初一数学有理数拓展提高试题与答案一
专题118 有理数的乘法(拓展提高)(解析版)
专题1.18 有理数的乘法(拓展提高)一、单选题1.﹣34是下列各算式中( )的积. A .﹣312×(﹣314)B .34×(﹣56)C .(﹣112)×49D .45×(﹣1516)【答案】D【分析】直接利用有理数乘法运算法则进而化简求出答案.【详解】解:A 、﹣312⨯(314-)7332144=⨯=,故此选项不符合题意; B 、34⨯(56-)58=-,故此选项不符合题意;C 、(﹣112)43429293⨯=-⨯=-,故此选项不符合题意;D 、45⨯(1516-)34=-,故此选项符合题意.故选:D .【点睛】此题主要考查了有理数的乘法运算,正确掌握运算法则是解题关键. 2.有理数ɑ、b 在数轴上位置如图,则下式成立的( ).A .0a b +>B .()b a a -⨯>0C .()b a a -⨯<0D .0b a -<【答案】C【分析】结合题意,根据数轴的性质,得1a <-,01b <<;再结合有理数运算的性质,通过计算即可得到答案.【详解】根据题意得:1a <-,01b << ∴0a b +<,0b a -> ∴()0b a a -⨯< 故选:C .【点睛】本题考查了有理数的知识;解题的关键是熟练掌握数轴、有理数运算的性质,从而完成求解. 3.如图,数轴上的点P 表示的有理数为a ,则表示有理数“2a -”的点是( )A .点AB .点BC .点CD .点D【答案】D【分析】先根据数轴的定义可得112a -<<-,再根据有理数的乘法法则即可得. 【详解】由数轴的定义得:112a -<<-, 则122a <-<,因此,表示有理数“2a -”的点是点D , 故选:D .【点睛】本题考查了数轴、有理数的乘法,熟练掌握数轴的定义是解题关键. 4.已知|x|=2,|y|=3,且x·y >0,则x -y 的值等于( ) A .5或-5 B .-5或-1C .5或1D .1或-1【答案】D【分析】首先根据|x|=2,可得x=±2,根据|y|=3,可得y=±3;然后根据xy >0,分两种情况讨论,求出x-y 的值等于多少即可. 【详解】解:∵|x|=2, ∴x=±2; ∵|y|=3, ∴y=±3; ∵xy >0,∴x=2,y=3或x=-2,y=-3, (1)当x=2,y=3时, x-y=2-3=-1(2)当x=-2,y=-3时, x-y=-2-(-3)=1 故选:D .【点睛】此题主要考查了有理数的乘法的运算方法,以及有理数的加法的运算方法,要熟练掌握,注意分两种情况讨论.5.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78⨯和89⨯的两个示例.若用法国的“小九九”计算79⨯,左、右手依次伸出手指的个数是( )A .2,3B .3,3C .2,4D .3,4【答案】C【分析】按照法国的“小九九”的算法,大于5时,左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,即可得答案.【详解】∵计算78⨯和89⨯时,7-5=2,8-5=3,9-5=4,∴法国的“小九九”大于5的算法为左手伸出的手指数是第一个因数减5,右手伸出的手指数是第二个因数减5,∴计算79⨯,左、右手依次伸出手指的个数是7-5=2,9-5=4, 故选:C .【点睛】本题主要考查有理数的乘法,解题的关键是掌握法国“小九九”伸出手指数与两个因数间的关系. 6.下表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6、10,15,…,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,…,第n 个数记为n a ,则6199+a a 的值为( )A .19900B .19915C .19921D .19934【答案】C【分析】这一列数的规律是:从第一个数开始,第二个数比第一个数大2,第三个数比第二个数大3,第四个数比第三个数大4,依此类推,第n个数比第n-1个数大n;所以从特殊入手,a1=1,a2=1+2,a3=3+3=1+2+3,a4=6+4=1+2+3+4,…,由此得出一般规律:a n=1+2+3+4+…+n,从而可求得结果.【详解】这一列数的规律是:从第一个数开始,第二个数比第一个数大2,第三个数比第二个数大3,第四个数比第三个数大4,依此类推,第n个数比第n-1个数大n,所以a1=1,a2=1+2,a3=3+3=1+2+3,a4=6+4=1+2+3+4,…,a n=1+2+3+4+…+n.所以a6=1+2+3+4+5+6=21,a199=1+2+3+4+5+…+198+199=1199+11992⨯⨯()=19900,从而a6+a199=19900+21=19921故选:C【点睛】本题是一个规律探索题,对于这类题,遵循由特殊到一般的原则,要求学生善于观察并找出规律,这对学生的归纳能力提出了更高的要求.二、填空题7.12021-的倒数的相反数是________.【答案】2021【分析】直接利用倒数、互为相反数的定义分析得出答案.【详解】解:12021-的倒数为:-2021,则-2021的相反数是:2021.故答案为:2021.【点睛】此题主要考查了倒数、相反数,正确把握相关定义是解题关键.8.乘积为240-的不同五个整数的平均值最大是__________.【答案】9【分析】显然是要使得负因数的绝对值尽量小,且正因数尽量大,符合的负因数只能为-1,然后正因数为1,2,3,40,再根据平均数的求法求出五个整数的平均值.【详解】解:∵要求乘积为-240的不同五个整数的最大平均值,又∵-1×1×2×3×40=-240,∴平均值最大的五个因数为-1,1,2,3,40,∴五个整数的平均值为(-1+1+2+3+40)÷5=9.故答案为:9.【点睛】本题考查了有理数的乘法,本题确定负因数为-1是解题的关键. 9.规定*是一种运算符号,且*2a b ab a =-,则计算()4*2*3-=_______. 【答案】-16.【分析】按照新定义转化算式,然后计算即可. 【详解】根据题意,2*3232(2)-=-⨯-⨯- =64-+ =-2,()4*2*3-=()4*24(2)24-=⨯--⨯=88-- =-16故答案为:-16.【点睛】本题考查了新定义运算,解题关键是把新定义运算转化为有理数计算,并准确计算. 10.已知21x y -=-,且,a b 互为倒数,那么620132x aby y -+-=______. 【答案】2010【分析】利用倒数的性质得到ab =1,代入原式计算后,提取公因式变形,将2x−y =−1代入计算即可求出值.【详解】由题意得:2x−y =−1,ab =1,则原式=6x−2y−y +2013=3(2x−y )+2013=−3+2013=2010. 故答案为:2010.【点睛】此题考查了代数式求值,倒数,熟练掌握倒数的性质是解本题的关键.11.若a 与b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,则()325a b cd e +-+=______. 【答案】-2【分析】根据已知求出a+b 、cd 、e 的值,代入代数式即可求出答案. 【详解】解:∵a 与b 互为相反数,c 与d 互为倒数,e 为绝对值最小的数, ∴a+b=0,cd=1,e=0,∴3(a+b )-2cd+5e=3×0-2+5×0=-2. 故答案为:-2.【点睛】本题考查了有理数的混合运算,代数式求值,相反数,绝对值,倒数等知识点,解此题的关键是求出a+b、cd、e的值,此题是一道容易出错的题目,但题型较好.12.若定义一种新的运算“*”,规定有理数a*b=3ab,如2*(﹣4)=3×2×(﹣4)=﹣24.则16*(﹣2*5)=_____.【答案】﹣15【分析】根据a*b=3ab,可以求得所求式子的值.【详解】解:∵a*b=3ab,∴16*(﹣2*5)=16*[3×(﹣2)×5]=16*(﹣30)=3×16×(﹣30)=﹣15,故答案为:﹣15.【点睛】本题考查有理数的混合运算、新运算,解答本题的关键是明确有理数混合运算的计算方法.13.某班级课后延时活动,组织全班50名同学进行报数游戏,规则如下:从第1位同学开始,序号为奇数的同学报自己序号的倒数加1,序号为偶数的同学报自己序号的倒数加1的和的相反数.如第1位同学报(111+),第2位同学报1(1)2-+,第3位同学报1(1)3+……这样得到的50个数的乘积为_______.【答案】-51【分析】先确定每位同学所报之数,再列算式,确定积的符号为负,再算积即可.【详解】解:第1位同学报(111+),第2位同学报1(1)2-+,第3位同学报1(1)3+,第4位同学报1(1)4-+,…,第49位同学报1(1)49+,第50位同学报1(1)50-+,列式得(111+)1(1)2⎡⎤⨯-+⎢⎥⎣⎦1(1)3⨯+1(1)4⎡⎤⨯-+⨯⨯⎢⎥⎣⎦1(1)49+1(1)50⎡⎤⨯-+⎢⎥⎣⎦,=21-32⨯43⨯54⨯⨯⨯50495150⨯,=51-.故答案为:-51.【点睛】本题考查有理数乘法与加法混合运算,掌握有理数混合运算法则,特别是负号的确定,多个有理数相乘,积的符号由负因数的个数决定,负因数有奇数个时,积为负,负因数有偶数个时,积为正是解题关键.14.已知a 是不等于1-的数,我们把11a +称为a 的和倒数.如:2的和倒数为11123=+,已知211,a a =是1a 的和倒数,3a 是2a 的和倒数,4a 是3a 的和倒数,…,依此类推,则31212a a a a ⋅⋯⋅=______.【答案】1233【分析】根据和倒数的定义分别计算出a 1、a 2、a 3、…a 12的值,代入计算即可求解.【详解】解:a 1=1,a 211112==+,a 3121312==+,413a 2513==+,515a 3815==+,618a 51318==+,7113a 821113==+,8121a 1334121==+,9134a 2155134==+,10155a 3489155==+,11189a 55144189==+,121144a 892331144==+, 则a 1•a 2•a 3…a 12=1123581321345589144123581321345589144233233⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=.故答案为:1233【点睛】本题为新定义问题,理解和倒数的定义,并根据定义依次计算出a 1,a 2,a 3,a 4,a 5…a 12的值是解题关键.三、解答题 15.计算 (1)5116()()()6767+-+-+-; (2)(﹣20)﹣(﹣18)+(﹣14)﹣13; (3)111(8)()842-⨯-+; (4)(﹣8)×(﹣43)×(﹣0.125)×54.【答案】(1)﹣13;(2)﹣29;(3)﹣3;(4)﹣53【分析】(1)原式化简后,相加即可求出值; (2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值; (4)原式结合后,相乘即可求出值. 【详解】解:(1)原式=56﹣16﹣17﹣67=23﹣1 =﹣13;(2)原式=﹣20+18﹣14﹣13 =﹣47+18 =﹣29;(3)原式=﹣8×18﹣8×(﹣14)﹣8×12=﹣1+2﹣4 =﹣3;(4)原式=﹣8×0.125×43×54=﹣53. 【点睛】本题考查了有理数的混合运算,解题关键是熟练运用有理数运算法则和运算律进行计算. 16.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求a 234bm cd m++-的值. 【答案】1或-7【分析】根据a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,可以求得a +b 、cd 、m 的值,从而可以求得所求式子的值.【详解】解:因为a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是3, 所以a +b =0,cd =1,m =±2. 当m =2时,a 234b m cd m++-=223142+⨯-⨯⨯=0+4﹣3=1; 当m =﹣2时,a 234b m cd m++-=()0223142+⨯--⨯⨯=0﹣4﹣3=﹣7. 所以a 234bm cd m++-的值是1或-7. 【点睛】本题考查了相反数的意义、倒数的意义、绝对值的意义、有理数的混合运算,明确相反数、倒数、绝对值的意义是解题关键.17.已知x ,y 为有理数,现规定一种新运算“*”,满足x *y =xy ﹣5例如:1*2=1×2﹣5=﹣3(1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣16);(2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇〇*□(用“>”“<”或“=”填空).【答案】(1)①﹣11;②﹣152;(2)=【分析】(1)①利用题中的新定义计算即可求出值;②利用题中的新定义计算即可求出值,先计算括号里面的再计算;(2)设□和〇的数字分别为有理数a,b,利用新定义,分别计算□*〇与〇*□,再比较大小即可.【详解】解:(1)①根据题中的新定义得:原式=2×(﹣3)﹣5=﹣6﹣5=﹣11;②根据题中的新定义得:原式=(4×5﹣5)*(﹣16)=15*(﹣16)=15×(﹣16)﹣5=﹣52﹣5=﹣152;(2)设□和〇的数字分别为有理数a,b,根据题意得:a*b=ab﹣5,b*a=ab﹣5,即a*b=b*a,则□*〇=〇*□.故答案为:=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.利用运算律计算有时可以简便例1:256172651782214-+-+=--++=-+=;例2:()99999910019900999801⨯=-=-=. 请你参考黑板中老师的讲解,用运算律简便计算.(1)1112322+--; (2)计算:()221546463737-⨯-⨯+⨯--⨯.【答案】(1)-3;(2)-10【分析】(1)根据加法交换律与加法结合律计算; (2)根据乘法分配律、加法交换律与加法结合律计算 .【详解】(1)原式1113252322=--+=-+=- (2)()221546463737-⨯-⨯+⨯--⨯.()212544663377=-⨯+⨯--⨯-⨯2125463377⎛⎫⎛⎫=-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭4610=--=-【点睛】本题考查有理数的简便运算,熟练掌握有理数的运算律是解题关键.19.小明家想要从某商场购买洗衣机和烘干机各一台,现在分别从,A B 两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示. 表1:洗衣机和烘干机单价表表2:商场促销方案你认为有哪几种购买方案?请通过计算为小明家选择支付总费用最低的购买方案.【答案】①购买A 品牌的洗衣机与烘干机各一台;②购买B 品牌的洗衣机与烘干机各一台;③购买A 品牌的洗衣机一台,购买B 品牌的烘干机一台;④购买A 品牌的烘干机一台;购买B 品牌的洗衣机一台;方案①的总费用为13272元,方案②的总费用为12820元,方案③的总费用为12872元,方案④的总费用为14020元,总费用最低的方案为方案②.【分析】由表1可得购买方案有四种,再根据表2的优惠方案分别计算四种方案的购买费用,通过比较从而可得答案.【详解】解:由题意可得购买方案为:①购买A 品牌的洗衣机与烘干机各一台;②购买B 品牌的洗衣机与烘干机各一台;③购买A 品牌的洗衣机一台,购买B 品牌的烘干机一台;④购买A 品牌的烘干机一台;购买B 品牌的洗衣机一台;所以一共有四种方案.方案①:()70000.8113%110000.8400⨯⨯-+⨯-4872880040013272=+-=(元)方案②:()75000.8113%100000.8400⨯⨯-+⨯-5220800040012820=+-=(元)方案③:()70000.8113%100000.8⨯⨯-+⨯4872800012872=+=(元)方案④:()75000.8113%110000.8⨯⨯-+⨯5220880014020=+=(元)由12820<12872<13272<14020,所以选择方案②购买B 品牌的洗衣机与烘干机各一台总费用最低.【点睛】本题考查的是有理数的混合运算的实际应用,数学分类思想的应用,掌握分类讨论数学思想是解题的关键.20.学习有理数的乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明:原式=12491249452492555-⨯=-=-; 小军:原式=24244(49)(5)49(5)(5)24925255+⨯-=⨯-+⨯-=-;(1)对于以上两种解法,你认为谁的解法较好?(2)受上面解法对你的启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算:1599(8)16⨯-. 【答案】(1)小军的解法较好;(2)还有更好的解法;解法见详解;(3)见详解;【分析】(1)根据计算判断小军的解法较好;(2)把244925写成15025⎛⎫- ⎪⎝⎭,然后利用乘法分配律进行计算即可得解; (3)把151916写成12016⎛⎫- ⎪⎝⎭,然后利用乘法分配律进行计算即可得解; 【详解】(1)小军的解法相对来说更简便一些,所以小军的解法较好;(2)还有更好的解法,()()()()241114495=505=5055=250=24925252555⎛⎫⨯--⨯-⨯--⨯--+- ⎪⎝⎭ ; (3)()()()()151111198=208=2088=160=159********⎛⎫⨯--⨯-⨯--⨯--+- ⎪⎝⎭ ; 【点睛】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.。
七年级数学上册有理数(提升篇)(Word版 含解析)(1)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.有理数a,b,c在数轴上的对应点的位置如图所示,且表示数a的点,数b的点与原点的距离相等。
有理数--拓展提高难题及答案
初一数学《有理数》拓展提高试题友情提醒:试卷较难,请耐心想一想一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则a b a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=__ _ ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。
(word完整版)初一年级有理数提高练习试题和答案解析[1]
有理数提高训练、选择题1已知|a|=2 , |b|=3,且在数轴上表示有理数b的点在a的左边,贝U a- b的值为()A. - 1B. - 5C. - 1 或-5D. 1 或52、下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D. - 1的倒数是-13、如果a和2b互为相反数,且b M0,那么a的倒数是()J_ 丄2A.上B. -C. -D.4、如下图,数轴的单位长度为1.如果点A, B表示的数的绝对值相等,那么点A表示的数是()【厂【占■ I【•|A BA. —4 B . —2 C . 0 D . 45、如果:与1互为相反数,则」」等于()A. 2 B . —C . 1 D .6、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,-―匚■讥,有以下结论:①_匸;②—;③卜"一’;④「牡;“则所有正确的结论是()A.①,④B. ①,③C. ②,③D. ②,④7、下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A①②B ①③ C ①②③ D ①②③④8下列说法中,正确的是()。
A.卜⑷是正数B. —a是负数C.—⑷是负数D.卜讷不是负数9、下面的说法中,正确的个数是(①若 a + b=0,则|a|=|b| ②若|a|=a,则 a > 0③若|a|=|b|,则a=b ④若a 为有理数,则a 2=(-a ) 2A.1个B.2 个C.3 个D.4 个10、 在一次智力竞赛中,主持人问了这样的一道题目:“匸是最小的正整数,丄是最大的负整数的相反 数,「是绝对值最小的有理数,请问:、三数之和为多少?”你能回答主持人的问题吗?其和应 为( )A 、一 1B 、0C 、1D 211、 若T ■;:八:〔,则 的大小关系是 ()—<a a12、 有理数a 、b 、c 、d 在数轴上的位置如图1所示,下列结论中错误的是()b o ca图1A.a+b<0B.c+d>0C.|a+c|=a+cD.|b+d|=b+d13、 如图,:、□、「在数轴上的位置如图所示,14、对于有理数,如果; 1 ■■-,贝U 下列各式成立的是(A 迎cd 上<0a <0,6 > 0r 且同€& D Q uQ 且*J A 位15、a,b 是有理数,它们在数轴上的对应点的位置如下图所示:口 < — A. -把a,-a,b,-b 按照从小到大的顺序排列A -b v -a v a v bB -a v -b v a v bC -b v a v -a v bD -b v b v -a v a二、填空题16、 ___________________________________________ 如果 |a-2|=0,|b|=3,求 a+b 的值 :17、 绝对值不大于10的所有整数的和等于 ____ ,绝对值小于5的所有负整数的和为 _______ .18、 在数轴上,若A 点表示数工,点B 表示数一5, A B 两点之间的距离为7,贝庐= ____________________19、已知:'=0,贝U ■' 1 的值为=1,那么21、 _________________________________________________________________________ 设=> 0, v 0,且卜KT ,用“v”号把戈、一二、=、一:连接起来 ______________________________________ . 22、 小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有 _________ 个.23、用“=”与“=”表示一种法则:(a= b ) = - b ,(a= b ) = - &,如(2匸 3) = -3,丄24、 __________________________________________ 若0v a v 1,则a, a 2,丿的大小关系是 .25、 水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其 变化值是 _______________________________三、简答题L 7 +乃26、已知丨a-3 | + | b-4 | =0,求"的值.20、 原水曲 4 -次 ?;->[-;.|----・・乍27、如图所示,一个点从数轴上的原点开始,先向右移动 3个单位长度,再向左移动5个单位长度,可 以看到终点表示的数是,已知点A ,B 是数轴上的点,请参照下图并思考。
七年级数学上册有理数拓展提升练习试题
七年级数学上册有理数拓展提升练习试题一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2020是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则ab a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21-二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ;12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b -a│+│a+c│+│c -b │=____ _ ___;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。
最新七年级数学有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.4.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.5.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.6.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]7.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.8.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
最新七年级数学有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.5.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。
【精选】七年级有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
人教版数学七年级上册第1章:有理数 综合拓展训练(一)
七年级上册第1章综合拓展训练(一)一.选择题1.(﹣1)2020等于()A.1B.﹣2020C.2020D.﹣12.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃3.已知:,且abc>0,a+b+c=0.则m共有x个不同的值,若在这些不同的m值中,最大的值为y,则x+y=()A.4B.3C.2D.14.计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2B.3C.7D.5.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确6.定义运算a★b=|ab﹣2a﹣b|,如1★3=|1×3﹣2×1﹣3|=2.若a=2,且a★b=3,则b的值为()A.7B.1C.1或7D.3或﹣37.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位长度,得到点C.若OC=OB,则a的值为()A.﹣3B.﹣2C.﹣1D.28.已知a,b,c,d为非零实数,则的可能值的个数为()A.3B.4C.5D.69.下列各式x、x2、、x2+2、|x+2|中,值一定是正数的有()A.1个B.2个C.3个D.4个10.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.4038二.填空题11.计算:0﹣(﹣6)=.12.﹣1的倒数是,绝对值等于10的数是,平方等于4的数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)=.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=.15.若x4=81,则x的值是.三.解答题16.把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,﹣|﹣9|,﹣(﹣3.15).(1)整数集合{…};(2)分数集合{…};(3)非负数集合{…};(4)正数集合{…}.17.计算:(1)(﹣+﹣)×(﹣24)(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)18.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3﹣2﹣1.501 2.5筐数242336(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数)19.计算:已知|x﹣1|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.20.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(+﹣﹣).参考答案一.选择题1.解:(﹣1)2020=1,故选:A.2.解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.3.解:∵abc>0,a+b+c=0,∴a、b、c为两个负数,一个正数,a+b=﹣c,b+c=﹣a,c+a=﹣b,m=++∴分三种情况说明:当a<0,b<0,c>0时,m=﹣1﹣2+3=0,当a<0,c<0,b>0时,m=﹣1+2﹣3=﹣2,当a>0,b<0,c<0时,m=1﹣2﹣3=﹣4,∴m共有3个不同的值,﹣4,﹣2,0.最大的值为0.∴x=3,y=0,∴x+y=3.故选:B.4.解:原式=4+2+1=7,故选:C.5.解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,∴a=﹣2,b=﹣1,c=0,d=1,e=2,于是①②④正确,而③不正确,故选:D.6.解:∵a★b=3,且a=2,∴|2b﹣4﹣b|=3,∴2b﹣4﹣b=3或2b﹣4﹣b=﹣3,解得b=7或b=1,故选:C.7.解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:B.8.解:①a,b,c,d四个数都是正数时,原式=1+1+1+1+1=5;②a,b,c,d中有a,b,c三个正数时,原式=1+1﹣1﹣1﹣1=﹣1;③a,b,c,d中有a,b或a,c两个正数时,原式=1﹣1+1﹣1+1=1或原式=﹣1﹣1﹣1﹣1+1=﹣3;④a,b,c,d中有a一个正数时,原式=﹣1+1+1﹣1﹣1=﹣1;⑤a,b,c,d都是负数时,原式=1+1+1+1+1=5.综上所述,的可能值的个数为4.故选:B.9.解:x不一定是正数;x2不一定是正数;一定是正数;x2+2一定是正数;|x+2|不一定是正数;所以值一定是正数的有2个,故选:B.10.解:∵a=﹣2018,∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.二.填空题11.解:原式=0+6=6.故答案为:6.12.解:﹣1的倒数是1÷(﹣1)=﹣,∵|±10|=10∴绝对值等于10的数是±10,∵(±2)2=4,∴平方等于4的数是±2,故答案为:;±10;±2.13.解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.14.解:(﹣4)2017×(﹣0.25)2019=(﹣4)2017×(﹣0.25)2017×(﹣0.25)2=[﹣4×(﹣0.25)]2017×(﹣0.25)2===;(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)200×(﹣2)=﹣(﹣2)200=﹣2200.故答案为:;﹣2200.15.解:因为(±3)4=81,所以x=±3.故答案为:±3.三.解答题16.解:由题可得:(1)整数集合{ 6,﹣3,0,﹣1,﹣|﹣9|…};(2)分数集合{ 2.5,﹣(﹣3.15)…};(3)非负数集合{ 6,2.5,0,﹣(﹣3.15)…};(4)正数集合{ 6,2.5,﹣(﹣3.15)…}.故答案为:(1)6,﹣3,0,﹣1,﹣|﹣9|;(2)2.5,﹣(﹣3.15);(3)6,2.5,0,﹣(﹣3.15);(4)6,2.5,﹣(﹣3.15).17.解:(1)(﹣+﹣)×(﹣24)=18﹣14+15=19;(2)﹣23﹣|﹣3|+4﹣(﹣)×(﹣3)=﹣8﹣3+4﹣=﹣8.18.解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克),答:20筐白菜总计超过1千克;(3)(25×20+1)×1.6=501×1.6≈802(元),答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元.19.解:(1)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∵xy<0,∴x=4,y=﹣2或x=﹣2,y=2,∴x+y=2或0;(2)∵|x﹣1|=3,|y|=2,∴x=4或﹣2,y=2或﹣2,∴x﹣y的最大值为4﹣(﹣2)=6.20.解:(1)根据题目中的解答方法,可知解法一是错误的,故答案为:一;(2)原式的倒数=(+﹣﹣)÷(﹣)=(+﹣﹣)×(﹣210)=×(﹣210)+×(﹣210)﹣×(﹣210)﹣×(﹣210)=(﹣90)+(﹣28)+63+50=﹣5,故(﹣)÷(+﹣﹣)=.11 / 11。
七年级上册有理数复习+拓展提高1[1]
有理数一、常考题型检测 考点1:正数和负数注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1:向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动分别可记作 易错点:1、—a 一定是负数吗?2、下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数 1、有理数的分类注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。
2、0是整数不是分数例1、把下列各数填在相应的集合内: π,41,-3,2,-1,-0.58,0,-3.14,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 有理数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数 2、数轴(重点) 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:( )、( )、( )、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。
(4)同一数轴的单位长度必须一致例1:如图所示,在数轴上,点A,B,C,D 依次表示1.5,-2,2,-2.5。
说出个点与原点的位置关系以及与原点的距离是多少个单位长度?1.5A -2.5-3-131例2:有理数a,b,c 在数轴上的位置如图所示,求ccb b a ++a 的值 3.相反数(重点)定义:(1)只有符号不同....的两个数叫做相反数...。
(2)在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。
例1、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –3例2、a 的相反数是 , -a 的相反数是 , 0的相反数是 4、绝对值(难点)绝对值的定义:数轴上表示a 的点与原点的距离叫做a 的绝对值,记为 ∣a ∣,读作:a 的绝对值 因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。
人教版数学七年级上册第1章 有理数拓展复习(一)
七年级上册第1章拓展复习(一)一.选择题(共9小题)1.若a的相反数是2,|b|=3,且a,b异号,求a﹣b的值()A.﹣1B.5C.1D.﹣52.数m和﹣5在数轴上对应的点之间的距离为()A.|m+5|B.|m|﹣5C.|m﹣5|D.|m|+53.一个数在数轴上对应的点与它的相反数在数轴上对应的点的距离是6个单位长度,则这个数是()A.6或﹣6B.﹣3或3C.6或3D.﹣6或﹣34.已知|m|=6,|n|=3,|m+n|=﹣m﹣n,则m+n的值是()A.9B.﹣9C.﹣9或﹣3D.±9或±35.某交警在违规多发地段沿东西方向巡逻.若规定向东行走为正方向,该交警从出发点开始所走的路程(单位:m)分别为500m,﹣360m,210m,﹣100m,﹣130m,则最后该交警距离出发点()A.1300m B.580m C.120m D.300m6.点P、Q是在数轴上原点两旁的点,则它们表示的两个有理数是()A.互为相反数B.符号不同的两个数C.绝对值相等D.负数7.将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是()A.﹣2+5﹣7﹣9B.﹣2﹣5+7+9C.﹣2﹣5﹣7﹣9D.﹣2﹣5+7﹣9第1页(共1页)8.下列各个说法中,错误的是()A.在比例里,两个外项的积等于两个内项的积B.实际距离和图上距离的比叫做比例尺C.每支铅笔的价钱一定,铅笔支数和总价成正比例D.被除数一定,除数和商成反比例9.定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7B.﹣1C.1D.﹣4二.填空题(共6小题)10.如果把顺时针旋转21°记作+21°,那么逆时针旋转15°应记作.11.若x是3的相反数,|y|=4,则x﹣y的值是.12.已知点A,B,C为数轴上的三个点,点A,C在原点的同侧,若点A,B表示的数分别为2、﹣4,且AB﹣AC=3,则点C表示的数为.13.若x=1,则|x|+|x﹣1|+|x﹣2|+|x﹣3|=.14.在数轴上,点A、B、C表示的数分别为m、n、q,且m、n满足2|m﹣2|=﹣3|n﹣|,点C到点A的距离是它到点B的距离的3倍,则q=.15.已知数轴上点A,B分别对应数a,b.若线段AB的中点M对应着数15,则a+b的值为.三.解答题(共5小题)16.计算:(1)(﹣6)÷(﹣1)×0.75×|﹣1|÷|﹣3|2;第1页(共1页)(2)﹣92××[(﹣)2×(﹣)﹣240÷(﹣4)×].17.一辆货车从超市出发,向东走了2km到达小彬家,继续向东走了1.5km到达小颖家,然后向西走了6km到达小明家,最后回到超市,以超市为原点,向东为正方向,用一个单位长度表示1km,完成以下问题:(1)以A表示小彬家,B表示小颖家,C表示小明家,在数轴上标出A、B、C的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?如果货车行驶1km的用油量为0.35升,请你计算货车从出发到结束行程共耗油多少升?18.已知数轴上的点A和点B之间的距离为16个单位长度,点A在原点的左边,距离原点4个单位长度,点B在原点的右边.(1)点A所对应的的数是,点B对应的数是.(2)若已知在数轴上的点E从点A出发向右运动,速度为每秒1个单位长度,同时点F 从点B出发向左运动,速度为每秒3个单位长度,求当EF=4时,点E对应的数(列方第1页(共1页)程解答)(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒a个单位长度,同时点N 从点B出发向右运动,速度为每秒2a个单位长度,设线段NO的中点为P(O为原点),在运动过程中,线段OP的值减去线段AM的值是否变化?若不变,求其值;若变化,说明理由.19.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.20.定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.第1页(共1页)(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.第1页(共1页)参考答案一.选择题(共9小题)1.解:∵a的相反数是2,∴a=﹣2,∵|b|=3,且a,b异号,∴b=3,∴a﹣b=﹣2﹣3=﹣5.故选:D.2.解:数m和﹣5在数轴上对应的点之间的距离为|m﹣(﹣5)|=|m+5|.故选:A.3.解:因为互为相反数的两数的绝对值相等,设这个数为a,则|a|+|﹣a|=6,所以a=±3.故选:B.4.解:∵|m|=6,|n|=3,∴m=±6,n=±3,又∵|m+n|=﹣m﹣n,∴m+n≤0,∴m=﹣6,n=3或m=﹣6,n=﹣3,第1页(共1页)∴m+n=﹣3或m+n=﹣9,故选:C.5.解:500+(﹣360)+210+(﹣100)+(﹣130)=140+210+(﹣230)=350+(﹣230)=120(m)答:最后该交警距离出发点120m.故选:C.6.解:∵点P、Q是在数轴上原点两旁的点,∴点P、Q所表示的两个有理数符号是相反的,即一个正数,另一个为负数,但两个数的绝对值不一定相等,故只能得出“这两个有理数符号是相反的”,故选:B.7.解:﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D.8.解:A.在比例里,两个外项的积等于两个内项的积,说法正确,故本选项不合题意;B.实际距离和图上距离的比叫做比例尺,说法错误,正确说法为:图上距离和实际距离的比叫做比例尺,故本选项符合题意;C.每支铅笔的价钱一定,铅笔支数和总价成正比例,说法正确,故本选项不合题意;D.被除数一定,除数和商成反比例,说法正确,故本选项不合题意.第1页(共1页)故选:B.9.解:根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.二.填空题(共6小题)10.解:“正”和“负”相对,所以如果顺时针方向旋转21°,记作+21°,那么逆时针旋转15°,应记作﹣15°.故答案为:﹣15°.11.解:由题意可知:x=﹣3,y=±4,当y=4时,x﹣y=﹣3﹣4=﹣7当y=﹣4时,x﹣y=﹣3+4=1,故答案为:1或﹣7.12.解:∵点A,B表示的数分别为2、﹣4,∴AB=2﹣(﹣4)=6,∵AB﹣AC=3,∴AC=3,∴点C表示的数是2+3=5.故答案为:5.13.解:∵x=1,第1页(共1页)∴x﹣1>0,x﹣2<0,x﹣3<0,∴|x|+|x﹣1|+|x﹣2|+|x﹣3|,=x+x﹣1+(2﹣x)+(3﹣x),=x+x﹣1+2﹣x+3﹣x,=4,故答案为:4.14.解:∵2|m﹣2|=﹣3|n ﹣|,∴m﹣2=0且n ﹣=0,即,m=2,n =,①当点C在点A与点B之间时,有q﹣2=3(﹣q),解得,q=3;②当点C在AB的延长线上时,有q﹣2=3(q ﹣),解得,q=4;故答案为:3或4.15.解:如图所示:∵点A、B对应的数为a、b,第1页(共1页)∴AB=a﹣b,∴a ﹣=15,解得:a+b=30,故答案为30.三.解答题(共5小题)16.解:(1)原式=6××××=;(2)原式=﹣81××(﹣×+60×)=﹣27×(﹣+15)=45﹣405=﹣360.17.解:(1)以A表示小彬家,B表示小颖家,C表示小明家,在数轴上标出A、B、C的位置如图所示:(2)AC=2﹣(﹣2.5)=4.5(千米),答:小明家距小彬家4.5千米;(3)2+1.5+6+2.5=12(千米),0.35×12=4.2(升),答:货车一共行驶了12千米,从出发到结束行程共耗油4.2升.18.解:(1)根据题意得:A点所对应的数是﹣4;B对应的数是12.第1页(共1页)故答案为﹣4,12;(2)设经过x秒时,EF=4.分两种情况:①相遇前,根据题意得:x+4+3x=16,解得:x=3.则点E对应的数为﹣4+1x3=﹣1;②相遇后,根据题意得:x﹣4+3x=16,解得:x=5,则点E对应的数为﹣4+5=1;(3)设运动时间是t秒,则AM=at,PO =ON =,则PO﹣AM =﹣at=6.即PO﹣AM为定值,定值为6.19.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A 的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55第1页(共1页)∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或5520.解:(1)根据“相异数”的定义可知29是“相异数”,S(43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得k=4,∴2(k﹣1)=2×3=6,∴相异数y是46;(3)正确;设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=5×11,即:a+b=5,因此,判断正确.第1页(共1页)。
最新人教版数学七年级上册 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
七年级有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.8.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)4(2)解:设经过a秒后P、Q相距5cm,由题意得,20-(2+3)a=5,解得:,或(2+3)a−20=5,解得:a=5,答:再经过3秒或5秒后P、Q相距5cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或s,设点Q的速度为ycm/s,当2s时相遇,依题意得,2y=20−2=18,解得y=9当5s时相遇,依题意得,5y=20−6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.【解析】【解答】解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4秒,点P、Q两点相遇;故答案为:4.【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.11.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.【答案】(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.12.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.【答案】(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.。
初一数学《有理数》拓展提高试题及答案
初一数学《有理数》拓展提高试题(一)一、选择题(每小题3分,共30分)1.某粮店出售三种品牌的面粉,袋上分别标有质量为(250。
1)kg、(250。
2)kg 、(25 03)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A。
0。
8kg B。
0.6kg C. 0。
5kg D 。
0。
4kg2、有理数a 等于它的倒数,则a2004是--—---—-————-----———-—--——-—-———------———-——-—-——-—-()A。
最大的负数B.最小的非负数C.绝对值最小的整数D。
最小的正整数3、若,则的取值不可能是—---—----—--———--————————-—--—---——---—------—-()A.0 B.1 C.2D。
-24、当x=-2时,的值为9,则当x=2时,的值是() A、-23 B、-17 C、23 D、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是………………………()A、1B、2C、3D、46、若|a|=4,|b|=2,且|a+b|=a+b,那么a—b的值只能是( ).A。
2 B. -2 C. 6 D.2或67、x是任意有理数,则2|x|+x 的值( )。
A。
大于零 B. 不大于零 C。
小于零 D.不小于零8、观察这一列数:,, ,,,依此规律下一个数是()A. B。
C. D。
9、若表示一个整数,则整数x可取值共有().A。
3个 B。
4个 C.5个 D.6个10、等于()A. B. C. D.二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ;12. (-3)2013×(-)2014= ;13。
若|x-y+3|+=0,则= .14。
初一有理数提高练习题及答案
有理数提高训练一、选择题1、已知|a|=2 , |b|=3,且在数轴上表示有理数b的点在a的左边,贝0 a - b的值为()A . -1B . -5 C. -1 或- 5 D. 1或52、下列说法正确的是()3、如果a和2b互为相反数,且b^ 0,那么a的倒数是()1 1 2■ ■—A.丄B. 2-C. ■-D.4、如下图,数轴的单位长度为 1.如果点A, B表示的数的绝对值相等,那么点A表示的数是()I 丨A BA.—4 B 2 C . 0 D . 45、如果与1互为相反数,则丨迄+习等于()A. 2 B . _ C . 1 D . 16、已知a,b是有理数,若a在数轴上的对应点的位置如图所示,「:■ L -」,有以下结论:①-I.;②「「: . ■」:③; ' _ :;④一;. 山:“则所有正确的结论是()A.①,④B. ①,③C. ②,③D. ②,④7、下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④8、下列说法中,正确的是( )。
9、下面的说法中,正确的个数是( )值最小的有理数,请问: ...、一:、]三数之和为多少?”你能回答主持人的问题吗?其和应为(A 、一 1B 、0 11、若 -l<a<0 ,则的大小关系是12、有理数a 、b 、c 、d 在数轴上的位置如图 1所示,下列结论中错误的是 ()图1A.a+b<0B.c+d>0C.|a+c|=a+cD.|b+d|=b+d13、如图,一八1在数轴上的位置如图所示,A . T 是正数 B. — a 是负数 C. 也是负数 D. 一尬不是负数①若 a + b=0,则 |a|=|b| ③若 |a|=|b|,则 a=b A.1个 B.2 个 ②若 |a|=a,贝U a > 0④若a 为有理数,则a 2=(-a )C.3 个D.4 个10、在一次智力竞赛中,主持人问了这样的一道题目: 」是最小的正整数,-是最大的负整数的相反数,I 是绝对D、2则-:----:--■ - -■ - L'-14、对于有理数、_:,如果,- J :' ! ' 11 ,则下列各式成立的是(:A' <0-且」」* D .「;』■川且・」a,b 是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b 按照从小到大的顺序排列二、填空题16、如果 |a-2|=0 ,|b|=3 , 求a+b 的值17、绝对值不大于 10的所有整数的和等于 ,绝对值小于5的所有负整数的和为18、在数轴上,若 A 点表示数:,点B 表示数一5,A 、B 两点之间的距离为 7,则::- 19、 已知:J71-120、如果,Hr 21、设一;> 0, : v 0,且 22、=0,则「V 的值为,用“v”号把...、—」、:、—一:连接起来小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有个.15、A -b v -a v av bB -a v -b v av bC -b v av -a v bD -b v bv -a v a23、用“ 一”与“ 一”表示一种法则:(a — b ) = - b ,( a — b )=-玄,如(2一 3) = -3 , 则:「UM . I" . 丁厂-124、 右0v a v 1,则a , a ,二的大小关系是25、 水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是三、简答题26、已知 |a-3 | + | b-4 | =0,求; 的值.27、如图所示,一个点从数轴上的原点开始,先向右移动 3个单位长度,再向左移动 5个单位长度,可以看到终点表 示的数是-匚,已知点A ,B 是数轴上的点,请参照下图并思考。
专题14 有理数(拓展提高)(解析版)
专题1.4 有理数(拓展提高)一、单选题1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数【答案】D【分析】整数包括正整数、负整数、零;不是正数,有可能是负数和零,零既不是正数,也不是负数;有理数可这样分,正数、零、负数;有理数的概念:整数和分数统称为有理数【详解】A、负整数和0就不是正数,显然A错误;B、不是正数,有可能是零,所以B错误;C、负有理数比零小,错误;D、正确,故选D.【点睛】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.2.在31,7π,0,0.6四个数中,有理数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据有理数的定义即可求解.【详解】解:在31,7π,0,0.6四个数中,317,0,0.6是有理数,共3个,故选:C.【点睛】本题考查有理数的定义,整数和分数统称为有理数.3.在﹣3,12-,0,2四个数中,是负整数的是()A.﹣3 B.12-C.0 D.2【答案】A【分析】根据有理数的分类进行分析即可求解.【详解】解:-3是负整数,12-为负分数,0为整数,2为正整数故选:A.【点睛】本题主要考查学生有理数的分类以及各类数的概念,要求学生熟练掌握各类数的概念.4.在下列六个数中:0,2π,227-,0.101001,﹣10%,5213,分数的个数是( ) A .2个B .3个C .4个D .5个 【答案】B 【分析】根据分数的定义解答即可.【详解】在下列六个数中:0,2π,227-,0.101001,﹣10%,5213中,分数有227-,0.101001,﹣10%共3个.故选:B .【点睛】本题主要考查了有理数的分类,熟记分数的定义是解答本题的关键.5.下列说法中正确的是( )A .在有理数中,零的意义仅表示没有B .一个数不是负数就是正数C .正有理数和负有理数组成全体有理数D .零是整数【答案】D【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【详解】解:A 、在有理数中,零的意义表示没有、也可以表示正数和负数的分界点,故选项错误; B 、0不是正数也不是负数,故选项错误;C 、正有理数和负有理数和0组成全体有理数,故选项错误;D 、零是整数,正确.故选:D .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.6.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A 【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.二、填空题7.在有理数3-,7,2,123,43-,0,0.01-,10.1%-中,属于非负数的有________个. 【答案】4【分析】根据大于或等于零的数是非负数,可得答案.【详解】解:7,2,123,0,是非负数,共4个,故答案为:4.【点睛】本题考查了非负数,大于或等于零的数是非负数.8.有六个数:5,0,132,0.3-,14-,π-,其中分数有a 个,非负整数有b 个,有理数有c 个,则a b c +-=______.【答案】0【分析】根据分数、非负整数和有理数的定义得到a ,b ,c 的值,即可求解. 【详解】解:分数有132,0.3-,14-,∴3a =, 非负整数有0,5,∴2b =,有理数有5,0,132,0.3-,14-,∴5c =, ∴3250a b c +-=+-=,故答案为:0.【点睛】本题考查有理数的定义,掌握分数、非负整数和有理数的定义是解题的关键.9.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b ,a 的形式,则4a b -的值________.【答案】15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b =-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b 、a 的形式∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b=-3是解答本题的关键.10.(1)、字母a 没有“-”号,所以a 是正数.(_______)(2)、任何一个有理数都可以在数轴上表示出来.(_______)(3)一个数的绝对值必是正数.(_______)(4)符号不同的两个数互为相反数.(_______)(5)有理数就是自然数和负数的统称.(_______)【答案】(1)错, (2)对, (3)错, (4)错, (5)错.【分析】(1)根据0既不是正数,也不是负数,可得凡是前面没有“-”号的数不一定都是正数,据此判断即可;(2)所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案;(3)根据绝对值的定义进行判断即可;(4)符号不同、且绝对值相等的两个数互为相反数;(5)根据有理数的定义、分类进行判断求解.【详解】解:(1)错误,比如:a=0,或a=-3时;(2)任何一个有理数都可以在数轴上找到对应的点,所以说法正确;(3)根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,可得绝对值是非负数≥0,故错误;(4)只有符合不同的两个数互为相反数,故原题错误;(5)有理数就是正有理数、负有理数和零的统称,故原题错误.【点睛】本题考查有理数分类、相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.把下列各数填在相应的大括号内:-5,34-,-12,0,0.12..,-3.14,+1.99,+6,227.(1)正数集合:{ …};(2)负数集合:{ …};(3)分数集合:{ …};(4)非负整数集合:{ …}.【答案】(1)0.12..,+1.99,+6,227;(2)-5,34-,-12,-3.14;(3)34-,0.12..,-3.14,+1.99,227;(4)0,+6【分析】利用正数,负数,非负整数,以及分数的定义判断即可.【详解】解:(1)正数集合:{ 0.12..,+1.99,+6,227…};(2)负数集合:{ -5,34-,-12,-3.14 …};(3)分数集合:{34-,0.12..,-3.14,+1.99,227…};(4)非负整数集合:{ 0,+6 …}.【点睛】此题考查了正数,负数,非负整数,以及分数的定义,弄清各自的定义是解本题的关键.12.将下列各数填入相应的括号内:﹣2.5,152,0,8,﹣2,2π,﹣1.121121112……正数集合:{};负数集合:{ }; 整数集合:{ };无理数集合:{ };【答案】正数集合:{152,8,2π};负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}; 【分析】直接利用正数、负数、整数、无理数的定义分别分析得出答案.【详解】﹣2.5,152,0,8,﹣2,2π,﹣1.121121112…… 正数集合:{152,8,2π}; 负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}. 故答案为:152,8,2π;﹣2.5,﹣2,﹣1.121121112……;0,8,﹣2;2π,﹣1.121121112……. 【点睛】本题考查了实数的分类,正确掌握相关定义是解题的关键.13.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数【答案】90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.14. 将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是_____;(2)2022应排在A ,B ,C ,D ,E 中_____的位置上.【答案】24 A【分析】根据图示信息找出A ,B ,C ,D ,E 各个位置数据的表达式,代入即可【详解】解:(1)观察发现:峰n 中,A 位置的绝对值可以表示为:5n ﹣3;B 位置的绝对值可以表示为:5n ﹣2;C 位置(峰顶)的绝对值可以表示为:5n ﹣1;D 位置的绝对值可以表示为:5n ;E 位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3, ∴2022应排在A 的位置.故答案为:(1)24;(2)A .【点睛】此题属于找规律题,考查提取信息和总结的能力.三、解答题15.下列各数填入它所在的数集中:18-,227,3.1416,0,2001,35,0.142-,95%,π. 正数集:{ …};整数集:{ …};自然数集:{ …};分数集:{ …}.【答案】见解析【分析】根据有理数的分类即可求出答案.【详解】解:正数集:{ 227,3.1416,2001,95%,π}整数集:{-18,0,2001 }分数集:{ 227,3.1416,35,-0.142,95% }非负整数集:{0,2001}【点睛】本题考查有理数的分类,解题的关键是熟练运用有理数的分类,本题属于基础题型,注意:π不是有理数.16.将下列各数填入它所属于的集合的圈内:20,-0.08,-213,4.5,3.14,-1,+43,+5.【答案】见解析【分析】分别判断题干中的8个数字是否符合四个圆圈的内容,相应填入数字即可【详解】负整数,即既是负数,也是整数;正整数,即既是正数,也是整数;负分数,即既是负数,也是分数;正分数,即既是正数,也是分数;故负整数集合为:-1;正整数集合:20、+5;负分数集合为:-0.08、1 23正分数集合为:4.5、3.14、﹢4 3【点睛】本题考查有理数的分类,解题的关键是细心,切勿遗漏或重复填写数字17.把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4,34,0,-3.14,29,+2,-312,-1.414,-17,23.正数:{ …}非负整数:{ …}整数:{ …}负分数:{ …}【答案】6,2.4,29,+2,23;6,0,+2;6,-3,0,+2,-17;-34,-3.14,-312,-1.414.【分析】根据大于零的数是正数,可得正数集合;根据大或等于零的整数是非负整数,可的非负整数集合;根据分母为1的数是整数,可得整数集合;根据小于零的分数是负分数,可得负分数集合.【详解】正数:{6,2.4,29,+2,23…}非负整数:{6,0,+2 …}整数:{6,-3,0,+2,-17 …}负分数:{-34,-3.14,-312,-1.414 …}【点睛】本题考查了有理数,熟练掌握有理数的分类是解本题的关键.注意整数和正数的区别,注意0是整数,但不是正数.18.把下列各数填入相应的数集中:+125、-5%、200、-3、6.8、0、-215、0.12003407、1、-43.555、77%、-334(1)非负数集合:______________________(2)负有理数集合:________________________ (3)正整数集合:______________________(4)负分数集合:___________________________【答案】(1)+125、200、6.8、0、0.12003407、1、77%;(2)-5%、-3、-215、-43.555、-334;(3)200、1;(4)-5%、-215、-43.555、-334.【分析】根据有理数的分类,可得答案【详解】解:(1)非负数集合:+125、200、6.8、0、0.12003407、1、77%; (2)负有理数集合:-5%、-3、-215、-43.555、-334; (3)正整数集合:200、1;(4)负分数集合:-5%、-215、-43.555、-334. 【点睛】本题考查了有理数,熟知有理数的分类是解题关键.19.把下列各数填在相应的横线处:115 , 0.81 -3 25% -3.1 -4 , 171 , 0 , 3.142,,,,, 正数集合:_____;负数集合:_____;整数集合:_____;负分数集合:_____;有理数集合:_____.【答案】见解析【分析】根据有理数的分类进行填空即可. 【详解】解:正数集合:115 0.81 25% 171 , 3.142,,,,; 负数集合:-3,-3.1,-4;整数集合:15,-3,-4,171,0;负分数集合:-3.1; 有理数集合:1115 0.81 -3 -3.1 -4 171 , 0 3.1424,,,,,,,,. 【点睛】本题考查了有理数的分类.掌握有理数的分类是解题的关键.20.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.615454542.6154••=为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-= 25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•= (2)试说明3.1415••是一个有理数,即能用一个分数表示.【答案】(1)149;(2)见解析 【分析】(1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,① 两边乘10得:1015.5x •=,② ②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,① 两边同乘以100得:••100314.15x =,② ②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.。
人教版数学七年级上册第1章有理数拓展训练(含答案)
七年级上册第1章拓展训练一.选择题1.下列各数(﹣2)3,﹣(﹣2),(﹣2)2,﹣|﹣2|,﹣22中,负数有()A.1个B.2个C.3个D.4个2.若a是最小的正整数,b是最大的负整数,则﹣a+b的值为()A.0B.1C.2D.﹣23.下面说法正确的是()A.符号不同的两个数互为相反数B.正分数、0、负分数统称分数C.绝对值最小的数是0D.任何有理数都有倒数4.在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是()A.﹣15B.30C.24D.05.2020减去它的,再减去余下的,再减去余下的,…依此类推,一直减到余下的,则最后剩下的数是()A.0B.1C .D .6.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;第1页(共1页)④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.47.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>08.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤9.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.1110.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为;(其中k 是使为奇数的正整数),并且运算可以重复进行,例如,取n=26.则:若n=49,则第449次“F运算”的结果是()A.98B.88C.78D.68二.填空题11.计算:20212﹣4×1010×1011=.第1页(共1页)12.若a=1,b是2的相反数,则|a﹣b|的值为.13.数轴上有A 、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P 从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为单位长度.14.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.15.若对于某一范围内的x的任意值,|1﹣2x|+|1﹣3x|+…+|1﹣10x|的值为定值,则这个定值为.三.解答题16.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)﹣(﹣1)+(﹣1)﹣;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣).第1页(共1页)17.的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)18.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.第1页(共1页)19.已知x,y为有理数,现规定一种新运算*,其意义是x⊗y=xy+1.(1)求(﹣2)⊗4的值;(2)求(﹣1⊗3)⊗(﹣2)的值;(3)任意选择两个有理数,分别填入下列□和○内,并比较两个运算结果,你有什么发现?把你的发现用等式表示出来.□⊗○和○⊗□20.观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)第1页(共1页)参考答案一.选择题1.解:(﹣2)3=﹣8,是负数,﹣(﹣2)=2,是正数,(﹣2)2=4,是正数,﹣|﹣2|=﹣2,是负数,﹣22=﹣4,是负数,综上所述,负数共有3个.故选:C.2.解:∵a是最小的正整数,b是最大的负整数,∴a=1,b=﹣1,∴﹣a+b=﹣1+(﹣1)=﹣2.故选:D.3.解:A.只有符号不同的两个数互为相反数,不是符号不同的两个数互为相反数,如2与﹣1的符号不相同,但2与﹣1不是相反数,此选项错误;B.其中0是整数不是分数,正分数和负分数统称为分数,此选项错误;C.因为正数的绝对值为正数,大于0,负数的绝对值为正数,大于0,0的绝对值为0,所以绝对值最小的数是0,此选项正确;D.由于0没有倒数,此选项错误;故选:C.4.解:在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是:第1页(共1页)4×6=24.故选:C.5.解:2020×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2020××××…×=1.故选:B.6.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.7.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.第1页(共1页)8.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a <<a.故选:B.9.解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.10.解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,第1页(共1页)即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,449÷6=74…5,则第449次“F运算”的结果是98.故选:A.二.填空题11.解:原式=20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1.故答案为:1.第1页(共1页)12.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.13.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.14.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.15.解:∵P为定值,∴P的表达式化简后x的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0即所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3三.解答题第1页(共1页)16.解:(1)﹣16﹣(﹣12)﹣24+18=(﹣16)+12+(﹣24)+18=[(﹣16)+(﹣24)]+(12+18)=(﹣40)+30=﹣10;(2)﹣(﹣1)+(﹣1)﹣=[+(﹣1)]+(1﹣)=(﹣1)+1=;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣)=1+1﹣+=(1+)+(1﹣)=2+=2.17.解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)第1页(共1页)答:李师傅上午9:00~10:15一共收入约109元.18.解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、得数错误.19.解:(1)(﹣2)⊗4=﹣2×4+1=﹣7;(2)(﹣1⊗3)⊗(﹣2)=(﹣1×3+1)⊗(﹣2)=(﹣2)⊗(﹣2)=﹣2×(﹣2)+1=5;(3)(﹣1)⊗5=﹣1×5+1=﹣4,5⊗(﹣1)=5×(﹣1)+1=﹣4;所以□⊗○=○⊗□.20.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,第1页(共1页)∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.第1页(共1页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《有理数》拓展提高试题(一)
一、
选择题
1.某粮店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)kg 、(25±0.2)kg 、 (25 ± 03)kg 的字样,从中任意拿出两袋 ,它们的质量最多相差( )
A. 0.8kg
B. 0.6kg
C. 0.5kg D . 0.4kg 2、有理数a 等于它的倒数,则a
2004
是( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数 3、若0ab ≠,则
a b
a b
+的取值不可能是( ) A .0 B.1 C.2 D.-2
4、当x=-2时, 37ax bx +-的值为9,则当x=2时,3
7ax bx +-的值是( ) A 、
-23 B 、-17 C 、23 D 、17
5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是 ( )
A 、1
B 、2
C 、3
D 、4
6、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
A.2
B. -2
C. 6
D.2或6 7、 x 是任意有理数,则2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零
8、观察这一列数:34-
,57, , 1713,3316-,依此规律下一个数是( )9
10
-
A.4521
B.4519
C.6521
D.6519 9、若1
4
+x 表示一个整数,则整数x 可取值共有( ).
A.3个
B.4个
C.5个
D.6个 10、
30
28864215
144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( )
A .41
B .41-
C .21
D .2
1-
二、填空题
11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式
(每个数有且只能用一次)_______________ ______ ; 12. (-3)
2013
×( -
3
1)2014
= ; 13.若|x-y+3|+()2
2013y x -+=0,则
y
x x
2-= .
14.到的铁路之间有25个站台(含和),设制 种票才能满足票务需求. 15.设c b a ,,为有理数,则由
c
c
b b a a +
+ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,
则 │b-a │+│a+c │+│c-b•│=____ _ ___;
17.根据规律填上合适的数: 1,8,27,64, ,216;
18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为
100
1
n n =∑,这里“∑”是
求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以的连续奇数的和)可表示为
50
1
(21);n n =-∑又
如“3333333333
12345678910+++++++++”可表示为10
3
1
n n
=∑,同学们,通过以上材料的阅读,
请解答下列问题:
(1)2+4+6+8+10+…+100(即从2开始的100以的连续偶数的和)
用求和符号可表示为 ; (2)计算:5
2
1
(1)n n
=-∑= (填写最后的计算结果)。
三、解答题 19、计算:⎪⎭⎫ ⎝
⎛
--+-⎪⎭⎫ ⎝⎛---32775.2324523(4分)
20、计算:5025249⨯⎪⎭
⎫
⎝⎛- (4分) 21、已知
02a 1b =-+-,
求
()()()()
()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值 (7分)
22、阅读并解答问题 求200832
2 (22)
1++++的值,
解:可令S =200832
2......221++++,
则2S =2009432
2 (222)
++++ ,
因此2S-S =122009
-,
所以200832
2 (22)
1++++=1
22009-
仿照以上推理计算出200932
5 (55)
1++++的值
23. (8分)三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为0,a
b
,b 的形式,试求20012000
b a +的值.
24、(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由
K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子跳蚤的初始位置K 0点所表示的数。
一、选择题 1、B
2、D
3、B
4、A 5 、 A 6、D 7、D 8、D
9、D 10、D 二、填空题
11、(答案不唯一)、12、3
1
13、670 14、702 15、1,-1,3,-3
16、-2c 17、125 18、(1)∑=50
1
n )n 2( (2)50
三、解答题
19、解:原式=15.175.56.4375.26.43
2
775.23246.4-=-=--=---++ 20、解:原式=()49825005025150105025110-=--=⎪⎭
⎫
⎝⎛⨯-⨯-=⨯⎪⎭⎫ ⎝⎛
-
- 21、
2008
2007
22、4
2152010-
23、解:由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,
a b
,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a
b
与中有
一个是1,但若0=a ,会使a b 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a
b
.只能
是1=b ,于是a =-1。
∴原式=2.
24、解: 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,12x -+,
123x -+-,…,1234
99100x -+-+-+. 由题意知:123499100x -+-+-+=
20所以x=- 30.。