动量定理
高中物理关于动量定理的所有公式
高中物理关于动量定理的所有公式1.动量和冲量:动量:P = mV 冲量:I = F t2.动量定理:物体所受合外力的冲量等于它的动量的变化.公式:F合t = mv’ 一mv 解题时受力分析和正方向的规定是关键3.动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变.(研究对象:相互作用的两个物体或多个物体)公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或?p1 =一?p2 或?p1 +?p2=O适用条件:(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.4.功:W = Fs cos? 适用于恒力的功的计算)(1)理解正功、零功、负功(2)功是能量转化的量度重力的功------量度------重力势能的变化电场力的功-----量度------电势能的变化分子力的功-----量度------分子势能的变化合外力的功------量度-------动能的变化5.动能和势能:动能:Ek =重力势能:Ep = mgh 与零势能面的选择有关6.动能定理:外力对物体所做的总功等于物体动能的变化(增量).公式:W合= ?Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能条件:系统只有内部的重力或弹力做功.公式:mgh1 + 或者 Ep减 = Ek增(1)内容:物体所受合力的冲量等于物体的动量变化.表达式:Ft=mv′-mv=p′-p,或Ft=△p动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F是合外力对作用时间的平均值.p为物体初动量,p′为物体末动量,t为合外力的作用时间.(2)F△t=△mv是矢量式.在应用动量定理时,应该遵循矢量运算的平行四边表法则,也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x (或y)轴上的分量.(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则Fx△t=mvx-mvx0Fy△t=mvy-mvy0上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值.说明实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向相反.感谢您的阅读,祝您生活愉快。
动量定理的公式推导
动量定理的公式推导
1. 牛顿第二定律出发推导动量定理。
- 根据牛顿第二定律F = ma,其中a=(Δ v)/(Δ t)(a为加速度,Δ v为速度的变化量,Δ t为时间间隔)。
- 则F = m(Δ v)/(Δ t),移项可得FΔ t=mΔ v。
- 动量p = mv,设初速度为v_1,末速度为v_2,则Δ v=v_2 - v_1。
- 那么FΔ t = m(v_2 - v_1),而mv_1为初动量p_1,mv_2为末动量p_2,所以FΔ t=p_2 - p_1=Δ p,这就是动量定理的表达式。
2. 从动能定理推导动量定理(仅在直线运动且恒力情况下简单说明联系)
- 动能定理W=Δ E_k,对于恒力F作用下的直线运动,W = Fx(x为位移)。
- 根据运动学公式v^2-v_0^2=2ax,可得x=frac{v^2-v_0^2}{2a}。
- 又因为a=(F)/(m),则x=frac{m(v^2-v_0^2)}{2F}。
- 动能定理W = Fx=Δ E_k=(1)/(2)mv^2-(1)/(2)mv_0^2,将x=frac{m(v^2-
v_0^2)}{2F}代入W = Fx可得F×frac{m(v^2-v_0^2)}{2F}=(1)/(2)mv^2-(1)/(2)mv_0^2,化简得到FΔ t = m(v - v_0)(这里Δ t是根据v - v_0=aΔ t,a=(F)/(m)推出Δ t=(m(v -
v_0))/(F)),也就是动量定理FΔ t=Δ p。
这种推导方式只是为了体现动量定理和动能定理在一定条件下的联系,从动能定理推导动量定理不是常规的推导方式,但有助于理解物理概念之间的关系。
动量定理
动量定理(momentum)是动力学的普遍定理之一。
内容为物体动量的增量等于它所受合外力的冲量即Ft=mΔv,即所有外力的冲量的矢量和。
其定义为:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。
它是一个由实验观测总结的规律,也可用牛顿第二定律和运动学公式推导出来。
作用于系统的合外力的冲量等于系统动量的增量,这就是质点系的动量定理。
(即体系总动量的增加量等于作用在体系上的合外力的冲量)
动能具有瞬时性,是指力在一个过程中对物体所做的功等于在这个过程中动能的变化。
动能是状态量,无负值。
合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化,即末动能减初动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改变量。
但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
动量定理
动量定理动量定理是力对时间的积累效应,使物体的动量发生改变,是高中物理学科学习的重点。
下面就为大家介绍动量定理,希望对大家有所帮助。
【动量定理知识点】1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间Δt内受合力为F合,合力的冲量是F合Δt;质点的初、未动量是mv0、mvt,动量的变化量是ΔP=Δ(mv)=mvt-mv0.根据动量定理得:F合=Δ(mv)/Δt)2.单位:牛·秒与千克米/秒统一:l千克米/秒=1千克米/秒2·秒=牛·秒;3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。
(2)动量定理中的冲量和动量都是矢量。
定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。
这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。
(3)动量定理的研究对象一般是单个质点。
求变力的冲量时,可借助动量定理求,不可直接用冲量定义式。
4.应用动量定理的思路:(1)明确研究对象和受力的时间(明确质量m和时间t);(2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);(3)规定正方向,目的是将矢量运算转化为代数运算;(4)根据动量定理列方程(5)解方程。
【动量定理的内容】动量定理反应的是力在时间维度上的积累效果。
(1)基本概念描述:物体所受合外力的冲量,等于物体的动量变化量。
即F合t=I=Δp;(2)我们还可以这样来表述:对作用在物体上的各个力的冲量的代数和,等于动量的改变量。
在外力不恒定,或者各个力作用时间不同时,优先选择后者。
提醒:动量与冲量都是矢量,是有方向的,因此在解题时首先要规定好正方向。
【动量定理的表达式】基本表达式:F合t=I=Δp;当存在多个力做冲量时,还可以写成分力冲量代数和的形式: F1t1+F2t2+F3t3+……=I1+I2+I3+……=Δp【动量定理的表达式推广】当存在多个力做冲量时,动量定理的表达式还可以写成分力冲量代数和的形式:F1t1+F2t2+F3t3+……=I1+I2+I3+……=Δp这与动能定理的非常类似的。
动量定理
动量定理是动力学的一般定理之一。
内容是一个物体的动量的增量等于脉冲的外力相结合,也就是说,英尺=ΔVM,或者冲动的所有外力的矢量和。
如果系统不受外力或外力矢量总和为零,则系统的总动量保持不变。
这个结论被称为动量守恒定律。
动量守恒定律是自然界最重要、最普遍的守恒定律之一。
它不仅适用于宏观物体,也适用于微观粒子;它适用于低速和高速运动物体。
这是一个实验定律,可以从牛顿第二定律和动能定理推导出来。
1)系统不受外力或系统所受的外力的合力为零;动量定理(2)系统所受外力的合力虽不为零,但比系统内力小得多;(3)系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量保持不变——分动量守恒。
注意:(1)区分内力和外力碰撞时两个物体之间一定有相互作用力,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。
(2)在总动量一定的情况下,每个物体的动量可以发生很大变化例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。
烧断细线后,由于弹力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。
3.动量守恒的数学表述形式:(1)p=p′.即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;(2)Δp=0. 即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和);(3)Δp1=-Δp2. 即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变。
高中物理关于动量定理的所有公式
高中物理关于动量定理的所有公式1.动量和冲量:动量:P = mV 冲量:I = F t2.动量定理:物体所受合外力的冲量等于它的动量的变化.公式:F合t = mv’ 一mv 解题时受力分析和正方向的规定是关键3.动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变.(研究对象:相互作用的两个物体或多个物体)公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或?p1 =一?p2 或?p1 +?p2=O适用条件:(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.4.功:W = Fs cos? 适用于恒力的功的计算)(1)理解正功、零功、负功(2)功是能量转化的量度重力的功------量度------重力势能的变化电场力的功-----量度------电势能的变化分子力的功-----量度------分子势能的变化合外力的功------量度-------动能的变化5.动能和势能:动能:Ek =重力势能:Ep = mgh 与零势能面的选择有关6.动能定理:外力对物体所做的总功等于物体动能的变化(增量).公式:W合= ?Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能条件:系统只有内部的重力或弹力做功.公式:mgh1 + 或者 Ep减 = Ek增(1)内容:物体所受合力的冲量等于物体的动量变化.表达式:Ft=mv′-mv=p′-p,或Ft=△p动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F是合外力对作用时间的平均值.p为物体初动量,p′为物体末动量,t为合外力的作用时间.(2)F△t=△mv是矢量式.在应用动量定理时,应该遵循矢量运算的平行四边表法则,也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x (或y)轴上的分量.(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则Fx△t=mvx-mvx0Fy△t=mvy-mvy0上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值.说明实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向相反.感谢您的阅读,祝您生活愉快。
动量定理
动力学的普遍定理之一。
动量定理的内容为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为FΔt=mΔv。
公式中的冲量为所有外力的冲量的矢量和。
动量定理是一个由实验观测总结的规律,也可由牛顿第二定律和运动学公式推导出来,其物理实质也与牛顿第二定律相同,这也意味着它仅能在经典力学范围内适用。
而与动量定理相关的定律——动量守恒定律,大到接近光速的高速,小到分子原子的尺度,它依然成立。
动量守恒定律的定义为:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
由此可见,动量定理和动量守恒定律是两个不同的概念,不能混为一谈。
常见表达式(1)(2)含义动量定理的含义为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
F指合外力,如果为变力,可以使用平均值;=既表示数值一致,又表示方向一致;矢量求和,可以使用正交分解法;适用条件(1)在牛顿力学适用的条件下才可适用动量定理,即动量定理仅适用于宏观低速的研究对象。
对于微观粒子和以光速运动的物体,动量定理不再适用;(2)只适用于惯性参考系,若对于非惯性参考系,必须加上惯性力的冲量。
且v1,v2必须相对于同一惯性系。
应用由于动量定理只涉及研究对象的初末两个状态,故对复杂的物理过程有时合理地应用动量定理可以极大地优化解决过程;对于题干中不涉及物体加速度a和物体位移x的运动和力的问题,应用动量定理可能会更为简便;应用于部分流体问题:假设有一段持续的水柱打在某固定不动的物体上后,水流沿其原来运动方向的速度减为0,设水流打在该物体上对该物体的力为F,水的密度为ρ,水流的初速度大小为v,水的流量为Q,忽略空气阻力和水的重力,则取在很短的一段时间t内打在该物体上的水的体积,设其为V,并设体积为V 的水的质量为m,由动量定理:Ft=mv,①由密度公式:m=ρV,②由液体流量公式:V=Qt,③由①②③式得:F=ρQv.(此公式可作为二级结论记忆).。
动量动量定理
动量动量定理
动量定理是物理学中的一个基本原理,它描述了质点或系统的总动量如何随时间变化。
动量定理的数学表达式为:
力 = 质点或系统的质量× 加速度
即F = m × a
其中,F表示力,m表示质量,a表示加速度。
根据牛顿第二定律,力等于质量乘以加速度。
因此,该定理指出,当一个物体受到一个力时,它将具有一个加速度,从而改变其速度和动量。
根据动量定理,如果一个物体受到一个力,在相同的时间内,质量越大,它的加速度越小。
这意味着质量较大的物体更难改变其速度和动量。
动量定理也可以用积分形式表示:
质点或系统的总动量的变化 = 力在时间上的积分
即Δp = ∫ F dt
这个方程表明,质点或系统的总动量的变化等于力在时间上的积分。
这意味着如果一个物体在一段时间内受到持续的力,它的总动量将会改变。
专题 动量定理
专题二动量定理●基础知识落实●知识点一、动量定理的概念:1、物体动量与冲量有密切的关系,两者间相联系的规律就是动量定理。
2、推导:设质量为m 的物体在合外力F 作用下沿直线运动,经过时间t ,速度由υ变为υˊ,则由 F = m ×a 和a=(υ′-υ)/t 得:F ·t=m υ′-m υ=m (υ′-υ),即I=ΔP 。
3.动量定理:物体所受合外力的冲量等于物体的动量变化.4、数学表达式为:(1)、通用表达式:I = ΔP ;(用于定性分析的矢量式)(2)、F ·t = P - P ′(当物体所受的合外力为恒力F 时,且在作用时间△t 内,物体的质量m 不变)(3)、用于一维情况的计算式:F ·t = m υ2-m υ1式中F 为作用在物体上的合外力,t 为作用时间,下标“1”和“2”分别代表初、末两个时刻.由于动量和冲量都是矢量,所以动量定理及表达式都具有矢量性.式中I 的方向总是与ΔP 的方向相一致.当I 、p 的方向都在一条直线上时,上式可看为代数式.5、计算时应选定正方向,确定F 、υ、υ′的正负,才能进行代数运算。
6、各矢量在一条直线上,但各外力对物体作用时间不相等时的形式:υυm m t F t F t F n n -'=+++ 22117、各外力不在一条直线上时,用分量式:(个别学生可介绍)x x x m m t F υυ-'= y y y m m t F υυ-'=8、动量定理主要用于求变力的冲量。
【释例1】如图所示,一质量为m的小球,以速度υ碰到墙壁上,被反弹回来的速度大小仍是υ,若球与墙壁的接触时间为t,求小球在与墙相碰时所受的合力.【解析】取向左的方向为正方向,对小球与墙相碰的物理过程,概括动量定理有:F·t=mυ-(-mυ)所以F=2mυ/t,方向向左(与碰后速度方向相同)【点评】【变式】知识点二、对动量定理的理解:1.动量定理F·t = mυ2 - mυ1中的F是研究对象所受的包括重力在内的所有力的合力,它可以是恒力,也可以是变力;当合力是变力时,F应该是合外力对时间的平均值。
动量定理
面作用、上升,这三个阶段中篮球的受力情况、运动情况 是不尽相同的。
[解析]Βιβλιοθήκη 法一:设篮球从 h1 处下落触地的时间为 t1,触
地时速度大小为 v1,弹起时速度大小为 v2,弹起至达到最高 点的时间为 t2, 则 t1= 2h 1 g = 2×1.8 s=0.6 s 10 ① ② ③ ④ ⑤
v1= 2gh1= 2×10×1.8 m/s=6 m/s 弹起时速度大小 v2=gt2=10×0.5 m/s=5 m/s 篮球与地面作用时间 Δt=t-t1-t2=0.2 s ( F -mg)Δt=mv2-(-mv1)
改变,选项D正确。
[答案] D
物体存在加速度→物体速度(大小、方向)一定变 化→动量一定变化→动能不一定变化。
跟踪练习 4.篮球运动员通常要伸出两臂迎接传来的篮球.接球时,两臂随 球迅速收缩至胸前,这样做可以 ( ) A.减小球对手的冲量 B.减小球对人的冲击力 C.减小球的动量变化量 D.减小球的动能变化量
定变化,如匀速圆周运动的物体。
[解析]
加速度不为零,说明其速度在变化,速度的改
变存在三种情况:速度的方向不变,只是大小在变化(动能 也变化);速度的大小不变,只是方向在变化(动能不变); 速度的大小和方向同时改变(动能变化)。显然,选项A、B、 C均错误;动量是矢量,只要速度改变,物体的动量就一定
的冲量。
③选定正方向,确定初、末状态的动量及物体动量的变 化量。 ④根据动量定理列方程求解。
返回
(3)动量定理的应用: 碰撞时可产生冲击力,根据动量定理,在动量变化量
相同的情况下要增大这种冲击力就要设法 减少 冲击力的作
用时间。要防止冲击力带来的危害,就要减小冲击力,设 法延长 其作用时间。 [关键一点] 同一物体与不同接触面碰撞时,要分析
动量公式动量定理
动量公式动量定理动量公式和动量定理是描述物体运动状态的重要物理定律。
动量公式给出了物体的动量与质量和速度的关系,动量定理则给出了物体动量的变化与作用力的关系。
动量公式可以用数学公式表示为p=mv,其中p表示物体的动量,m表示物体的质量,v表示物体的速度。
从公式可以看出,物体的动量与质量成正比,与速度成正比。
因此,在一定质量的物体中,速度越大,动量就越大。
动量的单位是千克·米/秒(kg·m/s),是矢量量,有大小和方向之分。
动量定理描述了物体的动量如何随时间变化。
根据动量定理,物体的动量变化率等于作用力,即F=Δp/Δt或F=dp/dt。
其中,F表示作用力,Δp表示动量变化量(即物体动量的差值,也可理解为物体的动量变化),Δt表示时间的变化量(即物体动量发生变化的时间),dp/dt表示物体动量变化的速率。
根据动量定理,当物体受到外力时,物体的动量会发生改变。
当作用力作用时间很短时,物体的动量变化较大;当作用力作用时间很长时,物体的动量变化较小。
因此,物体的动量变化量与作用力的大小和作用时间的长短密切相关。
动量定理还可以用于解释动量守恒定律。
动量守恒定律是指在一个系统内,如果没有外力作用于系统,系统的动量将保持不变。
即Σp=常量。
这可以从动量定理来进行推导证明。
当系统内没有外力作用时,即ΣF=0,根据动量定理可得Σdp/Σt = 0,即Σdp = 0。
因此,系统内每个物体的动量之和保持不变。
动量守恒定律在日常生活和科学研究中有着广泛的应用。
例如,在碰撞实验中,两个物体碰撞后,可以根据动量守恒定律来计算碰撞后物体的速度和动量的变化。
在火箭发射等空间探测项目中,动量守恒定律用来解释火箭发射时离地面反冲之谜。
总之,动量公式和动量定理是物理学中的重要概念和定律。
通过动量公式,我们可以算出物体的动量;通过动量定理,我们可以了解物体动量随着时间的变化情况,以及作用力对物体动量的影响。
动量守恒定律是运用动量定理的一个重要应用,可以帮助我们解释和研究各种实际问题和现象。
动量定理的计算公式
动量定理的计算公式动量定理在物理学中可是个相当重要的知识点哦!咱们先来说说啥是动量定理。
动量定理表示,合外力的冲量等于物体动量的增量。
用公式表达就是:$I = \Delta p$ ,其中 $I$ 表示合外力的冲量,$\Delta p$ 表示动量的增量。
那冲量 $I$ 又咋算呢?冲量等于力 $F$ 乘以作用时间 $t$ ,也就是$I = F \times t$ 。
咱们就拿一个常见的例子来说吧,好比说打羽毛球。
有一次我在公园里,看到两个小朋友在打羽毛球。
其中一个小朋友用力一挥拍,把球打了出去。
这一挥拍的过程中,小朋友施加在球拍上的力以及球拍与球接触的时间,就决定了给球的冲量。
球原本速度不快,被击打之后,速度大幅增加,这就是动量发生了改变。
假如说这个小朋友击球的力是 10 牛,球拍和球接触的时间是 0.1 秒,那冲量就是 10 牛乘以 0.1 秒,等于 1 牛·秒。
而球原本静止,质量假设是 5 克,也就是 0.005 千克。
经过击打后,球获得了一定的速度,从而有了动量。
再想想,如果想要让球飞得更快、更远,那要么增加击球的力量,要么延长击球的时间。
回到动量定理的公式,通过这个简单的例子就能很清楚地理解。
动量的增量等于合外力的冲量,这在很多实际情况中都能得到体现。
比如说汽车的碰撞。
一辆快速行驶的汽车突然撞到障碍物,撞击的瞬间,汽车受到很大的阻力,这个阻力和碰撞的时间决定了冲量。
而汽车原本的动量很大,碰撞后动量迅速减小,甚至变为零。
又比如说火箭发射。
火箭燃料燃烧产生巨大的推力,持续的推力作用在火箭上很长时间,从而给火箭一个巨大的冲量,让火箭获得极大的动量,能够飞向外太空。
在日常的体育运动中,像篮球、足球、乒乓球等等,运动员们的每一个动作,其实都蕴含着动量定理。
比如篮球运动员投篮时,手臂的力量和作用时间,决定了球出手时的速度和动量。
学习动量定理,不仅能帮助我们理解这些有趣的现象,还能在解决实际问题时派上用场。
第2节动量定理
4、动量定理不仅适用恒力作用, 也适用变力作用的情况(此时的力 应为平均作用力)
5、动量定理不仅适用于宏观低速 物体,对微观现象和高速运动仍然 适用.
二、对动量定理的进一步认识
1、动量定理中的方向性
• 例如:匀加速运动合外力冲量的方向与初动量 方向相同,匀减速运动合外力冲量方向与初动 量方向相反,甚至可以跟初动量方向成任何角 度。在中学阶段,我们仅限于初、末动量的方 向、合外力的方向在同一直线上的情况(即一 维情况),此时公式中各矢量的方向可以用正、 负号表示,首先要选定一个正方向,与正方向 相同的矢量取正值,与正方向相反的矢量取负 值。
例:质量为m的小球在光滑水平面 上以速度大小v向右运动与墙壁发 生碰撞后以大小v/2反向弹回,与 墙壁相互作用时间为t,求小球对 墙壁的平均作用力。 v
v/2
5、运用动量定理解题步骤:
(1)确定研究对象; (2)明确研究过程,对研究对象进行受力分析。 (3)找出物体的初末状态并确定相应的动量; (4)选定正方向; (5)根据动量定理列方程求解; ( 6) 对结果进行必要的分析。
• 【例1】一架飞机在空中以300m/S 的速度匀速飞行,一只质量为1Kg 的小鸟以10m/S的速度相向飞来, 此时鸟相对于飞机的动量为 310Kgm/s。机鸟相撞后这些动量 完全转化成小鸟对飞机的冲量。相 撞时间为3×10-3秒。那么机鸟相撞 而作用于飞机上的冲击力为多少? (取三位有效数字)
答案:大小为1.03×105N
△p F大 F小
0
t
三、动量定理应用
• 在日常生活中,有不少这样的事例:跳远 时要跳在沙坑里;跳高时在下落处要放海 绵垫子;从高处往下跳,落地后双腿往往 要弯曲;轮船边缘及轮渡的码头上都装有 橡皮轮胎等,这样做的目的是为了什么呢? 而在某些情况下,我们又不希望这样,比 如用铁锤钉钉子,而不用橡皮锤。这些现 象中的原因是什么呢?
动量定理
动力学的普遍定理之一。
动量定理的内容为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为FΔt=mΔv。
公式中的冲量为所有外力的冲量的矢量和。
动量定理是一个由实验观测总结的规律,也可由牛顿第二定律和运动学公式推导出来,其物理实质也与牛顿第二定律相同,这也意味着它仅能在经典力学范围内适用。
而与动量定理相关的定律——动量守恒定律,大到接近光速的高速,小到分子原子的尺度,它依然成立。
动量守恒定律的定义为:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
由此可见,动量定理和动量守恒定律是两个不同的概念,不能混为一谈。
中文名动量定理外文名theorem of momentum表达式Ft=mv'-mv=p'-p=I应用学科物理学适用领域范围经典力学目录1 常见表达式2 含义3 适用条件4 推导过程5 说明6 推广形式7 同相关定律定理含义区别8 应用9 微分形式的动量定理10 积分形式的动量定理11 参考文献常见表达式编辑(1)(2)(注:冲量,动量)含义编辑动量定理的含义为:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
[1](高中阶段此公式亦可写作)F指合外力,如果为变力,可以使用平均值;=既表示数值一致,又表示方向一致;矢量求和,可以使用正交分解法;适用条件编辑(1)在牛顿力学适用的条件下才可适用动量定理,即动量定理仅适用于宏观低速的研究对象。
对于微观粒子和以光速运动的物体,动量定理不再适用;(2)只适用于惯性参考系,若对于非惯性参考系,必须加上惯性力的冲量。
且v1,v2必须相对于同一惯性系。
[2]推导过程编辑将F = ma (动力学方程牛顿第二运动定律)——代入v = v₀+ at (运动学方程)得化简得mv- mv₀= Ft注:把mv做为描述物体运动状态的量,叫动量。
大学物理动量定理
子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小
为
,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W
为
r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:
动量定理
动量定理
(1)内容:物体所受合力的冲量等于物体的动量变化.
表达式:Ft=mv′-mv=p′-p,或Ft=△p
动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F是合外力对作用时间的平均值.p为物体初动量,p′为物体末动量,t为合外力的作用时间.
(2)F△t=△mv是矢量式.在应用动量定理时,应该遵循矢量运算的平行四边表法则,也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x(或y)轴上的分量.(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则
Fx△t=mvx-mvx0
Fy△t=mvy-mvy0
上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值.说明实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向相反.。
动量定理公式
动量定理公式物理知识点问答【问:动量定理公式?】答:动量定理研究动量的变化。
内容:合外力对物体的冲量等于该段时间内动量的改变量。
物理公式I=Δp或F合*t=m*vt–m*vo;动量定理是一个矢量公式,解题时首先要规定正方向。
动量定理可以研究单独某个物体,也能用在多个物体上。
【问:什么是平抛运动?】答:平抛运动,指的是水平方向做匀速直线运动,在竖直方向上自由落体运动,平抛运动是一种曲线运动。
因为合外力等于重力,不变,因此平抛运动是加速度恒定的运动,(不是直线运动),研究平抛运动,需要在竖直和水平两个方向上进行分解运算。
速度的分解同样也满足矢量的合成与分解运算。
【问:类平抛运动是怎样的运动模式?】答:与平抛运动类似,类平抛运动指的是加速度不为g的运动模式,在x方向上不受外力做匀速直线运动,在y方向上做初速度为零的匀加速运动,最为典型的类平抛运动就是带电粒子在静电场中的偏转。
【问:是动摩擦还是静摩擦如何判断?】答:如果在题目中,并没有告诉我们A与B之间是静摩擦力还是滑动摩擦力,我们就需要结合题意进行推导(这就是一个考点)。
建议采用假设法,先假设两者间是静摩擦力,可以解出来共同的加速度a,并利用加速度,来计算某单独物体受到的摩擦力大小,看看是否大于两者间的最大静摩擦力。
如果是,那么假设就失败,是滑动摩擦。
【问:总结哪些物理内容?】答:课下的及时总结对物理学习非常重要。
在课下值得我们认真总结的内容很多,比如,各个知识点之间的关联,经常遇到的题型,自己作业中常犯的错误,定理定律的使用前提条件,这些内容应罗列起来,最好记一下,平时要重视起来,这些问题都有可能出现在考试中。
只有在平时多总结,多分析问题,才能在考试中游刃有余。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量定理动量守恒定律及其应用知识点一、动量、动量定理1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。
(2)表达式:p=mv。
(3)单位:kg·m/s。
(4)标矢性:动量是矢量,其方向和速度方向相同。
2.冲量(1)定义:力和力的作用时间的乘积叫做这个力的冲量。
(2)表达式:I=Ft。
单位:N·s。
(3)标矢性:冲量是矢量,它的方向由力的方向决定。
3.动量定理知识点二、动量守恒定律1.内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变。
2.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′。
3.适用条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
知识点三、弹性碰撞和非弹性碰撞1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间的相互作用力很大的现象。
2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类题组一动量、冲量、动量定理的理解1.下列说法正确的是( )A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体的运动速度大小不变,物体的动量就保持不变D.物体的动量变化越大则该物体的速度变化一定越大2.质量为m的物体放在光滑水平地面上,在与水平方向成θ角的恒力F作用下,由静止开始运动,经过时间t,速度为v,在此时间内推力F和重力的冲量大小分别为( ) A.Ft,0 B.Ft cos θ,0 C.mv,0 D.Ft,mgt3.(多选)质量为m 的物体以初速度v 0开始做平抛运动,经过时间t ,下降的高度为h ,速度变为v ,在这段时间内物体动量变化量的大小为( )A .m (v -v 0)B .mgtC .m v 2-v 20 D .m 2gh 题组二 动量守恒定律的理解及应用5.滑雪运动是人们酷爱的户外体育活动,现有质量为m 的人站立于雪橇上,如图1所示。
人与雪橇的总质量为M ,人与雪橇以速度v 1在水平面上由北向南运动(雪橇所受阻力不计)。
当人相对于雪橇以速度v 2竖直跳起时,雪橇向南的速度大小为( ) A.Mv 1-Mv 2M -m B.Mv 1M -m C.Mv 1+Mv 2M -mD .v 1 6.A 球的质量是m ,B 球的质量是2m ,它们在光滑的水平面上以相同的动量运动。
B 在前,A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v A ′∶v B ′为( )A .1∶2B .1∶3C .2∶1D .2∶3 考点一 动量定理的理解与应用 1.应用动量定理时应注意(1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向。
2.动量定理的应用 (1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。
②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。
(2)应用I =Δp 求变力的冲量。
(3)应用Δp =F ·Δt 求恒力作用下的曲线运动中物体动量的变化量。
【例1】 如图2所示,质量为m =2 kg 的物体,在水平力F =16 N 的作用下,由静止开始沿水平面向右运动。
已知物体与水平面间的动摩擦因数μ=0.2,若F 作用t 1=2 s 后撤去,撤去F 后又经t 2=2 s ,物体与竖直墙壁相碰,若物体与墙壁作用时间t 3=0.1 s ,碰撞后反向弹回的速度v ′=6 m/s ,求墙壁对物体的平均作用力大小。
(g 取10 m/s 2)图2【变式训练】1.物体在恒定的合力作用下做直线运动,在时间t 1内动能由零增大到E k1,在时间t 2内动能由E k1增加到2E k1,设合力在时间t 1内做的功为W 1,冲量为I 1,在时间t 2内做的功是W 2,冲量为I 2则( )A .I 1<I 2,W 1=W 2B .I 1>I 2,W 1=W 2C .I 1>I 2,W 1<W 2D .I 1=I 2,W 1<W 2 考点二 动量守恒定律的条件及应用 1.动量守恒定律适用条件(1)前提条件:存在相互作用的物体系。
(2)理想条件:系统不受外力。
(3)实际条件:系统所受合外力为0。
(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力。
(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。
2.动量守恒定律的表达式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
(3)Δp=0,系统总动量的增量为零。
【例2】如图3所示,两块厚度相同的木块A、B,紧靠着放在光滑的桌面上,其质量分别为2.0 kg、0.9 kg,它们的下表面光滑,上表面粗糙,另有质量为0.10 kg的铅块C(大小可以忽略)以10 m/s的速度恰好水平地滑到A的上表面,由于摩擦,铅块C最后停在木块B 上,此时B、C的共同速度v=0.5 m/s。
求木块A的最终速度和铅块C刚滑到B上时的速度。
图3【变式训练】2.[2014·江苏卷,12C(3)]牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16。
分离速度是指碰撞后B 对A的速度,接近速度是指碰撞前A对B的速度。
若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小。
考点三碰撞模型的规律及应用1.碰撞的特点和种类(1)碰撞的特点①作用时间极短,内力远大于外力,满足动量守恒;②满足能量不增加原理;③必须符合一定的物理情境。
(2)碰撞的种类①完全弹性碰撞:动量守恒,动能守恒,质量相等的两物体发生完全弹性碰撞时交换速度;②非完全弹性碰撞:动量守恒、动能不守恒;③完全非弹性碰撞:动量守恒,动能不守恒,碰后两物体共速,系统机械能损失最大。
2.碰撞现象满足的规律(1)动量守恒定律。
(2)机械能不增加。
(3)速度要合理。
①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
【例3】[(2014·新课标全国卷Ⅰ,35(2)]如图4,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距离地面的高度h=0.8 m,A球在B球的正上方。
先将B球释放,经过一段时间后再将A球释放。
当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰。
碰撞时间极短,碰后瞬间A球的速度恰为零。
已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失。
求:(1)B球第一次到达地面时的速度;(2)P点距离地面的高度。
碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。
(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1=m 1-m 2m 1+m 2v 0、v 2=2m 1m 1+m 2v 0。
(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m 1≫m 2,且v 20=0时,碰后质量大的速率不变,质量小的速率为2v 。
当m 1≪m 2,且v 20=0时,碰后质量小的球原速率反弹。
【变式训练】3.三个完全相同的小球A 、B 、C ,质量满足m A =m B =m C =2 kg ,静止在光滑地面上并沿“一”字形依次排开,如图5所示。
用锤子轻轻敲击A 球,使之获得一个向右的速度v 0=4 m/s ,A 、B 两球碰撞后粘合在一起,再与C 球碰撞,最后C 球获得v C =2 m/s 的向右的速度。
(1)求第一次碰撞后A 、B 两球粘合在一起的共同速度; (2)第二次碰撞是不是弹性碰撞?(3)求两次碰撞过程,系统损失的能量ΔE 。
考点四 动量观点和能量观点的综合应用 动量守恒定律与机械能守恒定律的比较定律名称比较项目 动量守恒定律 机械能守恒定律 相同点 研究对象 相互作用的物体组成的系统研究过程某一运动过程 不同点 守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式 p 1+p 2=p 1′+p 2′E k1+E p1=E k2+E p2表达式的矢标性 矢量式标量式某一方向上应用情况可在某一方向上独立使用不能在某一方向独立使用运算法则矢量运算代数运算【例4】 [(2014·山东卷,39(2)]如图6所示,光滑水平直轨道上两滑块、用橡皮筋连接,A 的质量为m 。
开始时橡皮筋松弛,B 静止,给A 向左的初速度v 0。
一段时间后,B 与A 同向运动发生碰撞并粘在一起。
碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半。
求: (1)B 的质量;(2)碰撞过程中A 、B 系统机械能的损失。
利用动量和能量的观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。
(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。
【变式训练】4.如图7所示,半径为R 的1/4的光滑圆弧轨道竖直放置,底端与光滑的水平轨道相接,质量为m 2的小球B 静止在光滑水平轨道上,其左侧连接了一轻质弹簧,质量为m 1的小球A 从D 点以速度2gR 向右运动,重力加速度为g ,试求:(1)小球A 撞击轻质弹簧的过程中,弹簧最短时B 球的速度是多少; (2)要使小球A 与小球B 能发生二次碰撞,m 1与m 2应满足什么关系。