多目标优化设计方法.ppt
最优化之多目标规划

三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即
max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即
pixi
交易费 =
xi>ui xi≤ui
piui
而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
max i i
i 1 k
i ( x1 , x2 , xn ) gi ( i 1,2,, m)
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s.t . ( X ) G
方法二 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值);
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效
一、问题提出 市场上有 n 种资产 s i (i=1,2……n)可以选择,现用数额为 M 的相当大的资金作一 个时期的投资。这 n 种资产在这一时期内购买 s i 的平均收益率为 ri ,风险损失率为 qi , 投资越分散,总的风险越小,总体风险可用投资的 s i 中最大的一个风险来度量。
pi ),当购买额不超过给定值 u i 时,交易费按购买 u i 计算。另外,假定同期银行存款利率是 r0 ,既无交易费又无风险。 r0 =5%) (
多目标多学科优化设计

常见的多目标优化算法包括非支配排序遗传算法、Pareto最 优解法、权重法等。这些算法在解决实际多目标优化问题中 具有广泛的应用价值。
03 多学科优化设计理论
学科交叉的重要性
01
创新性
学科交叉有助于打破传统学科界 限,激发新的思维方式和研究方 法,促进创新。
综合性
02
03
高效性
多学科优化设计能够综合考虑多 个学科的知识和原理,提高设计 的综合性能和整体效果。
船舶结构多目标多学科优化设计
总结词
船舶结构多目标多学科优化设计是提高船舶 结构强度、耐久性和降低建造成本的有效途 径。
详细描述
船舶结构多目标多学科优化设计涉及结构力 学、流体力学、船舶工程等多个学科领域, 旨在实现船舶结构、航行性能和建造工艺的 综合优化。通过多目标优化算法,可以找到 满足多个性能指标的优化设计方案,提高船 舶的结构强度、耐久性和经济性。
探讨多目标多学科优化设计在各个领 域的具体应用,深入挖掘其潜力和价 值,为相关领域的发展提供更多支持。
开展多目标多学科优化设计在实际工 程中的应用研究,提高其在实际问题 中的解决能力和实用性,为工程实践 提供更多帮助和支持。
THANKS FOR WATCHING
感谢您的观看
学科交叉的实践方法
1 2
建立跨学科团队
组织来自不同学科的专家和学者,共同开展研究 和设计工作。
制定统一的设计目标和评价标准
在多学科交叉设计中,需要制定明确、统一的设 计目标和评价标准,以便各学科协同工作。
3
加强沟通和协调
在多学科交叉设计中,各学科之间的沟通和协调 至关重要,应定期组织交流会议和讨论活动,促 进信息共享和知识交流。
多目标优化设计方法

多目标优化设计方法多目标优化(Multi-Objective Optimization,MOO)是指在考虑多个冲突目标的情况下,通过寻求一组最优解,并找到它们之间的权衡点来解决问题。
多目标优化设计方法是指为了解决多目标优化问题而采取的具体方法和策略。
本文将介绍几种常见的多目标优化设计方法。
1.加权和方法加权和方法是最简单直观的多目标优化设计方法之一、其基本思想是将多个目标函数进行加权求和,将多目标优化问题转化为单目标优化问题。
具体来说,给定目标函数集合f(x)={f1(x),f2(x),...,fn(x)}和权重向量w={w1,w2,...,wn},多目标优化问题可以表示为:minimize Σ(wi * fi(x))其中,wi表示各个目标函数的权重,fi(x)表示第i个目标函数的值。
通过调整权重向量w的取值可以改变优化问题的偏好方向,从而得到不同的最优解。
2. Pareto最优解法Pareto最优解法是一种基于Pareto最优原理的多目标优化设计方法。
Pareto最优解指的是在多个目标函数下,不存在一种改进解使得所有目标函数都得到改进。
换句话说,一个解x是Pareto最优解,当且仅当它不被其他解严格支配。
基于Pareto最优原理,可以通过比较各个解之间的支配关系,找到Pareto最优解集合。
3.遗传算法遗传算法是一种模仿自然界中遗传机制的优化算法。
在多目标优化问题中,遗传算法能够通过遗传操作(如选择、交叉和变异)进行,寻找较优的解集合。
遗传算法的基本流程包括:初始化种群、评估种群、选择操作、交叉操作、变异操作和更新种群。
通过不断迭代,遗传算法可以逐渐收敛到Pareto最优解。
4.支持向量机支持向量机(Support Vector Machine,SVM)是一种常用的机器学习方法。
在多目标优化问题中,SVM可以通过构建一个多目标分类模型,将多个目标函数转化为二进制分类问题。
具体来说,可以将目标函数的取值分为正例和负例,然后使用SVM算法进行分类训练,得到一个最优的分类器。
多目标优化设计方法讲解

多目标优化设计方法讲解多目标优化是指在一个优化问题中存在多个目标函数需要同时优化的情况。
多目标优化问题在实际应用中非常常见,例如在工程设计、金融投资和运筹学中等等。
与单目标优化问题不同的是,多目标优化问题需要找到一组解,满足所有目标函数的最优性要求。
本文将介绍多目标优化的相关概念和设计方法。
1.目标函数的定义方法:对于每个目标函数,我们需要明确定义其数学形式。
目标函数一般是一个关于决策变量的函数,用于衡量解的质量。
这些目标函数可以是线性的、非线性的、连续的或离散的。
2. Pareto优化:在多目标优化问题中,我们通常使用Pareto优化来解决。
Pareto优化是一种基于Pareto支配的解集划分方法。
Pareto支配是指解集中的解在至少一个目标上比另一个解更好,且在其它目标上至少一样好。
解集中不被任何其它解所支配的解被称为Pareto最优解。
Pareto最优解形成了一个称为Pareto前沿的非支配集合。
3. Pareto优化算法:常见的Pareto优化算法包括遗传算法(GA)、模拟退火算法(SA)、粒子群优化算法(PSO)和多目标蚁群算法等。
这些算法基于不同的策略和参数设置,通过多次迭代找到Pareto最优解。
4.解集的评价和选择:找到Pareto最优解后,需要根据具体应用的要求进行解集的评价和选择。
一种常见的方法是使用其中一种距离度量方法,如欧氏距离或海明顿距离,来度量解集中各个解之间的相似度。
另一种方法是基于问题的特定要求进行解集的选择。
5.偏好权重方法:在实际应用中,不同的目标函数可能具有不同的权重。
偏好权重方法可以对不同目标函数赋予不同的权重,从而根据具体需求得到更合理的解集。
常见的偏好权重方法有加权和法、电报求和法和最大化方法等。
6.可行性约束:在多目标优化问题中,可能存在一些约束条件,如可行性约束和偏好约束。
可行性约束是指解集中的解必须满足一些约束条件。
在算法设计中,需要考虑如何有效地处理这些约束,以充分利用已有信息,降低空间。
《多目标规划》PPT课件

2021/4/24
16
多目标规划的象集
研究象集的作用在于:
(1) 求出F R中的有效点和弱有效点,就可确定有效解和弱有效解;
(2) 对象集F R的研究可以提供—些解多目标规划的方法;
f x
f x
f1 x f2 x
f2 x f1 x
2021/4/24
Re* a,b
O
ab
x
O a cd b x
13
a
b
多目标规划的解集
❖ 解集之间的关系
(1)
p
若
i1
Ri*
,则 Ra*b
p
i 1
Ri*
(2) Re* Rw*e R
(3) Ri* Rw*e (i 1, 2,..., p)
产品
A1 A2 A3
产品生产销售数据表
生产效率
利润
最大销量
能耗
(m/h) (元/m) (m/周) (t/1000m)
20
500
700
24
25
400
800
26
15
600
500
28
2021/4/24
6
多目标规划问题的典型实例
假设该厂每周生产三种产品的小时数分别为 x1, x2, x3 ,则我们根据各种产品的单位
规划中的每个目标函数看成是单目标规划问题的目标函数,即我们分别考虑 p 个单
目标规划问题:min fi x, xR, i 1,2,..., n ,那么这 p 个单目标规划问题的公共最优
解才是多目标规划问题的的绝对最优解。如果这 p 个单目标规划问题没有公共的最
优解,则多目标规划问题就没有绝对最优解。
x1 60 又考虑到购买的数量必须要满足非负的条件,由于对 x1 已经有相应的约束条件,故只 需添加对 x2 的非负约束即可。 综合以上分析,得到最优化数学模型如下:
多目标优化设计方法

7.1 概述(续)
对于一个具有L个目标函数和若干个约束条件的多 目标优化问题,其数学模型的表达式可写为:
求: X [x1, x2,..., xn )T
n维欧氏空间的一个向量
min F( X ) [ f1( X ), f2 ( X ),..., fL ( X )]T s.t. gi ( X ) 0, (i 1, 2,..., m)
即:
minF (X ) minF ( f1(X ), f2(X ),..., fl (X ))
X D
X D
D为可行域,f1(X),f2(X),…,fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
L
min f ( X ) i fi ( X ) i 1
s.t. gi ( X ) 0 (i 1, 2,..., m) hj ( X ) 0 ( j 1, 2,..., k)
注意:
1、建立这样的评价函数时,各子目标的单位已经脱 离了通常的概念。
2、权数(加权因子)的大小代表相应目标函数在优 化模型中的重要程度,目标越重要,权数越大。
7.4 功效系数法(续)
二、评价函数 用所有子目标的功效系数的几何平均值作为评价函数
f ( X ) L d1d2 dL
f(X)的值越大,设计方案越好;反之越差; 0 f (X ) 1
f(X)=1时,表示取得最满意的设计方案 f(X)=0时,表示此设计方案不能接受
该评价函数不会使某一个目标最不满意——功效 系数法的特点
机械优化设计PPT

二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图
第十章 多目标优化方法简介

hv ( X ) 0(v 1, 2, , p)
求解上述问题得到的设计方案既考虑了目标函 数的重要性,又最接近完全最优解,因此,它是原
多目标优化问题的一个更加理想、更加切合实际的
相对最优解。
(3)功效系数法
每个分目标函数 f k ( X ) 都可以用一个对应的功效系
数 k (0 k 1)来表示该项设计指标的好坏,规定:
分层序列法及宽容分层序列法
分层序列法的基本思想是将多目标优化问 题式中的J个目标函数分清主次,按其重要程度 逐一排除,然后依次对各个目标函数求最优解。 不过后一目标应在前一目标最优解的集合域内寻 优。
现在假设f1(x)最重要,f2 (x)其次,f3 (x)再其次,…。 首先对第一个目标函数f1(x)求解,得最优值
D ( k ) x f i min x f i x f i max x
xD
min f k x (k )
统一目标法
统一目标法又称综合目标法。它是将原多目标 优化问题,通过一定方法转化为统一目标函数或综 合目标函数作为该多目标优化问题的评价函数,然 后用前述的单目标函数优化方法求解。
(1)加权组合法
加权组合法又称为线性加权法或加权因子法。
即在将各个分目标函数组合为总的“统一目标函数”
的过程中,引入加权因子,以平衡各指标及各分目
标间的相对重要性以及他们在量纲和量级上的差异,
因此,原目标函数可写为:
min f X wk f k X
k 1 q
s.t.
gu ( X ) 0(u 1,2, , m)
多目标优化问题概述
实际的工程设计和产品设计问题通常有多个设
计目标,或者说有多个评判设计方案优劣的标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数 i 构造评价函数。
评价函数:
X ( x1 , x2 ,..., xn )T min f ( X ) i [ fi ( X ) fi * ]2
i 1 L
s.t.
2
这时权数可取为:i 1 fi ( X ) , i 1, 2,..., L 目的:在评价函数中使各子目标在数量级上达到 统一平衡。
(3)加权因子分解法
i 2i (i 1, 2,..., L)
* 1i
* 1i
本征权因子,反应第 i 个目标的相对重 要程度。 校正权因子,用于调整各目标在量级 方面差异的影响。
X ( x1 , x2 ,..., xn )T min f 2 ( X ) s.t. gi ( X ) 0 (i 1, 2,..., m) h j ( X ) 0 ( j 1, 2,..., k ) ft ( X ) f t 0 (t 1, 2,..., L)
ft 0 (t 1, 2,..., L) ——原问题第t个目标函数的上限值。
1 d i ( f i ( X )) 0 f i ( X ) f i (2) fi ( X ) fi
(1)
(i S 1,..., L)
则可得功效函数为
fi ( X ) fi (1) di ( fi ( X )) (2) fi fi (1) (i S 1,..., L)
f ( X ) L d1d 2 d L
f(X)的值越大,设计方案越好;反之越差; 0 f ( X ) 1 f(X)=1时,表示取得最满意的设计方案
f(X)=0时,表示此设计方案不能接受
该评价函数不会使某一个目标最不满意 ——功效 系数法的特点
三、功效函数的确定
(a)目标函数 越大越好
(2)
(i 1, 2,..., S )
则可得线性功效函数为
fi (2) fi ( X ) di ( fi ( X )) (2) f i f i (1) (i 1, 2,..., S )
7.4 功效系数法(续)
三、功效函数的确定(续)
3、对于后面L-S个要求极大化的子目标函数fi(X),若 规定对应的功效函数满足
每个子目标都用一个功效函数di表示
di di ( fi ( X )) (i 1, 2,..., L)
——其值为功效系数
功效函数的范围[0,1]
fi(X)的值满意时,di=1 fi(X)的值不满意时,di=0
7.4 功效系数法(续)
二、评价函数 用所有子目标的功效系数的几何平均值作为评价函数
fi (1) min fi ( X ) X D (2) fi max fi ( X ) X D (i 1, 2,..., L)
7.4 功效系数法(续)
三、功效函数的确定(续)
2、对于前S个要求极小化的子目标函数fi(X),若规定 对应的功效函数满足
1 di ( f i ( X )) 0 f i ( X ) f i (1) fi ( X ) fi
权因子的确定方法: 在确定权因子前,应先将各子目标函数进行 无量纲化,处理的方法是:
fi ' ( X ) fi ( X ) min fi ' ( X )
X D
fi ' ( X ) 是多目标问题中某个带量纲的子目标;
fi ( X ) 是作了无量纲处理后的第i个子目标函数
(1) 专家评判法(老手法)
7.4 功效系数法 基本思想: 先按各子目标值的“优”或“劣”(即“功 效”)分别求出与其对应的功效函数,然后再由 各个功效函数构造出问题的评价函数进行求解。 目的是将多目标优化问题转化为单目标 优化问题
7.4 功效系数法 一、功效系数 极小值 多目标优化设 计中,各子目 标的要求不同
极大值
一个合适的数值
3、弱有效解(弱非劣解) 设 X * D 若不存在 X D ,使
fi ( X ) fi ( X *)(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的弱非劣解或弱有 效解。
* D 所有弱有效解组成的集合称为弱有效解集,用 wp 表示。
三者之间关系:
* * Dab D* D pa wp D
即评价函数为: f ( X ) i fi ( X )
i 1 L
f1 ( X ), f 2 ( X ),..., f L ( X )
——各子目标函数
L
1 , 2 ,..., L ——权数
i 应满足归一性和非负性条件
i 1
i
1
i 0 (i 1, 2,..., L)
X D X D 1 2 l
D为可行域,f1(X), f2(X), …, fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
(b)目标函数 越小越好
(c) 目 标 函 数 过 大过小都不好
7.4 功效系数法(续)
三、功效函数的确定(续) 对于一个具有L个目标函数和若干个约束条件的多
目标优化问题,若有S个子目标函数为目标对应的功
效函数的求法:
1、在可行域D中求出各子目标函数的最小值和最大值
机械加工成本最低;
生产率最高; 刀具寿命最长。 还应满足的约束条件是: 进给量小于毛坯所留最大加工余量 刀具强度等
7.1 概述(续)
对于一个具有L个目标函数和若干个约束条件的多
目标优化问题,其数学模型的表达式可写为:
求:
X [ x1 , x2 ,..., xn )T
n维欧氏空间的一个向量 向量形式的目标函数 设计变量应满足的所 有约束条件
优化的数学模型为 X ( x1 , x2 ,..., xn )T
min f ( X ) i fi ( X )
i 1 L
s.t. gi ( X ) 0 (i 1, 2,..., m) h j ( X ) 0 ( j 1, 2,..., k )
注意: 1、建立这样的评价函数时,各子目标的单位已经脱 离了通常的概念。 2、权数(加权因子)的大小代表相应目标函数在优 化模型中的重要程度,目标越重要,权数越大。
7.4 功效系数法(续)
三、功效函数的确定(续) 4、对于L个子目标函数对应的功效函数为
fi (2) fi ( X ) (2) (1) fi fi di ( fi ( X )) (1) fi ( X ) fi (2) (1) fi fi (i 1, 2,..., S ) (i S 1,..., L)
7.2 统一目标函数法(综合目标法) 一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X) 统一到一个新构成的总的目标函数
f(X), 这样就把原来的多目标问题转化为一个具有统 — 目标函数的单目标问题来求解. 即:
minF ( X ) min F ( f ( X ), f ( X ),..., f ( X ))
凭经验评估,并结合统计处理来确定权数的方法。 特点:方法实用,但要求专家人数不能太少。
(2)容限法 若已知子目标函数fi(X)的变动范围为:
i fi ( X ) i , i 1, 2,..., L
则称
fi ( X )
i i
2
(i 1, 2,..., L)
为该目标函数的容限
宿松百姓论坛
7.1
概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例:
物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求:
各齿轮体积总和 f1 ( X ) 尽可能小
降低成本
各传动轴间的中心距总和
f 2 ( X ) 尽可能小
2i
2i 1 fi ( X ) , (i 1, 2,..., L)
目的:使目标变化快慢不一致的趋于一致。
2
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 2、理想点法 基本思想:使各个目标尽可能接近各自的最优值, 从而求出多目标函数的较好的非劣解。 步骤:先用单目标优化方法求得各子目标的约束最 优值和相应的最优点,然后构造评价函数。 评价函数:
7.1 概述(续)
三、多目标优化问题的特点及解法(续)
2、解法: 直接法: 直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题 间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
min F ( X ) [ f1 ( X ), f 2 ( X ),..., f L ( X )]T s.t. gi ( X ) 0, (i 1, 2,..., m) h j ( X ) 0, ( j 1, 2,..., k )
7.1 概述(续)
二、几个基本概念
1、最优解
设 X * D (D为可行域), 若对于任意 X D ,恒使
gi ( X ) 0 (i 1, 2,..., m) h j ( X ) 0 ( j 1, 2,..., k )
i 满足归一性和非负性条件
i 1
L
i
1
i 0 (i 1, 2,..., L)