生活中的优化问题举例(教学设计)含答案

合集下载

1.4 生活中的优化问题举例

1.4 生活中的优化问题举例
=3.2-2x(m).
4
高为
由题意知 x>0,x+0.5>0,且 3.2-2x>0,
∴0<x<1.6.
设容器的容积为 V m3,
则有 V=x(x+0.5)(3.2-2x)
=-2x3+2.2x2+1.6x(0<x<1.6).
∴V'=-6x2+4.4x+1.6.
目录
退出
令 V'=0,有 15x2-11x-4=0,
解得
4
x1=1,x2=-15(舍去).
∴当 x∈(0,1)时,V'(x)>0,V(x)为增函数,
x∈(1,1.6)时,V'(x)<0,V(x)为减函数.
∴V 在 x∈(0,1.6)时取极大值 V(1)=1.8,这个极大值就是 V 在
x∈(0,1.6)时的最大值,即 Vmax=1.8.这时容器的高为 1.2 m.
此时 Smax=42=16(m2).
答案:16 m2
目录
退出
2.用总长为 14.8 m 的钢条制作一个长方体容器的框架,如果所
制作容器的底面的一边比另一边长 0.5 m,那么高为多少时容器的容
积最大?并求出它的最大容积.
解:设容器底面短边的边长为 x m,则另一边长为(x+0.5) m,
14.8-4x-4(x+0.5)
思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助
椭圆的方程,可表示出等腰梯形的高.
目录
退出
解:(1)依题意,以 AB 的中点 O 为原点建立平面直角坐标系(如
图所示),则点 C 的横坐标为 x,点 C 的纵坐标为

1.4生活中的优化问题举例

1.4生活中的优化问题举例

练习1、 一条长为l的铁丝截成两段,分别弯成两个 正方形,要使两个正方形的面积和最小, 两段铁丝的长度分别是多少?
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
=
s1
+ s2
=( x)2 4
+( l
- x)2 4
=
1 (2x2 16
-
2lx
+
l2
)
S 1 (4x 2l) 1 (2x l)
生活中经常遇到求利润最大、用料 最省、效率最高等问题,这些问题称 为优化问题,优化问题有时也称为最 值问题.解决这些问题具有非常重要 的现实意义.
通过前面的学习,我们知道,导数是求函 数最大(小)值的有力工具,本节我们运 用导数,解决一些生活中的优化问题。
类型一:求面积、容积的最大问题
例1、海报版面尺寸的设计: 学校或班级举行活动,通常需要张贴海报进行宣传,
解:设版心的高为xdm,则版心的
1dm
m
宽 128 dm,此时四周空白面积为 2dm x
S( x) ( x 4)(128 2) 128 x
2x 512 8 ( x 0) x
S
'(
x
)
2
512 x2
2dm
S(
x)
2
x
512 x
8,S
'(
x)
2
512 x2
令S '(x) 0可解得x 1(6 x -16舍去)
V(x)=x2h=(60x2-x3)/2(0<x<60).

V(x)= 60x - 3 x2 = 0 2
,解得x=0(舍去),x=40.且

导数在生活中的优化问题举例含答案

导数在生活中的优化问题举例含答案

生活中的优化问题举例1、如图所示,设铁路50=AB ,C B 、之间的距离为10, 现将货物从A 运往C ,已知单位距离铁路费用为2,公路 费用为4,问在在AB 上何处修筑公路至C ,可使运费由A 至C 最省?2、一艘轮船在航行中的燃料费和它的速度的立方成正比,已知速度为10海里/小时,燃料费每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?3、已知B A 、两地相距200km ,一条船从A 地逆水到B 地,水速为h km /8,船在静水中的速度为()08/v v h vkm ≤<,若船每小时的燃料费与其在静水中的速度的平方成正比,当h km v /12=时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?4、已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线24x y -=在x 轴上方的曲线上,求这个矩形面积最大时的边长。

5、扇形AOB 中,半径2,1π=∠=AOB OA ,在OA 的延长线上有一动点C ,过C 点作CD 与弧AB 相切于点E ,且与过点B 所作的OB 的垂线交于点D ,问当点C在什么位置时,直角梯形OCDB 的面积最小?6、从长为32cm 、宽为20cm 的矩形薄铁板的四角剪去边长相等的正方形,做一个无盖的箱子,问剪去的正方形边长为多少时,箱子容积最大?最大容积是多少?7、某集团为了获得更大的利益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t (百万元),可增加销售额约为t t 52+-(百万元)()50≤≤t(1)、若该公司将当年广告费的投入控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)、现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额约为x x x 33123++-(百万元);请设计一个资金分配方案,使公司由此获得的收益最大。

1.4生活中的优化问题(带答案)

1.4生活中的优化问题(带答案)

1。

4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。

错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。

8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。

5m。

3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。

令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。

因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。

人教A版选修1-1教案:1.4.1生活中的优化问题举例(1)(含答案)

人教A版选修1-1教案:1.4.1生活中的优化问题举例(1)(含答案)

§1.4.1生活中的优化问题举例(1)【学情分析】:导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

【教学目标】:1.掌握利用导数求函数最值的基本方法。

2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力3.体会导数在解决实际问题中的作用.【教学重点】:利用导数解决生活中的一些优化问题.【教学难点】:将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。

【教学突破点】:利用导数解决优化问题的基本思路:【教法、学法设计】:求导数得V x()小课堂:如何培养学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

在小学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

如何培养中学生的自主学习能力?01学习内容的自主性1、以一个成绩比自己好的同学作为目标,努力超过他。

2、有一个关于以后的人生设想。

3、每学期开学时,都根据自己的学习情况设立一个学期目标。

4、如果没有达到自己的目标,会分析原因,再加把劲。

5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。

6、会针对自己的弱项设定学习目标。

7、常常看一些有意义的课外书或自己找(课外题)习题做。

8、自习课上,不必老师要求,自己知道该学什么。

9、总是能很快选择好对自己有用的学习资料。

10、自己不感兴趣的学科也好好学。

11、课堂上很在意老师提出的重点、难点问题。

12、会花很多时间专攻自己的学习弱项。

02时间管理13、常常为自己制定学习计划。

14、为准备考试,会制定一个详细的计划。

教学设计4:1.4 生活中的优化问题举例

教学设计4:1.4 生活中的优化问题举例

1.4生活中的优化问题举例教学目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.教学知识梳理知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.教学探究类型一几何中的最值问题例1请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解∵V(x)=(2x)2×(60-2x)×2 2=2x2×(60-2x)=-22x3+602x2(0<x<30).∴V′(x)=-62x2+1202x=-62x(x-20).令V′(x)=0,得x=0(舍去)或x=20.∵当0<x<20时,V′(x)>0;当20<x<30时,V′(x)<0.∴V(x)在x=20时取极大值也是唯一的极值,故为最大值.∴底面边长为2x=202(cm),高为2(30-x )=102(cm), 即高与底面边长的比值为12.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为 ________.(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面 积之和最小时,圆的周长为________ cm. 【答案】(1)6πS 3π (2)100π4+π【解析】(1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh . ∴h =S -2πr 22πr ,又圆柱的体积V =πr 2h =r 2(S -2πr 2)=rS -2πr 32, V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS 3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎫x 2π2+⎝⎛⎭⎫100-x 42(0<x <100). 因此S ′=x 2π-252+x 8=x 2π-100-x 8,令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在, 故当x =100π4+π cm 时,面积之和最小.类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润为 f (x )=(x -3)⎣⎡⎦⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎨⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =mx -1.所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256m x+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值.跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5,而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为 f (x )=20C (x )+C 1(x )=20×403x +5+6x=8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400(3x +5)2.令f ′(x )=0,即 2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元. 当堂检测1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1 D .-8【答案】C【解析】原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cmB.2033 cmC.1633 cmD.33 cm 【答案】B【解析】设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝⎛⎭⎫0,2033时,V ′>0,当h ∈⎝⎛⎭⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元【答案】D【解析】毛利润为(P -20)Q , 即f (P )=(P -20)(8 300-170P -P 2), f ′(P )=-3P 2-300P +11 700 =-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞), 故f (P )max =f (P )极大值,故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 【答案】160【解析】设底面长为x ,由题意得底面宽为4x .设总造价为y ,则y =20x ×4x +10×1×⎝⎛⎭⎫2x +2×4x , 即y =20x +80x+80,y ′=20-80x 2,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x的函数;(2)如何定价才能使一个星期的商品销售利润最大?解(1)设商品降价x元,则多卖出的商品件数为kx2.若记商品一个星期的获利为f(x),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9 072,x∈[0,21].(2)由(1)得,f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当因为f(0)=9 072,f(12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.。

3-4 生活中的优化问题举例

3-4 生活中的优化问题举例

1.做一个圆柱形锅炉,容积为V ,两个底面的材料每单位面积的价格为a 元,侧面的材料每单位面积的价格为b 元,当造价最低时,锅炉的底面直径与高的比为( )A.ab B.a 2b C.b a D.b 2a[答案] C [解析]如图,设圆柱的底面半径为R ,高为h ,则V =πR 2h .设造价为y ,则y =2πR 2a +2πRhb =2πaR 2+2πRb ·V πR2=2πaR 2+2bV R ,∴y ′=4πaR -2bVR 2.令y ′=0并将V =πR 2h 代入解得,2R h =ba .2.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .50[答案] C[解析] 如图,设∠NOB =θ,则矩形面积S =5sin θ·2·5cos θ=50sin θ·cos θ=25sin2θ,故S max =25.3.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为________元.[答案] 85[解析] 设每件商品定价x 元,依题意可得利润为L =x (200-x )-30x =-x 2+170x (0<x <200). L ′=-2x +170,令-2x +170=0,解得x =1702=85.因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大.4.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大?[分析] 利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.[解析] 收入R =q ·p =q (25-18q )=25q -18q 2.利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200),所以L ′=-14q +21.令L ′=0, 即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0,所以当q =84时,L 取得最大值,最大值为782. 答:当产量为84时,利润取得最大值782.5.某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产x 件这样的产品需要再增加可变成本C (x )=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?[解析] 设该厂生产x 件这种产品利润为L (x ) 则L (x )=500x -2 500-C (x ) =500x -2 500-⎝⎛⎭⎪⎫200x +136x 3=300x -136x 3-2 500(x ∈N )令L ′(x )=300-112x 2=0,得x =60(件) 又当0≤x <60时,L ′(x )>0 x >60时,L ′(x )<0所以x =60是L (x )的极大值点,也是最大值点. 所以当x =60时,L (x )=9 500元.答:要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.。

14生活中的优化问题举例

14生活中的优化问题举例

2 x 512 8, x 0 x
求导数,有
512 S'(x) 2 x2 ,
令s'(
x)
2
512 x2
0,
解得,x=16 (x=-16舍去)
于是宽为 128 128 8 x 16
第4P页a,ge共27页4 。
当x (0,16)时, s'( x) 0; 当x (16,)时, s'( x) 0;
V.
2
从而h
V
R 2
23
V
2
即h=2R.
可以判断S(R)只有一个极值点,且是最小值点.
答 罐高与底的直径相等时, 所用材料最省.
第1P4a页g,e共271页4 。
问题3:如何使一个圆形磁盘储存更多信息?
例3 磁盘的最大存储量问题
1你知道计算机是如何存 储、检索信息的吗 ? 2你知道磁盘的结构吗 ? 3如何使一个圆环状的磁 盘存储尽可能多的
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
s1
s2
( x)2 4
(l
x)2 4
1 (2x2 2lx l 2 ) 16
第6P页a,ge共27页6 。
S 1 (2x2 2lx l 2 ) 16
S 1 (4x 2l) 1 (2x l)
16
8
令S 0,得x l 2
1.4 生活中的优化问题举例
第1页,共27页。
生活中经常遇到求利润最大、用料
最省、效率最高等问题,这些问题通常
称为优化问题,通过前面的学习,知道, 导数是求函数最大(小)值的有力工具, 本节我们运用导数,解决一些生活中的 优化问题。

4生活中的优化问题举例(学教案)含答案

4生活中的优化问题举例(学教案)含答案

生活中的优化问题举例章节一:引言教学目标:1. 让学生了解优化问题的概念。

2. 让学生明白优化问题在生活中的应用。

教学内容:1. 优化问题的定义。

2. 优化问题在生活中的实例。

教学步骤:1. 引入优化问题的概念。

2. 举例说明优化问题在生活中的应用。

作业:1. 思考生活中还有哪些优化问题。

章节二:路线规划教学目标:1. 让学生学会使用最短路径算法解决优化问题。

2. 让学生能够应用最短路径算法解决实际生活中的问题。

教学内容:1. 最短路径算法的原理。

2. 最短路径算法在生活中的应用。

教学步骤:1. 讲解最短路径算法的原理。

2. 通过实例让学生应用最短路径算法解决问题。

作业:1. 尝试使用最短路径算法解决实际问题。

章节三:时间管理教学目标:1. 让学生学会如何合理安排时间。

2. 让学生能够应用时间管理技巧提高效率。

教学内容:1. 时间管理的原则。

2. 时间管理技巧的应用。

教学步骤:1. 讲解时间管理的原则。

2. 分享时间管理技巧并让学生进行实践。

作业:1. 制定个人时间管理计划。

章节四:资源分配教学目标:1. 让学生学会如何合理分配资源。

2. 让学生能够应用资源分配技巧解决问题。

教学内容:1. 资源分配的原则。

2. 资源分配技巧的应用。

教学步骤:1. 讲解资源分配的原则。

2. 通过实例让学生应用资源分配技巧解决问题。

作业:1. 尝试使用资源分配技巧解决实际问题。

章节五:购物优化教学目标:1. 让学生学会如何优化购物决策。

2. 让学生能够应用购物优化技巧提高购物效率。

教学内容:1. 购物优化技巧。

2. 购物优化在生活中的应用。

教学步骤:1. 讲解购物优化技巧。

2. 通过实例让学生应用购物优化技巧解决问题。

作业:1. 尝试使用购物优化技巧进行购物决策。

章节六:能源使用优化教学目标:1. 让学生了解能源优化的重要性。

2. 让学生学会如何在生活中优化能源使用。

教学内容:1. 能源优化概念。

2. 家庭能源使用优化实例。

生活中的优化问题举例

生活中的优化问题举例

学案60答案 生活中的优化问题举例例1. 用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的容积为V ,则V =(90-2x )(48-2x )x (0<x <24),即V =4x 3-276x 2+4 320x .因为V ′=12x 2-552x +4 320,由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36. 因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600.又因为0<x <24,所以V (10)也是最大值.所以当x =10时,V 有最大值V (10)=19 600.故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.例2.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?解:设速度为每小时v 海里的燃料费是每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,则p =0.006v 3.又设当船的速度为每小时v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v小时,所以行1海里的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v 2(v 3-8 000), 令q ′=0,解得v =20.因为当v <20时,q ′<0;当v >20时,q ′>0,所以当v =20时q 取得最小值,即速度为20海里/小时时,航行1海里所需费用总和最小.例3.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x≤40),根据市场调查,日销售量q 与e x 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价为多少元时,该工厂的每日利润最大?并求最大值.解: (1)设日销量q =k e x ,则k e 30=100,所以k =100e 30, 所以日销量q =100e 30e x ,所以y =100e 30(x -20-t )e x (25≤x ≤40).(2)当t =5时,y =100e 30(x -25)e x ,所以y ′=100e 30(26-x )e x . 由y ′>0,得x <26,由y ′<0,得x >26,所以y 在[25,26)上单调递增,在[26,40]上单调递减,所以当x =26时,y max =100e 4.故当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.四、反馈训练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件1.解析:选C.因为x >0,y ′=-x 2+81=(9-x )(9+x ),令y ′=0,解得x =9或x =-9(舍去),当x ∈(0,9)时,y ′>0,当x ∈(9,+∞)时,y ′<0,所以y 先增后减.所以当x =9时函数取得最大值.选C.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________.2.解析:设长方体的底面边长为x m ,则高为(6-2x )m ,所以x ∈(0,3),则V =x 2(6-2x )=6x 2-2x 3,V ′=12x -6x 2,令V ′=0得x =2或x =0(舍),所以当x ∈(0,2)时,V ′>0,V 是增函数,当x ∈[2,3)时,V ′<0,V 是减函数,所以当x =2时,V max =22×2=8(m 3).3.某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价格提高的百分率为x (0<x <1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 关于x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.解:(1)改进工艺后,每件产品的销售价为20(1+x ),月平均销售量为a (1-x 2)件,则月平均利润y =a (1-x 2)·[20(1+x )-15](元),所以y 关于x 的函数关系式为y =5a (1+4x -x 2-4x 3)(0<x <1).(2)由y ′=5a (4-2x -12x 2)=0,得x 1=12,x 2=-23(舍去),当12<x <1时,y ′<0,当0<x <12时,y ′>0; 所以函数y =5a (1+4x -x 2-4x 3)(0<x <1)在x =12处取得极大值,即最大值. 故改进工艺后,产品的销售价为20⎝ ⎛⎭⎪⎫1+12=30元时,旅游部门销售该纪念品的月平均利润最大.五、课时作业.1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x 元/件(1≤x ≤2),今年新增的年销量(单位:万件)与(x -2)2成正比,比例系数为4.(1)写出今年商户甲的收益y (单位:万元)与今年的实际销售单价x 间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.解:(1)由题意知,今年的销售量为[1+4(x -2)2](万件).因为每销售一件,商户甲可获利(x -1)元,所以今年商户甲的收益y =[1+4(x -2)2]·(x -1)=4x 3-20x 2+33x -17(1≤x ≤2).(2)由(1)知y =f (x )=4x 3-20x 2+33x -17,1≤x ≤2,从而y ′=f ′(x )=12x 2-40x +33=(2x -3)(6x -11).令y ′=0,解得x =32或x =116.又f ⎝ ⎛⎭⎪⎫32=1,f (2)=1, 所以f (x )在区间[1,2]上的最大值为1(万元).而往年的收益为(2-1)×1=1(万元),所以,商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益.2.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r m ,高为h m ,体积为V m 3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m 2,底面的建造成本为160元/m 2,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解:(1)∵蓄水池侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.根据题意,得200πrh +160πr 2=12 000π,所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3). 由h >0且r >0,可得0<r <53,故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此,可知V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a 2+10=11,解得a =2. (2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2(3<x <6). f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6),解30(x -4)(x -6)=0,得x 1=4,x 2=6(舍去).当x所以,当x =4时,函数f (x )取得最大值,最大值为42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大4.已知某公司生产某种产品的年固定成本为10万元,每生产1千件该产品需要另投入1.9万元.设R (x )(单位:万元)为销售收入,根据市场调查知R (x )=⎩⎪⎨⎪⎧10x -130x 3,0≤x ≤10,2003,x >10.其中x 是年产量(单位:千件). (1)写出年利润W 关于年产量x 的函数解析式;(2)求年产量为多少时,该公司可从这一产品生产中获得最大利润?解:(1)设年产量为x 千件,年利润为W 万元,依题意有W =⎩⎪⎨⎪⎧10x -130x 3-10-1.9x ,0≤x ≤10,2003-10-1.9x ,x >10.(2)设f (x )=-130x 3+8.1x -10,0≤x ≤10. f ′(x )=-110x 2+8.1,令f ′(x )=0得x 1=9,x 2=-9(舍去).当0<x <9时,f ′(x )>0;当9<x <10时,f ′(x )<0,故当x =9时,f (x )取得最大值38.6.当x >10时,f (x )=1703-1.9x <1133<38.6. 即当年产量为9千件时,该公司所获年利润最大.5.如图是某市在城市改造中的沿市内主干道城站路修建的圆形休闲广场,圆心为O ,半径为100 m ,其与城站路一边所在直线l 相切于点M ,MO 的延长线交圆O 于点N ,A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化,设△ABM 的面积为S (单位:m 2).(1)以∠AON =θ(rad)为自变量,将S 表示成θ的函数;(2)求使绿化面积最大时点A 的位置及最大绿化面积.解:(1)由题意知,BM =100sin θ,AB =100+100cos θ,故S =5 000sin θ(1+cos θ)(0<θ<π).(2)因为S =5 000sin θ(1+cos θ)(0<θ<π),所以S ′=5 000(cos θ+cos2θ-sin 2θ)=5 000(2cos 2θ+cos θ-1)=5 000(cos θ+1)(2cos θ-1).令S ′=0,得cos θ=12或cos θ=-1(舍去),又θ∈(0,π),故θ=π3. 当0<θ<π3时,12<cos θ<1,S ′>0; 当π3<θ<π时,-1<cos θ<12,S ′<0. 故当θ=π3时,S 取得极大值,也是最大值,最大值为3 7503,此时AB =150. 即当点A 距路边的距离为150 m 时,绿化面积最大,最大面积为3 750 3 m 2.。

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.

人教A版选修1-1教案:生活中的优化问题举例(1)(含答案)

人教A版选修1-1教案:生活中的优化问题举例(1)(含答案)

§1.4.1生活中的優化問題舉例(1)
【學情分析】:
導數在實際生活中的應用主要是解決有關函數最大值、最小值的實際問題,主要有以下幾個方面:
1、與幾何有關的最值問題;
2、與物理學有關的最值問題;
3、與利潤及其成本有關的最值問題;
4、效率最值問題。

【教學目標】:
1.掌握利用導數求函數最值的基本方法。

2.提高將實際問題轉化為數學問題的能力.提高學生綜合、靈活運用導數的知識解決生活中問題的能力
3.體會導數在解決實際問題中的作用.
【教學重點】:
利用導數解決生活中的一些優化問題.
【教學難點】:
將生活中的問題轉化為用函數表示的數學問題,再用導數解決數學問題,從而得出問題的最優化選擇。

【教學突破點】:
利用導數解決優化問題的基本思路:
【教法、學法設計】:
482x
-
∴<<
x
024求导数得
()
V x。

生活中的优化问题举例

生活中的优化问题举例

x
图3.4-1
海报四周的空白面积与什么量 相关?是随着什么的变化而变 化?
第一步
第二步
读题(文字语言) 建模(数学语言)
所谓建模,就是设出两个变量,列 并且确定自变量的定义域。 出函数关系式,
128 解:设版心的高为 m,则版心的宽为 m, 二、建模 x 此时四周空白面积为S(x)
x
128 512 8, S ( x) ( x 4)( 2) 128 =2 x x x
1
情景引入
问题
观察下面这个数学题是属于什么题型呢? 3箱橘子比3筐苹果少24千克。平均每箱 橘子重20千克,每筐苹果重多少千克?
2
明确概念
1、什么是最优
1、什么是优化问题?
2、什么是求最大值、最小值最 有力的工具?
3
教学目标
1、利用导数解决生活中的一些优 化问题 2、体会导数在解决实际问题的 作用
x0
x
第一步
第二步
读题(文字语言) 建模(数学语言)
函数建模,要设出两个变量,根据题意 分析它们的关系,把变量转化为函数关系式, 确定自变量的定义域。
第三步
求解(数学应用)
解:设版心的高为
x
128 m,则版心的宽为 m, 二、建2 512 三、求解 2 x 512 令S ( x) 2 2 0,解得x 16(x=-16舍去) 或x=-16 x 128 128 8 于是宽为 x 16 当x 0,16时,s ' x 0;当x 16,时,s ' x 0.
(2)x多大时,方盒的容积V最大?
6
课堂小结
1.解决优化问题的基本思路:
优化问题 用函数表示的数学问题

生活中的优化问题举例

生活中的优化问题举例

3.4 生活中的优化问题举例1.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P101第一自然段,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图3-4-1所示:图3-4-1现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有()A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[小组合作型]先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图3-4-2).问该容器的高为多少时,容器的容积最大?最大容积是多少?【导学号:97792051】图3-4-2【精彩点拨】设自变量(高)为x―→根据长方体的体积公式建立体积关于x的函数―→利用导数求出容积的最大值―→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x<10时,V′(x)>0,即V(x)是增加的;当10<x<24时,V′(x)<0,即V(x)是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零; (2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的长和宽.【解】 设矩形边长AD =2x (0<x <2), 则|AB |=y =4-x 2,则矩形面积为S =2x (4-x 2)=8x -2x 3(0<x <2), ∴S ′=8-6x 2,令S ′=0, 解得x 1=233,x 2=-233(舍去).当0<x <233,S ′>0,当233<x <2时,S ′<0, 所以,当x =233时,S 取得最大值, 此时S max =3239.即矩形的边长分别为433,83时,矩形的面积最大.10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和.【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x 元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【解】 (1)Q =P ·400v =⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]探究 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y(万元)表示为年广告费x(万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】(1)利用题中等量关系列出y与x的函数关系式,将x=100代入所求关系式判断y>0还是y<0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】(1)由题意,每年销售Q万件,成本共计为(32Q+3)万元.销售收入是(32Q+3)·150%+x·50%,∴年利润y=年收入-年成本-年广告费=12(32Q+3-x)=12⎝⎛⎭⎪⎫32×3x+1x+1+3-x=-x2+98x+352(x+1)(x≥0),∴所求的函数关系式为:y=-x2+98x+352(x+1)(x≥0).因为当x=100时,y<0,所以当年广告费投入100万元时,企业亏损.(2)由y=f(x)=-x2+98x+352(x+1)(x≥0),得f′(x)=-x2-2x+632(x+1)2(x≥0).令f′(x)=0,则x2+2x-63=0.∴x=-9(舍去)或x=7.又∵当x∈(0,7)时,f′(x)>0;当x∈(7,+∞)时,f′(x)<0,∴f(x)极大值=f(7)=42.又∵在(0,+∞)上只有一个极值点,∴f(x)max=f(x)极大值=f(7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【导学号:97792052】【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0). 由f ′(x )=-35x 2+24 000=0, 解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为 f (200)=-15×2003+24 000×200-50 000 =3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033 cmB.100 cmC.20 cmD.203 cm【解析】 设圆锥的高为h cm , 则V =13π(400-h 2)×h , 所以V ′(h )=13π(400-3h 2). 令V ′(h )=0,得h 2=4003, 所以h =2033.故选A. 【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A.9千台B.8千台C.6千台D.3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增, x >6时,y =18x 2-2x 3递减, ∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________.【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x=8时,S有最小值,最小值为8.【答案】84.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的售价为________元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x +230,由S′(x)=0得x=115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【导学号:97792053】【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4生活中的优化问题举例(教学设计)(1)(2)(2课时)教学目标:知识与技能目标:会利用导数求利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用,提高将实际问题转化为数学问题的能力。

过程与方法目标:在利用导数解决实际问题中的优化问题的过程中,进一步巩固导数的相关知识,学生通过自主探究,体验数学发现与创造的历程,提高学生的数学素养。

情感、态度与价值观目标:在学习应用数学知识解决问题的过程中,培养学生善于发现问题、解决问题的自觉性,以及科学认真的生活态度,并以此激发他们学习知识的积极性。

教学重点:利用导数解决生活中的一些优化问题.教学难点:将实际问题转化为数学问题,根据实际利用导数解决生活中的优化问题. 教学过程:一.创设情景、新课引入生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.师生互动,新课讲解导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

例1(课本P101例1).海报版面尺寸的设计学校或班级举行活动,通常需要贴海报进行宣传。

现让你设计一如图1.4-1所示的竖向贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm ,则版心的宽为128xdm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x=++-=++>。

求导数,得'2512()2S x x =-。

令'2512()20S x x =-=,解得16(16x x ==-舍去)。

于是宽为128128816x ==。

当(0,16)x ∈时,'()S x <0;当(16,)x ∈+∞时,'()S x >0.因此,16x =是函数()S x 的极小值,也是最小值点。

所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小。

答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:例2(课本P102例2).饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些? (2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是20.8r π分,其中 r 是瓶子的半径,单位是厘米。

已知每出售1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm 问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大? (2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为r ,所以每瓶饮料的利润是()332240.20.80.8,0633r y f r r r r r πππ⎛⎫==⨯-=-<≤ ⎪⎝⎭令()20.8(2)0f r r r π'=-= 解得 2r =(0r =舍去) 当()0,2r ∈时,()0f r '<;当()2,6r ∈时,()0f r '>.当半径2r >时,()0f r '>它表示()f r 单调递增,即半径越大,利润越高; 当半径2r <时,()0f r '< 它表示()f r 单调递减,即半径越大,利润越低.(1)半径为2cm 时,利润最小,这时()20f <,表示此种瓶饮料的利润还不够瓶子的成本,此时利润是负值. (2)半径为6cm 时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当3r =时,()30f =,即瓶子的半径为3cm 时,饮料的利润与饮料瓶的成本恰好相等;当3r >时,利润才为正值.当()0,2r ∈时,()0f r '<,()f r 为减函数,其实际意义为:瓶子的半径小于2cm 时,瓶子的半径越大,利润越小,半径为2cm 时,利润最小.例3(课本P102例3).磁盘的最大存储量问题计算机把数据存储在磁盘上。

磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。

磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。

磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit )。

为了保障磁盘的分辨率,磁道之间的宽度必需大于m ,每比特所占用的磁道长度不得小于n 。

为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。

问题:现有一半径为R 的磁盘,它的存储区是半径介于r 与R 之间的环形区域. (1) 是不是r 越小,磁盘的存储量越大?(2) r 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 解:由题意知:存储量=磁道数×每磁道的比特数。

设存储区的半径介于r 与R 之间,由于磁道之间的宽度必需大于m ,且最外面的磁道不存储任何信息,故磁道数最多可达R rm-。

由于每条磁道上的比特数相同,为获得最大存储量,最一条磁道必须装满,即每条磁道上的比特数可达2rnπ。

所以,磁盘总存储量 ()f r =R r m -×2r nπ2()r R r mn π=- (1)它是一个关于r 的二次函数,从函数解析式上可以判断,不是r 越小,磁盘的存储量越大.(2)为求()f r 的最大值,计算()0f r '=.()2()2f r R r mnπ'=- 令()0f r '=,解得2R r =当2R r <时,()0f r '>;当2Rr >时,()0f r '<. 因此2R r =时,磁盘具有最大存储量。

此时最大存储量为224R mn π例4.汽油的使用效率何时最高我们知道,汽油的消耗量w (单位:L )与汽车的速度v (单位:km/h )之间有一定的关系,汽油的消耗量w 是汽车速度v 的函数.根据你的生活经验,思考下面两个问题:(1)是不是汽车的速度越快,汽车的消耗量越大? (2)“汽油的使用率最高”的含义是什么?分析:研究汽油的使用效率(单位:L/m )就是研究秋游消耗量与汽车行驶路程的比值.如果用G 表示每千米平均的汽油消耗量,那么wG s=,其中,w 表示汽油消耗量(单位:L ),s 表示汽油行驶的路程(单位:km ).这样,求“每千米路程的汽油消耗量最少”,就是求G 的最小值的问题.通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间有如图所示的函数关系()g f v =.从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.解:因为 w w gt G s s vt ===这样,问题就转化为求g v 的最小值.从图象上看,gv表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90/km h .因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90/km h .从数值上看,每千米的耗油量就是图中切线的斜率,即()90f ',约为 L .例5.在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?解法一:设箱底边长为x cm ,则箱高602xh -=cm ,得箱子容积 260)(322x x h x x V -== )600(<<x .23()602x V x x '=- )600(<<x令 23()602x V x x '=-=0,解得 x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm 时,箱子容积最大,最大容积是16 000cm 3 解法二:设箱高为x cm ,则箱底长为(60-2x )cm ,则得箱子容积x x x V 2)260()(-=)300(<<x .(后面同解法一,略)由题意可知,当x 过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数260)(322x x h x x V -==、x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例6.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 解:设圆柱的高为h ,底半径为R ,则表面积S=2πRh+2πR 2由V=πR 2h ,得2Vh R π=,则 x60-2x60-2x60-2xx60-2x6060_x_x_ 60_ 60xxS(R)= 2πR 2V R π+ 2πR 2=2V R +2πR 2 令 22()Vs R R'=-+4πR=0解得,h=2V R π即h=2R因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S =2Rh π+22R π⇒h =RR S ππ222-⇒V (R )=R R S ππ222-πR 2=3221)2(21R SR R R S ππ-=- )('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.例7.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为q p 8125-=.求产量q 为何值时,利润L 最大?分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭, 利润221125(1004)2110088L R C q q q q q ⎛⎫=-=---=-- ⎪⎝⎭(0100)q << 1214L q '=-+令0L '=,即12104q -+=,求得唯一的极值点84q =答:产量为84时,利润L 最大例8.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b .解:由梯形面积公式,得S =21(AD +BC )h ,其中AD =2DE +BC ,DE =33h ,BC =b∴AD =332h +b , ∴S =h b h h b h )33()2332(21+=+ ①∵CD =h h 3230cos =︒,AB =CD .∴l =h 32×2+b②由①得b =33-h S h ,代入②,∴l =h Sh h h S h +=-+333334 l ′=23h S -=0,∴h =43S , 当h <43S 时,l ′<0,h >43S时,l ′>0. ∴h =43S时,l 取最小值,此时b =S 3324 例9.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这种矩形中面积最大者的边长.【解】设位于抛物线上的矩形的一个顶点为(x ,y ),且x >0,y >0, 则另一个在抛物线上的顶点为(-x ,y ), 在x 轴上的两个顶点为(-x ,0)、(x ,0),其中0< x <2. 设矩形的面积为S ,则S =2 x (4-x 2),0< x <2.由S ′(x )=8-6 x 2=0,得x =332,易知 x =34是S 在(0,2)上的极值点, 即是最大值点,所以这种矩形中面积最大者的边长为332和38.【点评】应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.例10:一书店预计一年要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?【解】假设每次进书x 千册,手续费与库存费之和为y 元,由于该书均匀投放市场,则平均库存量为批量之半,即2x,故有 y =x 150×30+2x ×40,y ′=-24500x +20, 令y ′=0,得x =15,且y ″=39000x,f ″(15)>0,所以当x =15时,y 取得极小值,且极小值唯一, 故 当x =15时,y 取得最小值,此时进货次数为15150=10(次). 即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.例11:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?【解】设水厂D 点与乙城到岸的垂足B 点之间的距离为x 千米,总费用为y 元, 则CD =2240+x .y =500(50-x )+70016002+x=25000-500 x +70016002+x ,y ′=-500+700 · 21(x 2+1600)21-· 2 x=-500+16007002+x x ,令y ′=0,解得x =3650. 答:水厂距甲距离为50-3650千米时,总费用最省. 【点评】当要求的最大(小)值的变量y 与几个变量相关时,我们总是先设几个变量中的一个为x ,然后再根据条件x 来表示其他变量,并写出y 的函数表达式f (x ). 三、课堂小结,巩固反思:12.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。

相关文档
最新文档