七年级上册第一章有理数复习教案
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
浙教版七年级上册第一章有理数章节复习教案+同步课堂练习+课后作业
有理数复习教案(七上)一、知识能力聚焦1.有理数例1:回顾我们小学阶段学过的所有数的种类: 整数、自然数、小数、分数、偶数、奇数、质数、合数、无限循环小数、无限不循环小数。
自然数回顾:1、定义:0,1,2,3,......叫做自然数2、分类: 0; 1; 质数(也叫素数,是只能被1和它本身整除的自然数);合数(除1和它本身外,还能被其他非零的自然数整除的数)3、作用:计数:一般地,用数数的方法得到的数据具有“计数”的含义。
例如:51枚金牌,是自然数最初的作用;测量:一般地,借助工具得到的数据具有“测量”的含义,测量的本质是比较。
例如:小明身高是168厘米;排序:为了表示某一种顺序的数据具有“排序”的含义,如年份、月份、名次等。
例如:2016年;标号:像门牌号、学号、座位号、车牌号、邮政编码、汽车路线等具有“标号”的含义。
例如:全班第10既不是正数也不是负数。
2.数轴和相反数 数轴:规定了原点、单位长度和正方向的直线叫做数轴。
相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
若a ,b 互为相反数,则有⎩⎨⎧=+=--=0,b a b a b a例2:相反数性质的运用。
(1)-2的相反数是,a 的相反数是,a-b 的相反数是。
(2)若a ,b 互为相反数,则3a+3b+2=;若c ,d 互为倒数,=222d c 。
(3)若a ,b 互为相反数,c ,d 互为倒数,计算:=++cd b a 122;=++dc c bc ac 22。
例3:0的相反数是0。
若b 12+-与a 互为相反数,那么a+b=。
3.绝对值绝对值:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等,绝对值相等。
任何数的绝对值都为非负数:0≥a⎩⎨⎧<-≥=)0()0(a a a a a ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数例4:去绝对值符号(1)=<a a 那么若,0,=-a ;=->b a b a 那么若,, =-a b ;=+<<b a b a 那么若,0,0, =--b a ;=-<>b a b a 那么若,0,0, =-a b , =ab ;(2)有理数在数轴上表示的点如下图所示,则的大小关系是 ,化简: b a b a -++= ,b a b a --+= 。
七年级数学上册有理数及其运算复习教案9篇
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
中学七年级数学 有理数复习教案
第1章 有理数复习教案一. 学习目标1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2. 掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;3.养成“言必有据、做必有理、答必正确”的良好思维习惯。
增进“应用数学知识解决实际问题的数学思想。
二. 知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
三. 知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
四.考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
五. 教学过程 一. 知识梳理:(一)、有理数的基础知识 1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a aa(3)两个负数比较大小,绝对值大的反而小。
人教版七年级上册第一章《有理数》复习教案
课题:第一章有理数教学目标:知识与能力:检查学生对本章的掌握情况,复习整理本章的基本概念和有理数的运算法则、运算规律以及相关的知识点。
过程与方法:培养学生综合应用知识解决问题的能力。
情感态度价值观:渗透数形结合的思想。
重点、难点有理数的概念和有理数的运算;负数和有理数法则的理解。
教学过程教师活动学生活动修改意见一、【正负数】____________统称有理数。
[基础练习](1)把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{…};正有理数集{…};负有理数集{…}负整数集{…};自然数集{…};正分数集{…}负分数集{…}(2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是;如果这种油的原价是76元,那么现在的卖价是。
二、【数轴】规定了、的直线,叫数轴[基础练习](1)如图所示的图形为四位同学画的数轴,其中正确的是(2)在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来: 4,-|-2|,-4.5,1,0(3)下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来(4)①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是,最小的正整数是。
最大的非正数是。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
学生以学习小组为单位完成知识梳理;并在小组内统一认识,形成一支的答案,并展示疑惑。
有理数有理数(5)在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4C.-3D.-2 三、【相反数】像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
七年级数学上册 第一章有理数复习教案 人教新课标版
第一章 有理数复习一、【课标要求】二、知识结构三、主要考点考点一:有理数的分类有理数概念有理数 相反数大小比较 绝对值 倒数 数轴运算加法减法 乘法 除法 乘方混合运算科学记数法用计算器进行简单的计算近似数与有效数字正有理数零负有理数正整数正分数负整数负分数有理数含正有限小数和无限循环小数有理数的另一种分类1、填空①_____________统称整数。
_____________统称分数。
_____________统称有理数。
0既不是 ,也不是 。
②增加-20%,实际的意思是 。
甲比乙大-3表示的意思是 。
③月球表面的白天平均温度为126℃,记作+126℃,夜间平均温度零下150°C, 记作 ℃. 白天比夜间高 ℃想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数 2、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590正整数集{ …} 负整数集{ …} 正分数集{ …}负分数集{ …} 正有理数集{ …} 负有理数集{ …} 自然数集{ …}有理数整数 分数正整数 负整数0 负分数正分数自然数含负有限小数和无限循环小数3、判断正误①不带“-”号的数都是正数 ( )②如果a是正数,那么-a一定是负数 ( )③不存在既不是正数,也不是负数的数 ( )④0℃表示没有温度 ( )考点二:数轴1、填空①规定了,和的直线叫做数轴。
②比-3大的负整数是_______;已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是____,最小的正整数是____。
最大的非正数是__。
④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。
2、选择题①下列数轴画法正确的是( )②在数轴上,原点及原点左边所表示的数是()A整数B负数C非负数D非正数③下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来考点三:相反数1、填空①-2的相反数是;它的倒数是;它的绝对值是。
2024年七年级数学有理数复习教案
2024年七年级数学有理数复习教案一、教学目标知识与技能复习和巩固有理数的概念,包括正数、负数、零及其数学表示。
掌握有理数的四则运算(加、减、乘、除)及混合运算规则。
理解有理数的大小比较规则,并能正确进行大小比较。
过程与方法引导学生通过问题解决的方式复习有理数知识,提高分析问题和解决问题的能力。
通过小组合作和讨论,培养学生的合作学习和沟通能力。
情感、态度与价值观激发学生学习数学的兴趣和热情,树立学习数学的信心。
培养学生的逻辑思维能力和数学应用能力。
二、教学重点和难点教学重点有理数的四则运算及混合运算。
有理数的大小比较规则。
教学难点对负数概念的理解和应用。
复杂的混合运算中符号的处理和运算顺序的掌握。
三、教学过程1. 复习导入通过提问的方式回顾之前学习的有理数基础知识,例如:“什么是正数?什么是负数?零属于哪一类数?”展示几个简单的有理数计算题目,让学生快速回答,以检验他们的基础知识掌握情况。
2. 概念梳理系统梳理有理数的概念,包括正数、负数、零的定义及其表示方法。
通过实例让学生明确正负数在实际生活中的应用场景。
3. 运算规则复习逐一讲解有理数的加、减、乘、除运算规则,并举例说明。
强调混合运算中的运算顺序(先乘除后加减,有括号先算括号内),并给出多个练习题让学生练习。
4. 大小比较练习通过比较不同有理数的大小,让学生巩固有理数大小比较的规则。
设计一些实际情境问题,让学生在解决问题的过程中理解和应用有理数的大小比较。
5. 问题解决布置一些综合性的问题,让学生运用所学有理数知识解决。
鼓励学生分组讨论,共同寻找问题的解决方案,并分享各自的思路。
6. 课堂小结回顾本节课学习的内容,强调重点知识点。
鼓励学生进行自我评估和同伴评估,了解自己的学习状况。
四、教学方法和手段教学方法启发式教学:通过提问和讨论,激发学生的学习兴趣和思维能力。
合作学习:分组学习,鼓励学生之间互相帮助,共同解决问题。
教学手段PPT演示:使用多媒体教学,形象展示有理数相关概念和计算过程。
第1章 有理数小结与复习 教案 人教版数学七年级上册
第1章有理数小结与复习一、教学目标1.复习有理数的意义及其有关概念,其内容包括正负数、有理数、数轴、有理数大小的比 较、相反数与绝对值等,通过复习使学生系统掌握有理数这一章的有关基本概念;2.会运用有理数的运算法则、运算律,熟练进行有理数的运算;3.用四舍五入法,按要求(精确度)确定运算结果;4.会利用计算器进行有理数的简单计算和探索数的规律.二、教学重点、难点重点:1.掌握有理数的概念;2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算;3.学会借助数轴来理解绝对值、有理数比较大小等相关知识;4.理解科学记数法,近似数.难点:准确地掌握有理数的运算顺序和运算中的符号问题.三、教学过程知识梳理一、正数和负数1.小学学过的除0以外的数都是正数.在正数前面加上符号“-”(负)的数叫做负数.2.用正、负数表示具有相反意义的量.二、有理数1.有理数的概念整数和分数统称为有理数.2.有理数的分类(1)按定义分类 (2)按符号分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 3.数轴(1)规定了原点、正方向、单位长度的直线叫做数轴.(2)任何一个有理数都可以用数轴上的一个点来表示.4.相反数(1)只有符号不同的两个数叫做互为相反数.(2)互为相反数的两个数到原点的距离相等.5.绝对值(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值.(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.有理数大小的比较(1)数轴上表示的两个数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.⎩⎨⎧++=+++=+)()(c b a c b a a b b a 加法的结合律加法的交换律加法的运算律 2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.⎪⎩⎪⎨⎧+=+==ac ab c b a bc a c ab ba ab )(:)()(::结合律结合律交换律乘法的运算律 4.有理数的除法除法法则:除以一个不等于0的数,等于乘以这个数的倒数.5.有理数的乘方求几个相同因数的积的运算,叫做乘方.6.有理数的混合运算(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.四、科学记数法把大于10的数记成a×10n的形式,其中1.1≤a<102.n为原数的整数位减去1五、近似数1.按照要求取近似数四舍五入到某一位,就说这个近似数精确到那一位.2.由近似数判断精确度考点讲练考点一正、负数的意义例1 如果+4米表示向东走4米,那么向西走2米记作_____.针对训练1.下列语句中,含有相反意义的两个量是( )A.盈利2千元和收入2千元B.上升8米和前进8米C.存入2千元和取出2千元D.超过2厘米和上涨2厘米2.水位下降9cm记作-9cm,那么水位上升8cm记作_______.考点二正、负数的概念例2 判断:①不带“-”号的数都是正数……………………( )②如果a是正数,那么-a一定是负数…………( )③不存在既不是正数,也不是负数的数…………( )④一个有理数不是正数就是负数…………………( )⑤0℃表示没有温度…………………………………( )方法总结0既不是正数也不是负数,0的相反数是它本身.0不仅能表示没有,而且表示正、负之间的分界值.考点三有理数的分类例3 将下列各数分别填入相应的圈内:3.5,-3.5,0,|-2|,-2,531-,31-,0.5●针对训练3.在2.3,0,+3,-6,23-,-0.9中,负分数有____个. 考点四 相反数、倒数、绝对值例4 填表:考点五 数轴、有理数比较大小例5 请将下面的数在数轴上表示出来,并将它们用“>”连接起来.3.5,-3.5,0,-2,53. 解:表示如下3.5>53>0>-2>-3.5 针对训练4.在数轴上,点A 所表示的数为-2,那么到点A 的距离等于5个单位长度的点所表示的数是_______.5.某日零点,北京、上海、重庆、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏考点六 科学记数法例6 将数2 560 000 000km 用科学记数法表示____________m.针对训练6.某城市常住人口总数为563.8万人,用科学记数法表示为____________人.考点七 近似数例7 2017年我国全年出境旅游人数达1.27亿人次.这里的1.27亿精确到______位. 针对训练7.由四舍五入法得到的近似数2.96×105精确到____位,如果精确到万位可写成_________. 考点八 有理数的运算例8 计算 (1) 25.03211813413125.0-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++ 解:原式=81+341-381+1132-41=(81-381)+(341-41)+1132=(-3)+3+1132=1132 (2) ()361856543127-⨯⎪⎭⎫ ⎝⎛+-+- 解:原式=-127×(-36)+43×(-36)-65×(-36)+185×(-36) =21+(-27)-(-30)+(-10)=21-27+30-10=14(3) ()⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷-1211212 解:原式=-2÷121÷121=-2×12×12=288 (4) ()()2245.0612153222--⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛÷- 解:原式=-16÷(38)2+211×(-61)-(-21)2 =-16×649+(-1211)-41 =-49-1211-41=-1227-1211-123=-1241针对训练8.计算(1) -3+8-7-15 (2) 23-6×(-3)+2×(-4)(3)75.04.34353.075.053.1⨯-⨯+⨯- (4)()512423⨯-÷-参考答案:(1) -17 (2) 33 (3) -3.3 (4) -516。
人教版数学七年级上册第一章有理数(1.11.2)复习优秀教学案例
一、案例背景
本节课为人教版数学七年级上册第一章有理数的复习课,主要内容包括有理数的定义、性质、运算及应用。在复习过程中,我以学生已有的知识为基础,通过设计丰富的教学活动,引导学生深入理解有理数的概念,提高运算能力,并培养学生的逻辑思维和数学素养。
(二)问题导向
1. 自主探究:引导学生自主探究有理数的定义、性质和运算方法,培养学生独立思考的能力。
2. 合作交流:组织学生进行小组讨论,分享学习心得,互相解答疑问,提高学生的合作能力和沟通能力。
3. 教师引导:在学生探究过程中,教师要充分发挥引导作用,及时给予学生提示和帮助,引导学生深入思考。
(三)小组合作
三、教学策略
(一)情景创设
1. 生活情境:以购物、计算面积等实际问题为背景,创设有趣的生活情境,让学生在解决问题的过程中自然地引入有理数的概念和运算。
2. 故事情境:通过讲述数学家的故事,激发学生的学习兴趣,使他们感受到数学的趣味性和重要性。
3. 问题情境:设计具有启发性的问题,引导学生思考,激发学生的求知欲,如:“为什么有理数可以表示为分数形式?”“有理数的运算律是如何得出的?”
在教学设计中,我充分考虑了学生的认知规律和兴趣,将教学内容与实际生活相结合,以激发学生的学习兴趣。在教学过程中,我注重启发式教学,引导学生主动探究、合作交流,从而提高学生的数学思维能力和解决问题的能力。同时,我还将情感教育融入教学中,关注学生的个体差异,鼓励学生积极面对困难,培养他们坚持不懈的品质。
2. 学生在小组内分享自己的观点和心得,互相解答疑问,培养学生的合作能力和沟通能力。
3. 教师巡回指导,给予学生提示和帮助,引导学生深入思考,提高学生的探究能力。
人教版七年级数学第一章有理数小结复习1教学设计
-如果a、b、c都是有理数,且a > b,那么以下哪个不等式一定成立?(a + c) > (b + c)、(a - c) > (b - c)、(a × c) > (b × c)、(a ÷ c) > (b ÷ c)
2.应用提高题:提供一些实际问题,要求学生运用有理数的知识来解决,以此培养他们的应用能力和逻辑思维能力。例如:
-小明的储蓄罐原有50元,他每星期存入10元,但是上周他不小心花掉了15元。请问,现在小明储蓄罐里有多少钱?
-一条船在静水中的速度为每小时20公里,逆水行驶时速度减少5公里/小时。请问,船逆水行驶4小时能走多远?
-对学生运算错误的原因进行分析,提供针对性的指导。
(二)教学设想
1.教学方法:
-采用互动式教学,鼓励学生提出问题,引导他们通过探究和讨论来解决问题。
-利用多媒体和实物教具,如数轴、卡片等,增加课堂的直观性和趣味性。
-设计分层作业和练习,针对不同层次的学生提供不同难度的题目,以促进他们的个性化发展。
2.教学策略:
3.能够运用有理数的运算规则,解决一些简单的方程问题,如求解一元一次方程等。
4.通过对有理数的复习,提高学生的计算速度和准确性,培养他们严谨的学习态度。
(二)过程与方法
本章节的教学过程中,教师应采用以下方法,引导学生达到以下过程与方法目标:
1.采用问题驱动的教学方法,提出与有理数相关的问题,引导学生通过自主探究、小组讨论的方式,复习和巩固有理数的知识。
针对这些情况,本章节的教学应注重以下几点:一是巩固和加深学生对有理数概念的理解,通过具体实例和数轴等工具,帮助他们形成直观的认识;二是注重运算技巧的培养,提高学生的计算速度和正确率;三是结合实际问题,引导学生运用有理数的知识解决具体问题,培养他们的应用意识和能力。
人教版数学七年级上册第一章有理数(1.11.2)复习教学设计
-分组讨论:让学生针对有理数的运算规则、数轴的应用等主题进行讨论;
-各小组分享讨论成果,教师点评、总结,引导学生发现并掌握有理数的运算规律;
-鼓励学生提出疑问,组内或组间互相解答பைடு நூலகம்共同解决问题。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生在实际操作中巩固有理数的知识。
2.教学过程:
4.教育学生遵守数学运算规则,树立正确的价值观,如尊重事实、诚实守信等。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,教师要以人为本,关注学生的情感需求,营造轻松愉快的学习氛围,使学生在愉悦的情感中学习数学。通过本章复习教学,让学生在掌握有理数知识的基础上,提高数学素养,为后续学习打下坚实基础。
-数轴与有理数的对应关系,以及数轴上点的移动与有理数运算的关系。
2.教学过程:
-采用讲解、举例、演示等方法,引导学生掌握有理数的概念和运算规则;
-使用数轴,形象地展示有理数的运算过程,帮助学生理解数轴与有理数的联系;
-通过师生互动、提问回答等方式,检查学生对新知的理解和掌握程度。
(三)学生小组讨论
1.教学内容:组织学生进行小组讨论,共同探究有理数的运算规律和实际应用。
-教师点评、补充,强调有理数知识的重要性,并鼓励学生在日常生活中多观察、多运用;
-布置课后作业,要求学生在课后进一步巩固有理数的知识,为下一节课的学习打下基础。
五、作业布置
为了巩固本章节的有理数知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
1.基础巩固题:
-完成课本第15页的练习题1、2、3,涉及有理数的概念、分类及简单运算;
2.作业完成后,及时进行自我检查,发现并纠正错误;
七年级上册第1章有理数复习课教案二
七年级上册第1章有理数复习课教案二篇4:《有理数》七年级数学上册教案教学目标【知识与能力目标】掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力。
【过程与方法目标】体验分类是数学上的常用处理问题的方法。
【情感态度价值观目标】要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史。
教学重难点【教学重点】正确理解有理数的概念。
【教学难点】正确理解分类的标准和按照一定的标准进行分类。
课前准备复习正负数,尝试将之前学过的数进行合理的分类。
教学过程探索新知之前我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,。
··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’。
按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)练一练1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2、教科书第8页练习。
此练习中出现了集合的概念,可向学生作如下的说明。
2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)
“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。
【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。
【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。
【教法、学法设计】:分层教学,讲授、练习相结合。
【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。
【最新】人教版七年级数学上册第一章《有理数复习课》教案
新人教版七年级数学上册第一章《有理数复习课》教案一、内容和内容解析1.内容有理数的有关概念、运算.2.内容解析本章,我们学习了一类新的数——负数,使数的范围扩充到有理数,再引进数轴、相反数、绝对值等概念,为学习有理数的运算作好铺垫.有理数的运算,是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提,是本章学习的重点.对于有理数的运算,我们总是把与负数相关的运算归结为正数之间的运算,其中,数形结合、化归是很重要的思想方法,也是本章需要重点关注的.基于以上分析,确定本节课的教学重点:有理数的运算及数形结合、化归的思想方法.二、教材解析数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则作了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算作准备.绝对值的概念借助距离的概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,学习绝对值的概念可以促进对数轴概念的理解.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.因此,本章的重点是有理数的运算和运算律.在领悟有理数概念、运算法则和运算律内涵的过程中,让学生体会从特殊到一般,从具体到抽象的研究过程和方法,使他们既学会发现,又学会归纳、概括,从而逐步提高学生的思考力,培养用数学的思想和方法来思考和处理问题的习惯.三、教学目标和目标解析1.教学目标(1)梳理有理数的有关概念,理解概念之间的内在联系;(2)熟练地进行有理数的运算,并能运用运算律简化运算,体会数系扩充之后运算的一致性;(3)通过利用数轴的直观性解决问题,体会数形结合的思想方法.2.目标解析达成目标(1)的标志:学生能够解决与数轴、相反数、绝对值有关的问题;达成目标(2)的标志:学生能合理运用运算律简化运算,准确进行有理数的运算;达成目标(3)的标志:学生能够利用数轴解决有关的问题.四、教学问题诊断分析本章的难点是对有理数运算法则的理解.有理数运算,与以前学过的运算的一个重要区别就是多了一个符号问题,而在有理数的混合运算中,还应注意运算顺序的问题.当这两个问题同时出现时,有些学生往往顾此失彼,造成计算结果失误.“绝对值”是“距离”这一几何量的代数表示.距离是基本而重要的几何概念,相应的,绝对值是基本而重要的代数概念.从绝对值的定义出发,可以得到求一个数的绝对值的具体操作方法,即看这个数是正数、负数还是0等三类情况分别得出结果,有些学生对绝对值的理解可能只停留在能按此方法,求出一个数的绝对值,但不能把绝对值与数轴、相反数等概念联系起来.基于以上学情的分析,本节课的教学难点:有理数的混合运算中,每一步的运算中符号的确定以及对绝对值概念的深入理解.五、教学过程设计1.梳理知识,建立联系问题1本章学习了哪些知识?它们之间的联系是什么?教师引导学生通过举例来回顾本章知识要点,指出知识之间的内在联系.教师应重点关注: (1)学生对正数、负数、有理数等概念的理解;(2)学生对数轴、相反数、绝对值等概念及它们之间的联系的理解.【设计意图】通过回顾本章知识要点,帮助学生建立有理数的有关概念之间的联系,体会相反数、绝对值等概念与有理数运算的联系.2.加强运算,熟练掌握例1 计算:(1)0.125+⎪⎭⎫ ⎝⎛413++⎪⎭⎫ ⎝⎛813--⎪⎭⎫ ⎝⎛3211--0.25; (2)⎪⎭⎫ ⎝⎛185+65-43+127-×(-36); (3)(-2)÷⎪⎭⎫ ⎝⎛121-÷⎪⎭⎫ ⎝⎛121-; (4)(-24)÷2322⎪⎭⎫ ⎝⎛+215×⎪⎭⎫ ⎝⎛61--(-0.5)2. 问题2 有理数运算中,应该注意哪些问题?学生独立完成练习,教师巡视,把学生练习中出现的典型错误用实物投影仪呈现出来,学生找出问题后,进行更正,展示正确的解法.师生共同归纳有理数运算中,应该注意的问题.第(1)题把减法转化为加法时,要注意减号和减数的性质符号要同时改变.对多个有理数相加减的题目,要观察数的特征,能利用运算律时,要利用运算律使计算简便.第(2)题运用运算律时要注意符号问题.第(3)题运用除法法则进行运算时,首先应确定商的符号,然后把绝对值相除,还要注意,对同一级运算要按从左至右的顺序进行.第(4)题中-24≠(-2)4,要注意两者的底数及符号的差别;计算2322⎪⎭⎫⎝⎛时,先将带分数化成假分数,然后求乘方;要根据有利于计算的原则,将小数化为分数;要注意运算顺序.教师应对学生进行学法指导.在计算前认真审题,选择简便途径,确定运算顺序;计算中按步骤审慎进行;最后要检验.本环节中,教师应重点关注:(1)学生能否根据算理进行每一步的运算;(2)学生是否有良好的解题习惯.【设计意图】通过计算、呈现错例、找出错误、归纳在有理数运算中应注意的问题,达到熟练掌握有理数运算的目的.3.应用拓展,提高能力例2 观察下列五组数:1,-1,-1;2,-4,-6;3,-9,-15;4,-16,-28;5,-25,-45;…(1)每组数中的第2个数与第1个数有什么关系?(2)每组数中的第3个数与第1个数有什么关系?(3)计算第50组数的和.答案:(1)每组数中的第2个数分别是-12,-22,-32,-42,-52,….每组数中的第2个数是第1个数的平方的相反数;(2)每组数中的第3个数分别是-1×1,-2×3,-3×5,-4×7,-5×9,….即-1×(2×1-1),-2×(2×2-1),-3×(2×3-1),-4×(2×4-1),-5×(2×5-1),….每组数中的第3个数是第1个数乘第1个数的2倍与1的差所得积的相反数;(3)第50组数的3个数分别是50,-502,-50×(2×50-1),它们的和为50+(-502)+[-50×(2×50-1)]=50―2 500―4 950=-7 400.问题3 怎样解决有关数的规律探索性问题(结合例题)?学生尝试解决问题,教师点拨.教师应关注学生能否对每组中的数从符号、绝对值两方面考虑,能否把数的绝对值与组数的序号联系起来.例3 (教科书第52页第14题)结合具体的数的运算,归纳有关特例,然后比较下列数的大小:(1)小于1的正数a,a的平方,a的立方;(2)大于-1的负数b,b的平方,b的立方.答案:(1)a>a2>a3;(2)b2>b3>b.学生独立完成,教师巡视,个别辅导.教师应关注学生举出的具体的数是否符合题目要求,是否能多举出几个具体的例子.例4 若a>0,b<0,且a+b<0,把a、-a、b、-b、0按从大到小的顺序进行排列.答案:-b>a>0>-a>b.教师启发学生利用数轴解决问题.教师应关注学生在数轴上表示的数位置是否正确.问题4 从例3、例4的解题方法中,你受到哪些启发?【设计意图】例2是有关数的规律探索性问题.联系数的乘方、乘法,从符号与绝对值两方面考虑排列规律.使学生体会找规律的方法.例3是让学生通过具体计算,归纳得出结论,体会由特殊到一般这一认识事物规律的方法.解决例4的关键是从已知条件及有理数加法法则分析得出|b|>|a|,然后把表示a、-a、b、-b的点在数轴上表示出来,让学生学会利用数轴解决问题,体会数形结合的方法.4.归纳小结,反思提高问题5谈谈通过本节课的复习,有哪些新的收获?本环节中,教师应重点关注:(1)学生是否能利用数轴建立起相反数、绝对值等概念的联系;(2)学生是否能体会到由特殊到一般、数形结合等方法的作用.【设计意图】通过小结,加深对知识及解决问题的方法的理解,为今后的学习奠定基础.作业:教科书第51页第1,2,3,4,5,6,10题.六、目标检测设计1.计算:(1)-3.2+733-6.8+745; (2)14+56÷(-7);(3)⎪⎭⎫ ⎝⎛151-109×30; (4)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛÷⨯22233-+3-21-34-23-)(×(-1)3. 2.已知数轴上表示负有理数m 的点是点M ,那么在数轴上与点M 相距|m |个单位的点中,与原点距离较远的点对应的数是( ).A .-2mB .2mC .-mD .m【设计意图】检测是否能熟练地进行有理数的运算,是否能运用运算律简化运算,以及是否会利用数轴解决问题.。
七年级数学《有理数-复习课》教案
七年级数学《有理数-复习课》教案教学内容:复习P1-28教学重点:相反数、绝对值、有理数的大小比较和有理数的加减法运算教学难点:绝对值、有理数的混合运算一、板书课题,揭示目标1.今天,我们一起来复习1.1-1.4。
2.学习目标(1)在具体的情境中,理解有理数及其运算的意义。
(2)能用数轴上的点表示有理数,会表示有理数的大小。
(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
(4)经历探索有理数运算法则和运算律的过程,掌握有理数的加、减简单的混合运算;理解有理数的运算律,并能运用运算律简化运算。
(5)发展观察、猜想、验证等能力,初步形成数形结合的思想。
二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。
下面,请同学们按照指导(手指投影屏幕)自学。
自学指导看书1-28,填空:1、和统称整数;和统称分数;整数和分数统称。
有理数也可以分为和。
2、规定了的直线叫做数轴。
3、任何都可以用数轴上的一个点来表示。
4、数轴上原点表示的数是;原点右边的点表示的数都是;原点左边的点表示的数都是。
5、数轴上,表示相反数的两个点到的距离相等,我们说着两个点关于对称。
6、相反数等于它本身的数是,一个负数的相反数是。
7、一个正数的绝对值等于它;一个负数的绝对值等于它的;0的绝对值等于;互为相反数的两个数的绝对值。
8、正数 0;负数 0;正数一切负数;两个负数,大的反而小。
9、在以向右为正方向的数轴上的两点,右边的点表示的数比左边的点表示的数。
10、有理数的加法法则:。
11、如果两个数的和等于0,那么着两个数。
12、加法的运算律:。
13、减去一个数等于。
14、0减任何一个数等于。
15、加减混合运算可以统一为运算。
三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。
四、检验学生自学情况。
学生看完书后把书合上,举手回答。
五、引导更正,指导运用1.学生训练。
(1)布置任务:看完了的同学,请举手。
(学生举手)好!下面请XX做《基础训练》第16页练习第11(15)题,其余的同学在座位上练习……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。
人教版七年级数学上册第一章 《有理数》总复习教案
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
人教版七年级上册数学教案:第一章有理数复习
课题:第一章有理数复习一、教学目标1.知道第一章有理数知识结构图.2.通过基本训练,巩固第一章所学的基本内容.3.通过典型例题和综合运用,加深理解第一章所学的基本内容,发展能力.二、教学重点和难点1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用.三、教学过程(一)归纳总结,完善认知(上面的知识结构图,要结合下面的讲解逐步板书出来)师:前面我们花了很多节课,学习了第一章有理数.有理数这一章是很重要的,学不好这一章,学习后面的内容就会发生困难.下面我们把有理数这一章中最重要的内容作一番整理.(板书课题:第一章有理数复习)师:在这一章的开始,我们首先引入了负数.(板书:引入负数)引入负数后,小学里学过的数的范围就扩大到了有理数范围.(板书:有理数)具体地说,有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数.这就是有理数的分类.(板书:有理数的分类)师:学习了有理数的分类后,我们又学习了相反数、(板书:相反数)绝对值、(板书:绝对值)有理数大小的比较.(板书:大小比较)师:我们可以从两个角度来看相反数、绝对值、比较大小,一个角度是从数轴上看,另一角度是从数本身看.(板书:数轴与数)师:从数轴上看,相反数表示在数轴上是怎样的两点?生:……师:从数轴上看,在数轴上表示相反数的两点在原点两边并与原点距离相等. 师:从数本身看,互为相反数又是怎么样的两个数?生:……师:从数本身看,只有符号不同的两个数就是相反数.师:同样,从数轴上看,一个数的绝对值在数轴上指的是什么呢?生:……师:从数轴上看,数轴上表示某数的点与原点的距离就是这个数的绝对值.师:从数本身看,一个数的绝对值又等于什么?生:……师:从数本身看,有这么三句话:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.师:怎么比较有理数的大小?解决这个问题也可以从两个不同的角度去考虑,从数轴上看,两个有理数哪个?从数本身看,两个有理数又怎么比较?生:……师:从数轴上看,在数轴上表示的两个数,右边的数总比左边的数大.从数本身看,有理数大小的比较有两条法则,第一条是说:正数大于0,0大于负数,正数大于负数;第二条是说:两个负数,绝对值大的反而小.师:(指板书)学习了相反数、绝对值、有理数大小比较以后,我们学习了本章中最重要的内容:有理数的运算.(板书:有理数运算)有理数运算是以前面学习过的相反数、绝对值、有理数大小比较为基础的.师:有理数运算包括加法、减法、乘法、除法、乘方.(板书:加法、减法、乘法、除法、乘方,要将“除法”写在“乘法”上面)师:有理数加法法则有三条,是哪三条?有理数加法法则,师板书:(三条法则))(生齐读P18师:有理数减法是转化为加法进行计算的,(板书:转化,并加箭头)减法怎么转化为加法?生:减去一个数,等于加这个数的相反数.师:有理数乘法法则有两条,是哪两条?有理数乘法法则,师板书:(两条法则))(生齐读P29师:有理数除法是转化为乘法进行计算的,(板书:转化,并加上箭头)除法怎么转化为乘法?生:除以一个不等于0的数,等于乘这个数的倒数.师:除法还有另一个直接相除的法则,和乘法法则类似,也有两条,是哪两条?有理数除法法则的另一种说法,师板书:(两条法则))(生齐读P34师:乘方是几个相同因数的积的运算,所以乘方也是转化为乘法来计算的.(板书:转化,并加上箭头)师:有理数运算虽然有五种,但基本运算还是加法和乘法,其它运算都可以转化为加法或乘法.加法有交换律和结合律,(板书:交换律、结合律)乘法有交换律、结合律、分配律.(板书:交换律、结合律、分配律)减法和除法虽然没有交换律、结合律、分配律,但把它们转化为加法、乘法后,就可以使用交换律、结合律、分配律了.师:(指板书)这就是第一章有理数基本知识结构图,除了结构图中所标出的外,我们还学习了科学记数法、近似数等于知识.(二)基本训练,掌握双基1.填空:(以下空你最好直接用铅笔填,实在想不起来,你可以在课本中找)(1)正数前面加上负号的数叫做;既不是正数,也不是负数;正数和负数可表示两种的量.(2)只有符号不同的两个数叫做 .(3)数轴上表示数a的点与原点的距离叫做数a的,记作;一个正数的绝对值是,一个负数的绝对值是,0的绝对值是 .(4)在数轴上表示有理数, 的数小于 的数,根据这个规定,可知:正数大于0,0大于 ,正数大于 ;两个负数, 反而小.(5)有理数加法法则:同号两数相加,取 的符号,并把 相加;异号两数相加,取 的符号,并用 减去 ;互为相反数的两个数相加得 ;一个数同0相加,仍得 .(6)加法交换律:a +b = ;加法结合律:(a +b )+c = .(7)有理数减法法则:减去一个数,等于加这个数的 ,即a -b = .(8)有理数乘法法则:两数相乘,同号得 ,异号得 ,并把 相乘;任何数同0相乘,都得 .(9)几个不是0的数相乘,负因数的个数是 数时,积是正数;负因数的个数是 数时,积是负数;几个数相乘,如果其中有因数为0,积等于 .(10)乘法交换律:ab = ;乘法结合律:(ab )c = ;分配律:a (b +c )= .(11)有理数除法法则1:除以一个不等于0的数,等于乘这个数的 ,即a ÷b = (b ≠0);有理数除法法则2:两数相除,同号得 ,异号得 ,并把绝对值相 ;0除以任何一个不等于0的数,都得 .(12)负数的奇次方是 ,负数的偶次方是 .(13)有理数混合运算的顺序是:先 ,再乘除,最后 ;同级运算,从 到 进行;如有括号,先做 内的运算.(14)把一个数表示成a ×10n 形式(其中a 是整数数位只有 的数,n 是正整数),使用的是科学记数法.2.填空:(1)在知识竞赛中,如果用+10表示加10分,那么扣10分记作 ;(2)在某次的乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示 ;(3)如果+20%表示增加20%,那么-6%表示 ;(4)电视里有时能听到“负增长”这个词,增长-5%的意思是 .3.在数轴上表示下列各数:0,1.5,-6,2,-314.根据数轴上所画的点,比较这五个有理数的大小:> > > > .4.填空:(1)某数与它的相反数相等,这个数是 ;-5-4-3-2-14321(2)-(-4)=;(3)绝对值等于6的数是;(4)绝对值最小的数是;(5)绝对值小于2的整数是;(6)填“>”或“<”:7.1 -9.5 0 -19.2 0.1 0.02-27 -17 3.1 -13 -25-12(7)互为相反数的两数的和是,互为倒数的两数的积是,互为相反数(除0外)的两数的商是;(8)太阳半径约696000千米,用科学记数法表示:696000=;(9)1.895精确到0.1是 _ ,精确到百分位是;(10)计算:(-2)3= _ ,(-2)4= _ ,-23= _ ,-24= _ .5.直接写出计算结果:(1)-150+250=(2)-15+(-23)=(3)-5-65=(4)-26-(-15)=(5)-6×(-16)=(6)-13×27=(7)8÷(-16)=(8)-25÷(-23)=(三)典型例题,加深理解(师擦掉知识结构图的板书)例1 如图,(1)A、B两点所表示的数的绝对值哪个大?(2)A、B两点所表示的数哪个大?(3)画出A点所表示数的相反数.例2 10袋青稞分别是91千克、91千克、91.5千克、89千克、91.2千克、91.3千克、88.7千克、88.8千克、91.8千克、91.1千克,求10袋青稞一共多少千克.(按教材P19两种解法解)例3 某公司去年1-3月平均每月亏损1.5万元,4-6月平均每月盈利2万元,7-10月平均每月盈利1.7万元,11-12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(按教材P36解法解)(四)综合运用,发展能力6.写出符合下列条件的数:(1)最小的正整数是;(2)最大的负整数是;(3)大于-3且小于2的所有整数是;(4)绝对值大于2且小于5的所有负整数是;(5)在数轴上,与表示-1的点的距离为2的数是;(6)任意写出三个-1与0之间的数: .7.思考题:两数相加,和一定大于加数吗?举例说明;你能探究两数和与这两数的大小关系吗?。
七年级上第1章有理数复习教案(5篇材料)
七年级上第1章有理数复习教案(5篇材料)第一章有理数复习教学目标:1:识记有理数的基本概念;2:能够运用相关基础知识,解决简单的数学问题;3.掌握并运用有理数的运算规则和规律进行计算。
教学中的重点和难点:有理数的基本概念和算法。
教学过程:(一)有理数的基本概念一:正数和负数1、正数:大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。
3、0:既不是正数也不是负数,是正数和负数的分界。
4.同一个问题中,正数和负数分别代表意义相反的量。
二:有理数:可以写成分数的形式,这样的数叫做有理数。
有理数的两种分类三:数轴:定义原点、正方向、单位长度的直线称为数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常直线上的右(或上)方向为正方向,选择合适的长度作为单位长度。
数轴上表示的两个数中,右边的数总是大于左边的数;所有有理数都可以用数轴上的点来表示。
关于有理数和数轴的练习4:倒数绝对值相等,只有符号不同的两个数叫做互为相反数。
其中一个是另一个的相反数。
数a的相反数是-a,(a是任意一个有理数);0的相反数是0.若a、b互为相反数,则a+b=0.相反数的相关练习题五:倒数乘积是1的两个数互为倒数.a的倒数是;0没有倒数;若a与b互为倒数,则ab=1.倒数相关练习题倒数、相反数区别:1:互为倒数的两个数符号相同,互为相反数的两个数符号相反。
2:0没有倒数,0的相反数是0。
3:倒数对于本身的数是1或-1。
4:两个相反数之和为0,两个倒数之积为1。
示例:六:绝对值数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
a一个正数的绝对值是它本身;若a>0,则︱a︱= a;一个负数的绝对值是它的相反数;若a<0,则︱a︱=-a;0的绝对值是0.若a =0,则︱a︱= 0;对任何有理数a,总有︱a︱≥0.绝对值知识的相关练习题例题:七:有理数大小的比较:1)数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;2)两个负数,较大的绝对值较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《有理数》复习一、基本概念 1.有理数生活中的一些具有相反意义的量: 1.飞机上升500米与下降500米; 2.向东走5米与向西走6米; 3.存入1000元和支出900元。
请你将右图连线:我们可以把一种意义的量规定为正.同时把另一种与它相反意义的量规定为负,分别称它们为 正数和负数。
0既不是正数,也不是负数。
〖练一练〗“一个数,如果不是负数,就是正数。
”这句话对吗,为什么?在小学学过的数(零除外)前面加一个“—”号表示负数! 在小学学过的数(零除外)前面加一个“+”号表示正数!(通常正号可以省略) 例1 如果温度上升8℃记作 +8,下降3℃记作 -3,那么下列各数分别表示什么?(1)+5 (2)―6.8 (3) 0正数 有理数 0负数1(口答)读出下列各数,它们各是哪一类数?7 ,-7.46 , 0 , +50/7, ―2/3,-2, -7, -8, +1.3, -0.82.填空:(1) 规定赢利为正,某公司去年亏损了 2.5万元,记做____万元,今年盈 利了3.2万元, 记做_____万元;(2)规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记做海拔____ 米;吐鲁番盆地最低点低于海平面155米,记做海拔____米.例2 下列给出的各数,哪些是正数?哪些是负数?哪些是整数? 哪些是分数?哪些是有理数?―8.4, 22, +17/6, 0.33, 0, ―3/5盈利 存入 增加 运进 上升 涨 输 进球 南失球 赢 支出 跌 亏损 减少 运出 下降 东【选一选】把”存入银行+50元”改成使用负数的说法是( )(A)取出+50元 (B)取出-50元 (C)存入+50元 (D)存入-50元你能解释”前进-50米”的意思吗?〖课内练习〗 1 填空:(1) 汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正. 汽车向北行驶75千米,记做____km,(或__km ),汽车向南行驶100km ,记做__km.(2)如果向银行存入50元记为50元,那么-30.50元表示________;(3)规定增加的百分比为正,增加25%记做__,-12 %表示__________.引进了负数之后,数的范围扩大了整数有理数分数小结①表示大小:②在实际中表示意义相反的量 上升5米记为:5, -8则表示下降8米。
③带“-”号的数并不都是负数 如-a 可以是正数、负数或0. ④0既不是正数也不是负数。
0是整数,也是自然数。
〖作业题〗1. 将下列各数填入括号。
200%, ―5% 正数{ }; 负数{ }; 整数{ }; 分数{ }; 正整数{ }; 负分数{ }.2.下列各数中,哪些数既是负数, 又是整数?哪些数是整数,而不是负数?2、数轴和相反数观察右图的温度计,回答下列问题:(1)点A表示多少摄氏度?点B呢?点C呢? (2)A,B,C三点所表示的温度哪个高?哪个低? 想一想:(1)你是怎样读出点A ,B ,C 的温度的?(2)温度计刻度的正、负是怎样规定的?以什么为基准? 基准刻度线表示多少摄氏度?(3)每摄氏度的两条刻度线之间的距离有什么特点?规定了原点、单位长度和正方向的直线叫做数轴。
,3,2.3,1,2.0,0,310,1416.3,2003千+-1,0,1.5,5,76,3----C例1:如图,数轴上的A 、B 、C 、D 分别表示什么数?请思考:点A 和点C 之间的距离有几个单位长度?点A 和点B 呢?点B 和点D 呢?例2:在数轴上表示下列各数:(1)0.5,4 ,0,-4,-2 ,-0.5,1.4;〖想一想〗— 4 与4有什么相同和不同之处?它们在数轴上的位置有什么关系?相反数:只有符号不同的两个数互为相反数。
零的相反数是零。
在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
·· ·1下列数轴画得对吗?①②③-3-2 -1 0 1 2④ -1 0 1 2⑤任何一个有理数都可以用数轴上的一个点来表示。
(2)在数轴上表示下列各数:200,-150,-50,100,-100〖议一议〗数轴上的两上点,右边点表示的数与左边点表示的数的大小关系?数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
小结①三要素:原点、正方向、单位长度②如何画数轴③数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)右边的数>左边的数④只有符号不同的两个数,叫做互为相反数,0的相反数是0⑤a的相反数-a⑥a与b互为相反数:a+b=0⑦求一个数的相反数方法:在这个数的前面加“-”号.⑧在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
〖课堂练习〗1、写出三对非零的相反数,在数轴上将它们表示出来,并比较其中三个负数的大小。
2、在数轴上距原点2个单位长度的点表示什么数?〖巩固练习〗一填空(1)-8的相反数是(),()相反数是-4(2)数轴上表示-2的点在原点的()侧,距原点的距离是(),表示-6的点在原点的()侧,距原点的距离是()。
二判断(1)0没有相反数。
()(2)符号不相同的两个数互为相反数( ) (3)数轴上的两个点可以表示同一个有理数( ) 〖作业题〗1、21的相反数是 ;一个数的相反数是7-,这个数是2、先画一条数轴,然后在数轴上表示下列各数:1,3,0,2.4,7.5--3、如图,数轴上的点A 、B 、C 、D 分别表示什么数?4、数轴上表示217-的点在( )A 、6-与7-之间B 、7-与8-之间C 、7与8之间D 、6与7之间5、已知a ,b 互为相反数,则b a 343+-的值为( ) A 、4- B 、3 C 、0 D 、不能确定6、仔细思考下列各对量:(1)胜2局与负三局;(2)气温上升3℃与气温为3-℃;(3)盈利3万元与支出3万元,其中具有相反意义的量有( ) A 、1对 B 、2对 C 、3对 D 、0对7、在数轴上,到原点的距离等于3个单位长度的点所表示的有理数是 8、A 、B 、C 、D 四位同学一次立定跳远的成绩分别是1.75米、1.60米、2米、1.80米;若以D 同学的成绩为基准,记为0,则A 同学的成绩记为 米;B 同学的成绩记 为米;C 同学的成绩记为 米。
3、绝对值1.若点M 在数轴原点的右边,则点M 表示的数是___数,-3在数轴原点的 边,距离原点有____长度单位。
2. 数轴上表示3和-3的点离开原点的距离是____ 。
这两个点的位置关于原点_____.我们发现,一对相反数虽然分别在原点两边, 但它们到原点的距离是相等的。
如果我们不考虑这两点在原点的 哪一边,只考虑它们离开原点的距离,这⎧⎨⎩个距离叫这两个数的绝对值一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
绝对值记作|a|,如在数轴上表示-5的点与原点的距离是5,即-5的绝对值是5,记作|-5|=5。
一个数的绝对值与这个数有什么关系? 例如:|3|=3,|+7|=7 一个正数的绝对值是它本身。
例如:|-3|=3,|-2.3|=2.3一个负数的绝对值是它的相反数。
0的绝对值是0。
因为正数可用a >0表示,负数可用a <0表示,所以上述三条可表述成: (1)如果a >0,那么|a|=a (2)如果a <0,那么|a|=-a (3)如果a =0,那么|a|=0 小结①一般地,数轴上表示数a 的点与原点距离,表示成|a |。
几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0)〖课内练习〗1、求下列各数的绝对值 -2 8 -34 -0.01 8.72、 判断:(1)若一个数的绝对值是 2 ,则这个数是2 。
(2)|5|=|-5|。
(3)|-0.3|=|0.3|。
(4)|3|>0。
(5)|-1.4|>0。
(6)一个数的绝对值一定是正数。
(7)若a=b,则|a|=|b|。
(8)若|a|=|b|,则a=b。
(9)若|a|=-a,则a必为负数。
(10)绝对值相等,符号相反的两个数是互为相反数。
3、(1)绝对值是2 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?4、计算:(1)|-15|-|6| (2)|-0.24|+|-5.06|(3) |-12|÷|+2| (4)|+4|×|-5|5、(1)求绝对值不大于2的整数; (2)已知x是整数,且2.5<|x|<7,求x.〖作业题〗1、已知有理数a在数轴上对应的点如图所示,则|a| =______。
2、如果一个数的绝对值等于3.25 ,则这个数是。
3、4、一个数的绝对值等于这个数本身,这个数是()A、零B、正数C、整数D、正数和零〖请思考〗到―4的距离等于3的数是多少?4、有理数的大小比较[复习]1、什么叫相反数?互为相反数的两个数的代数及几何特征如何?2、到原点的距离为2.5的点有几个?它们有什么特征?绝对值的几何意义:数轴上表示数a 的点与原点的距离,就是数a 的绝对值,记为:∣a ∣有理数的绝对值的求法:正数的绝对值是它本身, 负数的绝对值是它的相反数, 零的绝对值是零.1、求 的绝对值。
2、 一个数的绝对值是7,求这个数。
3、(1)当a >0时,|2a|= 。
(2)当a >1时,|a -1|= 。
(3)当a <1时,|a -1|= 。
4、已知某一天我国5个城市的最低气温如下:武汉5 ℃,北京-10℃,上海0℃, 广州10℃,哈尔滨-20℃,试比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):广州 上海; 上海 北京; 北京 哈尔滨; 哈尔滨 武汉; 武汉 广州你能把表示五个城市最低气温的数表示在数轴上吗?请思考温度的高低与相应的数在数轴上的位置有什么关系?例1 在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。
有理数大小比较法则:1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
3、两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
541,312,32,31--〖做一做〗1、在数轴上表示下列各对数,并比较它们的大小;⑴2和7;⑵-6和-1;⑶-6和-36;⑷-0.5和-1.52、求上述各对数的绝对值,并比较它们的大小。
上面各对数的大小与他们的绝对值的大小有什么关系?例2 比较下列每对数的大小,并说明理由:⑴1与-10;⑵-0.001与0 ⑶-3/4 与-2/3〖课内练习〗1、把下面各组数表示在数轴上,并按从小到大的顺序用“<”号连接:⑴-7,-3,-1;⑵5,0,-4.5,-2,2、比较下面各对数的大小,并说明理由:(1)-6 -4 (2)∣-3.5∣∣-3∣(3)0 -9 (4)∣-1∣ 0 (5)―2/3 ―5/73、绝对值最小的有理数是;绝对值最小的自然数是;绝对值最小的负整数是。