等差数列详细教案(两个小时的教学)

合集下载

等差数列两课教案

等差数列两课教案

等差数列两课教案一、教学目标知识与技能目标:理解等差数列的定义,掌握等差数列的通项公式,能够运用等差数列的性质解决实际问题。

过程与方法目标:通过观察、分析、归纳等差数列的性质,培养学生的逻辑思维能力和数学运算能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

二、教学重点等差数列的定义,等差数列的通项公式,等差数列的性质。

三、教学难点等差数列通项公式的理解和运用,等差数列性质的推导和应用。

四、教学方法采用问题驱动法、案例分析法、小组讨论法等多种教学方法,引导学生主动探究、合作交流,从而达到对等差数列知识的理解和运用。

五、教学过程1. 导入新课:通过回顾等差数列的定义和性质,引出本节课的内容——等差数列的通项公式。

2. 自主学习:学生自主学习等差数列的通项公式,理解公式的含义和运用。

3. 案例分析:教师给出几个等差数列的实例,引导学生运用通项公式解决问题。

4. 小组讨论:学生分组讨论等差数列的性质,总结出等差数列的性质。

5. 课堂小结:教师引导学生总结本节课的主要内容和收获。

6. 课后作业:布置适量的课后练习,巩固所学知识。

教学反思:本节课通过问题驱动、案例分析和小组讨论等多种教学方法,使学生掌握了等差数列的通项公式和性质。

在教学过程中,注意引导学生主动探究、合作交流,培养了学生的逻辑思维能力和数学运算能力。

但也发现部分学生在理解等差数列通项公式时存在困难,需要在今后的教学中加强针对性辅导。

六、教学内容本节课将继续深入学习等差数列的相关知识,主要包括等差数列的前n项和公式、等差数列的求和方法以及等差数列在实际问题中的应用。

七、教学过程1. 复习导入:通过复习上节课所学的等差数列的通项公式,引导学生自然过渡到本节课的学习内容。

2. 自主学习:学生自主学习等差数列的前n项和公式,理解公式的含义和运用。

3. 案例分析:教师给出几个等差数列的前n项和实例,引导学生运用公式解决问题。

等差数列教案

等差数列教案

等差数列教案一、教学目标1.了解等差数列的定义和性质;2.掌握等差数列的通项公式和求和公式;3.能够应用等差数列的知识解决实际问题。

二、教学重点1.等差数列的定义和性质;2.等差数列的通项公式和求和公式。

三、教学难点1.应用等差数列的知识解决实际问题。

四、教学内容及方法1. 等差数列的定义和性质(1)定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差相等的数列。

这个公差常用字母d表示。

例如,1,3,5,7,9就是一个公差为2的等差数列。

(2)性质[2a1+(n−1)d];•等差数列的前n项和为S n=n2•等差数列的第n项为a n=a1+(n−1)d;•等差数列的前n项平均值为a1+a n。

22. 等差数列的通项公式和求和公式(1)通项公式等差数列的通项公式为a n=a1+(n−1)d。

其中,a n表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差。

(2)求和公式等差数列的前n项和为S n=n2[2a1+(n−1)d]。

其中,S n表示等差数列的前n项和,a1表示等差数列的首项,d表示等差数列的公差。

3. 应用等差数列的知识解决实际问题(1)例题某人从第1天开始每天存5元钱,以后每天比前一天多存2元钱,到第n 天时共存了多少钱?解:这是一个公差为2的等差数列,首项为5,第n项为a n=5+(n−1)2=2n+3。

所以,到第n天时共存了S n=n2[2a1+(n−1)d]=n2[2×5+(n−1)×2]=n2(2n+7)元。

(2)练习题1.某等差数列的首项为3,公差为2,第n项为17,求n。

2.某等差数列的前6项和为42,公差为3,求该等差数列的首项。

4. 教学方法本课程采用讲授、练习、讨论等多种教学方法,注重理论与实践相结合,注重培养学生的分析和解决问题的能力。

五、教学评价本课程的教学目标明确,教学内容丰富,教学方法多样,能够有效地提高学生的数学素养和解决实际问题的能力。

等差数列教学设计

等差数列教学设计

等差数列教学设计等差数列教学设计(精选5篇)作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?以下是店铺帮大家整理的等差数列教学设计(精选5篇),欢迎大家分享。

等差数列教学设计1教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:等差数列的概念及通项公式。

教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。

表示数列有哪几种方法——列举法、通项公式、递推公式。

我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。

二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。

三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】等差数列前n项和公式的推导和应用。

【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。

你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

等差数列教案(多篇)

等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。

二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。

2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。

3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。

4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。

四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。

五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。

2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。

3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。

六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。

2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。

七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。

等差数列两课教案

等差数列两课教案

等差数列两课教案一、教学目标知识与技能目标:理解等差数列的定义及其性质,能够运用等差数列的概念解决实际问题。

过程与方法目标:通过观察、分析、归纳等差数列的性质,培养学生的逻辑思维能力和抽象概括能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。

二、教学重点与难点重点:等差数列的定义及其性质。

难点:等差数列的通项公式及其应用。

三、教学准备教师准备:等差数列的相关教学材料、PPT、例题及练习题。

学生准备:学习等差数列的相关知识,了解等差数列的基本概念。

四、教学过程1. 导入新课教师通过PPT展示等差数列的实例,引导学生回顾等差数列的基本概念,为新课的学习做好铺垫。

2. 探究等差数列的性质(1)教师引导学生观察等差数列的前几项,引导学生发现等差数列的规律。

(2)学生分组讨论,总结等差数列的性质。

(3)各小组汇报讨论成果,教师点评并总结。

3. 学习等差数列的通项公式(1)教师引导学生根据等差数列的性质,推导出等差数列的通项公式。

(2)学生跟随教师一起推导,理解并掌握通项公式。

4. 应用等差数列的知识解决问题(1)教师出示例题,引导学生运用等差数列的知识解决问题。

(2)学生独立思考,解答例题,教师点评解答过程。

5. 课堂小结教师引导学生总结本节课所学内容,巩固等差数列的知识。

五、课后作业教师布置练习题,让学生巩固等差数列的知识,提高解题能力。

教案二一、教学目标知识与技能目标:掌握等差数列的通项公式及其应用,能够运用等差数列的知识解决实际问题。

过程与方法目标:通过观察、分析、归纳等差数列的性质,培养学生的逻辑思维能力和抽象概括能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。

二、教学重点与难点重点:等差数列的通项公式及其应用。

难点:等差数列的前n项和公式的推导及应用。

三、教学准备教师准备:等差数列的相关教学材料、PPT、例题及练习题。

学生准备:学习等差数列的相关知识,了解等差数列的基本概念。

等差数列详细教案

等差数列详细教案

等差数列详细教案一、教学目标1.知识目标:了解等差数列的概念,掌握等差数列的通项公式和求和公式。

2.能力目标:能够判断数列是否为等差数列,并确定其公差,能够计算等差数列的指定项数和前n项和。

3.情感目标:培养学生对数学的兴趣,增强学生的数学思维能力。

二、教学重点和难点1.教学重点:等差数列的概念、通项公式和求和公式的掌握,能够应用相关公式解决问题。

2.教学难点:能够正确判断数列是否为等差数列,并确定其公差。

三、教学过程1.导入新知识(10分钟)-教师引导学生观察以下数列:1,3,5,7,9...2,4,6,8,10...-提问:观察上述两个数列,有什么规律?这种数列有什么特点?-引导学生发现数列的相邻两项之间的差值相同,即第二个数减去第一个数得到的结果可以得到第三个数减去第二个数得到的结果,如此类推。

-教师解释:这种数列叫做等差数列,等差数列是指数列中相邻两项之间的差值相等的数列。

第一个数叫做首项,差值叫做公差。

-引导学生通过几个例子来发现等差数列的特点。

2.探究等差数列的性质(30分钟)-教师讲解等差数列的概念,并通过几个例子引导学生判断是否为等差数列。

-引导学生观察数列的公差是如何确定的,并与学生共同发现等差数列的任意一项与首项的差值等于公差乘以项数减一-教师提供几个解决问题的实例,引导学生应用公式计算等差数列的指定项数和前n项和。

3.归纳等差数列的通项公式(20分钟)-引导学生观察以下几个等差数列:1,4,7,10,13...2,7,12,17,22...-提问:观察上述两个数列,有什么规律?这种数列的通项公式是什么?- 引导学生发现等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

-通过几个例子的实践操作,让学生理解等差数列的通项公式的计算过程。

4.推导等差数列的求和公式(30分钟)-引导学生考虑如何计算等差数列的前n项和。

-教师提供数列的前几个项,引导学生观察其中的规律。

等差数列教案大班

等差数列教案大班

等差数列教案大班一、教学目标:1. 了解等差数列的概念和性质。

2. 掌握等差数列的通项公式及应用。

3. 能够运用等差数列解决实际问题。

4. 培养学生的逻辑思维和分析问题的能力。

二、教学重点:1. 等差数列的概念和性质。

2. 等差数列的通项公式及应用。

三、教学难点:1. 运用等差数列解决实际问题。

2. 发现等差数列在生活中的应用。

四、教学准备:1. 教学课件、教学书籍。

2. 黑板、粉笔。

3. 习题和练习题。

五、教学过程:步骤一:导入(5分钟)老师通过提问的方式,复习学生对数列的基本概念的理解。

引出等差数列的概念,并给出一个生活中的例子,如每天步行的步数。

引导学生思考等差数列的性质。

步骤二:讲解(20分钟)1. 通过教学课件,详细讲解等差数列的定义和性质。

2. 指导学生理解等差数列的通项公式,并给出相关的示例。

3. 鼓励学生自己推导等差数列的通项公式,帮助他们理解公式的由来。

步骤三:练习(25分钟)1. 分发练习题,并让学生独立完成。

2. 学生完成后,老师逐个讲解题目的解答过程,同时解释解题的思路和方法。

3. 引导学生分析实际问题,应用等差数列进行计算。

步骤四:拓展(20分钟)1. 引导学生思考等差数列在生活中的应用。

例如,车速、水位的变化等。

2. 让学生分组进行小研究,找出更多生活中的等差数列应用,并分享给全班。

3. 整理学生的发现,鼓励他们运用数学知识解决生活中的问题。

步骤五:总结与反思(5分钟)老师引导学生总结今天学习的内容,回顾所学的知识点和解题方法。

并鼓励学生进行反思,思考自己在学习过程中的问题和不足之处。

六、教学延伸:1. 教师可以带领学生进行更复杂的等差数列的计算和应用。

2. 引导学生进行等差数列的推广,如等差数列的和公式等。

3. 给学生提供更多的练习题和挑战题,以更好地巩固所学的知识。

七、教学评价:1. 教师可以通过课堂练习和小组讨论的方式进行学生的评价。

2. 老师可以提供一些练习题或考试题,检查学生对等差数列的掌握程度。

数学等差数列教案

数学等差数列教案

数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。

由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。

013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。

通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d。

则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。

《等差数列》教案

《等差数列》教案

一、教学目标1. 知识与技能:使学生理解等差数列的概念,掌握等差数列的通项公式和前n 项和公式,能够运用等差数列的性质解决实际问题。

2. 过程与方法:通过探究等差数列的性质,培养学生抽象概括能力、逻辑思维能力和创新能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的广泛应用。

二、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。

2. 教学难点:等差数列通项公式的推导和前n项和公式的应用。

三、教学准备1. 教师准备:教材、教案、PPT、例题及练习题。

2. 学生准备:预习等差数列相关知识,准备好笔记本和文具。

四、教学过程1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。

2. 知识讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,引导学生理解并掌握相关概念。

3. 例题解析:分析并解答典型例题,让学生体会等差数列在实际问题中的应用。

4. 课堂练习:布置练习题,让学生巩固所学知识,教师及时解答疑问。

5. 总结提高:对本节课的内容进行总结,强调等差数列的重要性质和应用。

五、课后作业1. 完成课后练习题,巩固等差数列的相关知识。

2. 查找生活中运用等差数列的实例,下节课分享。

3. 预习下一节课内容,做好学习准备。

六、教学评估1. 课堂讲解:关注学生的听课情况,观察学生对等差数列概念和公式的理解程度。

2. 练习题解答:检查学生对练习题的完成情况,了解学生对知识的掌握情况。

3. 课后作业:审阅课后作业,评估学生对课堂所学知识的消化吸收程度。

七、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列在金融、统计等方面的应用,拓宽学生的知识视野。

2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别,提高学生的数学素养。

八、教学反思1. 课堂讲解:反思教学过程中是否存在讲解不清楚、学生理解困难的问题,针对性地调整教学方法。

等差数列教案

等差数列教案

《等差数列》教学方案一、教学目标知识与理解:使学生理解等差数列的概念、通项公式和前n项和公式的含义及推导过程,并能准确识别等差数列。

技能与方法:培养学生观察、分析、归纳的能力,以及运用等差数列公式解决实际问题的能力。

情感、态度与价值观:通过互动环节和例题讲解,激发学生对等差数列的兴趣,培养学生的探索精神和合作精神。

二、教学准备准备黑板或多媒体展示设备,用于展示公式、例题和解题步骤。

准备学生互动所需的道具,如卡片、答题板等。

收集或设计一些与等差数列相关的实际问题,用于课堂讨论和练习。

三、教学过程1. 导入新课以一个有趣的故事或生活中的实例引入等差数列的概念,如“国王与棋盘”的故事,激发学生的好奇心。

提问学生:你们在生活中遇到过哪些等差数列的例子?引导学生思考并分享。

2. 公式展示与解释展示等差数列的通项公式:an = a1 + (n - 1)d,解释公式中各个字母的含义,并举例说明如何应用该公式。

展示等差数列的前n项和公式:Sn = n/2 ×[2a1 + (n - 1)d],同样解释公式含义,并举例说明。

通过图形或动画展示等差数列的形成过程,帮助学生直观理解等差数列的特点。

3. 学生互动环节一:找规律填数准备一系列等差数列的卡片,每张卡片上缺少一个或几个数字。

将学生分成若干小组,每组分发一套卡片。

学生需通过观察和推理,找出等差数列的规律,并填上缺失的数字。

每组完成后,展示答案,并解释找规律的过程。

4. 例题讲解选择几个典型的等差数列例题进行讲解,包括求通项、求和以及实际应用问题。

关于等差数列的具体例题和知识点,以下是一些详细的例子和解释:一、知识点等差数列的定义:等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

这个常数叫做等差数列的公差,通常用字母d表示。

通项公式:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差,n表示项数。

这个公式用于计算等差数列中任意一项的值。

《等差数列》优秀教案

《等差数列》优秀教案

2.2 等差数列(一)教学目标1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。

2 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。

3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。

(二)教学重、难点重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。

难点:概括通项公式推导过程中体现出的数学思想方法。

(三)学法与教学用具学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。

教学用具:投影仪(四)教学设想[创设情景]上节课我们学习了数列。

在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。

今天我们就先学习一类特殊的数列。

[探索研究]由学生观察分析并得出答案:(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……2021年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。

该项目共设置了7个级别。

其中较轻的4个级别体重组成数列(单位:g):48,53,58,63。

水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。

如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

等差数列教案(多篇)

等差数列教案(多篇)

等差数列教案(精选多篇)第一章:等差数列的概念与性质1.1 等差数列的定义引导学生回顾数列的概念,介绍等差数列的定义。

通过示例让学生理解等差数列的特点,即每一项与前一项的差是一个常数。

1.2 等差数列的性质探讨等差数列的通项公式,引导学生理解等差数列的规律。

引导学生发现等差数列的求和公式,并通过例题进行解释和应用。

第二章:等差数列的求和2.1 等差数列的前n项和公式引导学生推导等差数列的前n项和公式。

通过例题让学生掌握前n项和公式的应用,解决等差数列的求和问题。

2.2 等差数列的求和性质引导学生探索等差数列的求和性质,如求和的对称性、求和的倍数性质等。

通过练习题让学生巩固等差数列的求和技巧。

第三章:等差数列的通项公式3.1 等差数列的通项公式推导引导学生回顾等差数列的性质,推导出等差数列的通项公式。

通过示例让学生理解通项公式的含义和应用。

3.2 等差数列的通项公式应用引导学生运用通项公式解决等差数列的问题,如求特定项的值、判断数列的性质等。

通过练习题让学生熟练掌握通项公式的应用。

第四章:等差数列的图像与性质4.1 等差数列的图像引导学生绘制等差数列的图像,理解图像与数列的关系。

通过示例让学生观察图像的特性,如直线趋势、斜率等。

4.2 等差数列的性质探究引导学生探讨等差数列的性质,如单调性、周期性等。

通过练习题让学生运用性质解决等差数列的问题。

第五章:等差数列的应用5.1 等差数列在实际问题中的应用引导学生将等差数列的概念应用于实际问题,如人口增长、金融投资等。

通过案例分析让学生理解等差数列在解决实际问题中的作用。

5.2 等差数列在数学竞赛中的应用引导学生了解等差数列在数学竞赛中的常见题型和解决方法。

通过竞赛题目让学生挑战自我,提高解题能力。

第六章:等差数列的递推关系6.1 等差数列的递推关系式引导学生探究等差数列的递推关系,引导学生发现每一项与前一项的关系。

通过示例让学生理解递推关系式的应用,解决等差数列的递推问题。

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。

2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。

3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。

重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。

五、板书设计:表现重点,难点,及知识结构。

设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。

等差数列的教案

等差数列的教案

等差数列的教案《等差数列的教案》一、教学目标:1. 理解等差数列的概念和特征。

2. 掌握等差数列的通项公式和求和公式。

3. 能够应用等差数列解决实际问题。

二、教学内容:1. 等差数列的概念和特征。

2. 等差数列的通项公式。

3. 等差数列的求和公式。

4. 类型题探究及综合练习。

三、教学过程:1. 导入(5分钟)通过给学生出示一组数字:2、5、8、11、14,引导学生思考这组数字的规律,并引出等差数列的概念。

2. 概念解释及特征介绍(10分钟)解释等差数列的定义:等差数列是指一个数列中,从第二项开始,每个数都与它的前一项之差相等,这个相等的差叫做等差数列的公差。

让学生举例说明。

介绍等差数列的特征:等差数列的相邻两项之差是常数,称为公差;等差数列的任意三项按顺序相等的式子为等差数列的通项公式。

3. 计算通项公式(15分钟)通过展示一些等差数列的例子,引导学生观察规律,总结等差数列的通项公式为:an = a1 + (n-1)d,其中an表示等差数列中的第n项,a1表示等差数列的首项,d表示等差数列的公差。

通过几个实例的计算演示,让学生明确通项公式的使用方法。

4. 计算求和公式(15分钟)讲解等差数列的求和公式Sn=n/2(a1+an),其中Sn表示等差数列的前n项和。

通过实例演示,让学生掌握求和公式的使用方法。

5. 练习巩固(15分钟)让学生在教师的指导下完成一些基础的等差数列的计算练习,以检验学生的掌握情况。

6. 实际问题应用(10分钟)给学生出示一些实际问题,让学生运用等差数列的知识去解决问题,加深对等差数列的理解和应用。

7. 总结归纳(5分钟)让学生总结等差数列的特征、通项公式和求和公式,以及应用等差数列解决实际问题的方法。

四、教学反思本节课采用了导引-概念解释-公式计算-实例演示-问题应用的教学方式,循序渐进地引导学生掌握等差数列的概念和公式,能够应用等差数列解决实际问题。

同时,通过练习和问题应用的环节,巩固和检验了学生的学习成果。

等差数列教案(5篇)

等差数列教案(5篇)

等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题等差数列学习内容与过程引入1.某树农决定种树,第一天种了5棵,他决定从今天起每天种10棵树,那么从今天开始,地里的树逐日增加,依次为:5,15,25,35,… (问:多少天后地里的树达到3000?)2.小芳觉得自己英语成绩很棒,她目前的单词量多达3000她打算从今天起不再背单词了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量逐日递减,依次为:3000,2995,2990,2985,…(问:多少天后她那3000个单词全部忘光?)从上面两例中,我们分别得到两个数列① 5,15,25,35,… 和 ② 3000,2995,2990,2980,…仔细观察一下,看看以上两个数列有什么共同特征??——共同特征:从第二项起,每一项与它前面一项的差等于同一个常数,即——等差数列 知识点1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) (1)R d ∈(2)公差d 一定是由后项减前项所得,而不能用前项减后项来求;(3)对于数列{n a },若n a -1-n a =d (常数,n ≥2,n ∈N +),或者1+n a -n a =d (常数,n ≥1,n ∈N +)则此数列是等差数列,d 为公差——此方法可以求d 或者证明该数列是等差数列。

(4)若d=0,数列为常数数列;0〉d 时,数列为递增数列;0〈d 时,数列为递减数列; 例1 判断下列数列是否是等差数列:(1)2,4,6,8,...,2(n-1),2n ; (2)1,1,2,3,...,n2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】(1)等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:d a a =-12即:d a a +=12d a a =-23即:d a d a a 2123+=+= d a a =-34即:d a d a a 3134+=+=……由此归纳等差数列的通项公式可得:d n a a n )1(1-+=(2)等差数列的通项公式n a 是关于三个基本量1a ,d 和n 的表达式,所以由首项1a 和公差d 便可求出数列中的任意一项如数列①1,2,3,4,5,6; n n a n =⨯-+=1)1(1(1≤n ≤6)数列②10,8,6,4,2,…; n n a n 212)2()1(10-=-⨯-+=(n ≥1) 数列③;,1,54;53,52;51 551)1(51nn a n =⨯-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--=则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即第二通项公式 =n a d m n a m )(-+ ∴ d=nm a a nm --如:d a d a d a d a a 43212345+=+=+=+=(3)(先举例说明)等差数列的通项公式可以推广为d m n a a m n )(-+=,由此可知等差数列中的任意两项,就可以求出其他的任意一项(4)有几种方法可以计算公差d :① d=n a -1-n a ② d =11--n a a n ③ d =mn a a mn -- 例2 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:⑴由35285,81-=-=-==d a ,n=20,得49)3()120(820-=-⨯-+=a ⑵由4)5(9,51-=---=-=d a ,得数列通项公式为:)1(45---=n a n由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项变式1:已知等差数列{}n a :3,7,11,15,...,求:(1)135,4m+19(*∈N m )是{}n a 中的项吗?并说明理由;(2)若m a ,t a (*∈N t m 、)是数列{}n a 中的项,则2m a +3t a 是数列{}n a 中的项吗?为什么变式2:在等差数列{}n a 中,已知105=a ,3112=a ,求1a ,d ,n a a ,20解法一:∵105=a ,3112=a ,则 ⎩⎨⎧=+=+311110411d a d a ⇒⎩⎨⎧=-=321d a ∴53)1(1-=-+=n d n a a n 5519120=+=d a a解法二:∵3710317512=⇒+=⇒+=d d d a a∴5581220=+=d a a 53)12(12-=-+=n d n a a n小结:第二通项公式 d m n a a m n )(-+= 3.等差数列的性质(1)0〉d 时,数列为递增数列;0〈d 时,数列为递减数列;若d=0,数列为常数数列; (2)如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列数列,那么A 应满足什么条件?由定义得A-a =b -A ,即:2b a A +=;反之,若2ba A +=,则A-a =b -A 。

由此可得:,,2b a ba A ⇔+=A 成等差数列 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项;9是7和11的等差中项,5和13的等差中项看来,73645142,a a a a a a a a +=++=+性质:在等差数列中,若m+n=p+q ,则q p n m a a a a +=+ 即 m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N )但通常 ①由q p n m a a a a +=+ 推不出m+n=p+q ,②n m n m a a a +=+ 推广1:若数列{}n a 为等差数列,则有i n i n n a a a a a a -+=-++=+1...121 推广2:若数列{}n a 为等差数列,2nm +=k ,则有k n m a a a 2=+ (3)若数列{}n a 为等差数列,则数列{}n a λ(其中λ为常数)也为等差数列,其公差是λd 若数列{}n a 为等差数列,则数列{}b a n +(其中b 为常数)也为等差数列,其公差是d 若数列{}n a 为等差数列,则数列{}b a n +λ(其中λ、b 为常数)也为等差数列,其公差是λd(4)若数列{}n a 为等差数列,则下标成等差数列且公差为m 的项),(,,,...2*++∈N m k a a a m k m k k 组成了公差为md 的等差数列(5)若数列{}n a 为等差数列,{}n b 为公差是t 的等差数列,则{}n n b a ±和{}n n b ka +(k 为常数)也是等差数列,其公差分别为d ±t ,kd+t(6)项数间隔相等或连续等长的片段和仍构成等差数列。

例如:531,,a a a ,...构成等差数列;再如:321a a a ++,654a a a ++,987a a a ++,...也构成了等差数列 例3 在等差数列{}n a 中,若76543a a a a a ++++=450,求82a a +变式1 在等差数列{}n a 中,1679=+a a ,4a =1,则12a 的值为 变式2 已知{}n a 为等差数列,20,86015==a a ,求75a 的值4. 判断一个数列为等差数列的方法(1)定义法:n a -1-n a =d (常数,n ≥2,n ∈N +)⇔{}n a 为等差数列(2)等差中项法,也称递推法:n n n a a a 211=+-+(n ≥2,n ∈N +)⇔{}n a 为等差数列(3)通项法:n a 为n 的一次函数⇔{}n a 为等差数列 注意:证明一个数列为等差数列只能通过定义法与等差中项法例4 已知数列{}n a 的通项公式为n a =为常数)且q p R q p qn pn ,,,(2∈+,问:(1)当p 和q 满足什么条件时,数列{}n a 是等差数列?(2)求证:对任意实数p 和q ,数列{}n n a a -+1是等差数列变式:已知数列{}n a 满足21),2(44,411-=≥-==-n n n n a b n a a a 令;(1)求证:数列{}n b 是等差数列;(2)求数列{}n a 的通项公式5. 等差数列的设项方法(1)通项法:设数列的通项公式,即设n a =*∈-+N n d n a ()1(1) 例5 等差数列{}n a 的公差d ≠0,试比较94a a 与76a a 的大小关系(2)对称设:若所给等差数列为2n 项,则可设为:d n a )12(--,...,d a 3-,d a -,d a +,d a 3+,...,d n a )12(-+,此数列的公差为2d ;若所给等差数列为2n+1项,则可设为:d n a )1(--,...,d a -,a ,d a +,...,d n a )1(-+,此数列的公差为d ;例6 已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数变式:成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数 解:设四个数为d a d a d a d a 3,,,3++--则:⎩⎨⎧=+-=++++-+-40))((26)3()()()3(d a d a d a d a d a d a由①: 213=a 代入②得: 23±=d ,∴ 四个数为2,5,8,11或11,8,5,2. 6. 等差数列与一次函数的联系等差数列一次函数解析式 )(*∈+=N n b kn a n())0(≠+=k b kx x f不同点定义域为*N ,图像是一系列孤立的点(都在同一条直线上)定义域为R ,图像是一条直线相同点 其通项公式与函数解析式都是关于自变量的一次式,都是最简单的,也是最基本的(数列和函数)(1)把等差数列的通项公式n a =d n a )1(1-+化为n a =)(1d a nd -+,并与b kx y +=对照,知等差数列是特殊的一次函数,特殊在定义域为正整数集的子集,其图像是直线上的一些孤立的点,由斜率公式1212x x y y k --=,不难联想到d=),(n m N n m m n a a m n≠∈--*且,由此也可得到d m n a a m n )(-+=(2)等差数列是关于n 的一次函数(d=0时为常数数列),有关单调性、取值范围的问题,可结合已知条件利用通项公式,得到一个以1a 和d 为未知数的方程或不等式,利用函数、不等式的有关方法解决。

相关文档
最新文档