数学必修一综合检测一学生版
高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
最新高一数学必修1综合测试题3套(附答案)

高一数学必修1综合测试题3套(附答案)高一数学综合检测题(1)一、选择题:(每小题5分,共60分,请将所选答案填在括号内) 1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( )(A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T 3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2}(D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)3 6.函数243,[0,3]y x x x =-+∈的值域为 ( )(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2] 7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12-8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D)121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y =( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D)(23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D)212ca b =+二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。
新教材高中数学苏教版选择性必修一 学生版第2章 圆与方程 单元综合检测

第2章 圆与方程 单元综合检测(难点)一、单选题1.若直线l 经过圆22:40C x y x ++-=的圆心,且倾斜角为56π,则直线l 的方程为( )A 0y -+B .10x -=C 0y +=D .50x += 2.过点()2,1-的圆与两坐标轴都相切,则圆心到直线230x y ++=的距离为( )A B C D 3.已知从点()5,3-发出的一束光线,经x 轴反射后,反射光线恰好平分圆:()()22115x y -+-=的圆周,则反射光线所在的直线方程为( ) A .2310x y -+=B .2310x y --=C .3210x y -+=D .3210x y --=4.曲线2224x y x y +=+围成的图形的面积为( )A .8+10πB .16+10πC .5πD .5 5.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( )A .B .4C .D .6.已知直线:2l y x =+,过直线l 上的动点P 作圆221x y +=的两条切线,切点分别为A ,B ,则点()1,0Q 到直线AB 的距离最大值为( )A .32B .65CD 7.已知圆22:(1)(1)4C x y -+-=,P 为直线:220l x y 上的动点,过点P 作圆C 的切线PA ,切点为A ,当PAC △的面积最小时,PAC △的外接圆的方程为( )A .22115224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭B .22119224x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C .221524x y ⎛⎫+-= ⎪⎝⎭D .221524x y ⎛⎫-+= ⎪⎝⎭ 8.直线1ax by +=与圆221x y +=相交于不同的A ,B 两点(其中a ,b 是实数),且0(OA OB O⋅>是坐标原点),则点(),P a b 与点10,2⎛⎫ ⎪⎝⎭距离的取值范围为( )A .()1,+∞B .1,2⎛⎫+∞ ⎪⎝⎭C .12⎛ ⎝D .11,22⎛ ⎝ 二、多选题9.设圆的方程是()()2222x a y b a b -++=+,其中0a >,0b >,下列说法中正确的是( ) A .该圆的圆心为(),a bB .该圆过原点C .该圆与x 轴相交于两个不同点D .该圆的半径为22a b + 10.已知点(),A a b ,直线:0l ax by c ++=,圆22:1O x y +=,圆222:C x y c +=.下列命题中的真命题是( )A .若l 与圆C 相切,则A 在圆O 上B .若l 与圆O 相切,则A 在圆C 上 C .若l 与圆C 相离,则A 在圆O 外D .若l 与圆O 相交,则A 在圆C 外 11.设有一组圆()()()22:4R k C x k y k k -+-=∈,下列命题正确的是( )A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点(3,0)C .存在定直线始终与圆k C 相切D .若圆k C 上总存在两点到原点的距离为1,则k ⎛∈⋃ ⎝⎭⎝⎭12.已知圆C :()()22532x y -+-=,直线l :1y ax =+,则下列说法正确的是( ) A .当0a =时,直线l 与圆C 相离B .若直线l 是圆C 的一条对称轴,则25a =C .已知点N 为圆C 上的动点,若直线l 上存在点P ,使得45NPC ∠=︒,则a 的最大值为67D .已知(5,3M ,(),A s t ,N 为圆C 上不同于M 的一点,若90MAN ∠=︒,则t 的最三、填空题13.圆过点()1,2A -,()1,4B -,则周长最小的圆的方程为______. 14.若方程2224380x y kx y k +++++=表示一个圆,则实数k 的取值范围是______.15.已知圆223)1:((C x y -+=和两点()()(),0,,00A m B m m ->,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为__________.16.设m ∈R ,圆22:260M x y x y +--=,若动直线1:20l x my m +--=与圆M 交于点A 、C ,动直线2210:mx y l m --+=与圆M 交于点B 、D ,则AC BD +的最大值是________.四、解答题17.已知圆C 过点()6,0A ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的标准方程;(2)将圆C 向上平移1个单位长度后得到圆1C ,求圆1C 的标准方程.18.已知圆C 的圆心为原点,且与直线34100x y +-=相切,直线l 过点()12M ,. (1)求圆C 的标准方程;(2)若直线l 与圆C 相切,求直线l 的方程.(3)若直线l 被圆C 所截得的弦长为l 的方程.19.已知圆221:2610C x y x y +---=和222:1012450C x y x y +--+=.(1)求证圆1C 和圆2C 相交;(2)求圆1C 和圆2C 的公共弦所在直线的方程和公共弦长;(3)求过点(9,1)P 且与圆2C 相切的直线方程. 20.已知圆C 经过坐标原点,且与直线20x y -+=相切,切点为()2,4P .(1)求圆C 的标准方程;(2)过圆C 内点3,1E 的最长弦和最短弦分别为AF 和BD 求四边形ABFD 的面积. 21.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740()l m x m y m m R +++--=∈.(1)证明:不论m 取什么实数,直线 l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时 l 的方程. 22.已知圆222:()0O x y r r +=>与圆22:220E x y x y +--=内切.(1)求圆O 的方程;(2)直线:1l y kx =+与圆O 交于,M N 两点,若7OM ON ⋅=-,求k 的值;(3)过点E 作倾斜角互补的两条直线分别与圆O 相交,所得的弦为AB 和CD ,若||||AB CD λ=,求实数λ的最大值.23.已知圆C 与圆222168(0)55⎛⎫⎛⎫-+-=> ⎪ ⎪⎝⎭⎝⎭x y r r 关于直线240x y +-=对称,且被直线10x y --=. (1)求圆C 的方程;(2)若A ,B 为圆C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,当123k k ⋅=时,求k 的取值范围.。
新课标数学高中必修一综合测试及答案

高中必修一综合测试一.选择题:(本大题共12个小题,每小题5分,共60分)1、已知全集{}{}{}123456781567U M N ===、、、、、、、,、3、5、7,、、 则()U M N = ð(A ){5,7} (B ) {2,4} (C ){2.4.8} (D) {1,3,5,6,7}解析:画出韦恩图即可得答案C2.如图所示的韦恩图中,A 、B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}解析:A ={x |0≤x ≤2},B ={y |y >1},A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0},由图可得A *B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.3.设集合A ={x |y =x 2-4},B ={y |y =x 2-4},C ={(x ,y )|y =x 2-4},则下列关系:①A ∩C =∅;②A =C ;③A =B ;④B =C .其中不.正确的共有( ) A .1个 B .2个 C .3个D .4个解析:②、③、④都不正确. 答案:C4.函数f (x )=ln(x +1)-2x(x >0)的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e )D .(3,4)[答案] B[解析] f (1)=ln2-2<0,f (2)=ln3-1>0,又y =ln(x +1)是增函数,y =-2x在(0,+∞)上也是增函数,∴f (x )在(0,+∞)上是增函数,∴f (x )在(1,2)上有且仅有一个零点. 5、若函数()y f x =是函数x y a =()0,1a a >≠的反函数,且()21f =,则()f x =( ) A.2log x B.12x C.12log x D.22x - 答案A 解析:函数x y a =()0,1a a >≠的反函数为()f x =log a x ,从而可得答案6、函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b aD .0,10<<<b a答案:D解析:因为函数单调递减,所以01a <<,再根据图像平移的特点可得答案7.已知函数f (x )=ln e x -e -x2,则f (x )是( )A .非奇非偶函数,且在(0,+∞)上单调递增B .奇函数,且在R 上单调递增C .非奇非偶函数,且在(0,+∞)上单调递减D .偶函数,且在R 上单调递减 [答案] A[解析] 由e x -e -x 2>0得e x >1ex ,∴x >0,故f (x )为非奇非偶函数,又e x 为增函数,e -x为减函数,∴e x -e -x2为增函数,∴f (x )为增函数,故选A.8.函数f (x )=x 2+ax (a ∈R),则下列结论正确的是( )A .存在a ∈R ,f (x )是偶函数B .存在a ∈R ,f (x )是奇函数C .对于任意的a ∈R ,f (x )在(0,+∞)上是增函数D .对于任意的a ∈R ,f (x )在(0,+∞)上是减函数 [答案] A[解析] 显然当a =0时,f (x )=x 2是偶函数,故选A.9、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是[答案]D解析:由映射的定义排除A ,B ,CB.C.10.已知函数y =f (x )是偶函数,且函数y =f (x -2)在[0,2]上是单调减函数,则( )A .f (-1)<f (2)<f (0)B .f (-1)<f (0)<f (2)C .f (0)<f (-1)<f (2)D .f (2)<f (-1)<f (0)[答案] C[解析] y =f (x -2)是由函数y =f (x )的图象向右平移2个单位得到的,∵y =f (x -2)在[0,2]上是减函数,∴y =f (x )在[-2,0]上是减函数,∴f (-2)>f (-1)>f (0),∵f (x )为偶函数,∴f (0)<f (-1)<f (2).11.设323log ,log log a b c π=== A. a b c >>B. a c b >>C. b a c >>D. b c a >>解析 22log log log b c <>2233log log 2log 3log a b a b c π<=<∴>∴>>.12.函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是( ) A .(-∞,-2]∪(1,2] B .[-2,-1)∪[2,+∞) C .(1,2] D .[2,+∞)[答案] A[解析] 若a >0,则f (x )=ax 2+1在[0,+∞)上单调增,∴f (x )=(a 2-1)e ax 在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0a 2-1≤1,∴1<a ≤ 2. 同理,当a <0时,可求得a ≤-2,故选A.二、填空题:本大题共4小题,每小题5分,共20分。
高一数学必修一综合测试卷

高一数学必修一综合测试卷一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集{}{}043|,2|2≤-+=->=x x x T x x S ,则()T S C R ⋃=( )A .(]1,2-B .(]4,-∞-C .(]1,∞-D .[)+∞,1 2.函数x x y 22)23lg(-+-=的定义域是( )A .⎥⎦⎤⎢⎣⎡1,32B .⎪⎭⎫⎢⎣⎡1,32C .⎥⎦⎤ ⎝⎛1,32D .⎪⎭⎫ ⎝⎛1,323.设函数⎩⎨⎧>-≤+=)0( 2)0( 1)(2x x x x x f ,若01f(x)=,则x 等于( )A .3或﹣3或﹣5B .3或﹣3C .﹣3或﹣5D .﹣3 4.已知b a bx ax x f +++=3)(2是偶函数,定义域为[]a a 2,1-,则⎪⎭⎫ ⎝⎛21f 等于( )A .31 B .0 C .1213D .21 5.已知集合{}{}A B A m B m A =⋃==,,1,,3,1,则m 等于( )A .0或3B .0或3C .1或3D .1或36.已知函数14)(2+-=mx x x f ,在(]2,-∞-上递减,在[)+∞-,2上递增,则)(x f 在[]2,1上的值域为( )A .[]49,21B .[]21,15-C .[]49,15-D .[]21,1 7.设m ba==52,且211=+ba ,则m =( ) A .10 B .10 C .20 D .1008.奇函数)(x f 在()+∞,0上的解析式是)1()(x x x f -=,则在()0,∞-上,函数)(x f 的解析式是( )A .)(x f =)1(x x --B .)(x f =)1(x x + C .)(x f =)1(x x +- D .)(x f =)1(-x x 9.函数x x f x 32)(+=的零点所在的一个区间是( )A .()1,2--B .()0,1-C .()1,0D .()2,110.若函数)(x f 在()2,1内有一个零点,要使零点的近似值满足精确度为0.01,则对区间()2,1至少二等分( )A .5次B .6次C .7次D .8次 二、填空题(本大题共5小题,每小题5分,共25分) 11.函数)2(log 23x x y -=的单调减区间是_____________。
专题65 高中数学必修第一册全册综合测评(一)(解析版)

专题65 必修第一册全册综合测评(一)考试时间:120分钟 满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知全集为R ,集合A ={x |2x ≥1},B ={x |x 2-3x +2<0},则A ∩∁R B =( )A .{x |0≤x ≤1}B .{x |0≤x ≤1或x ≥2}C .{x |1<x <2}D .{x |0≤x <1或x >2}[解析]A ={x |2x ≥1}={x |x ≥0},B ={x |x 2-3x +2<0}={x |(x -1)(x -2)<0}={x |1<x <2},则∁R B ={x |x ≥2或x ≤1},则A ∩∁R B ={x |0≤x ≤1或x ≥2}. 2.已知命题p :x 为自然数,命题q :x 为整数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]若x 为自然数,则它必为整数,即p ⇒q .但x 为整数不一定是自然数,如x =-2,即q p .故p 是q 的充分不必要条件. 3.若a <b <0,则下列不等式不能成立的是( )A.1a -b >1aB.1a >1b C .|a |>|b | D .a 2>b 2[解析]取a =-2,b =-1,则1a -b >1a 不成立.4.函数f (x )=x 2x 2-1+lg(10-x )的定义域为( )A .RB .[1,10]C .(-∞,-1)∪(1,10)D .(1,10)[解析]要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x 2-1>0,10-x >0,解得x <-1或1<x <10.故选C.5.已知f (x )=x 2-ax 在[0,1]上是单调函数,则实数a 的取值范围是( )A .(-∞,0]B .[1,+∞)C .[2,+∞)D .(-∞,0]∪[2,+∞) [解析]函数f (x )=x 2-ax 图象的对称轴为直线x =a2,根据二次函数的性质可知a 2≤0或a2≥1,解得a ≤0或a ≥2.故选D.6.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a[解析]a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数,且27>33>26,所以b >a >c . 7.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)等于( ) A.225 B .-25 C.25 D .-225[解析] sin ⎝⎛⎭⎫α+π4-22cos(π-α)=22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25.[答案] B 8.将函数f (x )=23cos 2x -2sin x cos x -3的图象向左平移t (t >0)个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A.2π3B.π3C.π2D.π6[解析]将函数f (x )=23cos 2x -2sin x cos x -3=3cos2x -sin2x =2cos ⎝⎛⎭⎫2x +π6的图象向左平移t (t >0)个单位,可得y =2cos ⎝⎛⎭⎫2x +2t +π6的图象.由于所得图象对应的函数为奇函数,则2t +π6=k π+π2,k ∈Z , 则t 的最小值为π6.故选D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.下列函数是偶函数且值域为[0,+∞)的是( )A .y =|x |;B .y =x 3;C .y =2|x |;D .y =x 2+|x |.[解析]对于A ,y =|x |是偶函数,且值域为[0,+∞);对于B ,y =x 3是奇函数;对于C ,y =2|x |是偶函数,但值域为[1,+∞);对于D ,y =x 2+|x |是偶函数,且值域为[0,+∞),所以符合题意的有A C ,故选AC. 10.若幂函数f (x )=x m 在区间(0,+∞)上单调递减,则实数m 的值可能为( )A .-2B .12C .-1D .2[解析] ∵幂函数f (x )=x m 在区间(0,+∞)上单调递减,∴m <0,由选项可知,选AC 11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论不正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0成中心对称图形 B .两个函数的图象均关于直线x =-π4成轴对称图形C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同[解析]①y =2sin ⎝⎛⎭⎫x +π4,图象的对称中心为⎝⎛⎭⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝⎛⎭⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选ABD. 12.关于函数f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6,给出下列命题: A .f (x )的最大值为2; B .f (x )的最小正周期是2π;C .f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;D .将函数y =2cos2x 的图象向右平移π24个单位长度后,与函数y =f (x )的图象重合.其中正确命题是( )[解析] f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6=cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3=2⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3=2cos ⎝⎛⎭⎫2x -π3+π4=2cos ⎝⎛⎭⎫2x -π12, ∴函数f (x )的最大值为2,最小正周期为π,又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴函数f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故C 正确; 由D 得y =2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故D 正确. [答案] ACD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知关于实数x 的不等式2x 2-bx +c <0的解集为⎝⎛⎭⎫-1,32,则b +c 的值为________. [解析]∵一元二次不等式2x 2-bx +c <0的解集是⎝⎛⎭⎫-1,32,∴-1,32是方程2x 2-bx +c =0的两根, 由根与系数关系得⎩⎨⎧-1+32=b2,-1×32=c2,即b =1,c =-3.∴b +c =-2.14.计算:1-cos 210°cos 800°1-cos 20°=________.[解析]1-cos 210°cos 800°1-cos 20°=sin 210°cos (720°+80°)·2sin 210°=sin 210°cos 80°·2sin 10°=sin 210°sin10°·2sin10°=22.15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个. [解析]当t =0.5时,y =2,所以2=e k2,所以k =2ln 2,所以y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024.16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝⎛⎭⎫12x ,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是_____.[解析]∵f (f (x ))-2=0,∴f (f (x ))=2,∴f (x )=-1或f (x )=-1k(k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示,由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示,由图象可知f (x )=-1无解且f (x )=-1k 无解,即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示,由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根,∴f (x )=-1k 有2个实根,∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝⎛⎦⎤-1,-13. 四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知集合A ={x |x 2-7x +6<0},B ={x |4-t <x <t },R 为实数集.(1)当t =4时,求A ∪B 及A ∩∁R B ; (2)若A ∪B =A ,求实数t 的取值范围.[解析] (1)解二次不等式x 2-7x +6<0,得1<x <6,即A ={x |1<x <6}. 当t =4时,B ={x |0<x <4},∁R B ={x |x ≤0或x ≥4}, 所以A ∪B ={x |0<x <6},A ∩∁R B ={4≤x <6}. (2)由A ∪B =A ,得B ⊆A ,①当4-t ≥t ,即t ≤2时,B =∅,满足题意, ②B ≠∅时,由B ⊆A ,得⎩⎪⎨⎪⎧4-t <t ,4-t ≥1,t ≤6,解得2<t ≤3,综合①②得,实数t 的取值范围为(-∞,3].18.已知A (cos α,sin α),B (cos β,sin β),其中α,β为锐角,且|AB |=105. (1)求cos(α-β)的值; (2)若cos α=35,求cos β的值.[解析] (1)由|AB |=105,得(cos α-cos β)2+(sin α-sin β)2=105, ∴2-2(cos αcos β+sin αsin β)=25,∴cos(α-β)=45.(2)∵cos α=35,cos(α-β)=45,α,β为锐角,∴sin α=45,sin(α-β)=±35.当sin(α-β)=35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=2425.当sin(α-β)=-35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=0.∵β为锐角,∴cos β=2425.19.已知f (x )=4cos x sin ⎝⎛⎭⎫x +π3- 3. (1)求f ⎝⎛⎭⎫π6的值;(2)求f (x )的最小正周期及单调增区间.[解析] (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π3-3=4cos x ⎝⎛⎭⎫12sin x +32cos x - 3 =2sin x cos x +23cos 2x -3=sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3, 所以f ⎝⎛⎭⎫π6=2sin 2π3= 3. (2)因为f (x )=2sin ⎝⎛⎭⎫2x +π3,所以函数的最小正周期为T =2π2=π. 由-π2+2k π≤2x +π3≤2k π+π2(k ∈Z ),得-5π12+k π≤x ≤k π+π12(k ∈Z ),所以函数f (x )的单调增区间为⎣⎡⎦⎤-5π12+k π,k π+π12(k ∈Z ). 20.已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解析] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a . 又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43.又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.某村电费收取有以下两种方案供用户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L (x )(单位:元)与用电量x (单位:度)间的函数关系; (2)老王家九月份按方案一交费35元,问老王家该月用电多少度? (3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?[解析] (1)当0≤x ≤30时,L (x )=2+0.5x ;当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1,∴L (x )=⎩⎪⎨⎪⎧2+0.5x ,0≤x ≤30,0.6x -1,x >30.(注:x 也可不取0)(2)当0≤x ≤30时,令L (x )=2+0.5x =35得x =66,舍去;当x >30时,由L (x )=0.6x -1=35得x =60,∴老王家该月用电60度. (3)设按方案二收费为F (x )元,则F (x )=0.58x .当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x ,解得x >25,∴25<x ≤30; 当x >30时,由L (x )<F (x ),得0.6x -1<0.58x ,解得x <50,∴30<x <50. 综上,25<x <50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好. 22.已知f (x )=log 4(4x +1)+kx (k ∈R)为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根,∴log 4(4x +1)-12x =log 4(a ·2x -a ),即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意. ②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22,此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x -a =a (t -1)=a ·⎣⎡⎦⎤a 2(a -1)-1=a (2-a )2(a -1)>0, 方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意. 于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。
人教版数学必修一综合测试(含答案)

人教版数学必修一一、单选题1.已知集合A ={x |x =2sin nπ3,n ∈N ∗},B ={x |x 2―2x ―3<0},则A ∩B =( )A .{―3,0,3}B .{0,3}C .{―3,0}D .{―1,0,3}2.函数f (x )=log 2(3―x )+1x ―1的定义域为( )A .[1,3]B .[1,3)C .[1,+∞)D .(1,3)3.函数 y =2x ―1的定义域为 (―∞,1)∪[2,5) , 则其值域是( ) A .(0,+∞)B .(―∞,2]C .(―∞,12)∪[2,+∞)D .(―∞,0)∪(12,2]4.函数f (x )=|x -2|·(x -4)的单调递减区间是( )A .[2,4]B .[2,3]C .[2,+∞)D .[3,+∞)5.已知函数f (x )=cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且存在0≤x 1<x 2≤π,满足f(x 1)=f (x 2)=―45,则cos(x 2―x 1)=( )A .―35B .35C .45D .―456.函数 f (x )=3―x 2+4x +3 的单调递增区间为( )A .(―∞,2)B .(2,+∞)C .(―3,2)D .(2,7)7.已知函数f (x )={x 2+2x ,x⩽0,ln 1x ,x >0.若函数g (x )=f (x )―a |x |恰有三个零点,则实数a 的取值范围是( )A .(―2,―1e )∪[0,+∞)B .[―2,―1e ]∪(0,+∞)C .(―e ,0)∪[2,+∞)D .{―1e}∪[0,+∞)8.已知a =5log 56―log 29×lo g 32,b =log 56+log 3025,5b +12b =13c ,则( )A.c<b<a B.b<c<a C.a<c<b D.a<b<c二、多选题9.图中阴影部分用集合符号可以表示为( )A.∁U B∩(A∪C)B.∁U((A∩B)∪(B∩C))C.A∪(C∩∁U B)D.(A∩∁U B)∪(C∩∁U B)10.下列命题中正确的是( )A.函数y=1―sin2x的周期是πB.函数y=1―co s2x的图像关于直线x=π4对称C.函数y=2―sinx―cosx在[π4,π]上是减函数D.函数y=cos(2022x―π3)+3sin(2022x+π6)的最大值为1+311.已知抛物线C1:y=x2与抛物线C2:y=a x2+1―a(0<a<13)在第一象限交于M点,过M点的直线l 分别与C1,C2交于P,Q两点,且M为线段PQ的中点,O为坐标原点,则( )A.|PQ|>2|OP|B.|PQ|<|OQ|C.tan∠POQ+2>0D.tan∠POQ+1<012.定义在(―1,1)上的函数f(x)满足f(x)―f(y)=f(x―y1―xy),且当x∈(―1,0)时,f(x)<0,则有( )A.f(x)为奇函数B.存在非零实数a,b,使得f(a)+f(b)=f(12)C.f(x)为增函数D.f(12)+f(13)>f(56)三、填空题13.(lg5)2+lg2×lg50= .14.不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是 .15.已知函数f(x)=3sinωx+cosωx(ω>0),若函数f(x)在区间(π3,π2)内没有零点,则实数ω的最大值是 .16.设正数x,y满足a≥x+yx+y恒成立,则a的最小值是 .四、解答题17.计算下列各式的值:(1)(14)―1+log23;(2)2723+(5)2―1614+(e―1)0.18.已知方程ax2+x+b=0.(1)若方程的解集为{1},求实数a,b的值;(2)若方程的解集为{1,3},求实数a,b的值.19.如图,在直角坐标系xOy中,角α的顶点是原点,始边与轴正半轴重合,终边交单位圆于点A,且α∈(π6,π2),将角α的终边按照逆时针方向旋转π3,交单位圆于点B,记A(x1,y1),B(x2,y2)(1)若x1=13,求x2;(2)分别过A、B做x轴的垂线,垂足依次为C、D,记ΔAOC的面积为S1,ΔBOD的面积为S2,若S1=2S2,求角α的值.20.已知函数f(x)满足2f(x)+f(―x)=x+2x(x≠0).(1)求y=f(x)的解析式;(2)若对∀x1、x2∈(2,4)且x1≠x2,都有f(x2)―f(x1)x2―x1>kx2⋅x1(k∈R)成立,求实数k的取值范围.21.已知定义在R上的函数f(x)满足:①对任意x,y∈R,有f(x+y)=f(x)+f(y).②当x <0时,f(x)>0且f(1)=―3.(1)求证:f(x)是奇函数;(2)解不等式f(2x―2)―f(x)≥―12.22.已知函数f(x)=2x+ab⋅2x+1是定义域为R的奇函数.(1)求函数f(x)的解析式;(2)若存在x∈[―2,2]使不等式f(m⋅4x)+f(1―2x+1)≥0成立,求m的最小值.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】D8.【答案】C9.【答案】A,D10.【答案】A,D11.【答案】A,D12.【答案】A,B,C13.【答案】114.【答案】(2,+∞)15.【答案】17316.【答案】217.【答案】(1)解:原式=(14)―1⋅(2―2)log23=4×3―2=49.(2)解:原式=33×23+5―24×14+1=32+5―2+1=13. 18.【答案】(1)解:若方程的解集为{1},则①若a=0,则1+b=0,解得a=0,b=﹣1;②若a≠0,则a+1+b=0且1﹣4ab=0,解得a=b=﹣12.综上所述,a=0,b=﹣1或a=b=﹣12(2)解:依题意得:1+3=﹣1a ,1×3= ba,解得a=﹣14,b=﹣3419.【答案】(1)解:由三角函数定义,得x1=cosα,x2=cos(α+π3).因为 α∈(π6,π2) , cos α=13 ,所以 sin α=1―cos 2α=223.所以 x 2=cos(α+π3)=12cos α―32sin α=1―266 .(2)解:依题意得 y 1=sin α , y 2=sin(α+π3) . 所以 S 1=12x 1y 1=12cos α·sin α=14sin2α ,S 2=12|x 2|y 2=12[―cos(α+π3)]·sin(α+π3)=―14sin(2α+2π3) .依题意 S 1=2S 2 得 sin2α=―2sin(2α+2π3) ,即 sin2α=―2[sin2αcos 2π3+cos2αsin 2π3]=sin2α―3cos2α ,整理得 cos2α=0 .因为 π6<α<π2 ,所以 π3<2α<π ,所以 2α=π2 ,即 α=π4 .20.【答案】(1)解:由条件2f (x )+f (―x )=x +2x,可知函数f (x )的定义域为{x |x ≠0},所以,2f (―x )+f (x )=―x ―2x,可得{2f (x )+f (―x )=x +2x2f (―x )+f (x )=―x ―2x,解得f (x )=x +2x(x ≠0).(2)解:对∀x 1、x 2∈(2,4),x 1≠x 2,都有f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1(k ∈R ),不妨设2<x 1<x 2<4,由f (x 2)―f (x 1)x 2―x 1>k x 2⋅x 1,则f (x 2)―f (x 1)>k (x 2―x 1)x 2⋅x 1=k x 1―k x 2,可得f (x 2)+k x 2>f (x 1)+k x 1,也即可得函数g (x )=f (x )+k x =x +k +2x 在区间(2,4)上递增;g ′(x )=1―k +2x2≥0对任意的x ∈(2,4)恒成立,即k +2≤x 2,当x ∈(2,4)时,4<x 2<16,故k +2≤4,解得k ≤2.因此,实数k 的取值范围是(―∞,2].21.【答案】(1)证明:令 x =y =0 , f (0)=f (0)+f (0) ,∴ f (0)=0 ,令 y =―x , ∴ f (0)=f (―x )+f (x )=0∴f(x)=―f(―x).∴函数f(x)是奇函数.(2)解:设x1<x2,则x1―x2<0,∴f(x1)―f(x2)=f(x1)+f(―x2)=f(x1―x2)>0∴f(x)为R上减函数.∵f(2x―2)―f(x)=f(2x―2)+f(―x)=f(x―2)≥―12,―12=4f(1)=f(4).∴x―2≤4即x≤6.∴不等式f(2x―2)―f(x)≥―12的解集为{x|x≤6}.22.【答案】(1)解:因为函数f(x)是定义域为R的奇函数,可知f(0)=0, ∴a=-1,又f(―x)=―f(x),则2―x―1b⋅2―x+1=- 2x―1b⋅2x+1,∴1―2x b+2x =- 2x―1b⋅2x+1,∴b=1,∴f(x)=2x―12x+1(2)解:∵f(x)=2x―12x+1=1- 22x+1,所以f(x)在[―2,2]上单调递增;由f(m⋅4x)≥―f(1―2x+1)=f(2x+1―1)可得m⋅4x≥2x+1―1在[―2,2]有解分参得m≥2x+1―14x =2⋅12x―14x,设t=12x ,t∈[14,4], m≥―t2+2t=―(t―1)2+1,所以m≥―8,则m的最小值为―8。
高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。
高中数学必修一(北师大版)练习综合学业质量标准检测1 Word版含解析

综合学业质量标准检测(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分分.考试时间分钟.第Ⅰ卷(选择题共分)一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).(·全国卷Ⅰ理,)已知集合={<},={<},则( ).∪=.∩={<}.∩=∅.∪={>}[解析]由<,得<,∴={<}={<}.∴∩={<}∩{<}={<},故选..设()=(\\(,>,,=,,-,<,))()=(\\(,为有理数,,为无理数,))则((π))的值为( )...π.-[解析]∵(π)=,∴((π))=()=..函数=-+的增区间是( ).[,+∞).[-,+∞).(-∞,-].(-∞,][解析]函数=-+=-(-)+,则对称轴是=,所以当≤时,函数是增加的..下列各组函数,在同一直角坐标中,()与()有相同图像的一组是( ).()=(),()=().()=,()=-.()=(),()=.()=,()=[解析]选项中,()的定义域为,()的定义域为[,+∞);选项中,()的定义域为(-∞,-)∪(-,+∞),()的定义域为;选项中,()=()=,∈[,+∞),()=,∈(,+∞),定义域和对应关系都不同;选项中,()===,故选..函数=+-的零点,必定位于如下哪一个区间( ).().().().()[解析]令()=+-,设()=,∵()=-<,()=>,又()=-<,()·()<,∴∈()..已知()是定义域在(,+∞)上的单调增函数,若()>(-),则的取值范围是( ).<.>.<<.<<[解析]由已知得(\\(>->>-))⇒(\\(><>)),∴∈(),故选..已知+-=,则的值为( )....[解析]=+=+-=(+-)-=-=.故选..已知函数=(+)(,为常数,其中>,≠)的图像如图,则下列结论成立的是( ).><<.>,>.<<<<.<<,>[解析]本题考查对数函数的图像以及图像的平移.由单调性知<<.又图像向左平移,没有超过个单位长度.故<<,∴选..若函数()=(-)--是偶函数,则()在上( ).先增加后减少.先减少后增加.单调递减.单调递增[解析]因为()为偶函数,所以=.所以()=-.因为()的图像是开口向上的抛物线,所以()在上先减少后增加..(),(),()的大小关系为( ).()>()>().()>()>().()>()>().()>()>()[解析]∵=()为减函数,<,。
北师大版高中数学必修一综合学业质量标准检测1

高中数学学习材料 (灿若寒星 精心整理制作)综合学业质量标准检测(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·全国卷Ⅰ理,1)已知集合A ={x |x <1},B ={x |3x <1},则导学号 00815066( A )A .A ∩B ={x |x <0} B .A ∪B =RC .A ∪B ={x |x >1}D .A ∩B =∅[解析] 由3x <1,得x <0,∴B ={x |3x <1}={x |x <0}. ∴A ∩B ={x |x <1}∩{x |x <0}={x |x <0},故选A . 2.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为导学号 00815067( B )A .1B .0C .-1D .π[解析] ∵g (π)=0,∴f (g (π))=f (0)=0.3.函数y =-x 2+4x 的增区间是导学号 00815068( D ) A .[-2,+∞) B .[2,+∞) C .(-∞,-2]D .(-∞,2] [解析] 函数y =-x 2+4x =-(x -2)2+4,则对称轴是x =2,所以当x ≤2时,函数是增加的.4.下列各组函数,在同一直角坐标中,f (x )与g (x )有相同图像的一组是导学号 00815069( D )A .f (x )=(x 2)12,g (x )=(x 12 )2B .f (x )=x 2-9x +3,g (x )=x -3C .f (x )=(x 12 )2,g (x )=2log 2xD .f (x )=x ,g (x )=lg10x[解析] 选项A 中,f (x )的定义域为R ,g (x )的定义域为[0,+∞);选项B 中,f (x )的定义域为(-∞,-3)∪(-3,+∞),g (x )的定义域为R ;选项C中,f (x )=(x 12 )2=x ,x ∈[0,+∞),g (x )=2log 2x ,x ∈(0,+∞),定义域和对应关系都不同;选项D 中,g (x )=lg10x =x lg10=x ,故选D .5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间导学号 00815070( B ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)[解析] 令f (x )=ln x +2x -6,设f (x 0)=0, ∵f (1)=-4<0,f (3)=ln3>0, 又f (2)=ln2-2<0,f (2)·f (3)<0, ∴x 0∈(2,3).6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是导学号 00815071( D )A .x >1B .x <1C .0<x <2D .1<x <2[解析] 由已知得⎩⎪⎨⎪⎧ x >02-x >0x >2-x ⇒⎩⎪⎨⎪⎧x >0x <2x >1,∴x ∈(1,2),故选D . 7.已知x 12+x-12=5,则x 2+1x的值为导学号 00815072( B )A .5B .23C .25D .27[解析] x 2+1x =x +1x=x +x -1=(x 12+x-12 )2-2=52-2=23.故选B .8.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图,则下列结论成立的是导学号 00815073( D )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1[解析] 本题考查对数函数的图像以及图像的平移.由单调性知0<a <1.又图像向左平移,没有超过1个单位长度.故0<c <1,∴选D . 9.若函数f (x )=(1-m )x 2-2mx -5是偶函数,则f (x )在R 上导学号 00815074( A ) A .先减少后增加 B .先增加后减少 C .单调递增D .单调递减[解析] 因为f (x )为偶函数,所以m =0. 所以f (x )=x 2-5.因为f (x )的图像是开口向上的抛物线, 所以f (x )在R 上先减少后增加.10.(23)23 ,(25)23 ,(23)13 的大小关系为导学号 00815075( D ) A .(23)13 >(25)23 >(23)23 B .(25)23 >(23)13 >(23)23C .(23)23 >(23)13 >(25)23 D .(23)13 >(23)23 >(25)23[解析] ∵y =(23)x 为减函数,13<23,∴(23)13 >(23)23 . 又∵y =x 23在(0,+∞)上为增函数,且23>25,∴(23)23 >(25)23 , ∴(23)13 >(23)23 >(25)23 .故选D . 11.已知函数f (x )=log 12 x ,则方程(12)|x |=|f (x )|的实根个数是导学号 00815076( B )A .1B .2C .3D .2006[解析] 在同一平面直角坐标系中作出函数y =(12)|x |及y =|log 12 x |的图像如图所示,易得B .12.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,“好点”的个数为导学号 00815077( C )A .0B .1C .2D .3[解析] ∵指数函数过定点(0,1),对数函数过定点(1,0)且都与y =x 没有交点, ∴指数函数不过(1,1),(2,1)点,对数函数不过点(1,2),∴点M 、N 、P 一定不是好点.可验证:点Q (2,2)是指数函数y =(2)x 和对数函数y =log 2x 的交点,点G (2,12)在指数函数y =(22)x上,且在对数函数y =log 4x 上.故选C . 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.若已知A ∩{-1,0,1}={0,1},且A ∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A 共有_4__个.导学号 00815078[解析] ∵A ∩{-1,0,1}={0,1}, ∴0,1∈A 且-1∉A .又∵A ∪{-2,0,2}={-2,0,1,2}, ∴1∈A 且至多-2,0,2∈A . 故0,1∈A 且至多-2,2∈A .∴满足条件的A 只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个.14.已知幂函数y =f (x )的图像过点(2,2),则f (9)=_3__.导学号 00815079 [解析] 设f (x )=x α.因为图象过点(2,2),所以2=2α.所以α=12.所以f (x )=x 12 .所以f (9)=912=3.15.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为 (12,1) .导学号 00815080[解析] 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0, 又f (12)=(12)3-6×(12)2+4>0,∴下一步可断定方程的根所在的区间为(12,1).16.函数y =log 13(x 2-3x )的单调递减区间是_(3,+∞)__.导学号 00815081[解析] 先求定义域,∵x 2-3x >0,∴x >3或x <0, 又∵y =log 13u 是减函数,且u =x 2-3x .即求u 的增区间.∴所求区间为(3,+∞).三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B .导学号 00815082[解析] ∵(∁U A )∩B ={2},A ∩(∁U B )={4}, ∴2∈B,2∉A,4∈A,4∉B ,根据元素与集合的关系,可得⎩⎪⎨⎪⎧ 42+4p +12=022-10+q =0,解得⎩⎪⎨⎪⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意. ∴A ∪B ={2,3,4}. 18.(本小题满分12分)(1)279+3338+3×100-30.064; (2)设4a =5b =100,求2(1a +2b )的值.导学号 00815083[解析] (1)原式=259+3278+3-3(0.4)3=(53)2+3(32)2+3-0.4=53+32+3-25=17330(2)∵4a =100,∴a =log 4100.同理可得,b =log 5100, 则1a =1log 4100=log 1004,1b =1log 5100=log 1005, ∴1a +2b =log 1004+2log 1005=log 100(4×52)=log 100100=1.∴2(1a +2b )=2. 19.(本小题满分12分)设函数f (x )=|x 2-2x -3|,导学号 00815084 (1)求函数f (x )的零点;(2)在给出的平面直角坐标系中直接画出函数f (x )的图像,并写出单调区间.[解析] (1)由f (x )=0,得|x 2-2x -3|=0, 即x 2-2x -3=0, 解得x 1=-1,x 2=3. 所以函数f (x )的零点为-1,3.(2)在平面直角坐标系中作出的函数f (x )的图像如图所示.函数的单调减区间为(-∞,-1],(1,3]; 函数的单调增区间为(-1,1],(3,+∞).20.(本小题满分12分)已知函数f (x )=log a 2+x 2-x (0<a <1).导学号 00815085(1)试判断f (x )的奇偶性; (2)解不等式f (x )≥log a 2.[解析] (1)由2+x2-x >0,得-2<x <2,故f (x )的定义域为(-2,2),关于原点对称.又f (-x )=log a 2-x 2+x =log a (2+x 2-x )-1=f (x ),所以f (x )是奇函数.(2)f (x )≥log a 2,即log a 2+x2-x ≥log a 2.因为0<a <1,所以⎩⎪⎨⎪⎧2+x 2-x >0,2+x2-x ≤2,即⎩⎪⎨⎪⎧-2<x <2,3x -2x -2≥0.解得-2<x ≤23,故不等式的解集为{x |-2<x ≤23}.21.(本小题满分12分)已知函数f (x )=ax 2+1x ,其中a 为常数导学号 00815086(1)根据a 的不同取值,判断函数f (x )的奇偶性,并说明理由; (2)若a ∈(1,3),判断函数f (x )在[1,2]上的单调性,并说明理由. [解析] (1)f (x )的定义域为{x |x ≠0,x ∈R },关于原点对称, f (-x )=a (-x )2+1-x =ax 2-1x ,当a =0时,f (-x )=-f (x )为奇函数,当a ≠0时,由f (1)=a +1,f (-1)=a -1,知f (-1)≠-f (1),故f (x )即不是奇函数也不是偶函数.(2)设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)[a (x 1+x 2)-1x 1x 2], 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4, -1<-1x 1x 2<-14,又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.22.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.导学号 00815087(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. [解析] (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), ∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0)-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧x -1<0-1<-a-x +1+1<4或⎩⎪⎨⎪⎧x -1≥0-1<a x -1-1<4, 即⎩⎪⎨⎪⎧ x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥00<a x -1<5. 当a >1时,有⎩⎪⎨⎪⎧ x <1x >1-log a2或⎩⎪⎨⎪⎧x ≥1x <1+log a 5 注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。
数学必修一综合测试题

数学必修一综合测试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={1, 2, 3},B ={2, 3, 4},则 A ∪ B =()A {1, 2, 3, 4}B {2, 3}C {1, 4}D {1}2、函数 f(x) = x + 1 的定义域是()A RB 0, +∞)C (∞, 0D (∞,+∞)3、下列函数中,在区间(0, +∞)上为增函数的是()A y = x + 1B y = 1 / xC y = x²D y = 2^(x)4、已知函数 f(x) = 2x 1,g(x) = x²+ 1,则 fg(1) =()A 2B 4C 5D 65、若函数 f(x) = log₂(x + 1),则 f(1) =()A 0B 1C 2D 36、已知幂函数 f(x) =x^α 的图象过点(4, 2),则α =()A 1 / 2B 1C 2D 47、已知函数 f(x) = x² 2x 3,则函数 f(x)的零点个数为()A 0B 1C 2D 38、若 a = 03²,b = log₂03,c = 2^03,则 a,b,c 的大小关系是()A a < b < cB b < a < cC a < c < bD b < c < a9、已知函数 f(x)是定义在 R 上的奇函数,当 x > 0 时,f(x) = x²2x,则当 x < 0 时,f(x) =()A x² 2xB x²+ 2xC x²+ 2xD x² 2x10、函数 f(x) = 2^x 1 / 2^x 的图象关于()A x 轴对称B y 轴对称C 原点对称D 直线 y = x 对称11、已知函数 f(x) = log₂(x² 2x 3),则函数 f(x)的单调递增区间是()A (∞,-1)B (∞, 1)C (1, +∞)D (3, +∞)12、设函数 f(x) = x² 4x + 6,x ≥ 0 ,若互不相等的实数 x₁,x₂,x₃满足 f(x₁) = f(x₂) = f(x₃),则 x₁+ x₂+ x₃的取值范围是()A (4, 6)B (4, +∞)C (5, 6)D (5, +∞)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、计算:log₃9 =______。
高一数学必修一综合测试题(含答案)

高一数学期中考试试卷满分:120分 考试时间:90分钟 一、选择题(每题5分,共50分)1、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N =( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,22、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、1033、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4.设12log 3a =,0.213b =⎛⎫ ⎪⎝⎭,132c =,则( ).A a b c <<B c b a <<C c a b <<D b a c <<5、若21025x=,则10x-等于 ( ) A 、15- B 、15 C 、150 D 、16256.要使1()3x g x t +=+的图象不经过第二象限,则t 的取值范围为 ( )A. 1t ≤-B. 1t <-C.3t ≤-D. 3t ≥-6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+ B 、23x x -- C 、259x x +- D 、21x x -+ 7、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ).A .(-∞,-3)B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a << C 、102a << D 、1a >10.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当x ∈[1,0]-时()12xf x ⎛⎫= ⎪⎝⎭,则2(log 8)f 等于 ( )A . 3B . 18C . 2-D . 2二、填空题(每题4分,共20分)11.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .12.函数y =-(x -3)|x |的递减区间为________.13、在32521,2,,y y x y x x y x x===+=四个函数中,幂函数有 个. 14、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值的集合是 .15.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在x<0时的解析式为 .三、解答题(共5题)16、(每题4分,共8分)不用计算器求下列各式的值⑴ ()()1223021329.63 1.548--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---+⑵ 74log 2327log lg 25lg 473+++ 17.(本题8分)已知集合A={x ︱m+1≤x ≤2m-1},集合B=﹛x ︱≤0﹜若A ∩B=A ,试求实数t 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合检测一
一、选择题
1.已知M ={x|x>2或x<0},N ={y|y =x -1},则N∩∁R M 等于 ( )
A .(1,2)
B .[0,2]
C .R
D .[1,2]
2.函数y =1
log 0.5-
的定义域为 ( )
A .(34,1)
B .(3
4,+∞) C .(1,+∞) D .(3
4,1)∪(1,+∞) 3.函数y =1
x 2+1的值域是 ( )
A .[1,+∞)
B .(0,1]
C .(-∞,1]
D .(0,+∞)
4.函数f(x)=x 3+x 的图象关于 ( )
A .y 轴对称
B .直线y =-x 对称
C .坐标原点对称
D .直线y =x 对称
5.下列函数中,在区间(0,2)上为增函数的是 ( )
A .y =-x +1
B .y =x
C .y =x 2-4x +5
D .y =2
x
6.已知f(x)=2x +2-x ,若f(a)=3,则f(2a)等于 ( )
A .5
B .7
C .9
D .11
7.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x +y)=f(x)f(y)”的是(
) A .幂函数 B .对数函数
C .指数函数
D .一次函数
8.若0<m<n ,则下列结论正确的是 ( )
A .2m >2n
B .(1
2)m <(1
2)n
C .log 2m>log 2n
D .log 12m>log 1
2n
9.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是 ( )
A .b>c>a
B .b>a>c
C .a>b>c
D .c>b>a
10.已知函数f(x)=⎩⎪⎨⎪⎧ 3x +1, x<1,x 2+ax , x≥1,若f(f(0))=6,则a 的值等于 ( )
A .-1
B .1
C .2
D .4 11.函数y =ln 1
|x +1|的大致图象为 ( )
12.已知函数f(x)=e x -1,g(x)=-x 2+4x -3,若有f(a)=g(b),则b 的取值范围为( )
A .[2-2,2+2]
B .(2-2,2+2)
C .[1,3]
D .(1,3)
二、填空题
13.计算(lg 1
4-lg 25)÷1001
2=________.
14.已知f(x 5)=lg x ,则f(2)=________.
15.如果函数y =log
a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.
16.已知y =f(x)+x 2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.
三、解答题
17.(1)计算:(279)12+(lg 5)0+(2764)-13
; (2)解方程:log 3(6x -9)=3.
18.求函数y =log (x +1)(16-4x )的定义域.
19.已知函数f(x)=-3x 2+2x -m +1.
(1)当m 为何值时,函数有两个零点、一个零点、无零点; (2)若函数恰有一个零点在原点处,求m 的值.
20.已知函数f(x)=log 2(x +1),当点(x ,y)是函数y =f(x)图象上的点时,点(x 3,y 2
)是函数y =g(x)图象上的点. (1)写出函数y =g(x)的表达式; (2)当2g(x)-f(x)≥0时,求x 的取值范围.
21.设f(x)是定义在R 上的函数,且满足下列关系:f(10+x)=f(10-x),f(20-x)=-f(20+x).试判断f(x)的奇偶性.
22.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y(亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8.
(1)求y 与x 之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上 年增加20%?
[收益=用电量×(实际电价-成本价)]。