高中数学基础训练测试及参考答案1-10
高三数学基础训练题集1-10套(含答案)

图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5aA.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,则(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。
高中数学必修1基础练习题(附详细答案)

➢•高中数学必修一基础练习题班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围.☯☯ 集合的补集运算1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7}, 则∁U (M ∪N )=( ) A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( ) A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4}, 那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 函数的概念1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x,则f [f (x )]=________. 7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。
高三数学基础训练题参考答案

一二.:11.12. 12.3π.(理)32105 13.27,1006. 14.sin ρθ= 15.4π.高三数学基础训练题(6)参考答案一、 选择题:11、 e 12 、13、1 (理)25 14、 15 高三数学基础训练题(7)参考答案一、选择题:共10小题,每小题5分,满分50分.二、填空题:共5小题,每小题5分,满分25分.11.0 (理) 160- 12.[]0,1 13.35,10 14. 15高三数学基础训练题(8)参考答案一、选择题:共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分25分.11.()3,1- 12.13(理) 2,23⎡⎤⎢⎥⎣⎦ 13.⎤⎥⎣⎦(理) []1,2 14.23π⎛⎫⎪⎝⎭15.说明:第14题答案可以是22(3k k ππ⎛⎫+∈⎪⎝⎭Z )(1,)-+∞本大题共5小题,每小题5分,满分25分.11.48π(理)0.8 12.4(理)240 13.1\4 14.115.4高三数学基础训练题(10)参考答案一、选择题二、填空题11. 12(理)30 12.π6313.214.27315.433高三数学基础训练题(11)参考答案二.填空题:11. 1, (理)4512. 27, 13.2-(理)(,5)(5,)-∞-+∞14. 4 15.高三数学基础训练题(12)参考答案本大题共5小题,每小题5分,满分25分.11.15012.613.3(理) 14.213-15.π49。
高中数学基础训练及答案

基础训练答案1答案一、1.D 2.B 3.D 二、4.{1,5,7,11,13,17,19} 5.1 6.),1[+∞三、7.-218.{x |2≤x ≤3或x =1},{2},{x |x <1或x >3},{x |x ≤1或x >2},U , ∅ 9.{0,1,-21}.提示:不要忽视B =∅的情形. 2答案一、1.D 2.C 3.B 二、4.-14 5.{x |-4≤x ≤-2}三、6.(1,2)∪(4,5)7.(1)-3≤a <0时,{x |-1≤x ≤2+a };a <-3时,x ∈∅(2)a <-3或a >58.a =0或1时,x ∈∅;a >1或a <0时,a <x <a 2;0<a <1时,a 2<x <a .3答案一、1.A 2.B 3.A 二、4.必要 必要 5.x +y 不是偶数,则x 、y 不都是奇数三、6.充分不必要7.真 8.略 4答案 一、1.D 2.C 3.A 二、4. 4 5.(4,-2) (2,-1) 三、6. 1-x 2(x ≤0) 7.(1)f -1(x )=1+2-x (x >2)(2)f -1(x )=⎩⎨⎧<-≥-)1(1)1(1x x x x 8.y =⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤<+-≤≤)43(4)32(106)21(22)10(22x xx x x x x x x x5答案 一、1.D 2.D 3.B 二、4.(-3,1) 5.27三、6.x 2-1(x ≥1)7.(1){x |5≤x <10且x ≠6} (2)[-5,-23π)∪(-2π,2π)∪(23π,5](3)令u =2x ,t =log 2x 那么中间变量u 、t 的值域都相同(都为原函数的定义域),由u =2x ,x ∈[-1,1],∴21≤2x ≤2,则21≤log 2x ≤2,∴2≤x ≤4,故f (log 2x )的定义域为[2,4].8.f (x )=-)2,0(242+∈++ππlx lx x 6答案 一、1.C 2.C 3.D 二、4.(-∞,2) (4,+∞) 5.②④ 三、6.(1)略 (2)-3<a <2 7.f (x )在(0,1],[-1,0)上为减函数;在[1,+∞),(-∞,-1)上为增函数.g(x )在(-∞,0),(0,+∞)上为增函数.8.(1)证明略(-∞,0),(0,+∞)均为递增区间.(2)0,0,f (x 2)-5f (x )g(x )=0.7答案 一、1.D 2.B 3.C 二、4. 6 5.(-∞,21] 三、6.(-1,0)7.g (t )=⎪⎩⎪⎨⎧-<+-≤≤-->+)(2)2()12(0)1()1(22t t t t t g (t )的最小值为0.提示:讨论对称轴x =-1与区间端点t ,t +1的关系.8.[49,18] 8答案 一、1.C 2.D 3.B 二、4.1225.525 6.241. 7.323a c b -+8.(1)y =332+-t t a (a >1,t ≠0) (2)a =16,x =64 9答案一、1.D 2.C 3.D 二、4.2 5.4343-三、6.34 1 7.4110- 8.(1)既不是奇函数,也不是偶函数 (2)a≤-21时,f (x )最小值为43-a ;-21<a ≤21时,f (x )的最小值是a 2+1;当a >21时,f (x )最小值是a +43. 10答案一、1.C 2.C 3.B 二、4.-3 975.a n =10n +2n -1三、6.57.10998.(1)1是第10或第20项,32不是(2)b n =22175)215(212++-n ∴第7项或第8项最大,最大值为88177 11答案一、1.B 2.C 3.A 二、4.1613.52332或三、6.155 7.T n =n n 49412- 8.S 10=-)22(323185510±=T12答案一、1.C 2.B 3.D 二、4.3×2n +2 5.[4,+∞)三、6.707.(1)f (x )-10241·4x (2)a n =2n -10,S n =2n (n -5)(n -9) a n S n ≤0,得n =5,6,7,8,9(3)不是{a n S n }中的项 8.(1)知a n =(21)n ,∴a 1+a 2+…+a n =.1)21(1211)21(211<-=--+n n(2)知A n ,B n 两点坐标分别为(n 21,1)和(2n,-1),以A n B n 为直径的圆的圆心C n 坐标是(0,222n n -+).半径r =222||21nn n n B A -+=,即r =yC n ∴所在圆C n 与y 轴相切于原点. 13答案一、1.B 2.B 3.C 二、4.3-2π5.④②或②⑥三、6.y =2sin(2x -3π)7.α是第三象限,原式=-43;α是第四象限,原式=438.y max =221-,y min 不存在14答案一、1.A 2.C.3.A 二、4.[k π+87,83πππ+k ](k ∈Z )提.5.±2521三、6.{x |2k π-2π<x <2k π+2π,k ∈Z } 7.y max =432,2223min +=+y .8.(1)a =3,b =-1,或a =-1,b =3 (2)k ≤-1 (2)f 2222)32(,231)3(a a b a k b a -+-=+-==+⇒=又π41)23(22+--=a ≤-1. 15答案一、1.C 2.D 3.D 二、4.2+3 5.-2627 三、6.sin α=21 tan α=337.-729239 8.4π16答案 一、1.C 2.C 3.C 二、4.(3)、(4) 5.74712三、6.-1 7.=AF e 2-e 1,AB =e 2,AD =2e 2-e 1, BD =e 2-e 1. 8.,21)(212121BC AB AC AB AC AD AE DE =-=-=-=∴DE BC 21.17答案一、1.D 2.B 3.B 二、4.(223,22) 5.(-23,-4) 三、6.19167.15148.k =1,h =4 18答案一、1.A 2.D 3.C 二、4.4,5,6 5.42三、6.c =5,S △ABC =103或c =3,S △ABC =63 7.a =.3352,1532,315,3===R c b 8.83. 19答案一、1.C 2.B 3.A 二、4.1 5.-21三、6.A =45°,B =60°,C =75°,a =8,b =434,6=c 7.略 提示:已知条件⇒a 2[sin(A +B )-sin(A -B )]=b 2[sin(A +B )+sin(A -B )]⇒a 2·2cos A sin B =b 2·2sin A cos B⇒a 2·bc a c b 2222-+·b =b 2·a ·acb c a 2222-+ ⇒(a 2-b 2)(a 2+b 2-c 2)=0.20答案一、1.B 2.D 3.B 二、4.(1)充分而不必要 (2)必要而不充分 (3)非充分非必要5.-2π≤2βα-<0三、6.略7.a 2-2ab +2b 2>2a -3(可作差证明)8.当a >1时,21log a t ≤log a ;21+t 当0<a <1时,21log a t ≥log a 21+t . 21答案一、1.B 2.A 3.A 二、4.< 5.P 三、6.证略7.证略8.证略22答案一、1.D 2.D 3.D 二、4.101<a <15.932三、6.1<a <10.7.(1)y =2222)2(a xa x +-(a ≤x ≤2a ).(2)当x =2a 时,DE 取最小值2a ;当x =2a 时,DE 取最大值3a .8.[49,18] 23答案一、1.B 2.C 3.B 二、4.130°5.3 -1 {a |a ∈R ,a ≠-1,且a ≠3}三、6.(1)x =1或4x -3y -10=0; (2)x =-1或3x +2y -1=0;(3)x +y -1=0或4x +3y =0. 7.3x -9y -1=0或9x +3y -13=0.8.(-∞,-),5[]21+∞⋃24答案一、1.B 2.B 3.B 二、4.(29,25-) 5.6 三、6.图略,封闭图形面积是18.7.(1,323108-) 8.(1)m =±;2321,2±=±=n n 或(2)a ∈(-1,-22)∪(-22,0)∪(0, 22)∪(22,1). 25答案一、1.D 2.A 3.D 二、4.x =1或4x -3y +5=0 5.x 2+y 2-3ax -3ay +2a 2=0三、6.54)56()513(22=-++y x 7.C =3 8.(1)略;(2)60°或120°(3)x 2+y 2-x -2y +1=0(x ≠1) 26答案一、1.C 2.D 3.C 二、4.25 5.1 三、6.215-7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 27答案一、1.D 2.A 3.D 二、4.13664164362224=-=-x y y x 或 5.1 三、6.13922=-y x 7.(1)12 (2)(0,225) 8.(-55,0)∪(0, 55) 28答案一、1.B 2.B 3.C 二、4.x 2=±2y 或x 2=±18y 5.742m 三、6.y 2=x 133947.略8.(1)y 2=-43|a |x ; (2)当|a |≥1时,直线不存在;当0<|a |<1时,直线PQ 存在且倾斜角为arccot.1cotarc 14242aa aa ---π或29答案一、1.D 2.B 3.B 二、4.-p 2 5.14三、6.y 2=4x 或y 2=-36x .7.(1)k <-;22>k 或(2)k =±1或±2;(3)-2<k <2且k ≠1.8.(1)5104;(2)面积最大值为1,此时l :2x -2y ±10=0. 30答案一、1.A 2.A 3.B 二、4.y 2=2(x -1)5.10-27三、6.9)3(22-x +2(y +1)2=17.所求轨迹为圆心在(5,0),半径为3的圆,除去(2,0)和(8,0)两点;或圆心在(-5,0),半径为3的圆,除去(-2,0)和(-8,0)两点. 8.22 31答案一、1.C 2.A 3.B 二、4.不一定 5.6三、6.证明O 1、M 、A 既在平面AB 1D 1内又在平面ACC 1A 1内 7.(1)反证法(2)证四边形EFGH 是菱形8.先证MNQP 是梯形,PM 与QN 交于一点K ,K 在面A 1B 1BA 内又在面A 1D 1DA 内,故在其交线AA 1上32答案一、1.C 2.D 3.D 二、4.相等 相等 5.平行或斜交三、6.△的重心将中线分成2∶1的两段即可证 7.略8.反证法33(A) 答 案一、1.D 2.B 3.C 二、4.重直 5.3三、6.PAC PBC PAC BC PA BC AC BC 面面面⊥⇒⊥⇒⎭⎬⎫⊥⊥7.略8.A 在面SBC 上的射影为△SBC 的外心即△SBC 的斜边的中点D ,∴AD ⊥面SBC ,面AD ⊂ABC ,故面AB C ⊥面SBC33(B)答 案一、1.D 2.C 3.A 二、4.存在实数x 、y ,使得AC y AB x AD +=;(或存在实x ,y ,对空间任一点O ,BD y BC x OB OA ++=;或存在实数x 、y 、z ,对空间任一点O ,OD z OC y OB x OA ++= (x +y +z=1)); 5.60°三、6. z =(-4,2,-4)7.)16,14,9(),2,2,1(),5,4,3(===AD AC AB 若设AC y AB x AD +=则(9,14,16)=(3x +y ,4x +2y ,5x +2y )所以⎪⎩⎪⎨⎧=+=+=+)3(1625)2(1424)1(93y x y x y x 由(1)(2)得⎩⎨⎧==32y x 把它代入(3)也成立所以AC AB AD 32+=所以A 、B 、C 、D 四点共面 8.设AB =a ,AC =b ,AD =c ,34(A) 答 案一、1.D 2.C 3.A 二、4.30° 5.2、4、6三、6.(1)BC ⊥面P AE ,在△P AE 中EF ⊥P A (2)即EF 的长为323 cm7.(1)60° (2)45° (3)30°8.a 352034(B) 答 案一、1.A 2.C 3.A 二、4.235.0°<θ≤60°三、6.∠A =arccos 2313417.(1) S △ABC =213 (2)6314216||||===∆AB CD ABC 8.(1)略 (2)45°35答案一、1.A 2.B 3.A 二、4.arctan924.542三、6.21437.(1)arccos 515 (2)3246a 8.(1)45° (2)3126a 36答案一、1.C 2.B 3.D 二、4.arctan835.1三、6.36a7.(1)略 (2)45°8.(1)略 (2)60° (3)arccos 171737答案一、1.B 2.B 3.D 二、4.S V 3 5.3∶8三、6.6 cm 7.R ·arccos(-81) 8.(1)a a 36)3(32 38答案一、1.C 2.A 3.D 二、4.4 3 34 5.11三、6.(1)466 (2)n =3 (3)n =2,3,4,57.1、4同色有5×4×1×4=80种,1、4不同色时,有5×4×3×3=180种,共有260种8.(1)43=64(种)(2)4×3×2=24(种)(3)分三类考虑:第一类三个盒内各放一球,此时只要确定出空盒就确定了一种放法,有4种方法.第二类一个盒内放一球另一盒内放二个球,分两步进行,先从4个盒中任选一个放进一球,有4种方法,再从余下的三个盒中选一个放二个球,有3种方法,故有4×3=12种方法;第三类一盒放三个球,有4种方法.因此共有4+12+4=20种方法.39答案一、1.B 2.C 3.C 二、4.16 5.2520三、6.场55C C C C 26252626=+++ 7.90C C C C C C 152414251415=++ 8.(1)4×4×4×4=256;(2)A 44=24;(3)144A C C 332434=⋅(4)8C C 1214=(5)(3+2+1)·42=9640答案一、1.D 2.B 3.C 二、4.1008 5.4三、6.(1)326322405)2(270x x7.A =90°,B =60°,C =30°8.(1)22 (2)3041答案一、1.B 2.B 3.C 二、4.133.5201三、6. P =10076=0.76. 7.(1) P 1=185C C 2925=;(2) P 2=94C C C 292425=+; (3) P 3=1813C C C C 29241415=+⋅.8.(1)P (A )=P (A 1+A 2)=P (A 1)+P (A 2)=0.24+0.28=0.52.∴P (B )=1-P (B )=1-0.71=0.29. 42答案一、1.A 2.C 3.A 二、4.325.0.2048三、6.P 1=0.80×0.90×0.90=0.648 P 2=0.80×(1-0.10×0.10)=0.7927.(1)P =(1-0.9)(1-0.8)(1-0.85)=0.003 (2)P (A ·)()()C B A P C B A P C B ⋅⋅+⋅⋅+⋅=0.329 (3)1-P (C B A ⋅⋅)=0.388 8.(1)P =27431)311)(311(=⨯-- (2)P =729160)311()31(C 3336=-⋅ 43答案一、1.B 2.D 3.A 二、4.0.2 0.7 5.1.2三、6..954597531459457455453451=++++=++++7.(1)E ξ=-31;D ξ=95 σξ=35=ξD (2)E η=2E ξ+3=37 D η=4D ξ=920.8.E ξ1=E ξ2=1.3 D ξ1=0.41D ξ2=1.21故两人平均水平基本一致,但乙技工的波动性较大,故应选甲参赛.44答案一、1.B 2.A 3.C 二、4.200 5.10 三、6.每200人抽取1人,将全体学生按从1号到6000号分成30组(1,2,3,…,200),(201,202,…,400),(5801,5802,…,6000).利用随机数表从第一组中确定一个随机号42号,然后每隔200号抽取1人,抽到第242号、第442号、第642号、…、第5842号一共30人为所确定的样本.7.(1)乙种棉花的苗长得高;(2)甲种棉花的苗长得齐.8.(1)P (-2<ξ<7)=Φ(237-)-Φ(232--)=0.9710 (2)∴P (ξ>C )=1-P (ξ≤C ) 查Φ(x )表,得Φ(0)=0.5 故23-C =0,∴C =3 45答案一、1.A 2.B 3.B 二、4.31 5.4三、6.(1) 31(2)1 7.(1)原式=.211111lim 11lim =++=++∞→∞→n n n nn n (2)若|a |>|b |.则原式=a a b a bb a n nn =-+∞→)(1)(lim ;若|a |<|b |,则原式=-b .8.(1)a n =2·t n -1,(2)⎪⎩⎪⎨⎧>=<<-=-+∞→)1(1)1(3)10(111lim t t t a a n nn . 46答案一、1.B 2.B 3.D 二、4.2 5.-1三、6.(1)21)2(21)1.(732)2(1112-8.(1)左极限和右极限都为1(2)f (1)=21,不连续 (3)(0,1),(1,2) 47答案一、1.D 2.C 二、3.k -1 4.2k 5.a n =)12)(12(1+-n n 三、6.提示:f (k +1)=3·52k +1+23k +4=25f (k )-17·23k +17.提示:k k k k k k >+⇔+>++)1(1118.略48答案一、1.D 2.A 3.A 二、4.-sin x +cos x +x x 2 5.-3 三、6.(1)y ′=2)1(1ln x x x +++ (2)y ′=xxxe x xe e x x x 2sin cos )1(sin )(--+7.3x -y -9=08.-3 49答案一、1.D 2.C 3.B 二、4.05.⎩⎨⎧+-=--=⎩⎨⎧--=+-=⎩⎨⎧+=-=⎩⎨⎧-=+=iy ix i y i x i y i x i y i x 11111111或或或 三、6.(1)i i )13(4)31(4)2(2549257-++- 7.ω=±(7-i )8.|z |的最小值为22 50答案一、1.C 2.A 3.B 二、4.2i 5.x 2=y -1,x ∈(0,1]三、6.略 7.等轴双曲线的右支 8.α=2i。
高中数学必修1第一章基础训练题(有详解)

高中数学必修1第一章基础训练题(有详解) 一、单选题 1.已知定义在R 上的奇函数()f x 和偶函数()g x ,则( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是奇函数 C .()()f x g x ⋅是偶函数 D .()()f x g x ⋅是偶函数 2.已知奇函数()f x 定义在(1,1)-上,且对任意1212,(1,1)()x x x x ∈-≠都有2121()()0f x f x x x -<-成立,若(21)(32)0f x f x -+->成立,则x 的取值范围为( )A .(0,1)B .1(,1)3C .13(,)35D .3(0,5 3.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 4.已知函数是定义在上的奇函数,对于任意的,且,有.若,则的解集为( ) A . B . C . D . 5.设奇函数在上为单调递减函数,且,则不等式的解集为 ( ) A . B . C . D . 6.定义在的偶函数,当时,,则的解集为( ) A . B . C . D . 7.设奇函数在上是减函数,且,若不等式对所有的都成立,则的取值范围是( ) A . B . C . D .8.函数,则下列结论错误的是( ) A .是偶函数 B .的值域是 C .方程的解只有 D .方程的解只有 二、填空题 9.给定映射22f a b a b a b →+-:(,)(,),则在映射f 下,31(,)的原象是______.10.若函数f (x )同时满足: ①对于定义域上的任意x 恒有f (x )+f (﹣x )=0,②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有0,则称函数f (x )为“理想函数”.给出下列四个函数中①f (x ); ②f (x ); ③f (x );④f (x ),能被称为“理想函数”的有_______________(填相应的序号).11.给出下列五个命题:①函数f (x )=22a x ﹣1﹣1的图象过定点(12,﹣1);②已知函数f (x )是定义在R 上的奇函数,当x≥0时,f (x )=x (x+1),若f (a )=﹣2则实数a =﹣1或2.③若log a 12>1,则a 的取值范围是(12,1);④若对于任意x ∈R 都f (x )=f (4﹣x )成立,则f (x )图象关于直线x =2对称; ⑤对于函数f (x )=lnx ,其定义域内任意12x x ≠都满足f (122x x +)()()122f x f x +≥其中所有正确命题的序号是_____.12.下列结论中:①定义在R 上的函数f (x )在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f (x )在R 上是增函数;②若f (2)=f (-2),则函数f (x )不是奇函数;③函数y=x -0.5是(0,1)上的减函数;④对应法则和值域相同的函数的定义域也相同;⑤若x 0是二次函数y=f (x )的零点,且m<x 0<n ,那么f (m )f (n )<0一定成立.写出上述所有正确结论的序号:_____. 13.已知函数,若函数过点,那么函数一定经过点____________ 14.已知是R 上的增函数,则的取值范围是__________; 15.函数在区间上的最小值为___________.三、解答题 16.已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值. 17.设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ()=1,当x >0时,f (x )>0. (1)求f (0)的值; (2)判断函数的奇偶性; (3)如果f (x )+f (2+x )<2,求x 的取值范围. 18.已知全集为R ,集合, . (1)求, ; (2)若,且,求a 的取值范围. 19.已知f (x )为一次函数,g (x )为二次函数,且f[g (x )]=g[f (x )]. (1)求f (x )的解析式; (2)若y=g (x )与x 轴及y=f (x )都相切,且g (0)= ,求g (x )的解析式. 20.已知函数. (1)求; (2)求值域.参考答案1.D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。
高中数学基本试题及答案

高中数学基本试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)=2x^2-4x+3,下列哪个值是f(x)的最小值?A. 1B. 2C. 3D. 4答案:A2. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B3. 已知等差数列{an}的首项a1=2,公差d=3,那么第五项a5的值是:A. 14B. 15C. 16D. 17答案:A4. 函数y=x^3-3x^2+4x的图像在x=1处的切线斜率是:A. 2B. 4C. 6D. 8答案:B5. 圆的方程为x^2+y^2-6x+8y-24=0,那么它的半径是:A. 2√5B. 3√5C. 4√5D. 5√5答案:C二、填空题(每题4分,共20分)6. 已知直线y=2x+1与x轴的交点坐标是______。
答案:(-1/2, 0)7. 函数f(x)=x^3-3x^2+2的极大值点是x=______。
答案:18. 抛物线y=x^2-2x-3与y轴的交点坐标是______。
答案:(0, -3)9. 等比数列{an}的前三项依次为2,6,18,则其公比q为______。
答案:310. 已知三角形ABC中,角A=60°,边a=3,边b=4,则边c的长度为______。
答案:√7三、解答题(每题10分,共60分)11. 已知函数f(x)=x^2-4x+3,求f(x)的单调区间。
答案:函数f(x)的单调递增区间为(2, +∞),单调递减区间为(-∞, 2)。
12. 求证:若a,b,c为实数,且a^2+b^2+c^2=1,则(a+b+c)^2≤3。
答案:由柯西-施瓦茨不等式,有(a^2+b^2+c^2)(1^2+1^2+1^2)≥(a+b+c)^2,即3≥(a+b+c)^2,得证。
13. 已知数列{an}满足a1=1,an+1=2an+1,求证:数列{an}是等比数列。
高中数学基础练习(含答案)

12 . 已 知 sin( ) 1 33
()
,
则
A 1 3
1
B
3
23
C
3
13.下列给出的赋值语句中正确的是(
D 2 3 3
)
A.3=A B. M=-M C. B=A=2 D. x y 0
14..(i-i-1)3 的虚部为
试卷第 2 页,总 15 页
cos( ) 6
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
A. OM 1 OA 3 OB 22
B. OM OA 2OB
C. OM 2OA OB
D. OM 3 OA 1 OB 22
9.设 O 是 ABC 内一点,且 OA 2OB 3OC 0 ,则 AOC 的面积与 BOC 的面
积之比值是( )
A. 3 2
B. 5 3
C.2
D.3
10.若圆 (x a)2 ( y b)2 b2 1 始终平分圆 (x 1)2 ( y 1)2 4 的周长, 则 a、b
27.考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这 6 个
点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于
A. 4 225
B. 2 225
C. 2 75
D. 4 75
28.在等差数列 {an} 中,已知 a5 a7 14 ,则该数列前 11 项和 S11 A.196 B.132 C.88 D.77
32 . 已 知 复 数 z 1
高中数学基础训练测试及参考答案1-10

高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。
高中数学练习题及答案

高中数学练习题及答案高中数学练习题及答案11.3 交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}答案:A2.设S={x||x|3},T={x|3x-51},则ST=()A. B.{x|-33}C.{x|-32}D.{x|23}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为()A.{x=1,或y=2}B.{1,2}C.{(1,2)}D.(1,2)解析:AB=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR且x +y=1,则AB的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,即AB={(1,0),(0,1)}.答案:C6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案:C7.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且MS={3},则pq=________.解析:∵MS={3},3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.答案:438.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.解析:SA={x|x1}.答案:{x|15}9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范围是________.解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.答案:{a|a0或a6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.答案:{1,3,7,8}11.满意条件{1,3}A={1,3,5}的全部集合A的个数是________个.答案:4力量提升12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()A.{x|-11}B.{x|x0}C.{x|01}D.解析:∵A={x|-11},B={y|y0}AB={x|01}.答案:C13.若A、B、C为三个集合,且有AB=BC,则肯定有()A.ACB.CAC.AD.A=答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB =________解析:UA={c,d},UB={a},UAUB={a,c,d}.答案:{a,c,d}15.(2023上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa -1},若AB=R,则a的取值范围为________.解析:当a1时,A={x|x1或xa},要使AB=R,则a1,a-112;当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.综上,a答案:{a|a2}16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.解析:|x+2|-3x+2-51,A={x|-51},又∵AB=(-1,n),-1是方程(x-m)(x-2)=0的根,即m=-1,此时B={x|-12},AB=(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满意下列三个条件的集合A:(1)AP;(2)若xA,则2xA;(3)若xPA,则2xPA.解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A={x|x+10或x-40},B={x|2aa+2}.(1)若A,求实数a的取值范围;(2)若AB=B,求实数a的取值范围.解析:(1)A={x|x-1或x4},∵A,2a2+a,a+24或2aa+2,2a-1.a=2或a-12.综上所述,实数a的取值范围为aa-12或a=2.(2)∵AB=B,BA.①B=时,满意BA,则2aa+22,②B时,则2aa+2,a+2-1或2aa+2,2a4.即a-3或a=2.综上所述,实数a的取值范围为{a|a-3或a=2}.高中数学练习题及答案21.1 集合的含义及其表示一位渔民特别喜爱数学,但他怎么也不明白集合的意义,于是他请教数学家:"敬重的先生,请您告知我,集合是什么?'集合是不定义的原始概念,数学家很难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,很多鱼虾在网上跳动,数学家特别感动,兴奋地告知渔民:"这就是集合!'你能理解数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b}B.{a}{a,b}C.a{a}D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.其次、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是其次、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素都是正整数,且若aM,则6-aM,则全部满意条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素可以是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2B.{xR|x2-1=0}C.{xR|x2+x+1=0}D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a=-1或2,当a=-1时,A={2,2,4},不满意互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的全部难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的同学.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满意mN+,且8-mN+,则集合M的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③力量提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,此时A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,此时A=-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2023+b2023的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2023+b2023=(-1)2023+02023=1.17.设正整数的集合A满意:"若xA,则10-xA'.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)这样的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地消失在A中.同理,2和8,3和7,4和6成对地消失在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满意条件:若aM,则1+a1-aM(a0,a1),则集合M 中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,1-1a1+1a=a-1a+1M,1+a-1a+11-a-1a+1=aM.∵a0且a1,a,1+a1-a,-1a,a-1a+1互不相等集合M中至少有4个元素.。
高三基础题数学试卷及答案

一、选择题(每题5分,共30分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √25D. √22. 已知函数f(x) = x² - 3x + 2,那么f(2)的值为()A. 1B. 2C. 3D. 43. 下列函数中,是奇函数的是()A. y = x²B. y = 2xC. y = x³D. y = |x|4. 已知等差数列{an}的第一项a1 = 2,公差d = 3,那么第10项an的值为()A. 25B. 28C. 31D. 345. 在平面直角坐标系中,点P(3, 4)关于y轴的对称点坐标为()A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)二、填空题(每题5分,共25分)6. 二项式展开式$(a + b)^{10}$中,x⁴的系数为______。
7. 已知等差数列{an}的第一项a1 = 1,公差d = 2,那么第5项an的值为______。
8. 函数y = log₂x的图象上,若点A的坐标为(8, 3),则点B的坐标为______。
9. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = ______。
10. 已知sinθ = 0.6,那么cosθ的值为______。
三、解答题(每题10分,共30分)11. 解方程:3x² - 5x + 2 = 0。
12. 已知函数f(x) = x² - 4x + 4,求函数f(x)的图像的顶点坐标。
13. 已知等比数列{an}的第一项a1 = 3,公比q = 2,求前5项的和S5。
四、应用题(每题10分,共20分)14. 某工厂生产一批产品,若每天生产x个,则每天可节省成本y元。
已知当每天生产10个时,每天可节省成本200元,当每天生产20个时,每天可节省成本400元。
求每天生产多少个产品时,每天可节省的最大成本。
15. 某公司计划投资100万元,投资于甲、乙两个项目,甲项目的年收益率为10%,乙项目的年收益率为8%。
(完整版)高一数学必修一基础知识测试含答案

必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。
函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。
高中数学基础试题及答案

高中数学基础试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 32. 函数f(x) = 2x + 3的值域是什么?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [2, +∞)3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}4. 圆的方程是(x - 3)² + (y - 4)² = 25,圆心坐标是什么?A. (0, 0)B. (3, 4)C. (-3, 4)D. (3, -4)5. 已知sin(θ) = 1/√2,cos(θ) = -1/√2,求tan(θ)。
A. 1B. -1C. √2D. -√2二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别是3和4,其斜边长为_________。
7. 函数y = x² - 4x + 4可以化简为y = (x - ________)²。
8. 已知集合C = {x | x > 5},D = {x | x < 10},求C∩D。
9. 一个圆的半径为5,其面积为_________。
10. 已知向量a = (3, 4),b = (-1, 2),求向量a与向量b的点积。
三、解答题(每题5分,共20分)11. 解方程:2x² - 5x + 3 = 0。
12. 证明:如果a,b,c是连续的整数,那么a² + b² + c²是3的倍数。
13. 求函数f(x) = x³ - 3x² + 2的极值点。
14. 解不等式:|x - 2| + |x + 3| ≥ 5。
四、证明题(每题5分,共5分)15. 证明:对于任意实数x,都有(x + 1)² ≥ 4x。
高三数学基础试卷参考答案

1. 答案:C解析:根据等差数列的通项公式,an = a1 + (n-1)d,代入a1=2,d=3,n=10,得a10 = 2 + (10-1)×3 = 29。
2. 答案:A解析:利用特殊三角函数值,sin30° = 1/2,cos60° = 1/2,tan45° = 1。
3. 答案:D解析:根据指数函数的性质,当底数大于1时,指数函数是增函数。
由于1/2 <1/3 < 1/4,所以y = (1/2)^x < (1/3)^x < (1/4)^x。
4. 答案:B解析:利用向量的坐标表示,a = (2, -3),b = (3, 2)。
根据向量点积的定义,a·b = 2×3 + (-3)×2 = 0。
5. 答案:A解析:根据复数的乘法运算,(1+i)(1-i) = 1 - i^2 = 1 - (-1) = 2。
二、填空题6. 答案:2解析:利用等差数列的通项公式,an = a1 + (n-1)d,代入a1=1,d=1,n=6,得a6 = 1 + (6-1)×1 = 6。
7. 答案:π/3解析:利用正弦函数的性质,sin(π/3) = √3/2。
8. 答案:2解析:利用指数函数的性质,y = (1/2)^x,当x=1时,y=1/2;当x=2时,y=1/4。
9. 答案:2解析:利用向量的坐标表示,a = (2, -3),b = (3, 2)。
根据向量点积的定义,a·b = 2×3 + (-3)×2 = 0。
10. 答案:2解析:利用复数的乘法运算,(1+i)(1-i) = 1 - i^2 = 1 - (-1) = 2。
三、解答题11. 答案:(1)解法一:利用等差数列的通项公式,an = a1 + (n-1)d,代入a1=2,d=3,n=10,得a10 = 2 + (10-1)×3 = 29。
高中数学学业水平考试基础训练(含答案)

选择题(一)1. 集合{}5,4,3,2,1=A ,{}65,3,1,=B ,则等于B A I ( )(A ){}5,4,321,, (B ){}5,3 (C ){}53,1, (D ){}4,22. 集合{}4,2,1=A ,{}5,3,1=B ,则等于B A ⋃( ) (A ){}5,4,321,, (B ){}5,3 (C ){}53,1, (D ){}4,2 3. 集合{}5,4,3,2,1=U ,{}5,3,1=A ,则等于A C U ( ) (A ){}5,4,321,, (B ){}5,3 (C ){}53,1, (D ){}4,2 4.4.已知},31|{},21|{<<=<<-=x x B x x A 则B A I =( ) (A )}21|{<<-x x (B )}31|{<<x x (C )}21|{<<x x (D )}31-|{<<x x 5下列关系中,表示正确的是(下列关系中,表示正确的是() (A ){}a a ⊆ (B ){}a a ∈ (C ){}{,,}a a b c ∈ (D ){}a a = 6. 如果集合A={}2,1,0,那么(,那么( )A 、A ∈0B 、A ∉0C 、A ⊆0D 、{}A ∈0 7、集合{}5,4,3,2,1=U ,{}5,3,1=A ,表示正确的是(,表示正确的是() (A )U A ∈ (B )U A ⊄ (C )U A ⊆ (D )U A =8、如图是一个物体的三视图,则此三视图所描述物体的直观图是()9、阅读右图所示程序框图、阅读右图所示程序框图..若输入x 为3,3,则输出的则输出的y 的值为(的值为( ) A .24B .25C .40D .50 10. 函数x y 2cos =,∈x R 的最小正周期是() (A )2π(B )π (C )π2(D )π411、函数2sin x y =,∈x R 的最小正周期是(的最小正周期是( )(A )2π (B )π (C )π2(D )π4 1212、下列函数中,最小正周期为、下列函数中,最小正周期为2π的是的是( ) ( )Asin y x = B sin 2y x = C sin 2x y = Dx y tan = 13、直线2+=x y 的斜率是(的斜率是( )A 、1 B 、2 C 、︒30 D 、︒45 14、直线2+=x y 的倾斜角是(的倾斜角是( )A 、1 B 、-2 C 、︒30 D 、︒45 15、直线02-3=+y x 的斜率是(的斜率是( )A 、1 B 、3 C 、︒30 D 、︒60 16、直线02-3=+y x 的倾斜角是(的倾斜角是()A 、1 B 、2 C 、︒30 D 、︒60 17.若直线:1l 1-=mx y 与2l :02=+x y 平行,则m=( ) A 、-2 B 、-1 C 、0 D 、1 18、直线:1l 01=--y mx 与2l :02=+x y ,若21l l ⊥则m=( )A 、-2B 、-1C 、0.5D 、1 1919.已知向量.已知向量)3,1(),1,2(=-=b a ,则=+b a () A 、)3,2(- B 、)3,2(- C 、)2,3( D 、)0,5( 2020.已知向量.已知向量)3,1(),1,2(=-=b a ,则2=+b a () A 、)3,2(- B 、)3,2(- C 、)2,3( D 、)1,5( 2121、已知向量、已知向量)3,1(),1,2(=-=b a ,则=b a -() A 、)4-,1( B 、)4,1-( C 、)2,3( D 、)0,5( 22、已知向量)3,1(),1,2(=-=b a ,则=b a 2-3( )A 、)3,2(-B 、)9,4(-C 、)2,3(D 、)0,5( 2323.已知向量.已知向量)3,1(),1,2(=-=b a ,则=•b a ()A 、-3 B 、-2 C 、-1 D 、0 24、已知平面向量)4,2(=a ,(1,)m =b ,且//a b ,则实数m =( )A 、2B 、-2C 、8D 、-8 25、已知平面向量)1,2(=a ,)4,(x b =,且b a ⊥,那么=x ( ) A 、2 B 、-2 C 、8D 、-8 答案:CADCB ACDCB DAADB DACCD ABCAB选择题(二)1、所对应的点在第是虚数单位,复数已知i z i 43-+=( )象限)象限A 、一、一B B 、二、二C C 、三、三D D 、四、四2、=++=+=2121,43,21z z i z i z i 那么是虚数单位,复数已知( )A 、i 55+B 、i 64+C 、i 10D 、10 3、=-+=+=2121,43,21z z i z i z i 那么是虚数单位,复数已知( )A 、i 55+B 、i 64+C 、i 10D 、i 22--4. 已知i z 21+=(其中i 是虚数单位),则z =( ) A 2+i B 2-i C 1—2i D -1+2i5. 已知i z 21+=(其中i 是虚数单位),则z =( ) A 、1 B 、2 C 、3 D 、56. 计算i i21+(其中i 是虚数单位)等于(是虚数单位)等于() A 、2+i B 、2-i C 、1—i D 、1+i 7. 计算i i+1-1(其中i 是虚数单位)等于(是虚数单位)等于( ) A 、-i B 、 2-i C 、1—i D 、i 8、函数lg(2)y x =-的定义域是(的定义域是() A 、 ()2,-+∞ B 、()2,+∞ C 、 [)2,+∞ D 、 [)2,-+∞9.函数4-=x y 的定义域为(的定义域为() A 、)4,(-∞ B 、),4(+∞ C 、[]4,4-D 、[)+∞,4 10、函数x x x f -+-=32)(的定义域为(的定义域为() A 、)3,(-∞ B 、),2(+∞ C 、[]3,2D 、[)+∞,3 11. 下列函数在(0,+∞)内为增函数的是,+∞)内为增函数的是( ) A. 1-=x y B. 2x y = C. xy 2-=D. xy )(21= 12.12.下列函数中,在区间下列函数中,在区间(0,)+∞上为减函数的是(上为减函数的是( ) A 、2xy = B 、21y x =+ C 、1y x=D 、3log y x = 1313.已知一个球的半径为.已知一个球的半径为2cm 2cm,则它的表面积等于(,则它的表面积等于(,则它的表面积等于()A 、32π B 、16π C 、8π D 、4π 1414.已知一个球的表面积为.已知一个球的表面积为4πcm 3,则它的半径等于(,则它的半径等于()A 、1 B 、2 C 、3 D 、41515、已知一个球的半径为、已知一个球的半径为3cm 3cm,则它的体积等于(,则它的体积等于(,则它的体积等于() A 、π34 B 、12π C 、36πD 、108π 16、等差数列1,4,7,…的第5项是(项是() A 、10 B 、11 C 、12 D 、13 17、等比数列2,4,8,…的第5项是(项是( ) A 、20 B 、28 C 、32D 、34 1818.等差数列.等差数列{}n a 中,11a =,75=a ,则3a =( )A 、3 B 、4 C 、5 D 、6 1919.等差数列.等差数列{}n a 中,11a =,75=a ,则=9a ( )A 、10 B 、11 C 、12 D 、13 2020.等比数列.等比数列{}n a 中,11a =,45=a ,则3a =( ) A 、2 B 、-2 C 、2±D 、3 2121.等比数列.等比数列{}n a 中,11a =,75=a ,则=9a ( )A 、41 B 、43 C 、47 D 、49 22. 要得到函数y =sin(x -π3)的图象,只要把函数y =sin x 的图象(). A.向左平移π3 个单位个单位 B.向右平移π3 个单位个单位 C.向左平移π6 个单位个单位 D. 向右平移π6 个单位个单位23. 要得到函数y =cos(x +π3 )的图象,只要把函数y =cos x 的图象(). A.向左平移π3 个单位个单位 B. 向右平移π3 个单位个单位C.向左平移π6 个单位个单位D. 向右平移π6个单位个单位 24. 要得到函数y =sin(2x -π3)的图象,只要把函数y =sin2x 的图象(). A.向左平移π3 个单位个单位 B. 向右平移π3 个单位个单位C.向左平移π6 个单位个单位D. 向右平移π6个单位个单位25. 要得到函数y =3sin(2x -π3 )的图象,只要把函数y =3sin (2x+π3)的图象(). A.向左平移π3 个单位个单位 B. 向左平移π6 个单位个单位C. 向右平移π3 个单位个单位D. 向右平移π6 个单位个单位答案:BBDCD BABDC BCBAC DCBDA DBADC填空题填空题1. 若函数_____)2-(,)(2==f x x f 则.2. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .3. 求值:求值: ︒150sin =________,︒240cos ________,︒390tan =________. 4、)45sin(︒-=________.)135cos(︒-=________,)300tan(︒-=________. 5. 已知角α的终边经过点(3,-4),则sin α=______ , cos α=______,tan α=_______ .6. 已知,54cos -=α 且α为第三象限角,则_____tan _____,sin ==αα7. 已知sin α=53,90o <α<180o ,那么sin2α的值__________.8、已知α为第二象限角,31cos -=α,则α2cos = 9. 已知2tan =α,则=α2tan ________.10. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________, =||a ______,=||b ______向量b a,的夹角的余弦值为_______. 11. 已知,4||,3||==b a 且向量b a,的夹角为︒120,则=b a ·________.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____. 13. 不等式42<x 的解集是__________. 14. 不等式022>--x x 的解集是__________. 15. 不等式2|1|≤-x 的解集是__________. 16. 不等式3|21|>-x 的解集是__________.17. 已知0,>b a 且,2=ab 则b a +的最___值为_______. 18. 已知0,>b a 且,2=+b a 则ab 的最___值为_______ 19. 已知,0>m 则函数mm y 82+=的最___值为_______,此时m =_______.20. 已知直线l 的倾斜角为︒135,且过点)2,1(,则直线的方程为____________.21. 已知直线的斜率为4,且在x.轴.上的截距为2,此直线方程为____________. 22. 圆心在)2-,1(,半径为2的圆的标准方程为____________,23. 圆心在点)2,1(-,与y 轴相切的圆的方程为________________,与x 轴相切的圆的方程为________________,过原点的圆的方程为________________ 24. 已知椭圆的方程为192522=+y x ,则它的长轴长为______,短轴长为______,焦点坐标为________,离心率为________. 25. 已知双曲线的方程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离心率为________渐近线方程为__________.26. 已知椭圆的方程为16422=+y x ,若P 是椭圆上一点,且,7||1=PF 则________||2=PF .27. 已知双曲线方程为14491622-=-y x ,若P 是双曲线上一点,且,7||1=PF则________||2=PF .28. 抛物线x y 42=的焦点坐标为__________,准线方程为准线方程为29. 抛物线y x 42-=的焦点坐标为__________,准线方程为,准线方程为30. 抛物线281-y x =的焦点坐标为__________,准线方程为,准线方程为答案:1、42、2,23、.3321-21,,4、3-22-22-,, 5、34-5354-,, 6、4353-, 7、2524- 8、97- 9、34- 10、(3,7),-1,2626-2,13,, 11、-612、1,41- 13、(-2,2) 14、()()∞+⋃∞,,21-- 15、[]3,1- 16、()()∞+⋃∞,,21-- 17、小,22 18、大,1 19、小,8,2 20、y=-x-3 21、y=4x-8 22、()()42122=++-y x 23、()()12122=-++y x ,()()42122=-++y x ,()()52122=-++y x24、10,6,54,0,4),(± 25、()x y 4335,5,0,8,6±=±,,,, 26、1 27、15 28、(1,0),x=-1 29、(0,-1),y=-1 30、(-2,0),x=2解答题解答题1. 等差数列中,2,21-==d a , 求n a 和n S2. 等比数列中,2,2-1==q a , 求n a 和n S3. 在ABC ∆中,︒=45A ,︒=60C ,5=a ,求c.4. 在ABC ∆中,32=a ,6=b ,︒=30A ,求B.5. 在ABC ∆中,1=a ,2=b ,︒=60C ,求c6、一个盒子里装有标号分别为1,2,3,4的4张标签,从中随机同时抽取两张标签,求两张标签上的数字为相邻整数的概率。
高中数学基础练习(含答案)

高中数学基础练习1、若1∈A={a+1,(a+1)2,a 2+2a-2},则a=-2或1或-32、集合A={1,a ,b},B={a ,a 2,ab},且A=B ,则a=-1,b= 03、集合U=R ,A={x|21--x x ≥0,x ∈R},B={x||x-1|≤1,x ∈R},则(C R B )∩A=(-∞,0)∪(2,+∞) 4、设A={x|x 2-3x+2>0, x ∈R },B={x||x-2a |≤1,x ∈R},若A ∪B=R ,则实数a 的取值范围是21≤a ≤15、若α:x+y>0;β:x>0且y>0,记A={(x ,y )|x+y>0,x 、y ∈R},B={(x ,y )|x>0且y>0,x 、y ∈R},则β是α的充分不必要条件6、判断下列命题的真假(1)若a>b ,则ac 2>bc 2假命题,反例c=0(2)若a>b ,则a 2>b 2假命题,反例a ,b 小于零(3)若a>b,c>d ,则a-c>b-d 假命题,反例a=1,b=0,c=1,d=-17、比较222b a +-,ab ,222b a +三者大小 222b a +-≤ab ≤222b a +8、比较x 2+x+1与x 2-x+1的大小当x>0时,x 2+x+1>x 2-x+1当x<0时,x 2+x+1<x 2-x+1当x=0时,x 2+x+1=x 2-x+19、不等式ax 2+2ax+1>0的解集为R ,则实数a 的取值范围是0≤a<1 10、不等式|232|+-x x ≥1的解集是),5[]31,2()2,(+∞⋃-⋃--∞ 11、已知x ∈R ,且x ≠0,则x+x1的取值范围是),2[]2,(+∞⋃--∞ 12、已知x ,y 是正实数,且x+2y=1,则xy 的最大值是81 13、函数xx x y 4323--=的定义域是]43,21()21,(⋃-∞14、一个等腰三角形的腰长为xcm ,底边长为ycm ,若该三角形的周长是20cm ,则y 与x 的函数关系式为y=20-2x ,定义域为x ∈(5,10)15、已知函数f (x )=xx 21-,g (x )=x ,则f (x )g (x )=21x -,定义域为]1,0()0,1[⋃-16、判断下列函数的奇偶性(1)x xy +-=11log 2 奇函数非偶函数 (2)22112+-+=x x y x偶函数非奇函数 (3)xxx y -+-=11)1( 非奇函数非偶函数 17、已知y=x 2+2mx-3m 2+1,在),2[+∞上单调递增,则实数m 的范围是m ≥-218、(1)y=ax+b 是奇函数,则b=0;(2)y=ax 2+bx+c 是偶函数,则b=019、函数xx y 3-=的单调区间是(-∞,0)和(0,+∞)递增 20、函数1||1-=x y 的大致图象是______,单调区间是(-∞,-1)和(-1,0]递增;[0,,1)和(1,+∞)递减,对称轴是y 轴 21、函数ax xb y +-=(a+b ≠0)的对称中心是(-1,-1),则a 、b 满足的条件是a=1,b ≠-1 22、函数|1|)21(-=x y 的单调增区间是(-∞,1)应为:]1(,-∞ 23、求下列方程的解(1)4x-3×2x+2=0 x=0或1 (2)log 2(2x+1)=x+2 3log 2-=x24、已知a 、b 、c 、d 、e 都是不等于1的正实数,a e d c b e d c b a log log log log log ⋅⋅⋅⋅=1 25、比较大小a lgb与b lga(a>0,b>0,a ≠1,b ≠1) 相等 26、(1)求函数y=x 2-4x+1(x ≤2)的反函数)3(22)(1-≥+-=-x x x f(2)已知f -1(x )=x (x ≥0),则f (2)=4 (3)已知b ax x f +=)(,(1,2)既在f (x )图象上,又在f (x )的反函数图象上,则f (21)=22227、函数)1(log 231-=x y 的单调递增区间(-∞,-1)28、某动物死亡时,14C 的含量为a (死亡后体中的14C 不再产生),经过x 年后,该动物尸体中14C 的残余量为b ,且b 与a 满足关系b=ae -kx ,若动物死亡时体内14C ,经过5570年后残余量是原来的一半,某考古工作小组测得一动物化石中14C 的残余量占原始含量的25%,试推算该动物死亡年代(精确到100年) 11140年约为11100年29、一扇形的半径为R ,圆心角为θ,则扇形的边界长(即周长)=2R+R θ,S 扇形=221R θ30、已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m ,3m )是角α终边上一点(m ≠0),则sin α+cos α=51±31、已知a 为锐角,借助右图,比较a ,sina ,tana 的大小关系sina<a<tana 32、若2πβα=+,则sin α = cos β;cos α = sin β;tan α ≠ cot β;cot α ≠ tan β。
高中数学数列基础练习及参考答案

根底练习一、1.等比数列{a n}的公比正数,且a3·a9=2a5,a2=1,a1=A .1B.2C.2222.等差数列,,等于A.-1B.1C.33.公差不零的等差数列{a n}的前n和S n.假设a4是a3与a7的等比中,S832,S10等于A.18B.24C.60D.90. 4S n是等差数列a n的前n和,a23,a611,S7等于A.13B.35C.49D.63a n等差数列,且a7-2a4=-1,a3=0,公差d=〔A〕-2〔B〕-1〔C〕1〔D〕2226.等差数列{a n}的公差不零,首a1=1,a2是a1和a5的等比中,数列的前10之和是A.90B.100C.145D.1907.x R,不超x的最大整数[x],令{x}=x-[x],{51},[51],51222A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列8.古希腊人常用小石子在沙上成各种性状来研究数,例如:.他研究1中的1,3,6,10,⋯,由于些数能表示成三角形,将其称三角形数;似地,称2中的1,4,9,16⋯的数成正方形数。
以下数中及三角形数又是正方形数的是9.等差数列a n的前n和S n,a m1a m1a m20,S2m138,m〔A〕38〔B〕20〔C〕10〔D〕9.10.设a n 是公差不为0的等差数列,a 1 2且a 1,a 3,a 6成等比数列,那么 a n 的前n 项和S n =A .n 27n B .n 25n C .n 23n44332 4D .n 2n11.等差数列{a n }的公差不为零,首项a 1=1,a 2 是a 1和a 5的等比中项,那么数列的前 10项之和是A.90B.100C.145D.190.二、填空题1,前n 项和为S n ,那么 S 4.1设等比数列{a n }的公比q a 422.设等差数列{a n }的前n 项和为S n ,那么S 4,S 8 S 4,S 12 S 8,S 16 S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,那么T 4,,,T16成等比数列.T123.在等差数列{a n }中,a 3 7,a 5 a 26,那么a 6____________.4.等比数列{a n }的公比q0,a 2=1,a n2 a n1 6a n ,那么{a n }的前4项和S =.4三.解答题1.点〔1,1〕是函数f(x)a x (a0,且a1〕的图象上一点,等比数列{a n }的前n 项和3为f(n)c ,数列{b n }(b n0)的首项为c ,且前n 项和S n 满足S n -S n1=S n + S n1〔n2〕.〔1〕求数列{ a n }和 {b n }的通项公式;〔〕假设数列 {1前n 项和为 1000的最小2}T n ,问T n >b nbn12021正整数n 是多少?.2设S n为数列{a n}的前n项和,S n kn2n,nN*,其中k是常数.〔I〕求a1及a n;〔II〕假设对于任意的mN*,a m,a2m,a4m成等比数列,求k的值.3.设数列{a n}的通项公式为a n pn q(n N,P0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n m成立的所有n中的最小值.〔Ⅰ〕假设p1,q1,求b3;23〔Ⅱ〕假设p2,q1,求数列{b m}的前2m项和公式;〔Ⅲ〕是否存在p和q,使得b m3m2(m N)?如果存在,求p和q的取值范围;如果不存在,请说明理由.根底练习参考答案一、选择题1.【答案】B【解析】设公比为q,由得a1q 282a1q42,即q22,又因为等比数列{a n}的公比为a1q正数,所以q2a212,故a1,选Bq222.【解析】∵a1a3a5105即3a3105∴a335同理可得a433∴公差da4a32∴a20a4(204)d1.选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学基础训练测试题(1)集合的概念,集合间的基本关系一、填空题(共12题,每题5分)1、集合中元素的特征: , , .2、集合的表示法: , , .3、已知集合A ={1,2,3,4},那么A 的真子集的个数是 .4、设集合I={1,2,3},A ⊆I,若把集合M ∪A=I 的集合M 叫做集合A 的配集. 则A={1,2}的配集有 个 .5、设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 . (1).P Q (2).Q P (3).P =Q (4).P ∩Q =Q6、满足条件∅≠⊂M ≠⊂{0,1,2}的集合共有 个.7、 若集合a B A a a a B a a A 则且},1{},43|,2|,12{},1,1,{22-=+--=-+= = .8、 满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有_____个.9、集合{|10}A x ax =-=,{}2|320B x x x =-+=,且AB B =,则实数a =______、10、已知集合{}{}A x x x RB x x a a R =≤∈=-≤∈||||||43,,,,若A B ⊇,则a 的取值范围是_______ .11、 若2{|30}A x x x a =++=,求集合A 中所有元素之和 .12、任意两正整数m 、n 之间定义某种运算⊕,m ⊕n=⎝⎛+异奇偶)与同奇偶)与n m mn n m n m ((,则集合M={(a,b)|a ⊕b=36,a 、b ∈N +}中元素的个数是___________.高三数学基础训练测试题(1)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、、已知集合A =}2432{2++a a ,,,B=}24270{2-+-a a a ,,,,A ∩B={3,7},求B A a ⋃的值及集合.高中数学基础训练测试题(2)集合的基本运算一、填空题(共12题,每题5分)1、已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T =.2、 如果{}|9U x x =是小于的正整数{}1234A =,,,,{}3456B =,,,, 那么U UA B =痧 .3、若22{228}{log 1}xA xB x x -=∈<=∈>Z R ≤,,则()AB R ð的元素个数为.4、已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N = .5、已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = .6、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C AB 等于.7、已知集合M ={直线的倾斜角},集合N ={两条异面直线所成的角},集合P={直线与平面所成的角},则(M ∩N)∪P= .8、设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___、9、设集合{|M x y =,集合N ={}2|,y y x x M =∈,则MN =___10、设集合{}{}22|21,|25M y y x x N x y x x ==++==-+,则N M ⋂等于.11、设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是 .12、设a 是实数, {}22|,210,M x x R x ax a =∈-+-≤{}22|,11,N x x R a x a =∈-≤≤+若M 是N 的真子集,则a 的取值范围是 、高三数学基础训练测试题(2)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0(1)有两个实根;(2)有两个实根,且一个比0大,一个比0小;(3)有两个实根,且都比1大;高中数学基础训练测试题(3)命题及其关系一、填空题(共12题,每题5分)1、设集合""""},3{},2{P M x P x M x x x P x x M ∈∈∈<=>=是或那么的.2、 πα≠“”3是α≠1“cos ”2的 .3、“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的.4、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: .①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是 5、设p :25x x >≤-或;q :502x x+<-,则非q 是p 的 .6、设集合U={(x,y)|x ∈R,y ∈R},A ={(x,y)|x+y >m},B= {(x,y)|22x y n +≤},那么点(1,2)∈()U C A B ⋂的充要条件是 .7、下列四个命题:①在空间,存在无数个点到三角形各边的距离相等; ②在空间,存在无数个点到长方形各边的距离相等; ③在空间,既存在到长方体各顶点距离相等的点,又存在到它的各个面距离相等的点; ④在空间,既存在到四面体各顶点距离相等的点,又存在到它的各个面距离相等的点、 其中真命题的序号是 、(写出所有真命题的序号) 8、设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x .若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 .9、对于[0,1]x ∈的一切值,20a b +>是使0ax b +>恒成立的.10、设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x+c 1>0和a 2x 2+b 2x+c 2>0的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“M=N ”的_______条件. 11、 、设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个.12、给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 .其中正确命题的序号是_____ .高三数学基础训练测试题(3)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知集合()3,12y A x y x ⎧-⎫==⎨⎬-⎩⎭,()(){},115B x y a x y =++=,试问当a 取何实数时,A B =∅.高中数学基础训练测试题(4)逻辑联接词一、填空题(共12题,每题5分) 1、下列语句①“一个自然数不是合数是就是质数”②“求证若x ∈R ,方程x 2+x +1=0无实根” ③“垂直于同一直线的两条直线平行吗?” ④“难道等边三角形各角不都相等吗?” ⑤“x +y 是有理数,则x 、y 也都是有理数” 其中有________个是命题,________个真命题2、命题“方程x 2-1=0的解是x=±1”中使用逻辑联结词的情况是________.3、下列四个命题p :有两个内角互补的四边形是梯形或是圆内接四边形或是平行四边形q :π不是有理数;r :等边三角形是中心对称图形;s :12是3与4的公倍数 其中简单命题只有________.4、如果命题“p 或q ”是真命题,那么下列叙述正确的为________.(1).命题p 与命题q 都是真命题 (2).命题p 与命题q 的真值是相同的,即同真同假 (3).命题p 与命题q 中只有一个是真命题 (4).命题p 与命题q 中至少有一个是真命题5、下列说法正确的有________个.①a ≥0是指a >0且a =0;②x 2≠1是指x ≠1且x ≠-1 ③x 2≤0是指x=0;④x ·y ≠0是指x ,y 不都是0⑤>是指=或<a b a b a b / 6、复合命题s 具有p 或q 的形式,已知p 且r 是真命题,那么s 是________. 7、命题“对任意的3210x x x ∈-+R ,≤”的否定是8、分别用“p 或q ”、“p 且q ”、“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式.(2)命题“非空集A ∪B 中的元素是A 中的元素或B 中的元素”是________的形式. (3)命题“C I A 中的元素是I 中的元素但不是A 中的元素”是________的形式.(4)x y =1x y =1x =1y =0x =0y =1221122命题“方程组++的整数解是,”是⎧⎨⎩⎧⎨⎩⎧⎨⎩_______的形式. 9、P: 菱形的对角线互相垂直,q :菱形的对角线互相平分,p 或q 形式的复合命题是________10、有四个命题:(1)空集是任何集合的真子集;(2)若x∈R,则|x|≥x(3)单元素集不是空集;(4)自然数集就是正整数集其中真命题是________(填命题的序号)11、指出命题的结构及构成它的简单命题:24 4x x +-有意义时,2x≠±12、已知命题p、q,写出“p或q”、“p且q”、“非p”并判断真假.(1)p:2是偶数q:2是质数________;(2)p:0的倒数还是0 q:0的相反数还是0________高三数学基础训练测试题(4)题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、分别指出下列复合命题的形式及构成它的简单命题,并判断此复合命题的真假.(1)A A B/⊆∪(2)方程x2+2x+3=0没有实根(3)3≥3高中数学基础训练测试题(5)综合运用一、填空题(共12题,每题5分)1、 设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 .2、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅,b的取值范围是 .3、设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,若()x y A B ∈,,且2x y +的最大值为9,则b 的值是 .4、1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有_______个5、定义符号函数⎪⎩⎪⎨⎧-=101sgn x 000<=>x x x ,则不等式:x x x sgn )12(2->+的解集是 .6、满足条件M ∪{1}={1,2,3}的集合M 的个数是 .7、若不等式的值等于则实数的解集为a x a x x ],5,4[4|8|2-≤+-8、设集合}0|{≥+=m x x M ,}082|{2>--=x x x N ,若U =R ,且∅=)(N M U,则实数m 的取值范围是 .9、设[]x 表示不超过x 的最大整数(例[5、5]=5,[-5、5]=-6),则不等式2[]5[]6x x -+≤0的解集为10、 记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . 若Q P ⊆,正数a 的取值范围是11、 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _ 12、{25},{121},A x x B x p x p =-<<=+<<-若A B A ⋃=,则实数p 的取值范围是 .高三数学基础训练测试题(5)题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、设命题:p 函数()2lg y ax x a =-+的定义域为R .命题:q 函数()2lg 1y x ax =-+的值域为R .如果命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数a 的范围.高中数学基础训练测试题(6)函数及其表示方法一、 填空题(共12题,每题5分)1、若f (x -1)=2x +5,则f (x 2) = .2、已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 .3、已知⎪⎩⎪⎨⎧<=>+=0,00,0,1)(x x x x x f π,则f {f [f (-1)]}= .4、已知函数f (x ) = ⎩⎨⎧2x 2+1,x ≤0,-2x , x >0,当f (x ) = 33时,x = .5、设函数x xxf =+-)11(,则)(x f 的表达式为 .6、已知x x x f 2)12(2-=+,则)3(f = .7、已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 .8、设f (x )是一次函数,且f [f (x )]=4x +3,则f (x )= .9、集合A 中含有2个元素,集合A 到集合A 可构成 个不同的映射.10、若记号“*”表示的是2*ba b a +=,则用两边含有“*”和“+”的运算对于任意三个实数“a ,b ,c ”成立一个恒等式 .11、从盛满20升纯酒精的容器里倒出1升,然后用水加满,再倒出1升混合溶液,再用水加满、 这样继续下去,建立所倒次数x 和酒精残留量y 之间的函数关系式 .12、若f (x )满足f (x )+2f (x1)=x ,则f (x )= .高三数学基础训练测试题(6)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设x表示P点的行程,y表示PA的长,求y关于x的函数解析式、高中数学基础训练测试题(7)函数的解析式和定义域一、 填空题(共12题,每题5分)1、下列各组函数中,表示同一函数的是 .①xxy y ==,1 ②1,112-=+⨯-=x y x x y③33,x y x y == ④2)(|,|x y x y ==2、函数y =的定义域为 .3、函数1()1f x n x=的定义域为 .4、函数1)y a =<<的定义域是 .5、已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 .6、下列函数:①y =2x +5;②y = xx 2+1 ;③y = |x |-x ;④y = ⎩⎨⎧2x , x <0,x +4,x ≥0.其中定义域为R 的函数共有m 个,则m 的值为 .7、若f[g (x )] = 9x +3,且g (x ) = 3x +1,则f (x )的解析式为 .8、已知g (x )=1-2x ,f [g (x )]= 1-x 2x 2 (x ≠0),则f (0.5)= .9、若函数f(x )的定义域为[a ,b ],且b >-a >0,则函数g (x )=f(x )-f (-x )的定义域是 .10、若f (2x +3)的定义域是[-4,5),则函数f (2x -3)的定义域是 .11、函数xx x x x x f +-++-=02)1(65)(的定义域为 .12、 若函数 y =lg(x 2+ax +1)的定义域为R ,实数a 的取值范围为 .高三数学基础训练测试题(7)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知f(x)是定义在R上的函数,且f(1)=1,对任意x∈R都有下列两式成立:(1)f(x+5)≥f(x)+5;(2)f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求g(6)的值.高中数学基础训练测试题(8)函数的值域与最值一、 填空题:(共12题,每题5分)1、函数y = - x 2 + x , x ∈ [1 ,3 ]的值域为 . 2、函数y =2312+-x x 的值域是 .3、函数y=2-x x 42+-的最大值是 .4、函数y x =的值域是 .5、函数y =的最小值是 .6、已知函数2323(0),2y x x x =-+≤≤则函数的最大值与最小值的积是 .7、若函数y=x 2-3x -4的定义域为[0,m],值域为[-425,-4],则m 的取值范围是 .8、已知函数 y =lg(x 2+ax +1)的值域为R ,则a 的取值范围是 .9、若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 是 .10、函数y = 3122+---x x x x 的值域为 .11、已知x ∈[0,1],则函数y =的值域是 .12、已知函数y =的最大值为M ,最小值为m ,则mM的值为 .高三数学基础训练测试题(8)答题纸班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数f(x) =xax+b(a,b为常数,且a≠0)满足f(2)=1,f(x)=x只有惟一实数解,试求函数y=f(x)的解析式及f[f(-3)]的值.高中数学基础训练测试题(9)函数的单调性与奇偶性一、 填空题:(共12题,每题5分)1、函数b x k y ++=)12(在实数集上是增函数,则k 的范围是 .2、函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 .3、函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 .4、定义在R 上的函数)(x s (已知)可用)(),(x g x f 的和来表示,且)(x f 为奇函数,)(x g 为偶函数,则)(x f = .5、函数)(x f 在R 上为奇函数,且0,1)(>+=x x x f ,则当0<x ,=)(x f .6、函数||2x x y +-=,单调递减区间为 .7、定义在R 上的偶函数)(x f ,满足)()1(x f x f -=+,且在区间]0,1[-上为递增,则)2(f 、)2(f 、)3(f 的大小关系为 .8、构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0 所构造的函数为 .9、已知]3,1[,)2()(2-∈-=x x x f ,则函数)1(+x f 的单调递减区间为 .10、下面说法正确的选项为 .①函数的单调区间可以是函数的定义域②函数的多个单调增区间的并集也是其单调增区间 ③具有奇偶性的函数的定义域一定关于原点对称 ④关于原点对称的图象一定是奇函数的图象11、下列函数具有奇偶性的是 . ①xx y 13+=; ②x x y 2112-+-=; ③x x y +=4; ④⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y .12、已知8)(32009--+=xbax x x f ,10)2(=-f ,则(2)f = .高三数学基础训练测试题(9)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知函数1)(2+=x x f ,且)]([)(x f f x g =,)()()(x f x g x G λ-=,试问,是否存在实数λ,使得)(x G 在]1,(--∞上为减函数,并且在)0,1(-上为增函数、高中数学基础训练测试题(10)函数的图像一、 填空题:(共12题,每题5分)1、函数34x y =的图象是 .① ② ③ ④ 2、下列函数图象正确的是 .① ② ③ ④3、若)(x f y =为偶函数,则下列点的坐标在函数图像上的是 . ①(,())a f a - ②))(,(a f a - ③))(,(a f a - ④))(,(a f a ---4、将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,则C 2的解析式为 .5、当a ≠0时,函数y ax b =+和y b ax=的图象只可能是 .6、函数x xx y +=的图象是 .7、已知()x f 是偶函数,且图象与x 轴有4个交点,则方程()0=x f 的所有实根的和是 . 8、下列四个命题,其中正确的命题个数是 .(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线. 9、当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .10、已知函数f(x)是R 上的增函数,A(0,-1)、B((3,1)是其图象上的两点,那么|f(x+1)| <1的解集的补集为 . 11、下列命题中正确的是 .①当0=α时函数αx y =的图象是一条直线 ②幂函数的图象都经过(0,0)和(1,1)点③若幂函数αx y =是奇函数,则αx y =是定义域上的增函数④幂函数的图象不可能出现在第四象限12、定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在[0,+∞)上图像与)(x f 的图像重合、设a>b>0,给出下列不等式:①)()()()(b g a g a f b f -->-- ②)()()()(b g a g a f b f --<--③)()()()(a g b g b f a f -->-- ④)()()()(a g b g b f a f --<--其中成立的是 .高三数学基础训练测试题(10)答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、 如图,已知底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两部分,令BF=x,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象、C1、 集合的概念,集合间的基本关系1.确定性 , 互异性 , 无序性 .2. 列举法 , 描述法 , 韦恩图 . 3. 15. 4. 4 5. (3) 6. 6 个7.0提示:2a-1 =-1,a=0;此类问题要注意验证集合中元素的互异性.8、7提示:满足{1,2}{1,2,3,4,5}M ⊂⊆-集合M 有32=8个.去除M={1,2},满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有7个. 9、 10,1,2a =提示:A B B =A B ⊆=,{}2|320B x x x =-+== {}1,2,x=1时,a=1;x=2时,a=12、而a=0时,A=φ,满足A B B =. 10、1a ≤提示:{}{}|||4|44A x x x R B x x =≤∈=-≤≤,=, a<0时,{}||3|B x x a a R =-≤∈,= φ,满足A B ⊇a ≥0时,{}||3|B x x a a R =-≤∈,={}|33x x a x a -≤≤+,A B ⊇ 4334aa -≤-⎧⎨+≥⎩ 1a ≤;11、 32-提示:注意到0∆=时集合中只有一个元素,此时集合A 中所有元素之和为-3;0∆≠时,集合A 中所有元素之和为32-.12、41提示: a 、b 同奇偶时,有35个;a 、b 异奇偶时,有(1,36)、(3,12)、(4,9)、(9,4)、(12,3)、(36,1)6个,共计41个.填41.13、解:∵ A ∩B={3,7} ∴ 7∈A ∴ 7242=++a a ,即 15=-=a a 或当 5-=a 时,B={0,7,7,3} (舍去)当 1=a 时,B={0,7,1,3} ∴ B={0,7,1,3}2.集合的基本运算1、 {}1,2 ;2、{}7,8 ;3、2;4.{}1- ; 5、{x |2<x <3}; 6、{},0x x R x ∈≠; 7、 0,2π⎡⎤⎢⎥⎣⎦提示: M ={直线的倾斜角}=[]0,π, N ={两条异面直线所成的角}=0,2π⎛⎤⎥⎝⎦, P ={直线与平面所成的角}=0,2π⎡⎤⎢⎥⎣⎦,则(M ∩N)∪P=0,2π⎡⎤⎢⎥⎣⎦8、提示:利用韦恩图和()()()U U U C A C B C A B =⋃易求{2,3}A =,{2,4}B =9、 [4,)+∞ 提示:[){| 2.M x y ===+∞,N ={}[)2|,4,y y x x M =∈=+∞,则MN = [4,)+∞10、 [)+∞,0提示:{}[){}22|210,,|25M y y x x N x y x x R ==++=+∞==-+= 所以N M ⋂=[)+∞,0;11、 m ≥2提示: {|0}M x x m =+≥,2{|280}(2,4)N x x x =--<=-,U M =(,m -∞-),所以-m ≤-2, 、m ≥2;12、 1,a >或2a ≤-提示:2221011x ax a a x a -+-≤⇔-≤≤+,M N ⊆时2211,11a a a a -≥-+≤+但对边缘值1,-2进行检验知1不合;13、 解:(1)方程有两个实根时,得2[2(m-1)]4(2m+6)0∆=-⨯≥解得m -1m 5≤≥或(2)令2f()=+2(m-1)+2m+6x x x 由题意得(0)0f <,解得3m <-(3)令2f()=+2(m-1)+2m+6x x x 由题意得 2(1)12(1)2602(1)112[2(m-1)]4(2m+6)0f m m m m =+-++>--=->∆=-⨯≥ 解得5-14m <≤-3、命题及其关系1、必要不充分条件2、必要不充分条件3、充分不必要条件4、①②④5、必要不充分条件6、35m n ≥≥且7、 提示: ②在空间,不存在点到长方形各边的距离相等; ③在空间,存在到长方体各顶点距离相等的点,但不存在到它的各个面距离相等的点;真命题的序号是①④8、 a 1[0,]2∈提示:┐p 是┐q 的必要而不充分的条件,所以q 是p 的必要而不充分的条件, 所以p q ⊆,P:|43|1x -≤ 所以112x ≤≤,q:0)1()12(2≤+++-a a x a x 所以a ≤x ≤a+1,1211a a ⎧≤⎪⎪⎨+≥⎪⎪⎩a 1[0,]2∈; 9必要不充分条件提示:对于[0,1]x ∈的一切值0axb +>恒成立 00a b b +>⎧⎨>⎩所以20a b +>;10、 既不必要不充分条件提示:2x 2+x+1>0和2x 2+x+1>0的解集为R, M=N,111222a b c a b c ==不成立;若212121c c b b a a ==,- x 2+2x-1>0和x 2-2x+1>0,此时 M ≠N11、 8、个.12、 提示:②ab>0时b a b a +=+成立.③若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 且0≠y 则0≠xy ”; 正确命题的序号是①④.13、 解:联立关于,x y 的方程组:()3121150y x a x y -⎧=⎪-⎨⎪+++=⎩.消去y 得到关于x 的方程:()214a x += (*) 由题意,关于x 的方程(*)无解或者解为2x =. 若(*)无解,则20a +=,解得2a =-.若(*)的解为2x =,则()2214a +=,解得5a =. 综上所述,2a =-或者5a =.4、逻辑联接词1.三个是命题,一个真命题;2.使用了逻辑联结词“或”;3.r ;4.(4)5.3个.6.真命题.7.提示:3210x x ∃∈-+>R ,.8.提示:(1)p 且q (2)p 或q (3)非p (4)p 或q ;9.提示:(1)菱形的对角线互相垂直或互相平分. 10.②③提示: 11.P 且q;p:244x x +-有意义时,2x ≠;244x x +-有意义时,2x ≠-; 12、提示:1.(1)p 或q :2是偶数或质数,真命题 p 且q :2是偶数且是质数,真命题 非p :2不是偶数,假命题.(2)p 或q :0的倒数还是0或0的相反数还是0,真命题. p 且q :0的倒数还是0且0的相反数还是0,假命题. 非p :0的倒数不是0,真命题.13.解:3(1)p p A A B .非形式的复合命题::∪,此复合命题为假.⊆(2)非P 形式的复合命题:p :方程x 2+2x +3=0有实数根.此复合命题为真.(3)p 或q 形式的复合命题:p :3>3为假,q :3=3为真.此复合命题为真5、综合运用1、 12 ; 2. b<2 ; 3、 92;4、54 ;5、3x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭; 6、 2 ;7、 16提示:等价于(4)(5)0x x --≤;8、 2;m ≥提示:M N R ⋂= ;9、提示:2[]5[]6x x -+≤0 ∴ 2[]3x ≤≤ ∴ 24x ≤<∴不等式2[]5[]6x x -+≤0的解集为{}24x x ≤<10、 a>2 提示:a>-1时,解集为P =(-1,a )因为Q P ⊆,a>2; a<-1时,解集为P =(a ,-1)因为Q P ⊆,舍; a=-1时,解集为P = φ因为Q P ⊆,舍∴a>211、 a ≤-2提示:A ={x ||x |≤2,x ∈R }=[-2,2],B ={x |x ≥a },且A B ,∴ a ≤-212.3≤p 提示: A B A ⋃= ∴ B A ⊆ ∴3≤p13、解:若p 真,则()22140a a >⎧⎪⎨--<⎪⎩,解得12a >. 若q 真,则()240a --≥,解得2a ≤-或者2a ≥. 因为命题“p 或q ”为真命题,命题“p 且q ”为假命题, 所以命题p 和q 有且仅有一个为真.所以实数a 范围为:2a ≤-或122a <<.6、函数及其表示方法1.2x 2+7 ; 2.x c b a c y --=; 3.π+1 ; 4. - 4 ; 5.xx+-11 ; 6.-1;7.提示:327223,(72)32f p q =⨯∴=+ 8.提示:设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b ,∴ ⎩⎨⎧==⇒⎩⎨⎧=+=12342b a b ab a 或⎩⎨⎧-=-=32b a , ∴ f (x )=2x +1或f (x )= -2x -3. 9. 4 ; 10.c b a c b a *+=+)()*(; 11.*,)2019(20N x y x ∈⨯= ; 12.提示:在f (x )+2f (x 1)=x ①中,用x1代换x 得 f (x 1)+2 ;f (x )= x 1 ②,联立①、②解得 )0(32)(2≠-=x xx x f . 13.显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时, PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.7、函数的解析式和定义域一.填空题:1.③ 2.{}|1x x ≥ 3.[4,0)(0,1]-⋃ 4. (2,3] 5.)2,2(-;6.4 7.f (x )=3x 8.15 9.[a ,-a ] 10. {x |-1≤x <8} 11.),3[]2,1()1,0(+∞ 提示:由函数解析式有意义,得⇒⎪⎩⎪⎨⎧>+≠-≥+-010652x x x x x ⎩⎪⎨⎪⎧x ≥3,或x ≤2x ≠1,x >0.⇒0<x <1或1<x ≤2,或x ≥3.故函数的定义域是),3[]2,1()1,0(+∞ .12.()2,2-提示: 因函数 y =lg(x 2+ax +1)的定义域为R ,故x 2+ax +1>0对x ∈R 恒成立,而f (x )= x 2+ax +1是开口向上的抛物线,从而△<0,即a 2-4<0,解得 -2<a <2.13:反复利用条件(2),有f (x +5) ≤f (x +4)+1≤f (x +3)+2≤f (x +2)+3≤f (x +1)+4≤f (x )+5,(★)结合条件(1)得 f (x +5)=f (x )+5.于是,由(★),可得 f (x +1) = f (x )+1. 故 g (6)=f (6)+1-6= [f (1)+5 ]-5=1.8、函数的值域与最值一.填空题:1. {y|164y -≤≤} ;2.(-∞, 23)∪(23,+ ∞) ; 3.2 ;4.(,1]-∞ ;5. ;6.6 ; 7.[23 ,3] ; 8.利用△≥0⇒ a ≥2或a ≤-2. 9.215± 10..1115|⎭⎬⎫⎩⎨⎧<≤-y y 提示:将函数整理为:0)13)(1(4)1(,1,013)1()1(22≥+---=∆≠=++---y y y y y x y x y 由可见,得.1115|,1115⎭⎬⎫⎩⎨⎧<≤-∴≤≤-y y y 函数的值域为 11.[3,12-]提示:注意到函数y =在[0,1]上是单调递增的,故函数的值域是 [3,12-] ;12.2提示:22+(x+3)=4,14sin ,x+34cos ,[0,]2x πθθθ∴-==∈(1-x )令于是2sin 2cos sin()4y πθθθ==+=+2,2m M ∴===、13、 f (x ) =x 只有惟一实数解,即xax+b= x (*)只有惟一实数解, 当ax 2+(b -1)x =0有相等的实数根x 0, 且a x 0+b≠0时,解得f(x)=2x x +2, f [f (-3)] = 32, 当ax 2+(b -1)x =0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)= 1, f [f (-3)] =1.9、函数的单调性与奇偶性一.填空题:1.21->k 2.2b ≤- 3.]2,7[-- 4.2)()(x s x s -- 5.1---=x y 6.]0,21[-和),21[+∞ 7.)2()2()3(f f f << 8.R x x y ∈=,2 提示:本题答案不唯一.9.]1,2[-提示:函数12)1(]2)1[()1(222+-=-=-+=+x x x x x f ,]2,2[-∈x ,故函数的单调递减区间为]1,2[-、10.①③ 11.①④提示:①定义域),0()0,(+∞⋃-∞关于原点对称,且)()(x f x f -=-,奇函数、 ②定义域为}21{不关于原点对称.该函数不具有奇偶性、 ③定义域为R ,关于原点对称,且x x x x x f +≠-=-44)(,)()(44x x x x x f +-≠-=-,故其不具有奇偶性、 ④定义域为R ,关于原点对称, 当0>x 时,)()2(2)()(22x f x x x f -=+-=---=-;当0<x 时,)()2(2)()(22x f x x x f -=---=+-=-;当0=x 时,0)0(=f ;故该函数为奇函数、 故填①④12.-26提示: 已知)(x f 中xb ax x -+32005为奇函数,即)(x g =xb ax x -+32005中)()(x g x g -=-,也即)2()2(g g -=-,108)2(8)2()2(=--=--=-g g f ,得18)2(-=g ,268)2()2(-=-=g f 、二.解答题: 221)1()1()]([)(24222++=++=+==x x x x f x f f x g 、)()()(x f x g x G λ-=λλ--++=22422x x x )2()2(24λλ-+-+=x x)()(21x G x G -)]2()2([2141λλ-+-+=x x )]2()2([2242λλ-+-+-x x)]2()[)((22212121λ-++-+=x x x x x x由题设当121-<<x x 时,0))((2121>-+x x x x ,λλλ-=-++>-++4211)2(2221x x ,则4,04≤≥-λλ 当0121<<<-x x 时,0))((2121>-+x x x x ,λλλ-=-++<-++4211)2(2221x x ,则4,04≥≥-λλ 故4=λ、10、函数的图像1.① 2.② 3. ① ③ 4.121x y +=+ 5.① 6.④7.0提示:()x f 是偶函数,图象与x 轴有4个交点关于一y 轴对称,其横坐标互为相反数,故()0=x f 的所有实根的和是0、 8.1 ,提示:(2)是对的. 9.(2,-2);提示:f (x )=a x 过定点(0,1),故f (x )=a x -2-3过定点(2,—2). 10.(-∞,-1]∪[2,+ ∞)提示:由于函数f(x)是R 上的增函数,且过点A(0,-1)、B((3,1), |f(x+1)| <1的解集为(—1,2),故其补集为(-∞,-1]∪[2,+ ∞) 11.④提示:0y x =不过点(0,1);当α<0时,αx y =不过(0,0);1y x -=在定义域上不是增函数,只有④是对的. 12.①③提示:采用特殊值法.根据题意,可设x x g x x f ==)(,)( ,又设1,2==b a ,易验证①与③成立. 13.(1)()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y(2)图形如右。