增大压强。 3、菜刀的刀刃有油,为的是在切菜时,使接触面光滑, 减小摩擦。 4、菜刀柄、锅铲柄、电水壶把手有凸凹花纹,使接触 面粗糙,增大摩擦。 5、火铲送煤时,是利用煤的惯性将煤送入火炉。 6、往保温瓶里倒开水,根据声音知水量高低。由于水 量增多,空气柱的长度减小,振动频率增大,音调升高。 7、磨菜刀时要不断浇水,是因为菜刀与石头摩擦做功 产生热使刀的内能增加,温度升高,刀口硬度变小,刀口不 利;浇水是利用热传递使菜刀内能减小,温度降低,不会升 至过高。
习题 4-的物理知识
一、与电学知识有关的现象
1、电饭堡煮饭、电炒锅煮菜、电水壶烧开水是利用 电能转化为内能,都是利用热传递煮饭、煮菜、烧开水 的。
2、排气扇(抽油烟机)利用电能转化为机械能,利 用空气对流进行空气变换。
3、电饭煲、电炒锅、电水壶的三脚插头,插入三孔 插座,防止用电器漏电和触电事故的发生。
5、用高压锅煮食物熟得快些。主要是增大了锅内气 压,提高了水的沸点,即提高了煮食物的温度。
6、夏天自来水管壁大量“出汗”,常是下雨的征兆。 自来水管“出汗”并不是管内的水渗漏,而是自来 水管大都埋在地下,水的温度较低,空气中的水蒸 气接触水管,就会放出热量液化成小水滴附在外壁 上。如果管壁大量“出汗”,说明空气中水蒸气含 量较高,湿度较大,这正是下雨的前兆。
4、滚烫的砂锅放在湿地上易破裂。这是因为砂锅是 热的不良导体,烫砂锅放在湿地上时,砂锅外壁迅速放热 收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破 裂。
5、往保温瓶灌开水时,不灌满能更好地保温。因为 未灌满时,瓶口有一层空气,是热的不良导体,能更好地 防止热量散失。
相关文档
最新文档