中招考试数学模拟试卷(附有答案)

合集下载

2024年河南省南阳市邓州市中招第一次模拟考试数学试题(含答案)

2024年河南省南阳市邓州市中招第一次模拟考试数学试题(含答案)

邓州市2023~2024学年中招第一次模拟考试数学试卷注意事项:1.本试卷共6页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.的绝对值是( )A .B .C .2D .-22.如下图,原木旋转陀螺是一种传统益智玩具,是圆锥与圆柱的组合体,则它的主视图是()A .B .C .D .3.北斗卫星导航系统中有一颗中高轨道卫星,其高度大约是18500000米.数18500000用科学记数法表示为( )A .B .C .D .4.如图,直线,若,于点A ,则∠1为( )A .32°B .38°C .52°D .58°5.下列运算中,正确的是( )A .B .C .D .6.如图,菱形ABCD 的对角线相交于点O ,,,E 、F 分别是OA 、OD 的中点,则EF 的长为( )12-1212-90.18510⨯71.8510⨯81.8510⨯718.510⨯AD BC 252∠=︒BA AC ⊥()323a a =()2236a a -=233a a a ⋅=933a a a ÷=120BAD ∠=︒BD =A .BC .2D .47.关于x 的一元二次方程有两个实数根,则k 的取值范围是()A .B .C .且D .且8.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中先随机抽取一本,放回后再随机抽取另一本,则抽取的两本恰好是《论语》和《大学》的概率是( )A .B .C .D .9.已知点,,在同一函数图象上,则这个函数的图象可能是()A .B .C .D .10.如图1,在正方形ABCD 中,点E 为DC 边的中点,点P 为线段BE 上的一个动点,设,,图2是点P 运动时,y 随x 变化的函数图象,其中点H 为图象的最低点,则正方形的面积为( )A .4B .5C .8D .二、填空题(每小题3分,共15分)11.写出单项式的一个同类项________.2420kx x -+=2k >2k ≤2k <0k ≠2k ≤0k ≠12141618()3,1M a --()2,N a -()2,P a BP x =AP y =22a b -12.在平面直角坐标系中,若点在第二象限,则a 的取值范围为________.13.在生活中我们常用杠杆原理撬动较重的物体,如图,有一圆形石块,要使其滚动,杠杆的端点C 必须向上翘起5cm ,若杠杆AC 的长度为120cm ,其中BC 段的长度为20cm ,则要使该石块滚动,杠杆的另一端点A 必须向下压________cm .14.如图,扇形AOB 中,,点P 为OB 上一点,连结AP ,当点O 关于AP 的对称点Q 恰好落在上时,则图中阴影部分的面积为________.15.如图,矩形ABCD 的边AD 长为2,将沿对角线AC 翻折得到,与AB 交于点E ,再将沿CE 进行翻折,得到.若两次折叠后,点恰好落在的边上,则AB 的长为________.三、解答题(本大题共8个小题,共75分)(第15题图)16.(10分)(1)计算:;(2).17.(9分)2023年6月6日是第28个“全国爱眼日”,某初级中学为了解本校学生的视力情况,从本校学生中随机抽取100名学生进行问卷调查,并将调查结果用统计图描述如下:调查问卷1.你近视吗?近视的度数(度)为A .不近视B .C .D .E .2.你近视的主要原因是什么?a .先天遗传()2,3M a a -+1OA =AB ADC △AD C '△CD 'BCE △BC E '△B 'ADC △()10120242cos302π--+---⎛⎫ ⎪⎝⎭︒22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭100200x ≤<200300x ≤<300400x ≤<400x ≥b .过度使用电子产品c .长期在过明或过暗的环境下用眼d .距离书本太近或躺着看书e .作息不规律或睡眠不足f .户外活动时间太短g .其他根据以上信息,解答下列问题:(1)本次调查中,被调查学生的近视度数的中位数落在________(填字母),近视度数在200度及以上的学生人数占被调查人数的百分比为________;(2)小明同学帮助学校绘制100名学生近视原因条形统计图时,发现被调查人数之和远远超出100人,经核实,小明绘制的条形统计图无误,请帮助小明解释出现该情况的原因。

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。

可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。

两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。

中招考试数学模拟考试题(附含答案)

中招考试数学模拟考试题(附含答案)

中招考试数学模拟考试题(附含答案)(满分:120分;考试时间:120分钟)一、选择题(本大题共10小题共30.0分。

在每小题列出的选项中选出符合题目的一项)1. −5的绝对值是( )A. −5B. 5C. −15D. 152. 下列运算结果正确的是( )A. 3x3+2x3=5x6B. (x−1)2=(x+1)(x−1)C. x8÷x2=x4D. √9=33. 如图将一张长方形纸片沿BE所在的直线折叠点C落在C′处.若∠BEC=60°则∠C′ED的度数为( )A. 90°B. 45°C. 60°D. 120°4. 规定⊗是一种新的运算符号且a⊗b=a2−ab+a则(−2)⊗3的值为( )A. −12B. 0C. 8D. −45. 用配方法解方程x2−4x−1=0方程应变形为( )A. (x+2)2=3B. (x+2)2=5C. (x−2)2=1D. (x−2)2=56. 如图在“3×3”网格中有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色则完成的图案为轴对称图案的概率是( )A. 12B. 13C. 14D. 167. 如图点G、F分别是△ACD的边AC、CD上的点AD的延长线与GF的延长线相交于点B DE//AC交GB于点E则下列结论错误的是( )A. DEAG =BEBGB. DECG =DFCFC. EFFG =DFCDD. ADAB =EGBG8. 如图一次函数y1=kx+b的图象与反比例函数y2=mx的图象都经过A(−1,2)B(2,−1)结合图象则不等式kx+b>mx的解集是( )A. x<−1B. −1<x<0C. x<−1或0<x<2D. −1<x<0或x>29. 圆锥的母线长为10底面半径为3则这个圆锥的侧面积为( )A. 15πB. 30πC. 39πD. 60π10. 如图在平行四边形ABCD中∠BAD=60°延长AD至点E使得AE=AB连接BE交CD于点F 连结并延长AF交CE于点G.下列结论:①△BAD≌△EBC;②BD=AF;③BD⊥AG;④若AD=2DE则FGCG =12.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题共28.0分)11. 我国神舟十三号载人飞船的起飞推力为5923000牛.将5923000用科学记数法表示应为______.12. 因式分解:a3b−9ab=______.13. 八年级(5)班的45名同学在6月5日(世界环境日)调查了各自家庭丢弃废塑料袋的情况统计结果如表:每户居民丢弃废塑料袋个数2345户数2181510根据调查数据这45户居民丢弃废塑料袋个数的众数是______.14. 如图AB是⊙O的直径点C、D在⊙O上若∠ADC=58°则∠BAC=______ °.15. 关于x的一元二次方程(k−1)x2−2x+1=0有实数根则k的取值范围是______.16. 如图在Rt△ABC中AB=AC点D为BC中点点E在AB边上连接DE过点D作DE的垂线交AC于点F.下列结论:①△BDE≌△ADF;②AE=CF;③BE+CF=EF;④S四边形AEDF =12AD2其中正确的结论是______(填序号).17. 如图E是正方形ABCD的边CD上的一点连接AE点F为AE的中点过点F作AE的垂线分别交AD BC于点M N连接AN若AB=3DE=9则△AMN的面积为______.三、解答题(本大题共7小题共62.0分。

中考数学仿真模拟测试题(附答案)

中考数学仿真模拟测试题(附答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.在实数1-,2-,0,14中,最小的实数是( ). A .1-B .14C .0D .2-2.如图所示的六角螺母,其俯视图是( ) A .B .C .D .3.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .30°B .45°C .55°D .60°4.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.如图,将矩形ABCD 沿AC 折叠,使点B 落在点B ′处,B ′C 交AD 于点E ,若∠1=25°,则∠2等于( )A .25°B .30°C .50°D .60°6.在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.下列运算正确的是 A .a 2+a 3=a 5 B .a 2•a 3=a 5C .a 3÷a 2=a 5D .(a 2)3=a 58.同型号的甲、乙两辆车加满气体燃料后均可行驶210km .它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A .40︒B .50︒C .60︒D .70︒10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .B .4ac -b 2<0C .3a +c =0D .ax 2+bx +c =n +1无实数根第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.请写出一个大于1且小于2的无理数 .12.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .13.如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交于点D ,点E 为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为.14.在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE a =,连接AE ,将ABE ∆沿AE 折叠.若点B 的对应点B '落在矩形ABCD 的边上,则折痕的长为______.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.16.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.18.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点,F G 在AB 上,EF AB ⊥,OG EF ∥.(1)求证:四边形OEFG 是矩形;(2)若10AD =,4EF =,求OE 和BG 的长.19.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a ab -++的值. 20.某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x (单位:元/件),在销售过程中发现:当11≤x ≤19时,甲商品的日销售量y (单位:件)与销售单价x 之间存在一次函数关系,x 、y 之间的部分数值对应关系如表:请写出当11≤x ≤19时,y 与x 之间的函数关系式.销售单价x (元/件) 11 19日销售量y (件) 18 2(3)在(2)的条件下,设甲商品的日销售利润为w 元,当甲商品的销售单价x (元/件)定为多少时,日销售利润最大?最大利润是多少?21.如图,AB 为O 的直径,C 为BA 延长线上一点,CD 是O 的切线,D 为切点,OF AD ⊥于点E ,交CD 于点F .(1)求证:ADC AOF ∠=∠; (2)若1sin 3C =,8BD =,求EF 的长. 22.新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题: (1)本次被抽取的教职工共有 名;(2)表中a = ,扇形统计图中“C ”部分所占百分比为 %; (3)扇形统计图中,“D ”所对应的扇形圆心角的度数为 °;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?志愿服务时间(小时) 频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤1202023.A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.24.已知:如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.25.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.参考答案1 2 3 4 5 6 7 8 9 10 DBBCCDBBAB1.【答案】D【解析】∵10124>>->-, ∴在实数1-,2-,0,14中,最小的实数是2-,故选:D . 2.【答案】B【解析】由几何体可知,该几何体的三视图依次为. 主视图为:左视图为:俯视图为:故选:B . 3.【答案】B 【解析】如图,∵AB ∥CD , ∴∠1=∠D =45°, 故选:B . 4.【答案】C【解析】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意; B 、不是轴对称图形,是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意; 故选:C. 5.【答案】C【解析】由折叠的性质可知:∠ACB ′=∠1=25°. ∵四边形ABCD 为矩形, ∴AD ∥BC ,∴∠2=∠1+∠ACB ′=25°+25°=50°. 故选:C . 6.【答案】D【解析】∵x 2+2>0,∴点P(x 2+2,−3)所在的象限是第四象限. 故选:D . 7.【答案】B【解析】A .a 2+a 3≠a 5,所以A 选项错误;B .a 2•a 3=a 5,所以B 选项正确; C .a 3÷a 2=a ,所以C 选项错误;D .(a 2)3=a 6,所以D 选项错误; 故选:B .8.【答案】B【解析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得:222102210x y x y x +=⨯⎧⎨-+=⎩, 解得:14070x y =⎧⎨=⎩. ∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km . 故答案为B . 9.【答案】A【解析】∵A 为BD 中点, ∴AB AD =,∴∠ADB=∠ABD,AB=AD,∵AB CD=,∴∠CBD=∠ADB=∠ABD,∵四边形ABCD内接于O,∴∠ABC+∠ADC=180°,∴3∠ADB+60°=180°,∴ADB∠=40°,故选:A.10.【答案】A【解析】由函数图象知a<0,c>0,由对称轴在y轴左侧,a与b同号,得b<0,故abc<0,选项A错误;二次函数与x轴有两个交点,故∆=240b ac->,4ac-b2<0,则选项B正确,由图可知二次函数对称轴为x=-1,得b=2a,根据对称性可得函数与x轴的另一交点坐标为(1,0),代入解析式y=ax2+bx+c可得c=-3a,∴3a+c=0,选项C正确;∵二次函数y=ax2+bx+c的顶点坐标为(-1,n),∴抛物线与直线y=n+1没有交点,故D正确;故选:A.11.【答案】【解析】大于1且小于2的无理数是,答案不唯一.故答案为:.12. 【答案】【解析】自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,∴P(两次颜色相同)==,故答案为:.13.【答案】【解析】如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l ==,∴阴影部分周长的最小值为2+=.故答案为:.14.在矩形ABCD中,1AB=,BC a=,点E在边BC上,且35BE a=,连接AE,将ABE∆沿AE 折叠.若点B的对应点B'落在矩形ABCD的边上,则折痕的长为______.【答案】2或305【解析】分两种情况:(1)当点B'落在AD上时,如图1,∵四边形ABCD是矩形,90BAD B ∴∠=∠=︒,∵将ABE △沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '∴∠=∠=∠=︒, AB BE ∴=,315a ∴=, ∴3=15BE a =在Rt △ABE 中,AB=1,BE=1, ∴AE=222AB BE += (2)当点B '落在CD 上,如图2,∵四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==,∵将ABE △沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '∴∠=∠=︒,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a a =-=-=,在ADB '和B CE '中,9090B AD EB C AB DD C ∠=∠=︒-∠''⎧⎨∠=∠=︒'⎩ ~ADB B CE ''∴,DB AB CE B E'''∴=,即2112355a a a -=,解得,53a =±(负值舍去) ∴35=55BE a =在Rt △ABE 中,AB=1,BE=55, ∴AE=22305AB BE +=故答案为:2或305. 15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【解析】由题意六边形花环是用六个全等的直角三角形拼成, 可得BD=AC ,BC=AF , ∴CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°, ∴∠ABC=30°, 故答案为:30. 16.【答案】()20202020231,3⨯-【解析】∵AM 的解析式为1y x =+, ∴M(-1,0),A(0,1),即AO=MO=1,∠AMO=45°, 由题意得:MO=OC=CO 1=1,O 1A 1=MO 1=3,∵四边形1111O A B C 是正方形, ∴O 1C 1=C 1O 2=MO 1=3,∴OC 1=2×3-1=5,B 1C 1=O 1C 1=3,B 1(5,3), ∴A 2O 2=3C 1O 2=9,B 2C 2=9,OO 2=OC 2-MO=9-1=8, 综上,MC n =2×3n ,OC n =2×3n -1,B n C n =A n O n =3n , 当n=2020时,OC 2020=2×32020-1,B 2020C 2020 =32020, 点B ()20202020231,3⨯-,故答案为:()20202020231,3⨯-.17.【解析】3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式①,得x<3. 解不等式②,得x ≥-2.所以原不等式组的解集为-2≤x<3. 在数轴上表示如下:18.【解析】(1)∵四边形ABCD 为菱形, ∴点O 为BD 中点, ∵点E 为AD 中点, ∴OE 为ABD ∆的中位线, ∴OEFG∵OG EF ∥∴四边形OEFG 为平行四边形 ∵EF AB ⊥∴平行四边形OEFG 为矩形 (2)∵点E 为AD 中点,10AD = ∴152AE AD == ∵90EFA ∠=︒,4EF =∴在Rt AEF ∆中,2222543--=AF AE EF∵四边形ABCD 为菱形 ∴10AB AD ==∴152OE AB == ∵四边形OEFG 为矩形∴5FG OE == ∴10352BG AB AF FG =--=--=. 19.【解析】(1)由题意得∆=4+4k>0, ∴k>-1;(2)∵a+b=-2,ab=-k , ∴111a ab -++ =()()()()1111a b a a b +-+++=11ab ab a b -+++=121k k ----+ =1.20.【解析】(1)设甲、乙两种商品的进货单价分别是a 、b 元/件,由题意得:32602365a b a b +=⎧⎨+=⎩, 解得:1015a b =⎧⎨=⎩.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y 与x 之间的函数关系式为y =k 1x +b 1,将(11,18),(19,2)代入得:111111k b 1819k b 2+=⎧⎨+=⎩,解得:11240k b =-⎧⎨=⎩. ∴y 与x 之间的函数关系式为y =﹣2x +40(11≤x ≤19). (3)由题意得: w =(﹣2x +40)(x ﹣10) =﹣2x 2+60x ﹣400=﹣2(x ﹣15)2+50(11≤x ≤19). ∴当x =15时,w 取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.21.【解析】(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF=∠B,∵CD是⊙O的切线,D为切点,∴∠CDO=90°,∴∠CDA+∠ADO=∠ADO+∠BDO=90°,∴∠CDA=∠BDO,∵OD=OB,∴∠ODB=∠B,∴∠AOF=∠ADC;(2)∵OF∥BD,AO=OB,∴AE=DE,∴OE =12BD=12×8=4,∵sinC=ODOC=13,∴设OD=x,OC=3x,∴OB=x,∴CB=4x,∵OF∥BD,∴△COF∽△CBD,∴OC OFBC BD=,∴348x OFx=,∴OF=6,∴EF=OF−OE=6−4=2.22.【解析】(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a=50﹣10﹣16﹣20=4,扇形统计图中“C”部分所占百分比为:×100%=32%,故答案为:4,32;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为:360×=144°.故答案为:144;(4)30000×=216000(人).答:志愿服务时间多于60小时的教职工大约有216000人.23.【解析】(1)存在满足条件的点C。

中考数学模拟考试卷(附带答案)

中考数学模拟考试卷(附带答案)

中考数学模拟考试卷(附带答案)(满分:120分 ;考试时间:120分钟)一、单选题(共30分) 1.(本题3分)的算术平方根是( ) A .B .4C .D .22.(本题3分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a3.(本题3分)下列图形中 既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(本题3分)如图 AB 和CD 相交于点O 则下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1>∠4+∠5D .∠2<∠55.(本题3分)如果2220a a +-= 那么代数式24()2a a a a -⋅-的值是( )A .2B .1C .2-D .1-6.(本题3分)为积极响应“传统文化进校园”的号召 某市某中学举行书法比赛 为奖励获奖学生 学校购买了一些钢笔和毛笔 钢笔单价是毛笔单价的1.5倍 购买钢笔用了1200元 购买毛笔用1500元 购买的钢笔支数比毛笔少20支 钢笔 毛笔的单价分别是多少元?如果设毛笔的单价为x 元/支 那么下面所列方程正确的是( A .12001500201.5x x -= B .15001200201.5x x -= C .1500120020 1.5x x=-D .12001500201.5x x-=7.(本题3分)已知关于x 的分式方程213x mx -=-的解是非正数 则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥-8.(本题3分)关于x 的不等式21x a +≤只有2个正整数解 则a 的取值范围为( ) A .53a -<<- B .53a -≤<-C .53a -<≤-D .53a -≤≤-9.(本题3分)如图ABC 为直角三角形90C ∠=︒ 2cm BC = 30A ∠=︒ 四边形DEFG 为矩形DE = 6cm EF = 且点C 、B 、E 、F 在同一条直线上 点B 与点E 重合.Rt ABC △以每秒1cm的速度沿矩形DEFG 的边EF 向右平移 当点C 与点F 重合时停止.设Rt ABC △与矩形DEFG 的重叠部分的面积为2cm y 运动时间xs .能反映2cm y 与xs 之间函数关系的大致图象是( )A .B .B .C .D .10.(本题3分)如图 在正方形ABCD 中 O 是对角线AC 与BD 的交点 M 是BC 边上的动点(点M 不与B C 重合) CN∠DM 与AB 交于点N 连接OM ON MN .下列四个结论:∠∠CNB∠∠DMC ;∠OM=ON ;∠∠OMN∠∠OAD ;∠AN 2+CM 2=MN 2 其中正确结论的个数是( )A .1B .2C .3D .4第II 卷(非选择题)二、填空题(共28分)11.(本题3分)据北晚新视觉网3月20日报道“新冠肺炎肆虐全球意大利尤其严重据民防都门预计该国日前每月急需9000万只口罩.其中9000万用科学记数法表示为________.12.(本题3分)分解因式3218m m-=____________.13.(本题3分)下表记录了东营市××学校甲、乙、丙、丁四名运动员最近几次1000米训练成绩的平均数与方差:根据表中数据要从中选择一名成绩好且发挥稳定的运动员参加比赛应选择_______运动员.14.(本题3分)如图在菱形ABCD中AB=4 按以下步骤作图:∠分别以点C和点D为圆心大于12 CD的长为半径画弧两弧交于点M N;∠作直线MN 且MN恰好经过点A 与CD交于点E 连接BE 则BE的值为_____.15.(本题4分)如图圆锥的轴截面是边长为6cm的正三角形ABC P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为_____.16.(本题4分)如图正方形纸片ABCD的边长为12 E是边CD上一点连接AE.折叠该纸片使点A落在AE上的G点并使折痕经过点B得到折痕BF点F在AD上.若5DE=则GE的长为__________.17.(本题4分)如图 AB 为∠O 的直径 点D 是弧AC 的中点 弦BD AC 交于点E 若DE =2 BE =4 则tan∠ABD =_____.18.(本题4分)如图 在平面直角坐标系中 已知直线1y x =+和双曲线1y x=-在直线上取一点 记为1A 过1A 作x 轴的垂线交双曲线于点1B 过1B 作y 轴的垂线交直线于点2A 过2A 作x 轴的垂线交双曲线于点2B 过2B 作y 轴的垂线交直线于点3,A ······ 依次进行下去 记点n A 的横坐标为n a 若12,a =则2020a =______.三、解答题(共62分)19.(本题8分)(1)计算:02201912|( 3.14)tan 60()(1)2π---+︒++-;(2)先化简 再求值:2443(1)11x x x x x -+÷-+++ 请从不等式组52130x x -≥⎧⎨+>⎩的整数解中选择一个合适的值代入求值.20.(本题8分)如图 Rt∠ABC 中 ∠ACB =90° AD 平分∠BAC 交BC 于点D 点O 为AB 上一点 以O为圆心 AO 为半径的圆经过点D . (1)求证:BC 与∠O 相切;(2)若BD =AD 求阴影部分的面积.21.(本题8分)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图 他在山坡坡脚P 处测得古塔顶端M 的仰角为60︒ 沿山坡向上走25m 到达D 处 测得古塔顶端M 的仰角为30︒.已知山坡坡度3:4i = 即3tan 4θ=请你帮助小明计算古塔的高度ME .(结果精确到0.1m 1.732≈)22.(本题8分)为了解学生对校园网站五个栏目的喜爱情况(规定每名学生只能选一个最喜爱的) 学校随机抽取了部分学生进行调查 将调查结果整理后绘制成如下两幅不完整的统计图 请结合图中提供的信息解答下列问题:(1)本次被调查的学生有_________人 扇形统计图中m =_________; (2)将条形统计图补充完整;(3)若该校有1800名学生 估计全校最喜爱“校长信箱”栏目的学生有多少人?(4)若从3名最喜爱“校长信箱”栏目的学生和1名最喜爱“时事政治”栏目的学生中随机抽取两人参与校园网站的编辑工作 用列表或画树状图的方法求所抽取的两人都最喜爱“校长信箱”栏目的概率.23.(本题8分)快递公司为提高快递分拣的速度 决定购买机器人来代替人工分拣.已知购买甲型机器人1台 乙型机器人2台 共需14万元;购买甲型机器人2台 乙型机器人3台 共需24万元. (1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件 该公司计划购买这两种型号的机器人共8台 总费用不超过41万元 并且使这8台机器人每小时分拣快递件数总和不少于8300件 则该公司有哪几种购买方案?哪个方案费用最低 最低费用是多少万元?24.(本题10分)如图1(注:与图2完全相同)在直角坐标系中 抛物线经过点三点0(1)A , (50)B , 4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点 求满足PA PC 的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E 使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在 请求出点E 坐标 若不存在请说明理由.(请在图2中探索) 25.(本题12分)(1)问题发现如图1 在∠OAB 和∠OCD 中 OA=OB OC=OD ∠AOB=∠COD=40° 连接AC BD 交于点M .填空: ∠ACBD的值为 ; ∠∠AMB 的度数为 . (2)类比探究如图2 在∠OAB 和∠OCD 中 ∠AOB=∠COD=90° ∠OAB=∠OCD=30° 连接AC 交BD 的延长线于点M .请判断ACBD的值及∠AMB 的度数 并说明理由; (3)拓展延伸在(2)的条件下 将∠OCD 绕点O 在平面内旋转 AC BD 所在直线交于点M 若OD=1 请直接写出当点C 与点M 重合时AC 的长.参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】A 5.【答案】A 6.【答案】B 7.【答案】A 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】7910⨯12.【答案】2(3)(3)m m m -+ 13.【答案】甲14.【答案】15.【答案】16.【答案】491317.【答案】318.【答案】219.【答案】(1)0220191|2|( 3.14)tan 60()(1)2π---+︒++-141+-=4;(2)原式=()()()2231111x x x x x ---+÷++()()()221=122x x x x x -+++-2=2x x-+ 解不等式组52130x x -≥⎧⎨+⎩②>①;解∠得:x ≤52; 解∠得:x >-3;故不等式组的解集为:﹣3<x ≤52; 当x =﹣2 ﹣1 2时 都不合题意; 当x =1时 原式=13. 20.【答案】(1)如下图 连接OD ∠AD 平分∠BAC ∠∠BAD =∠DAC ∠OD =OA ∠∠ODA =∠OAD ∠∠ODA =∠DAC ∠OD ∠AC∠90BDO ACB ∠∠︒== ∠DC ∠DO ∠DO 为∠O 的半径 ∠BC 与∠O 相切;(2)∠BD AD = ∠∠B =∠DAB ∠∠BAD =∠DAC ∠∠B =∠BAD =∠DAC ∠90C ∠︒=∠30B BAD ∠∠︒== ∠60BOD ∠︒=在Rt BDO ∆中 BO =2DO 222BO DO BD +=∠BD ∠DO =1∠112BDO S ∆⨯==∠6013606ODE S ππ⨯⨯=扇形=∠6π. 21.【答案】解:作DC EP ⊥交EP 的延长线于点C 作DF ME ⊥于点F 作PH DF ⊥于点H 则DC PH FE == DH CP = HF PE =;设3DC x = ∠3tan 4θ=∠4CP x =; 由勾股定理得 222PD DC CP =+ 即22225(3)(4)x x =+ 解得5x =;则315DC x == 420CP x ==; ∠20DH CP == 15FE DC == 设MF y = 则15ME y =+在Rt MDF 中 tan MF MDF DF∠= 则3tan 30MFDF ==在Rt MPE 中 tan ME MPE PE ∠= 则315)tan 603ME PE y ==+ ∠DH DF HF =-15)20y -+= 解得7.5y =+∠7.51539.8ME MF FE =+=+≈ 答:古塔的高度ME 约为39.8m .22.【答案】(1)本次被调查的学生数为3015%200÷=(人) 扇形统计图中60100%30%200m =⨯=;(2)C 类人数20025%50=⨯=(人) 条形统计图补充为:(3)180030%540⨯=∠估计全校最喜爱“校长信箱”栏目的学生有540人; (4)画树状图为:共有12种等可能的结果数 其中所抽取的两人都最喜爱“校长信箱”栏目的结果数为6;∠所抽取的两人都最喜爱“校长信箱”栏目的概率61122==. 23.【答案】解:(1)设甲型机器人每台价格是x 万元 乙型机器人每台价格是y 万元 根据题意得2142324x y x y ==+⎧⎨+⎩解这个方程组得:64x y ⎧⎨⎩== 答:甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)设该公可购买甲型机器人a 台 乙型机器人(8-a )台 根据题意得()()648411200100088300a a a a ⎧+-≤⎪⎨+-≥⎪⎩ 解这个不等式组得32≤a ≤92∠a 为正整数∠a 的取值为2 3 4;∠该公司有3种购买方案 分别是购买甲型机器人2台 乙型机器人6台购买甲型机器人3台 乙型机器人5台购买甲型机器人4台 乙型机器人4台设该公司的购买费用为w 万元 则w=6a+4(8-a )=2a+32∠k=2>0∠w 随a 的增大而增大当a=2时 w 最小 w 最小=2×2+32=36(万元)∠该公司购买甲型机器人2台 乙型机器人6台这个方案费用最低 最低费用是36万元.24.【答案】解:1()根据点0(1)A , (50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=; ∠抛物线经过点4(0)C ,则54a = 解得:45a =抛物线的表达式为:()()2224416465345555245y x x x x x --+--+=== 函数的对称轴为:3x = 2()连接B C 、交对称轴于点P 此时PA PC +的值为最小设BC 的解析式为:y kx b +=将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k b b =+⎧⎨=⎩解得:4,54k b ⎧=-⎪⎨⎪=⎩直线BC 的表达式为:4y x 45=-+ 当3x =时85y = 故点835P (,);3()存在 理由: 四边形OEBF 是以OB 为对角线且面积为12的平行四边形 则512E E OEBF S OB y y ⨯⨯四边形=== 点E 在第四象限 故:则125E y =-; 将该坐标代入二次函数表达式得:()24126555y x x -+==- 解得:2x =或4故点E 的坐标为122,5(-)或12,5(4-). 25.【答案】(1)问题发现:∠如图1;∠∠AOB=∠COD=40°;∠∠COA=∠DOB ;∠OC=OD OA=OB ;∠∠COA∠∠DOB (SAS );∠AC=BD ; ∠1AC BD,= ∠∠∠COA∠∠DOB∠∠CAO=∠DBO∠∠AOB=40°∠∠OAB+∠ABO=140°在∠AMB 中 ∠AMB=180°-(∠CAO+∠OAB+∠ABD )=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°; (2)类比探究:如图2 AC BD = ∠AMB=90° 理由是:Rt∠COD 中 ∠DCO=30° ∠DOC=90°∠303OD tan OC ︒=同理得:303OB tan OA ︒=∠OD OB OC OA= ∠∠AOB=∠COD=90°∠∠AOC=∠BOD∠∠AOC∠∠BOD∠AC OC BD OD= ∠CAO=∠DBO 在∠AMB 中 ∠AMB=180°-(∠MAB+∠ABM )=180°-(∠OAB+∠ABM+∠DBO )=90° (3)拓展延伸:∠点C 与点M 重合时 如图3;同理得:∠AOC∠∠BOD ;∠∠AMB=90° AC BD设BD=x 则;Rt∠COD 中 ∠OCD=30° OD=1;∠CD=2 BC=x -2;Rt∠AOB 中 ∠OAB=30° ;;在Rt∠AMB 中 由勾股定理得:AC 2+BC 2=AB 2;)2+(x −2)2=)2x 2-x -6=0;(x -3)(x+2)=0;x 1=3 x 2=-2;∠点C 与点M 重合时 如图4;同理得:∠AMB=90° AC BD设BD=x 则;在Rt∠AMB 中 由勾股定理得:AC 2+BC 2=AB 2;)2+(x+2)2)2.x 2+x -6=0;(x+3)(x -2)=0;x 1=-3 x 2=2;综上所述 AC 的长为。

2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)

2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)

洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。

中考数学模拟考试卷(附带答案)

中考数学模拟考试卷(附带答案)

中考数学模拟考试卷(附带答案)一、选择题(共8小题,每小题3分,满分24分)1.(3分)2023的相反数是()A.2023B.12023C.﹣2023D.−120232.(3分)如图是正方体的展开图,把展开图折叠成正方体后,与“国”字一面相对面上的字是()A.西B.安C.加D.油3.(3分)(−12mn3)2的计算结果是()A.4mn6B.﹣4m2n6C.−14m2n5D.14m2n64.(3分)如图,AB∥CD∥EF,若∠CEF=105°,∠BCE=55°,则∠ABC的度数为()A.110°B.115°C.130°D.135°5.(3分)如图,在△ABC中,点D在AB边上,若BC=4,BD=2,且∠BCD=∠A,则线段AD的长为()A.9B.6C.5D.46.(3分)在平面直角坐标系中,将直线y=3x先向左平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x轴的交点为(m,0),则m的值为()A.﹣1B.﹣3C.1D.37.(3分)如图,已知⊙O的半径为5,AB、CD为⊙O的弦,且CD=6.若∠AOB+∠COD =180°,则弦AB的长为()A.6B.7C.8D.98.(3分)若抛物线y=﹣x2+bx+c与x轴的两个交点A(x1,0)、B(x2,0)之间的距离为6,且x1+x2=8,则这个抛物线的顶点坐标是()A.(3,9)B.(﹣3,﹣9)C.(﹣4,﹣9)D.(4,9)二.填空题(共5小题,每小题3分,计15分)9.(3分)比较大小:2√23(填“>”、“=”或“<”).10.(3分)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠CBG =.11.(3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,求a+2b﹣c的值为.12.(3分)如图,点A在x轴的正半轴上,过线段OA的中点M作MP⊥x轴,交双曲线y=k x(k>0,x>0)于点P,且OA•MP=8,则k的值为.13.(3分)如图,在四边形ABCD中,AD∥BC,CE⊥AB,且AE=BE,连接DE,若AB=CD=CE=2,则tan∠DEC=.三.解答题(共13小题,计81分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

相关文档
最新文档