第3章-逻辑门电路案.doc

合集下载

《数字电子技术基本教程第》阎石习题详解

《数字电子技术基本教程第》阎石习题详解
vI/V vO/V
51Ω 1.5KΩ 100KΩ ∞
0
0
0 不定
5
5
5 不定
图 2.44 习题 2-3 电路图
图 2.45
3.16 答案:
RP(m a x)
VCC VOH nIOH IL
5 3.6 2 0.1103 3 20106 5.4K
RP(m in)
VOH mI IH

10106
5 3.5 3 1106
6

41.7K
RP(m in)
VDD VOL IOL(max) mI IL

5 0.3 4103 1106
6
1.2K
图 2.53 习题 2-17 图
3.13 答案:
图 2.44 习题 2-3 电路图
vI1/V 悬空 接地 51Ω 3.6 50KΩ 0.2 vI2/V 1.4V 0V 0V 1.4V 1.4V 0.2V
2.7 答案:
0
1
1
0
0
1
高阻态
0 0
1
2.8 答案: 1
1 0
0
1
0 0
1
2.9 答案:
图 2.48 习题 2-9 图
2.12 答案:
F A B AB AB 1 B 1 B B
最多可以接10个同样的门电路
图 2.55 习题 2-19 图
3.20 答案:
IOH(max) 0.4mA
IIH(max) 20 A
IOL(max) 8mA IIH(max) 0.4mA
2nIIH(max) IOH(max)
n
IOH (max) 2I IH(max)

数字逻辑第3章 门电路

数字逻辑第3章 门电路

逻辑式:Y=A + B
逻辑符号: A 1
B
Y
电压关系表
uA uB uY
0V 0V 0V 0V 3V 2.3V 3V 0V 2.3V 3V 3V 2.3V
真值表
ABY
0
0
0
0
1
1
1
0
1
1
1
1
三、三极管非门
5V
利用二极管的压降为0.7V, 保证输入电压在1V以下时,
电路可靠地截止。
A(V) Y(V) <0.8 5 >2 0.2
II H &
II L &
… …
NOH
I OH (max) I IH
N MIN ( NOH , NOL )
NOL
IOL(max) I IL
六、CMOS漏极开路门(OD)门电路(Open Drain)
1 . 问题的提出
普通门电路
在工程实践中,往往需要将两个门的输出端 能否“线与”?
并联以实现“与”逻辑功能,称为“ 线与 。
输入 0 10% tr tf
tPHL
输出
tPLH
tr:上升时间
tf:下降时间 tw:脉冲宽度 tPHL:导通传输时间
tPLH:截止传输时间
平均传输延迟时间 (Propagation delay)
tpd= tpHL+ tpLH 2
5、功耗: 静态功耗:电路的输出没有状态转换时的功耗。 动态功耗:电路在输出发生状态转换时的功耗。
PMOS
NMOS
3、增强型MOSFET的开关特性
iD管可变子类型恒
VGS1 击开/关的条(件1)N沟道增强开型/M关O的S等FE效T电:路

数字电路教案-阎石-第三章-逻辑门电路

数字电路教案-阎石-第三章-逻辑门电路

第3章逻辑门电路3.1 概述逻辑门电路:用以实现基本和常用逻辑运算的电子电路。

简称门电路.用逻辑1和0 分别来表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻辑工作;若用低、高电平来表示,则称为负逻辑。

本课程采用正逻辑。

获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态.在数字集成电路的发展过程中,同时存在着两种类型器件的发展。

一种是由三极管组成的双极型集成电路,例如晶体管-晶体管逻辑电路(简称TTL电路)及射极耦合逻辑电路(简称ECL电路).另一种是由MOS管组成的单极型集成电路,例如N-MOS逻辑电路和互补MOS(简称COMS)逻辑电路。

3。

2 分立元件门电路3。

3.1二极管的开关特性3.2.2三极管的开关特性NPN型三极管截止、放大、饱和3种工作状态的特点工作状态截止放大饱和条件i B=0 0<i B<I BS i B>I BS工作特点偏置情况发射结反偏集电结反偏u BE〈0,u BC〈0发射结正偏集电结反偏u BE>0,u BC〈0发射结正偏集电结正偏u BE〉0,u BC〉集电极电流i C=0 i C=βi B i C=I CSce间电压u CE=V CC u CE=V CC-i C R cu CE=U CES=0.3Vce间等效电阻很大,相当开关断开可变很小,相当开关闭合3.2。

3二极管门电路1、二极管与门2、二极管或门u A u B u Y D1D20V 0V 0V 5V 5V 0V 5V 5V0V4。

3V4。

3V4.3V截止截止截止导通导通截止导通导通3。

2.4三极管非门3。

2。

5组合逻辑门电路1、与非门电路2、或非门电路3.3 集成逻辑门电路一、TTL与非门1、电路结构(1)抗饱和三极管作用:使三极管工作在浅饱和状态。

因为三极管饱和越深,其工作速度越慢,为了提高工作速度,需要采用抗饱和三极管。

构成:在普通三极管的基极B和集电极C之间并接了一个肖特基二极管(简称SBD)。

数字模拟电路---第三章 逻辑门电路(1)

数字模拟电路---第三章 逻辑门电路(1)

路。

简称门电路。

5V一、TTL 与非门图3-1 典型TTL 与非门电路3.2 TTL 集成门电路•数字集成电路中应用最广的为TTL 电路(Transister-Transister-Logic 的缩写)•由若干晶体三极管、二极管和电阻组成,TTL 集成电路有54/74系列 ①输出高电平UOH 和输出低电平UOL 。

 •输出高电平U OH:至少有一个输入端接低电平时的输出电平。

•输出低电平U OL:输入全为高电平时的输出电平。

• 电压传输特性的截止区的输出电压UOH=3.6V,饱和区的输出电压UOL=0.3V。

一般产品规定U OH≥2.4V、U OL<0.4V时即为合格。

 二、TTL与非门的特性参数③开门电平U ON 和关门电平U OFF 。

 开门电平U ON 是保证输出电平达到额定低电平(0.3V )时,所允许输入高电平的最低值,表示使与非门开通的最小输入电平。

通常U ON =1.4V ,一般产品规定U ON ≤1.8V 。

 关门电平U OFF 是保证输出电平为额定高电平(2.7V 左右)时,允许输入低电平的最大值,表示与非门关断所允许的最大输入电平。

通常U OFF ≈1V ,一般产品要求U OFF ≥0.8V 。

5). 扇入系数Ni和扇出系数N O 是指与非门的输入端数目。

扇入系数Ni是指与非门输出端连接同类门的个数。

反扇出系数NO映了与非门的带负载能力。

6)输入短路电流I IS 。

 当与非门的一个输入端接地而其余输入端悬空时,流过接地输入端的电流称为输入短路电流。

7)8)平均功耗P 指在空载条件下工作时所消耗的电功率。

三、TTL门电路的改进 74LS系列 性能比较好的门电路应该是工作速度既快,功耗又小的门电路。

因此,通常用功耗和传输延迟时间的乘积(简称功耗—延迟积或pd积)来评价门电路性能的优劣。

74LS系列又称低功耗肖特基系列。

74LS系列是功耗延迟积较小的系列(一般t pd<5 ns,功耗仅有2 mW) 并得到广泛应用。

第 三 章 逻辑门电路

第 三 章 逻辑门电路

是构成数字电路的基本单元之一
CMOS 集成门电路 用互补对称 MOS 管构成的逻辑门电路。
TTL 集成门电路 输入端和输出端都用 三极管的逻辑门电路。
CMOS 即 Complementary Metal-Oxide-Semiconductor TTL 即 Transistor-Transistor Logic 按功能特点不同分 普通门 输出 三态门 CMOS (推拉式输出) 开路门 传输门 EXIT
CE(sat) CE
B
C
uI 增大使 uBE > Uth 时,三极管开始导通, iB > 0,三极管工作于放 大导通状态。
uBE < Uth E
三极管 截止状态 等效电路
EXIT
iC 临界饱和线 M T IC(sat) + uBE S Q
放大区
IB(sat)
uI=UIH
饱 和 区
O UCE(sat)
t
uI 负跳变到 iC 下降到 0.1IC(sat) 所需的时间 toff 称 为三极管关断时间。 通常 toff > ton
UCE(sat) O
开关时间主要由于电 通常工作频率不高时, 荷存储效应引起,要提高 可忽略开关时间,而工作 开关速度,必须降低三极 频率高时,必须考虑开关 管饱和深度,加速基区存 速度是否合适,否则导致 储电荷的消散。 不能正常工作。 EXIT t
iB 0,iC 0,C、E 间相当 于开关断开。
三极管 截止状态 等效电路
E
Uth为门限电压 EXIT
iC u S 为放大和饱和的交界点,这时的临界饱和线I 增大使 iB 增大, 放大区 从而工作点上移, iC 增 iB 称临界饱和基极电流,用 IB(sat) 表示; M T 相应地,IC(sat) 为临界饱和集电极电流; S 大,uCEI减小。 IC(sat) B(sat) UBE(sat) 为饱和基极电压; 饱 Q UCE(sat) 为饱和集电极电压。对硅管, 和 截止区 UBE(sat) 0.7V, UCE(sat) 0.3V。在临 A 区 界饱和点三极管仍然具有放大作用。 U O N u

第 3 章 逻辑门电路总结

第 3 章 逻辑门电路总结

EXIT
逻辑门电路
一、三极管的开关作用及其条件
iC 临界饱和线 M T IC(sat) S
放大区
IB(sat)
uI=UIL
三极管为什么能用作开关? 饱 Q + 怎样控制它的开和关? uBE 和 区
O UCE(sat) B uBE < Uth
负载线
A N C
截止区
uCE
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
逻辑门电路
第3章
逻辑门电路
概 述 三极管的开关特性
TTL 集成逻辑门 CMOS 集成逻辑门 集成逻辑门的应用
本章小结
EXIT
逻辑门电路
3.1
主要要求:
概 述
了解逻辑门电路的作用和常用类型。 理解高电平信号和低电平信号的含义。
EXIT
逻辑门电路
一、门电路的作用和常用类型
按逻辑功能不同分 指用以实现基本逻辑关系和 门电路 (Gate Circuit) 常用复合逻辑关系的电子电路。 与门 或门 非门 异或门 与非门 或非门 与或非门 按电路结构不同分
上例中三极管反相 器的工作波形是理想波 形,实际波形为 :
t
UCE(sat) O
EXIT
逻辑门电路
二、三极管的动态开关特性
uI
UIH
UIL O iC 0.9IC(sat) IC(sat) 0.1IC(sat) O uO VCC ton toff t
uI 正跳变到 iC 上升到 0.9IC(sat) 所需的时间 ton 称 为三极管开通时间。
逻辑门电路
(2) 对应输入波形画出输出波形 三极管截止时, iC 0,uO +5 V 三极管饱和时, uO UCE(sat) 0.3 V

数字电子技术基础第三章逻辑门电路

数字电子技术基础第三章逻辑门电路
ts 的大小是影响三极管速度的最主要因素,要提高三极 管的开关速度就要设法缩短ton与toff ,特别是要缩短ts 。
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
3.MOS管的开关特性
A、MOS管静态开关特性
在数字电路中,MOS管也是作为 开关元件使用,一般采用增强型的 MOS管组成开关电路,并由栅源电压 uGS控制MOS管的导通和截止。
时间。
toff = ts +tf 关断时间toff:从输入信号负跃变的瞬间,到iC 下降到 0.1ICmax所经历的时间。
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
2.三极管的开关特性
B、晶体三极管动态开关特性
ton和toff一般约在几十纳秒(ns=10-9 s)范围。通常都
有toff > ton,而且ts > tf 。
0 .3V 3 .6V 3 .6V
1V 5V
3 .6V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
3 .6V 3 .6V 3 .6V
2.1V
0 .3V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
数字电子技术基础第三章逻辑门电路
❖ 2.教学重点:不同元器件的静态开关特性,分立元件门电路 和组合门电路,TTL和CMOS集成逻辑门电路基本功能和电气特 性。
❖ 3.教学难点:组合逻辑门电路、TTL和CMOS集成逻辑门4.课时 安排: 第一节 常见元器件的开关特性 第二节 基本逻辑门电路 第三节 TTL和CMOS集成逻辑门电路

电子教案数字电子技术第三章组合逻辑电路XX1

电子教案数字电子技术第三章组合逻辑电路XX1
电子教案数字电子技术第三章组合逻 辑电路XX1
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/28
电子教案数字电子技术第三章组合逻 辑电路XX1
•解:(1)列出真值表:
(2)由真值表写出各输出的逻辑表达式为:
电子教案数字电子技术第三章组合逻 辑电路XX1
• 重新整理 得:
• (3)由表达式 画
• 出逻辑图:
电子教案数字电子技术第三章组合逻 辑电路XX1
• (4)增加控制使能标志GS :
• 当按下S0~ S9
• 任意一个键 时,
• GS=1,表示 有
例4.3.1 试用8选1数据选择器74151实现逻辑函数:
解:将逻辑函数转换成 最小项表达式:
=m3+m5+m6+m7 画出连线图。
电子教案数字子技术第三章组合逻 辑电路XX1
(2)当逻辑函数的变量个数大于数据选择器的地址输入变 量个数时。 例4.3.2 试用4选1数据选择器实现逻辑函数: 解:将A、B接到地址输入端,C加到适当的数据输入端。 作出逻辑函数L的真值表,根据真值表画出连线图。
按内部连接方式不同,七段数字显示器分为共阴极和共阳极两 种。
2.七段显示译码器7448 七段显示译码器7448是一种 与共阴极数字显示器配合 使用的集成译码器。
电子教案数字电子技术第三章组合逻 辑电路XX1
电子教案数字电子技术第三章组合逻 辑电路XX1
•7448的逻辑功能: (1)正常译码显示。LT=1,BI/RBO=1时,对输入为十
如果想用与非门组成半加器,则将上式用代数法变换 成与非形式:
由此画出用与非门组成的半加器。
电子教案数字电子技术第三章组合逻 辑电路XX1

第3章-逻辑门电路

第3章-逻辑门电路

3 逻辑门电路3.1 MOS 逻辑门电路3.1.2 求下列情况下TTL 逻辑门的扇出数:(1)74LS 门驱动同类门;(2)74LS 门驱动74ALS 系列TTL 门。

解:首先分别求出拉电流工作时的扇出数N OH 和灌电流工作时的扇出数N OL ,两者中的最小值即为扇出数。

从附录A 可查得74LS 系列电流参数的数值为I OH =0.4mA ,I OL =8mA ,I IH =0.02mA,I IL =0.4mA ;74ALS 系列输入电流参数的数值为I IH =0.02mA ,I IL =0.1mA ,其实省略了表示电流流向的符号。

(1) 根据(3.1.4)和式(3.1.5)计算扇出数74LS 系列驱动同类门时,输出为高电平的扇出数0.4200.02OH OH IH I mA N I mA=== 输出为低电平的扇出数 8200.4OL OL IL I mA N I mA ===所以,74LS 系列驱动同类门时的扇出数N O 为20。

(2) 同理可计算出74LS 系列驱动74ALS 系列时,有0.4200.02OH OH IH I mA N I mA=== 8800.1OL OL IL I mA N I mA === 所以,74LS 系列驱动74ALS 系列时的扇出数N O 为20。

3.1.4 已知图题3.1.4所示各MOSFET 管的T V =2V ,忽略电阻上的压降,试确定其工作状态(导通或截止)。

解:图题3.1.4(a )和(c )的N 沟道增强型MOS ,图题3.1.4(b )和(d )为P 沟道增强型MOS 。

N 沟道增强型MOS 管得开启电压V T 为正。

当GS V <V T 时,MOS 管处于截止状态;当GS V ≥V T ,且DS v ≥(GS V —V T )时,MOS 管处于饱和导通状态。

对于图题3.1.4(a ),GS V =5V ,DS v =5V ,可以判断该MOS 管处于饱和导通状态。

第3章逻辑门电路2.

第3章逻辑门电路2.

A R3
图2.2.13 有源泄放TTL与非门
有源泄放回路在转换过程中提高开关速度的原因
是它的等效电阻是可变的。在输入由低电平全部变为 高电平的瞬间,有源泄放回路 AB 两端呈现高阻抗, 使V5迅速饱和,缩短了开启时间tON;在输入由高电平 变为低电平的瞬间,有源泄放回路 AB 两端呈现低阻 抗,使V5加快截止,缩短了关闭时间tOFF(分析略)。 另外,有源泄放回路还能提高电路的抗干扰能力,
流不仅会使导通门的输出低电平抬高,而且还可能因功耗太
大而损坏两个门的输出管,这是不允许的。为了克服一般
TTL门不能直接相连的缺点,提出了OC门。
+UCC R4 V3 V4 R3 V5 +UCC R4 V3 V4 R3 F2 = 0 V5 IL F1 = 1
图2.2.17 两个TTL门输出端相连
+UCC R1 V1 V2 V5 R3 F R2 RL
铝—硅二极管),它的正向导通电压为0.4V~0.5V, 比一般硅管的正向导通电压 0.6V~0.7V低 0.2V。 这样,当三极管的 c结进入正偏后, SBD首先导 通, c 结的正偏电压被钳在 0.4V~0.5V ,使三极 管不会进入深饱和,而只能工作在微饱和状态, 从而大大提高了门电路的工作速度。当有源泄放
图 2.2.16
&
F1
F
&
F2
必须指出的是,并不是所有形式的与非门都能接成
“线与”电路。例如,一般的TTL与非门,由于采用了推拉 式输出电路,无论是输出高电平还是低电平,输出电阻都比 较低,只有几至几十 Ω。如果将两个输出端直接相连,当一 个门的输出为高电平,另一个门输出为低电平时,则会形成 一条自 +UCC 到地的低阻通路,会有一股很大的电流从截止 门的V4管灌入到导通门的V5管,如图2.2.17所示。这个大电

逻辑门电路的应用

逻辑门电路的应用
上一页 下一页 返回
3. 1 二极管与三极管的开关特性
• 2. PMOS 管的开关特性 • PMOS 管的电路符号及转移特性如图3-7 所示, 与NMOS 管不同, 漏
极D 接负电源, 如果uGS <UT (UT 为负电压), 则PMOS 管导通, 如同开 关闭合; 反之如果uGS >UT, 则PMOS管截止, 如同开关断开。
上一页 下一页 返回
3. 2 TTL 集成门电路
• 3. TTL 与非门的外特性及主要参数 • 1) 电压传输特性 • TTL 与非门电压传输特性如图3-11 所示。 • (1) 截止区(AB 段)。 • 当输入电压0≤uI <0. 6 V 时, T1 工作在深度饱和状态, UCES1 <0. 1 V,
uB2 <0. 7 V, 故T2、T5 截止, T3、T4 导通, uO =UOH≈3. 6 V 为高电平。 与非门处于截止状态, 所以把AB 段称截止区, 门电路处在关门状态。
上一页 下一页 返回
3. 2 TTL 集成门电路
• (2) 线性区(BC 段)。 • 当输入电压0. 6 V≤uI <1. 3 V 时, 则有0. 7 V≤uB2 <1. 4 V, T2 开始导通,
上一页 下一页 返回
3. 1 二极管与三极管的开关特性
• 2) 放大状态的条件和特点
• 三极管处在放大状态的条件: 当uBE >UT 时, 发射结正偏, 集电结反偏。 • 三极管处在放大状态的特点: 集电极电流iC 随iB 而变, 并满足iC =βiB
的关系。
• 3) 饱和状态的条件和特点
• 三极管处在饱和状态的条件: 发射结正偏, 集电结正偏, iB ≥IBS (IBS 为

第3章 门电路(打印)

第3章 门电路(打印)
片组件内含100~1000个元件(或20~100个等效门)。 大规模集成电路(LSI-Large Scale Integration), 每片 组件内含1000~100 000个元件(或100~1000个等效门)。 超大规模集成电路(VLSI-Very Large Scale Integration), 每片组件内含100 000个元件(或1000个以上等效门)。
噪声容限
74系列典型值为:
VOH(min) = 2.4V
VOL(max) = 0.4V
VIH(min) = 2.0V VIL(max) = 0.8V VNH=0.4V VNL=0.4V
VNL =VIL(max) - VOL(max) VNH =VOH(min) - VIH(min)
二、输入特性
iIL iIH
四、输入负载特性 输入端 “1”,“0”?
ui
RP
简化电路
A
R1
VCC
ui
ui
T1
RP
be
2
be 0
5
RP
RP较小时
RP ui (Vcc Von ) RP R1
当RP<<R1时, ui ∝ RP
简化电路
A
R1
VCC
ui
ui
T1
RP
1.4V
be
2
be 0
5
RP
RP增大时
Ruiui≥UT (1.4V)时,输入变高, 由于钳位作用, ui 动态固定为1.4V 。
N1 ≤ IOH /IIH N1 ≤400μA/40μA=10
前级输出为 低电平时
前级
后级
IOL IIL
N2
IIL

《数字电子技术》第3章 组合逻辑电路

《数字电子技术》第3章 组合逻辑电路
Y1 I2 I3 I6 I7
Y3 ≥1 I9 I8
Y3
I2I3I6I7
&
Y0 I1 I3 I5 I7 I9
I1I3I5I7I9
I9 I8
逻辑图
Y2
Y1
Y0
≥1
≥1
≥1
I7I6I5I4
I3I2
(a) 由或门构成
Y2
Y1
I1 I0 Y0
&
&
&
I7I6I5I4
I3I2
(b) 由与非门构成
A
消除竞争冒险
B
C
Y AB BC AC
2
& 1
1
3
&
4
&
5
≥1
Y
3.2 编码器
编码
将具有特定含义的信息编 成相应二进制代码的过程。
编码器(即Encoder)
实现编码功能的电路
被编 信号
编 码 器
编码器
二进制编码器 二-十进制编码器
二进制 代码 一般编码器
优先编码器 一般编码器 优先编码器
(1) 二进制编码器
A B F AB AB B
&
&
00
1
01
0
C
&
F &
10 11
0F AABA BC1 AB &
1
AAB BC AB
(4)分析得出逻辑功A能 A B B C AB
A =1
同或逻辑 AB AB B
F
F AB AB A☉B
3.1.3 组合逻辑电路的设计
组合逻辑电路的设计就是根据给出的实际逻 辑问题求出实现这一关系的逻辑电路。

模电课件第三章集成逻辑门电路

模电课件第三章集成逻辑门电路

R1
R2
4k 1.6k
A
uI
T1
T2
D1
R3 1k
输入级 中间级
+VCC(5V) R4
130 T4
DY T5 uo
输出级
26
2. 工作原理
(1)输入为低电平(0.0V)时: uI UIL 0 V
不足以让 T2、T5导通
0.7V
三个PN结
导通需2.1V
T2、T5截止
27
(1) uI UIL 0 V
RC+(1+)Re
17
[例2]下图电路中 = 50,UBE(on) = 0.7 V,UIH = 3.6 V,UIL = 0.3 V,为
使三极管开关工作,试选择 RB 值,并对应输入波形画出输出波形。
+5 V
uI
1 k
UIH
UIL O
t
解:(1)根据开关工作条件确定 RB 取值
uI = UIL = 0.3 V 时,三极管满足截止条件
按电路结构不同分 是构成数字电路的基本单元之一
TTL 集成门电路
输入端和输出端都用 三极管的逻辑门电路。
CMOS 集成门电路
用互补对称 MT特rCa点nomsi不sptlo同erm-分TernatnasriystMoreLtaolg-Oicxide-Semiconductor
Ucc =5V
1k uo
T
β =30
iB
I BS
Ucc Uces RC
Ucc RC
, Uces 0.7V
8
三极管的开关特性
3V
0V RB ui
+UCC
RC
3V
uO T
截饱止和 0V

第三章组合逻辑电路 (1)

第三章组合逻辑电路 (1)

第三章组合逻辑电路一、概述1、概念逻辑电路分为两大类:组合逻辑电路和时序逻辑电路数字逻辑电路中,当其任意时刻稳定输出仅取决于该时刻的输入变量的取值,而与过去的输出状态无关,则称该电路为组合逻辑电路,简称组合电路2、组合逻辑电路的方框图和特点(1)方框图和输出函数表达式P63输出变量只与当前输入变量有关,无输出端到输入端的信号反馈网络,即组合电路无记忆性,上一次输出不对下一次输出造成影响3、组合逻辑电路逻辑功能表示方法有输出函数表达式、逻辑电路图、真值表、卡诺图4、组合逻辑电路的分类(1)按功能分类常用的有加法器、比较器、编码器、译码器等(2)按门电路类型分类有TTL、CMOS(3)按集成度分类小、中、大、超大规模集成电路二、组合逻辑电路的分析方法 由电路图---电路功能 1、分析步骤(1)分析输入输出变量、写出逻辑表达式 (2)化简逻辑表达式 (3)列出真值表(4)根据真值表说明逻辑电路的功能 例:分析下图逻辑功能第一步:Y=A ⊕B ⊕C ⊕D 第二步: 第三步:A B C D Y 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 10 0 0 1=1=1=1CDY1 0 0 1 01 0 1 0 01 0 1 1 11 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 0第四步:即0和1出现的个数不为偶则输出1,奇偶个数的检验器三、组合逻辑电路的设计方法1、概念根据要求,最终画出组合逻辑电路图,称为设计2、步骤(1)确定输入输出变量个数(2)输入输出变量的状态与逻辑0或1对应(3)列真值表(4)根据真值表写出输出变量的逻辑表达式(5)对逻辑表达式化简,写出最简逻辑表达式(6)根据逻辑表达式,画出逻辑电路图例:三部雷达A、B、C, 雷达A、B的功率相等,雷达C是它们的两倍,发电机X最大输出功率等于A的功率,发电机Y输出功率等于A与C的功率之和,设计一个组合逻辑电路,根据雷达启停信号以最省电的方式开关发电机第一步:输入变量3个,输出变量2个第二步:雷达启动为1、发电机发电状态为1第三步:A B C X Y0 0 0 0 00 0 1 0 10 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1第四步:卡诺图化简第五步:写逻辑表达式第六步:画逻辑电路图四、常用中规模标准组合模块电路一些常用的组合逻辑电路,如编码器、译码器、加法器等制成中规模电路,称为中规模标准组合模块电路1、半加器进行两个1位二进制数相加的加法电路称为半加器,如图3-11所示真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1根据真值表,写出逻辑表达式如下:S=AB+AB=A⊕BC=AB2、全加器即带低位上产生的进位的加法器真值表如下:A iB iC i-1S i C i0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1根据真值表,卡诺图化简后写出逻辑表达式如下:S i=A i⊕B i⊕C i-1C i=A i B i+C i-1(A i⊕B i)(为便于实现)根据逻辑表达式,画出电路图如图3-13所示3、加法器可以实现多位二进制数加法的电路(1)串行进位加法器低位全加器的进位输出端连到高位全加器的进位输入端,如图3-3所示(2)超前进位加法器C i=A i B i+C i-1(A i⊕B i)= A i B i+C i-1(A i B i+ A i B i)= A i B i C i-1+A i B i C i-1 +A i B i C i-1+ A i B i C i-1=A i B i+ B i C i-1+ A i C i-1= A i B i+C i-1(A i+B i)令P i=A i+B i,称P i为第i位的进位传输项,令G i=A i B i,称G i 为第i位的进位产生项,则第0位的进位为C0=G0+P0C-1,第1位的进位为C1=G1+P1 C0, C0带入C1,消去C0,得C1=G1+P1(G0+P0 C-1),同理,得C2= G2+P2(G1+ P1(G0+P0 C-1)),,C3= G3+ P3(G2+ P2(G1+P1(G0+P0 C-1))),即知道相加的二进制数的各位和最低位进位就可以超前确定进位,提高了速度,如图3-4所示4、乘法器完成两个二进制乘法运算的电路(1)乘法器P85(2)并行乘法器P855、数值比较器比较二进制数大小,输入信号是要比较的数,输出为比较结果(1)1位数值比较器A B M G L0 0 0 1 00 1 1 0 01 0 0 0 11 1 0 1 0M=ABG=AB+AB= AB+AB(便于逻辑实现)L=AB逻辑电路图如图3-5所示(2)4位数值比较器多位二进制数比较大小,先看最高位情况,如相等再看次高位情况,以此类推4位比较器为例,8个输入端(A3A2A1A0,B3B2B1B0),三个输出端(L,G,M)A>B,则A3>B3,或A3=B3且A2>B2,或A3=B3,A2=B2,A1>B1,或A3=B3,A2=B2,A1=B1,A0>B0设定AB的第i位比较结果为L i=A i B i,G i=A i B i+A i B i,M i=A i B i,则L=L3+G3L2+G3G2L1+G3G2G1L0同理, A=B 时,G=G3G2G1G0,A<B时,M=M3+G3M2+G3G2M1+G3G2G1M0,因A不大于也不等于B时即小于B,故M=LG=L+G(便于逻辑实现)逻辑电路图如P87图3-18所示(3)集成数值比较器4位数值比较器封装在芯片中,构成4位集成数值比较器,74ls85真值表如图3-6所示考虑到级联,增加了级联输入端(更低位的比较结果),级联时,如构成8位数值比较器,低四位比较结果为高四位数值比较器的级联输入端,而低四位的级联输入端应结为相等的情况(010),74ls85级联如图3-7所示cc14585真值表如图3-8所示,cc14585级联如图3-9所示6、编码器将输入信号用二进制编码形式输出的器件,若有N个输入信号,假设最少输出编码位数为m位,则2m-1<N<2m(1)二进制编码器以2位输出编码为例输入输出I0I1I2I3Y1Y01 0 0 0 0 00 1 0 0 0 10 0 1 0 1 00 0 0 1 1 1故Y1=I2+I3,Y0=I1+I3逻辑电路图如P89图3-22所示但当不止一个输入端有编码要求时该电路不能解决问题(2)二进制优先编码器3位二进制优先编码器为例8个输入端为I0~I7,输出端为Y2~Y1,假设I7的编码优先级最高,则对应真值表为:输入输出I0I1I2I3I4I5I6I7Y2Y1Y0×××××××0 0 0 0 ××××××0 1 0 0 1 ×××××0 110 1 0 ××××0 1110 1 1 ×××0 1111 1 0 0 ××0 11111 1 0 1 ×0 111111 1 1 0 0 1111111 1 1 1 “×”为任意值根据真值表,列出逻辑表达式如P90所示,逻辑图过于麻烦,略以上为低电平有效的情况,高电平有效真值表如图3-10所示,得A2=I4+I5+I6+I7,A1=I2+I3+I6+I7,A0=I1+I3+I5+I7, 逻辑图便于实现(3)8线-3线编码器74ls148编码器图形符号如图3-11所示,真值表如图3-12所示74ls148编码器级联,注意控制信号线的连接,级联图如图3-13所示选通信号有效,当高位芯片输入不全为1时,选通输出端为1,低位芯片不工作且二进制反码输出端为1,与门受高位芯片二进制反码输出端影响,扩展输出端为0,作为A3,根据输入情况不同,得编码0000~0111;选通信号有效,当高位芯片输入全为1时,高位芯片不工作,选通输出信号为0,低位芯片工作,高位芯片扩展输出端为1,作为A3,高位芯片二进制反码输出端全1,与门受低位芯片二进制反码输出端影响,根据输入情况不同,得编码1000~1111,即实现16线-4线编码器功能(4)9线-4线编码器74ls147编码器图形符号、真值表如图3-14所示注意,其输出对应十进制数的8421BCD码的反码(5)码组变换器将输入的一种编码转换为另一种编码的电路参见P92例3-5原理:加0011和加1011的原因7、译码器译码是编码的逆过程,将二进制代码转换成相应十进制数输出的电路(1)3线-8线译码器真值表如图3-15所示逻辑表达式如下:Y0=CBA、Y1=CBA……Y6=CBA、Y7=CBA(2)集成3线-8线译码器74LS138译码器符号如图3-16所示,真值表如图3-17所示注意三个选通信号,在级联时的作用,级联如图3-18所示74LS138译码器典型应用如图3-19所示(3)集成4线-10线译码器74LS42符号如图3-20所示,真值表如图3-21所示逻辑表达式如图3-22所示(4)显示译码器是用来驱动显示器件的译码器(A)LED数码管电能---光能(发光二极管构成)具有共阴极和共阳极两种接法,如图3-23所示,注意非公共端连接高电平或低电平时要串接限流电阻(B)显示译码器74LS47(驱动LED为共阳极接法的电路,驱动共阴极要用74LS48)引脚图如图3-24所示,真值表如图3-25所示要具有一定的带灌电流负载能力才能驱动LED相应段发光,显示效果如P99图3-35所示附加控制端用于扩展电路功能:灯测试输入LT:全亮灭零输入RBI:将不需要的“0”不显示以使得要显示的数据更醒目灭灯输入\灭零输入BI\RBO:作为输入使用,一旦为0则灯灭。

数字电子技术基本教程 阎石 3逻辑门1

数字电子技术基本教程 阎石 3逻辑门1
t PHL-输出电压由高电平变为低电平时 的传输延迟时间。 t PLH-低电平变为高电平时的传输延迟 时间。 通常t PHL t PLH , 所以只给出一个tpd 参数
典型值:9nS
2.动态功耗
以反相器为例,静态时,CMOS反相 器工作在工作区AB和CD,总有一个MOS 管处于截止状态,流过的电流为极小的漏 电流。 所以静态功耗极低。
倒三角形“▽”表示逻辑门是三态输 出
EN’
A
Y
三态门的应用:
①作多路开关: E’=0时,门G1使 能,G2禁止, Y=A;E’=1时, 门G2使能,G1禁 止,Y=B。
G1 Y
②信号双向传输: E’=0时信号向右传 送,B=A;E’=1时 信号向左传送, A=B 。
③构成数据总线:让各门的控制 端轮流处于低电平,即任何时刻 只让一个TSL门处于工作状态, 而其余TSL门均处于高阻状态, 这样总线就会轮流接受各TSL门 的输出。
4000B系列部分器件
编号 CD4001B CD4002B CD4011B CD4012B CD4030B 说 明 四-2输入或非门 二-4输入或非门 四-2输入与非门 二-4输入与非门 四-2输入异或门 编号 CD4048B CD4050B CD4066B CD4069B CD4085B 说 明
六缓冲器 六双向模拟开关 六反相器 二-2-2与或非门
G (Gate):栅极 B (Substrate):衬底
以N沟道增强型为例:
当加+VDS时,
开启电压
VGS=0时,D-S间是两个背向PN结串联,iD=0 加上+VGS,且足够大至VGS >VGS (th), D-S间形成导电沟道 (N型层)
NMOS管的基本开关电路

数字电路与逻辑设计第3章组合逻辑电路

数字电路与逻辑设计第3章组合逻辑电路

(2)根据真值表,用卡诺图(图3-5 a)化简后,
可以得到该电路的逻辑函数表达式:
F AC BC AB
由于题目中没有特别要求以何种逻辑门 输出,所以可用与门和或门输出来实现 该逻辑功能,表达式形式无需转换。
(3)逻辑图 由化简后的表达式和真值 表可以看出,(图 3-5 b)即使该题的逻 辑电路图。
表 3-7 8线—3线编码器的真值表
因为任意时刻 I0 ~ I7 中只有一个值为“1”利 用约束项的知识把上述真值表化简后如表3-8 所示。
表 3-8 化简后的真值表
由真值表写出其对应的逻辑函数表达式:
Y2 I4 I5 I6 I7 I4I5I6I7 Y1 I2 I3 I6 I7 I2I3I6I7 Y0 I1 I3 I5 I7 I1I3I5I7
3) 将表达式转化成用“与非” 逻辑形式实 现的形式:
图3-9 (a)卡诺图 (b)逻辑电路
3.2 编码器
编码就是将特定的逻辑信号变换成 一组二进制的代码,而能够实现这种功 能的逻辑部件就称为编码器。编码器的 功能是将输入信号转换为对应的代码信 号,即是用输出的代码信号来表示相对 应的输入信号,以便于进行对代码进行 存储,传输及运算等处理。
FA A FB AB FC ABC FD ABCD
(3)由上述表达式可得其对应的优先编码逻辑 电路如图3-12所示。
图3-13 16线—4线优先编码器的逻辑电路
(2)根据列写出的逻辑问题的真值表,写出对应 的逻辑函数表达式。
(3)将得到的逻辑函数表达式进行变换和化简。 逻辑函数的化简可以利用我们前面所学习的代 数法或卡诺图法,从而得到逻辑函数的最简表 达式,对于一个逻辑电路,在设计时应尽可能 使用最少数量的逻辑门,逻辑门变量数也应尽 可能少用,还应根据题意变换成适当形式的表 达式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 逻辑门电路3.1 MOS 逻辑门电路3.1.2 求下列情况下TTL 逻辑门的扇出数:(1)74LS 门驱动同类门;(2)74LS 门驱动74ALS 系列TTL 门。

解:首先分别求出拉电流工作时的扇出数N OH 和灌电流工作时的扇出数N OL ,两者中的最小值即为扇出数。

从附录A 可查得74LS 系列电流参数的数值为I OH =0.4mA ,I OL =8mA ,I IH =0.02mA,I IL =0.4mA ;74ALS 系列输入电流参数的数值为I IH =0.02mA ,I IL =0.1mA ,其实省略了表示电流流向的符号。

(1) 根据(3.1.4)和式(3.1.5)计算扇出数74LS 系列驱动同类门时,输出为高电平的扇出数0.4200.02OH OH IH I mA N I mA=== 输出为低电平的扇出数 8200.4OL OL IL I mA N I mA ===所以,74LS 系列驱动同类门时的扇出数N O 为20。

(2) 同理可计算出74LS 系列驱动74ALS 系列时,有0.4200.02OH OH IH I mA N I mA=== 8800.1OL OL IL I mA N I mA === 所以,74LS 系列驱动74ALS 系列时的扇出数N O 为20。

3.1.4 已知图题3.1.4所示各MOSFET 管的T V =2V ,忽略电阻上的压降,试确定其工作状态(导通或截止)。

解:图题3.1.4(a )和(c )的N 沟道增强型MOS ,图题3.1.4(b )和(d )为P 沟道增强型MOS 。

N 沟道增强型MOS 管得开启电压V T 为正。

当GS V <V T 时,MOS 管处于截止状态;当GS V ≥V T ,且DS v ≥(GS V —V T )时,MOS 管处于饱和导通状态。

对于图题3.1.4(a ),GS V =5V ,DS v =5V ,可以判断该MOS 管处于饱和导通状态。

对于图题3.1.4(c ),GS V =0V <V T ,所以MOS 管处于截止状态。

P 沟道增强型MOS 管得开启电压V T 为负。

当GS V >V T 时,MOS 管处于截止状态;当GS V ≤V T ,且DS v ≤(GS V —V T )时,MOS 管处于饱和导通状态。

对于图题3.1.4(b ),GS V =0V >﹣2V ,该MOS 管处于截止状态。

对于图题3.1.4(d ),GS V =-5V ,GS V =﹣5V ,可以判断该MOS 管处于饱和导通状态。

3.1.5 为什么说74HC 系列CMOS 与非门在﹢5V 电源工作时,输入端在以下四种接法下都属于逻辑0:(1)输入端接地;(2)输入端低于1.5V 的电源;(3)输入端同类与非门的输出低电压0.1V ;(4)输入端接10k Ω的电阻到地。

解:对于74HC 系列CMOS 门电路来说,输出和输入低电平的标准电压值为:V OL =0.1V , V IL =1.5V 。

因此,有:(1) I v =0<V IL =1.5V ,属于逻辑0。

(2) I v <1.5V=V IL ,属于逻辑0。

(3) I v =0.1V <V IL =1.5V ,属于逻辑0。

(4) 由于CMOS 管得栅极电流非常小,通常小于1uA ,在10k Ω电阻上产生的压降小于10mV 即I v <0.01V <V IL =1.5V ,故亦属于逻辑0。

3.1.6 试分析图题3.1.6所示的电路,写出其逻辑表达式,说明它是说明逻辑电路?解:该电路由两部分组成,如图题3.1.6所示,细线左边为一级与非门,虚线右边组成与或非门,其中T 1N 和T 2N 并联实现与功能,两者再与T 3N 串联实现或功能。

与非门的输出X AB =。

与或非门的输出L 为()()L A B X A B AB AB AB AB =+=+=+=该电路实现同或功能。

3.1.7 求图题3.1.7所示电路的输出逻辑表达式。

解:图题3.1.7所示电路中,1234,,,L AB L BC L D L ===实现与功能,即4123L L L L =⋅⋅,而4L L E =⋅,所以输出逻辑表达式为L AB BC D E =⋅⋅⋅。

3.1.8 用三个漏极开路与非门74HC03和一个TTL 与非门74LS00实现图题3.1.7所示的电路,已知CMOS 管截止时的漏电流I OZ =5uA, 试计算R P(min)和R P(max)。

解:第一级的两个与非门和一个非门用漏极开路与非门74HC03组成,第二级的与非门用TTL 与非门74LS00实现。

从附录A 查得74HC 系列的参数为:V OL(max)=0.33V ,I OL(max)=4 mA ,V OH(min)=3.84V ;74LS 系列的参数为:I IL(max)=0.4mA ,I IH(max)=0.02mA 。

因为三个漏极开路门的公共上拉电阻R P 的下端74LS00的一个输入端,即:在灌电流情况下,求出R P 的最小值:(max)(min)(max)()(50.33) 1.3(40.4)DD OL p OL IL total V V V R k I I mA--==≈Ω-- 在拉电流情况下,求出R P 的最大值(min)(max)()()(5 3.84)33.1(0.00530.02)DD OH p OZ total IH total V V V R k I I mA--==≈Ω+⨯+ 3.1.9 .图题.3.1.9表示三态门作总线传输的示意图,图中n 个三态门的输出接数据传输总线,D 1、D 2、…、n D 为数据输入端,CS 1、CS 2、…、i CS 为片选信号输入端。

试问:(1)CS 信号如何进行控制,以便数据D 1、D 2、…、n D 通过该总线进行正常传输;(2)CS 信号能否有两个或两个以上同时有效?如果CS 出现两个或两个以上有效,可能发生什么情况?(3)如果CS 信号均无效,总线处在什么状态?解:(1)根据图题3.1.9可知,片选信号CS 1、CS 2、…、i CS 为高电平有效,当i CS =1时,第i 个三态门被选中,其输入数据被送到数据传输总线上。

根据数据传输的速度,分时地给CS 1、CS 2、…、i CS 端以正脉冲信号,使其相应的三态门的输出数据能分时地到达总线上。

(2)CS 信号不能有两个或两个以上同时有效,否则两个不同的信号将在总线上发生冲突。

即总线不能同时既为0又为1。

(3)如果所有CS 信号均无效,总线处于高阻状态。

3.1.10 某厂生产的双互补对及反相器(4007)引出端如图题3.1.10所示,试分别连接:(1)三个反相器;(2)三输入端或非门;(3)三输入端与非门;(4)或与非门[()L C A B =+];(5)传输门(一个非门控制两个传输门分时传送)。

解:(1)三个反相器将图题3.1.10所示电路按下列方式连接,可以得到三个反相器。

①8、13相连,6端为输入,8端为输出,14端接V DD,7端接地;②1、5相连,3端为输入,5端为输出,2端接V DD,4端接地;③10端为输入,12端为输出,11端接V DD,9端接地。

(2)三输入端或非门电路图如图题解3.1.10(a)所示。

(3)三输入端与非门电路图如图题解3.1.10(b)所示。

(4)或与非门电路图如图题解3.1.10(c)所示。

(5)传输门电路图如图题解3.1.10(d)所示,由6端输入的信号控制TG1、TG2、分时传送数据。

6端接低电平时,TG1、导通,2端得数据传送到12端;6端接高电平时,TG2导通,4端得数据传送到12端。

3.1.11试分析图题3.1.11所示某CMOS器件的电路,写出其逻辑表达式,说明它是什么逻辑电路。

解:电路由两个输入反相器、一个输出反相器、一个传输门T1、T2、和T3构成的电路组成。

传输门由B和B控制,当B=0时传输门导通,当B=1时传输门截止。

T1、T2、和T3构成电路的工作状态由B控制,当B=1时T1、T3均截止,T1、T2、和T3构成的电路不工作;当B=0时T1、T3均导通,T1、T2和T3构成的电路工作,并且起反相作用,其输出等于A。

综上所述,当B=0时,T1、T2、和T3构成的电路不工作,传输门导通,输出L=A;当B=1=。

列出真值表如表题解3.1.11时T1、T2、和T3构成的电路工作,传输门截止,输出L A=+=⊕,故电路为异或门电路。

所示。

其逻辑表达式L AB AB A B3.1.12试分析图题3.1.12所示的CMOS电路,说明它们的逻辑功能。

解:对于图题3.1.12(a)所示的CMOS电路,当EN=0时,T P2和T N2均导通,T P1和=;当EN=1时,T P2和T N2均截止,无论A为高电平T N2构成的的反相器正常工作,L A还是低电平,输出端均为高阻状态,其真值表如表题解3.1.12所示,该电路是低电平使能三态非门,其表示符号如图题解3.1.12(a)所示。

图题3.1.12(b)所示的CMOS电路,EN=0时,T P2导通,或非门打开,T P1和T N1构成的反相器正常工作,L=A;当EN=1时,T P2截止,或非门输出低电平,使T N1截止,输出端处于高阻状态,该电路是低电平使能三态缓冲器,其标示符号如图题解3.1.12(b)所示。

同理可以分析图题3.1.12(c)和图题3.1.12(d)所示的CMOS电路,它们分别为高电平使能三态缓冲器和低电平使能三态非门,其标示符号分别如图题解3.1.12(c)和图题解3.1.12(d )所示。

3.1.13 试分析图题3.1.13所示传输门的电路,写出其逻辑表达式,说明它是说明逻辑电路。

解:对于图题3.1.13所示的电路,输入信号A 作为传输门的控制信号,输入信号B 通过传输门与输出L 相连。

当A=0时,传输门TG 1导通,TG 2断开,L=B ;当A=1时,传输门TG 1断开,TG 2导通,L B =;其真值表如表题解3.1.13所示,该电路实现异或功能,L A B =⊕。

3.1.14 由CMOS 传输门构成的电路如图题3.1.14所示,试列出其真值表,说明该电路的逻辑功能。

解:当CS=1时,4个传输门均为断开状态,输出处于高阻状态。

当CS=0时,4个传输门的工作状态由A 和B 决定,A=B=0时,TG 1和TG 2导通,TG 3和TG 4截止,L=1。

依此分析电路可以列出真值表如表题解3.1.14所示,根据真值表可得L A B =+。

该电路实现三态输出的2输入的或非功能。

3.2 TTL逻辑门电路3.2.2为什么说TTL与非门的输入端在以下四种接法下,都属于逻辑1:(1)输入端悬空;(2)输入端接高于2V的电源;(3)输入端接同类与非门的输出高电压3.6V;(4)输入端接10kΩ电阻到地。

相关文档
最新文档