初一数学有理数拓展提高难题

合集下载

经典七年级有理数提高类型难题

经典七年级有理数提高类型难题

16、a 是有理数,代数式112++a 的最小值是( ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系i 中正确的是( ) A. a <b <c B. a <c <b C. b <c <a D. c <b <a 22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题29、若︱x -3︱+︱y +2︱=0,则x +y 的值为_____________.30、(茂名)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得 (a +1)⊕b = n +1, a ⊕(b +1)= n -2。

现在已知1⊕1 = 2,那么2008⊕2008 = 31、若00xy z ><,,那么xyz ______.34、若,,,,,a b c d e f 是六个有理数,且11111,,,,23456a b c d e b c d e f =-==-==-,则_______.fa= 36、比较下列各对数的大小: (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 37、(1) 111117(113)(2)92844⨯-+⨯- (2) 419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦(3)、 200423)1()2(161)1()21()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--(4) 100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ 四、解答题38、 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如图),化简b c b a a -+-+ 40、已知22=-+-a ab ,求()()()()()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值41、(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少? (3)求54-+-x x 的最小值。

初一数学有理数难题与提高练习和培优综合题压轴题含解析

初一数学有理数难题与提高练习和培优综合题压轴题含解析

初一数学有理数难题与提高练习和培优综合题压轴题含解析一.选择题共12小题1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a810.为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127二.填空题共10小题13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是填入M、N、P、R中的一个或几个.15.为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.只填序号,答案格式如:“①②③④”.21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题共18小题23.计算:++++…+.24.请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.28.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x=时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.30.同学们都知道:|5﹣﹣2|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:1数轴上表示5与﹣2两点之间的距离是,2数轴上表示x与2的两点之间的距离可以表示为.3如果|x﹣2|=5,则x=.4同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.5由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:11+2+22+23+24+…+21021+3+32+33+34+…+3n其中n为正整数32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:1当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.2已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:××××××…××××.35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.1以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗2小彬家距中心广场多远3小明一共跑了多少千米36.已知:b是最小的正整数,且a、b满足c﹣52+|a+b|=0,请回答问题1请直接写出a、b、c的值.a=,b=,c=2a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时即0≤x≤2时,请化简式子:|x+1|﹣|x﹣1|+2|x+5|请写出化简过程3在12的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:1;2﹣24+3﹣16﹣5;3;4;5;6;7;8;9;10;11;12﹣47.65×2+﹣37.15×﹣2+10.5×﹣7.39.1+2+3+…+100= 经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…nn+1=观察下面三个特殊的等式1×2=1×2×3﹣0×1×22×3=2×3×4﹣1×2×33×4=3×4×5﹣2×3×4将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:1直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…nn+1=2探究并计算:1×2×3+2×3×4+3×4×5+…+nn+1n+2=3请利用2的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.1如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B 两点间的距离是;2如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;3如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;4一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数A、B两点间的距离为多少初一数学有理数难题与提高练习和培优综合题压轴题含解析参考答案与试题解析一.选择题共12小题1.2016春碑林区校级期末1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米分析首先根据题意求出头发丝的半径是60 000÷2纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.解答解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.2014秋赛罕区校级期末足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0分析每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.解答解:由题意知,红队共进4球,失2球,净胜球数为:4+﹣2=2,黄队共进3球,失5球,净胜球数为3+﹣5=﹣2,蓝队共进2球,失2球,净胜球数为2+﹣2=0.故选A.点评每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.2010春佛山期末要使为整数,a只需为A.奇数B.偶数C.5的倍数D.个位是5的数分析如果为整数,则a﹣52为4的倍数,可确定a的取值.解答解:∵为整数,∴a﹣52为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.点评本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.2013秋郑州期末体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%分析根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.解答解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.点评本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.2014 新华区模拟有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为A.2 B.﹣1 C .D.2008分析从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.解答解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣﹣1=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.点评考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.2016春沭阳县期末有理数a,b,c都不为零,且a+b+c=0,则++= A.1 B.±1 C.﹣1 D.0分析根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.解答解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选B点评本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.2013 天桥区一模计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=A.16 B.1C C.1A D.22分析首先把A+C利用十进制表示,然后化成16进制即可.解答解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.点评本题考查了有理数的运算,理解十六进制的含义是关键.8.2012秋祁阳县校级期中若ab>0,且a+b<0,那么A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0分析两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.解答解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.点评本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.2011秋南海区期末如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是A.a1+a2+a3+a7+a8+a9=2a4+a5+a6B.a1+a4+a7+a3+a6+a9=2a2+a5+a8C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.a3+a6+a9﹣a1+a4+a7=a2+a5+a8分析从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.解答解:A、a1+a2+a3+a7+a8+a9=a4+a5+a6﹣21+a4+a5+a6+21=2a4+a5+a6,正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2a2+a5+a8,正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、a3+a6+a9﹣a1+a4+a7=6,错误,符合题意.故选D.点评本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.2010 广州为确保信息安全,信息需加密传输,发送方由明文密文加密,接收方由密文明文解密,已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数见表格,当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是A.wkdrc B.wkhtc C.eqdjc D.eqhjc分析m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.解答解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.点评本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.2009秋和平区校级期中设y=|x﹣1|+|x+1|,则下面四个结论中正确的是A.y没有最小值B.只有一个x使y取最小值C.有限个x不止一个y取最小值D.有无穷多个x使y取最小值分析根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.解答解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x 的范围为﹣1≤x≤1,故选D.点评本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“”是一种数学运算符号,并且1=1,2=2×1=2,3=3×2×1=6,4=4×3×2×1,…且公式,则C125+C126=A.C135B.C136C.C1311D.C127分析根据题目信息,表示出C125与C126,然后通分整理计算即可.解答解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.点评本题是信息给予题,读懂题目信息是解题的关键.二.填空题共10小题13.2009秋绥中县期末2.40万精确到百位,有效数字有3个.分析根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.解答解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.点评从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.2016秋余杭区期末如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N或P填入M、N、P、R中的一个或几个.分析根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.解答解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.点评此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.2015 茂名为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+...+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015的值是.分析根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.解答解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点评本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.2013 天河区一模我们常用的数是十进制数,计算机程序使用的是二进制数只有数码0和1,它们两者之间可以互相换算,如将1012,10112换算成十进制数应为:;按此方式,将二进制11012换算成十进制数的结果是13.分析根据题目信息,利用有理数的乘方列式进行计算即可得解.解答解:11012=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.点评本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.2012 台州请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,﹣3⊕﹣4=﹣4⊕﹣3=﹣,﹣3⊕5=5⊕﹣3=﹣,…你规定的新运算a⊕b=用a,b的一个代数式表示.分析由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.解答解:根据题意可得:1⊕2=2⊕1=3=+,﹣3⊕﹣4=﹣4⊕﹣3=﹣=+,﹣3⊕5=5⊕﹣3=﹣=+,则a⊕b=+=.故答案为:.点评此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.2011 越秀区校级模拟我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.分析首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.解答解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.点评本题考查了不等式的整数解,正确确定x,y的值是关键.19.2011春宿迁校级期末符号“G”表示一种运算,它对一些数的运算结果如下:1G1=1,G2=3,G3=5,G4=7,…2G=2,G=4,G=6,G=8,…利用以上规律计算:G2010﹣G﹣2010=﹣2009.分析此题是一道找规律的题目,通过观察可发现1中等号后面的数为前面括号中的数的2倍减1,2中等号后面的数为分母减去1再乘2,计算即可.解答解:G2010﹣G﹣2010=2010×2﹣1﹣2010﹣1×2﹣2010=﹣2009.点评找到正确的规律是解答本题的关键.20.2006 连云港a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.只填序号,答案格式如:“①②③④”.分析首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.解答解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=b+1a+1<0,故④正确.所以一定成立的有①②④.故答案为:①②④.点评此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.2006 贺州若|x|=2,|y|=3,且<0,则x+y=±1.分析根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.解答解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+﹣3=﹣1或﹣2+3=1.故答案为:±1.点评理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.2004 乌鲁木齐王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.分析结合图形,知+=1﹣,++=1﹣,推而广之即可.解答解:结合图形,得+++…+=1﹣.点评此题注意运用数形结合的思想进行分析.三.解答题共18小题23.计算:++++…+.分析把++++…+变形为+++++++ +…++,再根据加法交换律和结合律计算即可求解.解答解:++++…+=++++++++…++=+++++++…+++=2×2014+=4028+=4028.点评此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.2016秋湖北月考请你仔细阅读下列材料:计算:﹣÷﹣+﹣解法1:按常规方法计算原式=﹣÷+﹣+=﹣÷﹣=﹣×3=﹣解法2:简便计算,先求其倒数原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣30=﹣20+3﹣5+12=﹣10故﹣÷﹣+﹣=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:﹣÷﹣+﹣.分析观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.解答解:解法1,﹣÷﹣+﹣=﹣÷+﹣+=﹣÷﹣=﹣÷=﹣;解法2,原式的倒数为:﹣+﹣÷﹣=﹣+﹣×﹣56=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故﹣÷﹣+﹣=﹣.点评此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.2016秋东莞市期末已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.1求2※4的值;2求1※4※﹣2的值;3任意选择两个有理数至少有一个是负数,分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;4探索a※b+c与a※b+a※c的关系,并用等式把它们表达出来.分析读懂题意,掌握规律,按规律计算每个式子.解答解:12※4=2×4+1=9;21※4※﹣2=1×4+1×﹣2+1=﹣9;3﹣1※5=﹣1×5+1=﹣4,5※﹣1=5×﹣1+1=﹣4;4∵a※b+c=ab+c+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※b+c+1=a※b+a※c.点评解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.2014秋朝阳区期末若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.分析根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.解答解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.点评本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.2016秋东台市期中有理数a、b、c在数轴上的位置如图:1判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.2化简:|b﹣c|+|a+b|﹣|c﹣a|.分析1根据数轴判断出a、b、c的正负情况,然后分别判断即可;2去掉绝对值号,然后合并同类项即可.解答解:1由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;2|b﹣c|+|a+b|﹣|c﹣a|=c﹣b+﹣a﹣b﹣c﹣a=c﹣b﹣a﹣b﹣c+a=﹣2b.点评本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.2016秋镜湖区校级期中1阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣﹣a=|a﹣b|;③如图4,点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+﹣b=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.2回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.分析①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.解答解:①|2﹣5|=3,|﹣2﹣﹣5|=3,|1﹣﹣3|=4;②|x﹣﹣1|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则x+1+x﹣2=5,解得x=3,若x+1<0,x﹣2<0,则﹣x+1﹣x﹣2=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.点评本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.2016 河北请你参考黑板中老师的讲解,用运算律简便计算:1999×﹣152999×118+999×﹣﹣999×18.分析1将式子变形为1000﹣1×﹣15,再根据乘法分配律计算即可求解;2根据乘法分配律计算即可求解.解答解:1999×﹣15=1000﹣1×﹣15=1000×﹣15+15=﹣15000+15=﹣14985;2999×118+999×﹣﹣999×18=999×118﹣﹣18=999×100=99900。

七年级上册有理数复习拓展提高

七年级上册有理数复习拓展提高
A.零 B.非负数 C.正数 D.负数
2、满足 成立的条件是〔 〕〔##省黄冈市竞赛题〕
A. B. C. D.
3、若 ,则 的值等于。
3、数轴与绝对值结合考查〔数形结合〕
1、利用数轴能形象地表示有理数;
例1:已知有理数 在数轴上原点的右方,有理数 在原点的左方,则〔 〕
A. B. C. D.
变式一:如图 为数轴上的两点表示的有理数,在 中,负数的个数有〔 〕
考点5、近似数、有效数字与科学计数法
①近似数:一个与实际数比较接近的数,称为近似数。
②有效数字:对于一个近似数,从左边第一个不是0的数字开始,草最末一个数字止,都是这个近似数的有效数字。科学计数法:把一个数记作a×10n形式〔其中1≤ a ≤10,n为整数。〕
题型1 近似值
例1 光的速度大约是300 000 000m/s,用科学计数法表示为〔 〕。
例2、简单计算
〔1〕 ; 〔2〕 ;〔3〕 ;〔4〕
例3、从图〔1〕中找规律,并在图〔2〕填上合适的数
例4、下列说法正确的是〔 〕
A.两数相减,被减数一定大于减数
B.0减去一个数仍得这个数
C.互为相反的两个数差为0
D.减去一个正数,差一定小于被减数
考点4 有理数的乘除、乘方
例1、"!"是一种运算符号,并且
例1、如果| -a | = -a,下列成立的是〔 〕
A .a<0 B.a≦0 C.a>0 D.a≧0
例2、的绝对值是8。
例3、若 ,则b=,若 。
例4、若 ,则 等于〔 〕
A、2 B、8 C、2或8 D、
例5、已知
(1)求a,b的值
(2)求 的值
例6、计算:

有理数--拓展提高难题及答案

有理数--拓展提高难题及答案

初一数学《有理数》拓展提高试题友情提醒:试卷较难,请耐心想一想一、 选择题(每小题3分,共30分)1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若0ab ≠,则a b a b+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-24、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、175、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )A 、1B 、2C 、3D 、46、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).A.2B. -2C. 6D.2或67、 x 是任意有理数,则2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零8、观察这一列数:34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.65199、若14+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个10、3028864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .21- 二、填空题(每小题4分,共32分)11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式(每个数有且只能用一次)_______________ ______ ; 12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则yx x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票务需求.15.设c b a ,,为有理数,则由cc b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,则 │b-a │+│a+c │+│c-b•│=__ _ ;17.根据规律填上合适的数: 1,8,27,64, ,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为501(21);n n =-∑又如“333333333312345678910+++++++++”可表示为1031n n =∑,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:521(1)n n =-∑= (填写最后的计算结果)。

七年级数学上册《有理数》综合提高培优难题

七年级数学上册《有理数》综合提高培优难题

七年级《有理数》培优训练一、选择题1、 -2,0,2,-3这四个数中最大的是( )A.-1B.0C.1D.2 2、下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 3、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃ 4、下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 5、计算(-3)3+52-(-2)2之值为何?( )(A) 2 (B) 5 (C)-3 (D)-6 6、下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯-7、数2-的相反数为( )A 、2B 、21C 、2-D 、21-8国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元B . 9.37×109元C . 9.37×1010元D .0.937×1010元 9、下列各组数中,互为相反数的是( )A .2和21B .-2和-21C . -2和|-2|D .2和2110、汶川发生特大地震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-12、实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( ) CA.a > b B . a = b C . a < b D . 不能判断 13、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .414、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A.7 B.3 C.3-D.2-15、用四舍五入法得到a 的近似数是3.80,精确地说,这个数的范围是( )A 、3.795 3.805a ≤〈B 、3.75 3.85a ≤〈C 、3.75 3.85a 〈〈D 、3.795 3.805a 〈≤ 16、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a19、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元20、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )< (C )(D )>21、计算:221 4.5(12)3151.3223∙----⨯-=( ) (A)-720; (B)-12245; (C)-17720; (D)-29245.22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题23、 9的相反数是______比–3小9的数是________;最小的正整数是____________24、 已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为___________________.25、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为26、 计算:______21=⎪⎭⎫ ⎝⎛--;______21=-;______210=⎪⎭⎫ ⎝⎛-;______211=⎪⎭⎫⎝⎛--。

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)-

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)-

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径の六万分之一.则利用科学记数法来表示,头发丝の半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数の说法正确の是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5の倍数D.个位是5の数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生の成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组の达标率是()A.25% B .37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数の倒数の差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用の十六进制是逢16进1の计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制の数の对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3の正方形,则里面九个数不满足の关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中の字母对应の序号为β时,将β+10除以26后所得の余数作为密文中の字母对应の序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是( ) A .wkdrcB .wkhtcC .eqdjcD .eqhjc11.设y=|x ﹣1|+|x +1|,则下面四个结论中正确の是( ) A .y 没有最小值B .只有一个x 使y 取最小值C .有限个x (不止一个)y 取最小值D .有无穷多个x 使y 取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C 125+C 126=( )A .C 135B .C 136 C .C 1311D .C 127二.填空题(共10小题)13.2.40万精确到 位,有效数字有 个.14.如图M ,N ,P ,R 分别是数轴上四个整数所对应の点,其中有一点是原点,并且MN=NP=PR=1,数a 对应の点在M 与N 之间,数b 对应の点在P 与R 之间,若|a |+|b |=2,则原点是 (填入M 、N 、P 、R 中の一个或几个).15.为了求1+3+32+33+…+3100の值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+ (3100),仿照以上推理计算:1+5+52+53+…+52015の值是 .16.我们常用の数是十进制数,计算机程序使用の是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数の结果是 .17.请你规定一种适合任意非零实数a ,b の新运算“a ⊕b”,使得下列算式成立: 1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定の新运算a⊕b=(用a,bの一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+yの值.19.符号“G”表示一种运算,它对一些数の运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.20.a、b两数在一条隐去原点の数轴上の位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立の是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动の积极性,给每位学生设计了一个如图所示の面积为1の圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积の,,….请你根据数形结合の思想,依据图形の变化,推断当n为整数时,+++…+=.三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料の理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4の值;(2)求(1※4)※(﹣2)の值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们の运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※cの关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cdの值.27.有理数a、b、c在数轴上の位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是,数轴上表示﹣2和﹣5の两点之间の距离是,数轴上表示1和﹣3の两点之间の距离是;②数轴上表示x和﹣1の两点A和B之间の距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是.④当x=时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师の讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差の绝对值,实际上也可理解为5与﹣2两数在数轴上所对应の两点之间の距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间の距离是,(2)数轴上表示x与2の两点之间の距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,请你找出所有符合条件の整数x,使得|x+3|+|x﹣1|=4,这样の整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值の问题时,碰到了下面の问题:“当式子|x+1|+|x﹣2|取最小值时,相应のxの取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们の解题解决下面の问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应のxの取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应のxの取值范围及yの最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是,数轴上表示﹣2和﹣5の两点之间の距离是,数轴上表示1和﹣3の两点之间の距离是;②数轴上表示x和﹣1の两点A和B之间の距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东の方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家の位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小の正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、cの值.a=,b=,c=(2)a、b、c所对应の点分别为A、B、C,点P为易动点,其对应の数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)の条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度の速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度の速度向右运动,假设t秒钟过后,若点B与点C之间の距离表示为BC,点A与点B之间の距离表示为AB.请问:BC﹣ABの值是否随着时间tの变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013の值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014の值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题の一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似の问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊の等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式の两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式の计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)の探究结果,直接写出下式の计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上の原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示の数是﹣2,已知点A、B是数轴上の点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示の数是,A、B两点间の距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示の数是,A、B两点间の距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示の数是,A、B两点间の距离是;(4)一般地,如果A点表示の数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间の距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径の六万分之一.则利用科学记数法来表示,头发丝の半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝の半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米の关系就可以用科学记数法表示头发丝の半径.【解答】解:头发丝の半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法の表示方法.科学记数法の表示形式为a×10nの形式,其中1≤|a|<10,n为整数,表示时关键要正确确定aの值以及nの值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数の说法正确の是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队の进球总数记为正数,失球总数记为负数,这两数の和为这队の净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队の进球总数记为正数,失球总数记为负数,这两数の和为这队の净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数B.偶数C.5の倍数D.个位是5の数【分析】如果为整数,则(a﹣5)2为4の倍数,可确定aの取值.【解答】解:∵为整数,∴(a﹣5)2为4の倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方の有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数の平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生の成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组の达标率是()A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准の数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可の达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数の达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数の倒数の差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出の资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数の周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数の周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数の运算方法和数学の综合能力.解此题の关键是能从所给出の资料中找到数据变化の规律,并直接利用规律求出得数,代入后面の算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式の可能の取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++の所有可能の值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值の性质等知识点,注意分情况讨论字母の符号,不要漏解.7.(2013•天桥区一模)计算机中常用の十六进制是逢16进1の计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制の数の对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数の运算,理解十六进制の含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查の知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3の正方形,则里面九个数不满足の关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻の数为依次大7,左右相邻の数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数の加减混合运算,关键是从表格中看出各个数与a5の关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中の字母对应の序号为β时,将β+10除以26后所得の余数作为密文中の字母对应の序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应の数字是12,12+10=22,除以26の余数仍然是22,因此对应の字母是w;a对应の数字是0,0+10=10,除以26の余数仍然是10,因此对应の字母是k;t对应の数字是19,19+10=29,除以26の余数仍然是3,因此对应の字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应の数字为12、0、19、7、18,它们分别加10除以26所得の余数为22、10、3、17、2,所对应の密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题の关键是读懂题意,理清题目中数字和字母の对应关系和运算规则,然后套用题目提供の对应关系解决问题,具有一定の区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确の是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数の性质,分别讨论xの取值范围,再判断yの最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1の距离和,这个距离和の最小值为2,此时xの范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数の性质求代数式の最值问题,注意按未知数の取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题の关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有3个.【分析】根据24 000确定精确度,从左边第一个不是0の数开始数起,到精确到の数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0の数开始数起,到精确到の数位为止,所有の数字都叫做这个数の有效数字;注意后面の单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应の点,其中有一点是原点,并且MN=NP=PR=1,数a对应の点在M与N之间,数b对应の点在P与R之间,若|a|+|b|=2,则原点是N或P(填入M、N、P、R中の一个或几个).【分析】根据数轴判断出a、b之间の距离小于3,且大于1,然后根据绝对值の性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N 或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴の定义和绝对值の意义.解此类题の关键是:先利用条件判断出绝对值符号里代数式の正负性,再根据绝对值の性质把绝对值符号去掉,把式子化简后根据整点の特点求解.15.(2015•茂名)为了求1+3+32+33+…+3100の值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015の值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数の乘方,读懂题目信息,理解求和の运算方法是解题の关键.16.(2013•天河区一模)我们常用の数是十进制数,计算机程序使用の是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数の结果是13.【分析】根据题目信息,利用有理数の乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数の乘方,读懂题目信息,理解二进制与十进制の数の转化方法是解题の关键.17.(2012•台州)请你规定一种适合任意非零实数a,bの新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定の新运算a⊕b=(用a,bの一个代数式表示).【分析】由题中の新定义,将已知の等式结果变形后,总结出一般性の规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数の混合运算,属于新定义の题型,其中弄清题意,找出一般性の规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+yの值±15或±9.【分析】首先把所求の式子转化成一般の不等式の形式,然后根据x,y是整数即可确定x,yの值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,yの值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,yの值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式の整数解,正确确定x,yの值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数の运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=﹣2009.【分析】此题是一道找规律の题目,通过观察可发现(1)中等号后面の数为前面括号中の数の2倍减1,(2)中等号后面の数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确の规律是解答本题の关键.20.(2006•连云港)a、b两数在一条隐去原点の数轴上の位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立の是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间の关系の正确信息,然后结合数の运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于bの符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立の有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数の运算法则の有关内容.特别注意④中,能够运用因式分解の知识分解成积の形式,再分别判断两个因式の符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1.【分析】根据绝对值の意义,知绝对值等于正数の数有2个,且互为相反数.根据分式值の符号判断字母符号之间の关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值の意义,注意互为相反数の两个数の绝对值相同.同时能够根据分式の值の符号判断两个字母符号之间の关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动の积极性,给每位学生设计了一个如图所示の面积为1の圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积の,,….请你根据数形结合の思想,依据图形の变化,推断当n为整数时,+++…+=1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合の思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数の混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料の理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后の结果取计算结果の倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式の倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数の混合运算,解决本题の关键是读懂题意,理解第二种解法の思路:两个数相除,可先求这两个数相除の倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4の值;(2)求(1※4)※(﹣2)の值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们の运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※cの关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目の关键是认真观察已知给出の式子の特点,找出其中の规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cdの值.【分析】根据互为相反数の两数之和为0,互为倒数の两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数の知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上の位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、cの正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值の性质,数轴,熟记性质并准确识图观察出a、b、c の正负情况是解题の关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间の距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点の右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;②如图(3),点A,B都在原点の左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点の两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间の距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5の两点之间の距离是3,数轴上表示﹣2和﹣5の两点之间の距离是3,数轴上表示1和﹣3の两点之间の距离是4;②数轴上表示x和﹣1の两点A和B之间の距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应のxの取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间の距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间の距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|の最小值,意思是x到﹣1の距离与到3の距离之和最小,那么x应在﹣1和3之间の线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示xの点在﹣1和2之间の线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间の距离=两个数之差の绝对值.29.(2016•河北)请你参考黑板中老师の讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900【点评】考查了有理数の混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右の顺序进行计算;如果有括号,要先做括号内の运算.(2)进行有理数の混合运算时,注意各个运算律の运用,使运算过程得到简化.30.(2015秋•古田县校级期末)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差の绝对值,实际上也可理解为5与﹣2两数在数轴上所对应の两点之间の距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间の距离是7,(2)数轴上表示x与2の两点之间の距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,请你找出所有符合条件の整数x,使得|x+3|+|x﹣1|=4,这样の整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间の距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2の两点之间の距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应の点到﹣3和1所对应の点の距离之和,|x+3|+|x﹣1|=4,∴这样の整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.【点评】本题是一道去绝对值和数轴相联系の综合试题,考查了取绝对值の方法,取绝对值在数轴上の运用.难度较大.去绝对の关键是确定绝对值里面の数の正负性.31.(2015•宣城模拟)阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子の值;(2)同理即可得到所求式子の值.【解答】解:(1)设S=1+2+22+23+24+ (210)。

最新七年级数学有理数(提升篇)(Word版 含解析)

最新七年级数学有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.4.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.5.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。

初一数学有理数难题与提高练习和培优综合题压轴题(含解析) 甄选

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)  甄选

初一数学有理数难题与提高练习和培优综合题压轴题(含解析) (优选.)rd初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米 B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5的倍数 D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C .D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127二.填空题(共10小题)13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y 的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=.20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y=.22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=.三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x= 时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x=.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=.40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米 B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数B.偶数C.5的倍数 D.个位是5的数【分析】如果为整数,则(a﹣5)2为4的倍数,可确定a的取值.【解答】解:∵为整数,∴(a﹣5)2为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0.80﹣1.2﹣0.10+0.5﹣0.6A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C .D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013•天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制0123456789A B C D E F10进制0123456789101112131415例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.故选A.【点评】本题考查了有理数的运算,理解十六进制的含义是关键.8.(2012秋•祁阳县校级期中)若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故本题选C.【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母 a b c d e f g h i j k l m序号0 1 2 3 4 5 678 9 10 11 12字母n o p q r s t u v w x y z序号13 14 15 16 17 18 1920212223 24 25按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题的关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有3个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N 或P(填入M、N、P、R中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2015•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b=(用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a ⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【分析】首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010=﹣2009.【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确的规律是解答本题的关键.20.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b <0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y=±1.【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+=1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合的思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.④当x=3或﹣2时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.。

专题218 有理数的除法(拓展提高)(解析版)

专题218 有理数的除法(拓展提高)(解析版)

专题2.18 有理数的除法(拓展提高)一、单选题1.下列计算中,正确的是( ). A .1515-=- B .4.5 1.7 2.5 1.8 5.5--+=C .()22--=D .()1313-÷-=【答案】C【分析】根据绝对值、相反数、有理数加减和乘除运算的性质,对各个选项逐个分析,即可得到答案. 【详解】1515-=,故选项A 错误; 4.5 1.7 2.5 1.8 2.1--+=,故选项B 错误;()22--=,故选项C 正确;()111133339⎛⎫-÷-=-⨯-= ⎪⎝⎭,故选项D 错误; 故选:C .【点睛】本题考查了绝对值、相反数、有理数运算的知识;解题的关键是熟练掌握绝对值、相反数、有理数加减和乘除运算的性质,从而完成求解.2.在数轴上有a 、b 两个有理数的对应点,则下列结论中,正确的是( )A .0a b +>B .0ab >C .0a b -<D .0ab> 【答案】C【分析】根据数轴上的位置判断a 、b 两个有理数的正负和绝对值大小即可. 【详解】解:根据数轴可知,a <0,b >0,a b >, ∴0a b +<,0ab <,0ab<,0a b -<, ∴A 、B 、D 错误,C 正确; 故选:C .【点睛】本题考查了数轴上表示数和有理数的运算,解题关键是通过数轴确定两个有理数的正负和绝对值大小.3.已知数a b c ,,的大小关系如图所示,下列选项中正确的有( )个 ①0abc > ②0a b c +-> ③||1||||a b c a b c++= ④||||||2a b c a b c a --++-=-A .0B .1C .2D .3【答案】C【分析】根据数轴可以得到a<0,c>b>0,|c|>|a|>|b|,再根据有理数的乘除法法则,有理数的加法法则及绝对值的性质即可得出答案.【详解】解:由数轴可得a<0,c>b>0,|c|>|a|>|b|, ∴①0abc <,故①错误;②∵c>b ,∴b-c<0,∵a<0,∴0a b c +-<,故②错误; ③∵a<0,∴1a a =-,∵c>b>0,∴1b b =,1c c =,∴||1111||||a b c a b c++=-++=,故③正确;④∵a<0,b>0,∴a-b<0,∴|a-b|=b-a ,∵a<0,c>0,且|c|>|a|,∴c+a>0,∴|c+a|=c+a ,∵c>b>0,∴b-c<0,∴|b-c|=c-b ,∴||||||2a b c a b c b a c a c b a --++-=---+-=-,故④正确. ∴③④两个正确. 故选C .【点睛】本题考查了利用数轴判断式子的正负,有理数的运算法则,绝对值的性质等知识.解题的关键是灵活运用所学知识解决问题. 4.下列说法正确的是( ) A .绝对值是本身的数都是正数 B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式【答案】D【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可. 【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3π表示一个数,是一个单项式,故正确;故选:D .【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.5.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每个数都等于1与它前面那个数的倒数的差,若14a =,则2020a 为( ) A .2- B .4 C .34D .13-【答案】B【分析】根据题意分别求出121131144a a =-=-=,231411133a a =-=-=-,34111(3)4a a =-=--=,由此得到规律进行计算即可 【详解】∵14a =, ∴121131144a a =-=-=,231411133a a =-=-=-,34111(3)4a a =-=--=,,数列每3个数为一个周期循环, ∵202036731÷=,∴2020a 个数与第一个数相等,即2020a =4, 故选:B【点睛】此题考查数字的变化规律,有理数的减法法则,除法法则,解此题的关键是能从所给出的条件中找到数据变化的规律 6.a 是有理数,我们把22a-称为a 的“哈利数”.如:3的“哈利数”是223=-2-,2-的“哈利数”是212(2)2=--,已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,...,依此类推,则2010a =( ) A .12B .2-C .3D .43【答案】B【分析】分别求出数列的前5个数得出该数列每4个数为一周期循环,而20104=5022÷,从而可得答案.【详解】解:∵13a =,()23452212422,,,3,142322232223a a a a ∴==-======-----∴该数列每4个数为一周期循环, ∵20104=5022÷,∴20102 2.a a ==- 故选:B .【点睛】本题考查数字的变换规律,列代数式,同时考查有理数的加减运算,除法运算,根据题意得出该数列每4个数为一周期循环是关键.二、填空题7.定义一种新的运算:x *y =2x y x +,如:3*1=3213+⨯=53,则2*3=__________. 【答案】4【分析】把原式利用题中的新定义计算转换为有理数运算,即可得到结果. 【详解】解:根据题中的新定义得:2232*342+⨯==, 故答案为:4【点睛】此题考查了新定义运算和有理数的混合运算,弄清题中的新定义是解本题的关键. 8.已知:2|2|(1)a b +++取最小值,则aab b+=________. 【答案】4【分析】先根据绝对值的非负性、偶次方的非负性求出a 、b 的值,再代入求值即可得. 【详解】20a +≥,2(1)0b +≥,2120()b a +∴++≥,∴当2120,0()b a ++==时,212()b a +++取得最小值0,20,10a b ∴+=+=,解得2,1a b =-=-, 则()2122214a ab b +=-⨯-+=+-=-, 故答案为:4.【点睛】本题考查了绝对值的非负性、偶次方的非负性、有理数的乘除法与加法,熟练掌握绝对值与偶次方的非负性是解题关键.9.有时两数的和恰等于这两数的商,如()4242-+=-÷,42423333+=÷等.试写出另外1个这样的等式______. 【答案】993322-+=-÷. 【分析】根据两数的和恰等于这两数的商的要求,举出实例即可.【详解】解:993322-+=-÷,()()11-1-122+=÷. 故答案为:993322-+=-÷.【点睛】本题考查生活经验的积累问题,掌握两数的和恰等于这两数的商是解题关键.10.已知m 、n 为有理数,那么m n -可看成数轴上表示数m 和数n 的两点之间的距离.若有理数x 在数轴上的位置如图所示,则22x x +-型的值为________.【答案】1【分析】由数轴上表示x 的点的位置,得到x 小于-2,可得出x+2都小于0,利用绝对值的代数意义:负数的绝对值等于它的相反数化简,去括号合并即可得到结果. 【详解】解:由数轴上表示x 的点的位置,得到x<-2, ∴x+2<0, ∴22x x +-=22x x ----=1,故答案为1.【点睛】本题考查了数轴,绝对值,熟练掌握绝对值的化简是解本题的关键.11.对于任意有理数a ,b ,c ,d ,规定一种运算:a a c d b b d c =-,例如5(3)51231217⨯--⨯=-=-.那么3234--=_________.【答案】6【分析】根据规定的运算进行列式,再根据有理数的运算法则进行计算即可. 【详解】()()323423126634-=⨯--⨯-=-=-.故答案为:6.【点睛】本题考查了新定义运算及有理数的混合运算,理解题意,掌握运算法则是解题的关键. 12.如图,有理数a 、b 、c 在数轴上的对应点的位置如图所示: 则下列结论:①a+b-c >0:②b-a <0:③bc-a <0:④|a|b |c|-+=1a |b|c.其中正确的是_______.【答案】②③.【分析】根据数轴,得到11b a c <-<<<,然后绝对值的意义进行化简,即可得到答案. 【详解】解:根据题意,则11b a c <-<<<,∴0a b c +-<,故①错误;0b a -<,故②正确; 0bc a -<,故③正确;1(1)13acb a b c-+=--+=,故④错误; 故答案为:②③.【点睛】本题考查了数轴的定义,绝对值的意义,解题的关键是掌握数轴的定义,正确得到11b a c <-<<<.13.一天,甲乙两人利用温差测试测量山峰的高度,甲在山顶测得的温度是-4℃,乙此时在山脚测得的温度是8℃.已知在该地区高度每增加100米,气温大约降低0.6℃,则这个山峰的高度大约是__________米. 【答案】2000【分析】先根据题意列出运算式子,再计算有理数的加减乘除运算即可得. 【详解】由题意得:()()840.6100840.6100--÷⨯=+÷⨯⎡⎤⎣⎦,120.6100=÷⨯,=⨯,20100=(米),2000故答案为:2000.【点睛】本题考查了有理数加减乘除运算的实际应用,依据题意,正确列出运算式子是解题关键.14.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:如果正整数m最少经过6步运算可得到1,则m的值为__.【答案】10或64【分析】根据得数为1,可倒推出第5次计算后得数一定是2,第4次计算后得4,依此类推,直至倒退到第1次前的数即可.【详解】解:如图,利用倒推法可得:由第6次计算后得1,可得第5次计算后的得数一定是2,由第5次计算后得2,可得第4次计算后的得数一定是4,由第4次计算后得4,可得第3次计算后的得数是1或8,其中1不合题意,因此第3次计算后一定得8 由第3次计算后得8,可得第2次计算后的得数一定是16,由第2次计算后得16,可得第1次计算后的得数是5或32,由第1次计算后得5,可得原数为10,由第1次计算后32,可得原数为64,故答案为:10或64.【点睛】考查有理数的运算,掌握计算法则是正确计算的前提,理解题意是重中之重.三、解答题 15.计算 (1)77()8181-+-= (2)()015-- = (3)( 2.25)(80)-⨯+=(4)3217⎛⎫÷-⎪⎝⎭= 【答案】(1)0;(2)15;(3)-180;(4)-49【分析】(1)先化简绝对值,再根据有理数加法法则计算; (2)先将减法化为加法再计算; (3)根据乘法法则计算;(4)将除法化为乘法,再根据乘法法则计算. 【详解】(1)77()8181-+-=77()8181-+=0; (2)()015-- =0+15=15; (3)( 2.25)(80)-⨯+=-180; (4)3217⎛⎫÷-⎪⎝⎭=721()3⨯-=-49. 【点睛】此题考查有理数的加法法则、减法法则、乘法法则、除法法则,熟练掌握各计算法则是解题的关键.16.如图A 在数轴上所对应的数为2-.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动,当点A 运动到6-所在的点处时,求,A B 两点间距离. 【答案】(1)2;(2)14个单位长度【分析】(1)根据左减右加可求点B 所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据列出=速度×时间求解即可.【详解】解:(1)-2+4=2.故点B所对应的数是2;(2)(-2+6)÷2=2(秒),2+2+(2+3)×2=14(个单位长度).答:A,B两点间距离是14个单位长度.【点睛】本题考查了数轴,有理数的混合运算,解题的关键是理解题意,列出算式.17.某集团公司对所属甲.乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲、乙两个工厂平均每月盈利或亏损多少亿元?【答案】(1)0.3亿元,(2)甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.【分析】(1)由表可得出乙厂亏0.7亿元,甲厂亏0.4亿元,由此可得出结果.(2)将甲乙两厂每个月的盈利相加即可得出结果.【详解】解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,0.7-0.4=0.3(亿元)∴可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元,2.4÷6=0.4(亿元);乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元,-1.2÷6=-0.2(亿元).∴甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元.答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元【点睛】本题考查了正负数的意义和有理数的加减法,解题关键正确理解正负数的意义,准确进行计算.18.请你先认真阅读材料:计算12112 ()() 3031065 -÷-+-解:原式的倒数是21121-+()3106530⎛⎫-÷-⎪⎝⎭=2112()(30)31065-+-⨯-=23×(﹣30)﹣110×(﹣30)+16×(﹣30)﹣25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣110再根据你对所提供材料的理解,选择合适的方法计算:11322()()4261437-÷-+-. 【答案】114-. 【分析】根据题意,先计算出113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭的倒数132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭的结果,再算出原式结果即可.【详解】解:原式的倒数是:132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-,故原式114=-. 【点睛】本题主要考查了有理数的除法,读懂题意,并能根据题意解答题目是解决问题的关键.19.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值.(2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.【答案】(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.20.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小浩受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C );②从A 类数中任意取出15个数,从B 类数中任意取出16个数,从C 类数中任意取出17个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号).①m +2n 属于C 类;②|m ﹣n |属于B 类;③m 属于A 类,n 属于C 类;④m ,n 属于同一类.【答案】(1)A;(2)①B;②B;(3)①④【分析】(1)计算2020÷3,根据计算结果即可求解;(2)①从A类数中任取两个数进行计算,即可求解;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,再除以3,根据余数判断即可求解;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)2020÷3=673…1,所以2020被3除余数为1,属于A类;故答案为:A;(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,被3除余数为2,则它们的和属于B类;②从A类数中任意取出15个数,从B类数中任意取出16个数,从C类数中任意取出17个数,把它们的余数相加,得(15×1+16×2+17×0)=47÷3=15…2,∴余数为2,属于B类;故答案为:①B;②B;(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m﹣n|=0,不属于B类,②错误;③若m=1,n=1,③错误;④观察可发现若m+2n属于C类,m,n必须是同一类,④正确;综上,①④正确.故答案为:①④.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.。

初一数学 有理数拓展提高

初一数学 有理数拓展提高

初一数学有理数拓展提高1.将下列各数填入相应的集合圈内:,﹣7,+2.6,﹣100,,9.2,0,1,0..2.将下列各数填入适当的括号内:π,5,﹣3,,8.9,,﹣3.14,﹣9,0,.(1)正数集合:{…}.(2)负数集合:{…}.(3)整数集合:{…}.(4)分数集合:{…}.(5)正整数集合:{…}.(6)负整数集合:{…}.3.计算:(1);(2);(简便运算)(3)2×(﹣6)﹣(﹣30)÷(﹣5);(4).4.小明与小红两位同学计算的过程如下:小明:原式=(第一步)=(第二步)=(第三步)小红:原式=(第一步)=(第二步)=16÷1(第三步)=16(第四步)(1)小明与小红在计算中均出现了错误,请指出小红出错的步骤;(2)写出正确的解答过程.5.小丽同学做一道计算题的解题过程如下:解:原式=第一步=第二步=﹣1+12﹣18第三步=﹣7第四步根据小丽的计算过程,回答下列问题:(1)她在计算中出现了错误,其中你认为在第步开始出错了;(2)请你给出正确的解答过程.6.根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.请根据以上规律解答:(1)比较大小:;(填“>”“<”或“=”)(2)填空:=;(3)计算:.7.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则的值为多少?8.对于有理数a、b,定义运算:a※b=a×b﹣a﹣b(1)分别计算(﹣2)※2与2※(﹣2)的值;(2)填空:5※(﹣3)(﹣3)※5(填“>”或“=”或“<”).9.规定[a]表示不超过有理数a的最大整数,例如:[1.2]=1,[﹣1.8]=﹣2.(1)填空:[3.7]=,=;(2)比大小:[0.8]+[﹣4.2][0.8﹣4.2];(填“>”“<”或“=”)(3)计算:.10.对于有理数x,y,定义新运算“※”,规定:x※y=x2﹣2xy,如:2※1=22﹣2×2×1=0.(1)求2※(﹣3)的值;(2)求(﹣5)※(3※2)的值.11.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)|4﹣(﹣3)|=.(2)利用数轴,解决下列问题:①若|x﹣(﹣1)|=2,则x=.②|x﹣1|=|x+3|,则x=.③若|x﹣2|+|x+5|=7,所有符合条件的整数x的和为.12.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示5与﹣1的两点之间的距离是;(2)①若|x﹣(﹣1)|=2,则x=;②若使x所表示的点到表示2和﹣3的点的距离之和为5,所有符合条件的整数的和为;【动手折一折】小明在草稿纸上画了一条数轴进行操作探究:(3)折叠纸面,若1表示的点和﹣1表示的点重合,则4表示的点和表示的点重合;(4)折叠纸面,若3表示的点和﹣5表示的点重合,①则10表示的点和表示的点重合;②这时如果A,B(A在B的左侧)两点之间的距离为2022,且A,B两点经折叠后重合,则点A表示的数是,点B表示的数是;【拓展】(5)若|x+2|+|x﹣3|=8,则x=.。

专题112 有理数大小的比较(拓展提高)(解析版)

专题112 有理数大小的比较(拓展提高)(解析版)

专题1.12 有理数大小的比较(拓展提高)一、单选题1.已知0a <,0ab <,且a b >,那么将a ,b ,a -,b -按照由大到小的顺序排列正确的是( ) A .a b b a ->->> B .b a a b >>->- C .b a a b >->>- D .a b b a ->>->【答案】D【分析】根据条件设出符合条件的具体数值,根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答. 【详解】解:∵a <0,ab <0, ∴b >0, 又∵|a |>|b |,∴设a =-2,b =1,则-a =2,-b =-1 则-2<-1<1<2. 故-a >b >-b >a . 故选:D .【点睛】此题主要考查了实数的大小的比较,比较简单,解答此题的关键是根据条件设出符合条件的数值,再比较大小.2.下列各数中最小非负数是( ) A .-2 B .-1 C .0 D .1【答案】C【分析】根据非负数的意义和有理数的大小比较求解. 【详解】解:∵-2、-1是负数,0、1是非负数,且0<1, ∴题中最小非负数是0, 故选C .【点睛】本题考查非负数的应用和有理数的大小比较,熟练掌握非负数的意义是解题关键. 3.一个大于1的正整数a ,与其倒数1a,相反数-a 比较,大小关系正确的是( ) A .-a <1a≤a B .-a <1a<a C .1a>a >-a D .-a ≤a ≤1a【答案】B【分析】先根据倒数、相反数的定义可得101,0a a<<-<,再根据有理数的大小比较法则即可得. 【详解】因为1a >,且为正整数,所以101,0a a <<-<, 所以1a a a-<<,故选:B .【点睛】本题考查了相反数、倒数、有理数的大小比较法则,熟练掌握倒数与相反数的定义是解题关键. 4.已知正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,则这样的正整数n 有( ) A .6个 B .10个 C .16个 D .20个【答案】C【分析】由236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,以及若x 不是整数,则[]x <x 知,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,得到n 的值.【详解】∵236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若x 不是整数,则[]x <x ,∴,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数, ∴n 的值为:6、12、18、24、30、36、42、48、54、60、66、72、78、84、90、96,共16个, 故选:C.【点睛】此题考查有理数的大小比较,取整计算,解题的关键是正确理解[]x 表示不超过x 的最大整数,得到,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,由此解决问题. 5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则bc a-=( ) A .1 B .1-C .0D .2-【答案】B【分析】根据有理数的大小及绝对值的意义求解.【详解】∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数, ∴1a =,1b =-,0c,∴1011b c a --=-=-, 故选B .【点睛】本题考查有理数的应用,熟练掌握有理数大小比较的方法及绝对值的意义是解题关键. 6.按如图所示的运算程序,能使输出的m 的值为1的是( ).A .1x =,1y =B .2x =,1y =-C .2x =-,3y =-D .1x =-,3y =【答案】C【分析】将各项代入运算程序中,逐一计算即可求解.【详解】解:A .输入1x =,1y =,即x y =,故0m x y =-=,该项不符合题意; B .输入2x =,1y =-,即x y >,故3m x y =-=,该项不符合题意; C .输入2x =-,3y =-,即x y >,故1m x y =-=,该项符合题意; D .输入1x =-,3y =,即x y <,故25m x y =-+=,该项不符合题意; 故选:C .【点睛】本题考查了代数式求值,读懂程序框图中的运算规则是解题的关键.二、填空题7.比较大小(填写“>”或“<”): -2________-3 ;78-________89-;3()4--________4[()]5-+-【答案】> > <【分析】根据有理数的大小比较方法作答. 【详解】解:∵|-2|<|-3|, ∴-2>-3,∵763864872972-=-=,, ∴7889-<-, ∴7889->-, ∵31544164205520⎡⎤⎛⎫⎛⎫⎛⎫--=-+-=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,, ∴3445⎡⎤⎛⎫⎛⎫--<-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为>;>;<.【点睛】本题考查有理数的大小比较,熟练掌握两个负数比较大小的方法、分数比较大小的方法及多重符号的化简是解题关键 . 8.用“>”.“<”.“=”号填空:(1)0.02-____1; (2)3()4--____](0.75)⎡-+-⎣;(3)227-_______ 3.14-. 【答案】< = <【分析】根据有理数的大小比较法则,即可得出. 【详解】(1)0.02-<1; (2)3()4--=34=0.75,](0.75)⎡-+-⎣=0.75, ∴3()4--=](0.75)⎡-+-⎣(3)227-< 3.14-.【点睛】本题主要考查有理数的大小比较法则,注意去符号时的变号和分数化小数时的计算. 9.已知0a <,0b >,并且a b >,那么a b a b --、、、按照由小到大的顺序排列是__________. 【答案】a b b a <-<<【分析】根据绝对值的意义可得a b ->,b a ->,根据有理数的大小比较法则即可得答案. 【详解】解:∵0a <,0b >,并且a b >, ∴a b ->,b a ->, ∴a b b a <-<<-,故答案为:a b b a <-<<-【点睛】本题主要考查了比较有理数的大小以及绝对值的意义,正数大于负数,两正数比较绝对值大的数大,两负数比较绝对值大的反而小;熟练掌握绝对值的定义是解答本题的关键.10.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________. 【答案】4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案. 【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423, |-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|, ∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4, 故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0; 负数都小于0; 正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键. 11.把下列各数:87.5%、0.88、421、522按从小到大的顺序排列:________. 【答案】4587.5%0.882122<<< 【分析】把各数化成用小数形式表示的准确数或近似数,再根据小数比较大小的方法即可得到答案. 【详解】解:4587.5%0.8754210.1905220.2272122==÷≈=÷≈,,,又0.1900.2270.8750.88<<<, ∴原来各数按从小到大的顺序排列为:4587.5%0.882122<<<, 故答案 为:4587.5%0.882122<<<. 【点睛】本题考查数的大小比较,把各数化成相同的形式再作比较是解题关键 . 12.已知a =1,b =2,c =4,且a b c >>,则a b c -+=________. 【答案】1-或3-【分析】因为a b c >>,所以根据题意应该分为两种情况,为1a =±, 2b =-, 4c =-,然后带入原式即可求解.【详解】由题意得:1a =±, 2b =-, 4c =-, 当a =1-,2b =-, 4c =-时a b c -+=3-; 当a =1,2b =-, 4c =-时,a b c -+=1-;故答案为:1-或3-.【点睛】本题考查了绝对值的化简,和有理数大小的比较,根据题意确定a 的取值分为两种情况是本题的易错点,注意不要丢项落项. 13.如果4231=,5374A B C D ⨯⨯=⨯=⨯则,,,A B C D 中最大的是__________,最小的是____________. 【答案】D A【分析】令4231=125374A B C D ⨯⨯=⨯=⨯=,分别计算出A 、B 、C 、D 的值进行比较即可. 【详解】令4231=125374A B C D ⨯⨯=⨯=⨯=可得15,18,28,48A B C D ==== ∴D C B A >>>则,,,A B C D 中最大的是D ,最小的是A 故答案为:D ,A .【点睛】本题考查了实数的大小比较问题,掌握实数大小比较的方法是解题的关键. 14.下列四组有理数的比较大小:①﹣1<﹣2;②﹣(﹣1)>﹣(﹣2);③+(﹣56)<﹣|﹣67|;④|﹣56|<|﹣67|,正确的序号是__. 【答案】④【分析】按有理数大小比较法则,两两比较,然后进行判断.【详解】①两个负数,绝对值大的反而小,所以-1>-2,故原比较错误; ②因为-(-1)=1,-(-2)=2,所以-(-1)<-(-2),故原比较错误;③因为+(﹣56)=﹣56,﹣|﹣67|=-67,而535636642742=<=,所以+(﹣56)>﹣|﹣67|,故原比较错误;④因为|﹣56|=56,|﹣67|=67而535636642742=<=,所以+(﹣56)<﹣|﹣67|,故原比较正确;正确的是④. 故答案为:④.【点睛】本题主要考查了有理数大小的比较.解题的关键是掌握有理数大小的比较方法,要注意:正数都大于0,负数都小于0,正数大于负数;两个负数,绝对值大的反而小.三、解答题15.将下列各数在数轴上表示出来,并比较它们的大小(用“<”连接).()4--, 3.5--,112⎛⎫+- ⎪⎝⎭,0,()2.5++【答案】见解析,()()13.510 2.542⎛⎫--<+-<<++<-- ⎪⎝⎭【分析】首先在数轴上确定表示各数的点的位置,再用“<”连接即可. 【详解】解:()4--=4, 3.5--=3.5,112⎛⎫+- ⎪⎝⎭=-112, ()2.5++=2.5 如图所示:则()()13.510 2.542⎛⎫--<+-<<++<-- ⎪⎝⎭.【点睛】此题主要考查了数轴,有理数比较大小,关键是在数轴上正确确定表示各数的点的位置. 16.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.【答案】数轴表示见解析;-3<112-<0<112<3. 【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可. 【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3. 故答案为:-3<112-<0<112<3. 【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.(1)在数轴把下列各数表示出来,并比较它们的相反数的大小:-3,0,-13,52,0.25(2)比较下列各组数的大小①35与34- ②| 5.8|--与( 5.8)--【答案】(1)数轴见详解;10.2503523-<-<<<;(2)①3354->-;② 5.8(5.8)--<--【分析】(1)由数轴的定义画出数轴并标出各数,然后写出它们的相反数并比较大小; (2)由比较大小的法则进行比较,即可得到答案. 【详解】解:(1)数轴如图所示:由题意,3-的相反数是3;0的相反数是0;13-的相反数是13;52的相反数是52-;0.25的相反数是0.25-; ∴10.2503523-<-<<<; (2)①∵3354<,∴3354->-;②| 5.8| 5.8--=-,( 5.8) 5.8--=, ∴ 5.8( 5.8)--<--;【点睛】本题考查了数轴的定义,相反数的定义,比较有理数的大小,解题的关键是熟练掌握所学的知识,正确的进行解题.18.已知下列三个有理数a ,b ,c ,其中132a ⎛⎫=-- ⎪⎝⎭,b 是4-的相反数,c 是在1713-与263-之间的整数.请你解答下列问题: (1)这三个数分别是多少? (2)将这三个数用“>”号连接起来.(3)这三个数中,哪一个数在数轴上表示的点离原点的距离最近? 【答案】(1)132a =;4b =;7c =-;(2)b a c >>;(3)a 【分析】(1)根据相反数的知识直接写出答案;(2)比较出三个数的大小,用“>”号连接起来即可;(3)利用数轴的知识直接写出答案.【详解】解:(1)这三个数分别是:113322a⎛⎫=--=⎪⎝⎭,()44 b=--=,7c=-.(2)∵14372 >>-∴b a c>>;(3)∵11|||3|322a⎛⎫=--=⎪⎝⎭,|||4|4b==,|||7|7c=-=,且17432>>∴在数轴上a这个数表示的点离原点的距离最近.【点睛】本题主要考查有理数大小比较的知识点,涉及的知识点有数轴以及相反数,此题基础题,比较简单.19.某工厂生产一种螺丝帽,要求是∶螺丝帽内径可有0.02毫米的误差,先抽查6个螺丝帽,检查结果如下∶请问∶(1)这6个螺丝帽中符合要求的有几个?分别是哪几个?(2)将这些数按照从小到大的顺序用“<”连接起来.【答案】(1)符合要求的有3个,分别是第2,4,6个;(2)-0.021<-0.019<-0.017<+0.013<+0.023<+0.031 【分析】(1)根据螺丝帽内径可有0.02毫米的误差,可以通过表格判断哪些螺丝合格,哪些不合格,从而可以解答本题.(2)根据有理数的大小比较法则比较即可.【详解】解:(1)∵螺丝帽内径可有0.02毫米的误差,∴表格中第1个+0.031>0.02,故第1个不符合要求;表格中第2个|-0.017|<0.02,故第2个符合要求;表格中第3个+0.023>0.02,故第3个不符合要求;表格中第4个+0.013<0.02,故第4个符合要求;表格中第5个|-0.021|>0.02,故第5个不符合要求; 表格中第6个|-0.019|<0.02,故第6个符合要求; 故符合要求的有3个,分别是第2,4,6个; (2)由题意可得:-0.021<-0.019<-0.017<+0.013<+0.023<+0.031.【点睛】本题考查正数和负数,有理数的大小比较,解题的关键是明确正数和负数在题目中的具体含义. 20.已知0,0aab c<>,且||||||c b a >>,数轴上a ,b ,c 对应的点是A ,B ,C .(1)若||a a =-时,请在数轴上标出A ,B ,C 的大致位置,并判断a ,b ,c 的大小; (2)在(1)的条件下,化简||||a b b c ---. 【答案】(1)数轴见解析,c <a <b ;(2)c-a【分析】由题意知a ,b 异号,a ,c 同号,且a ,b ,c 点离原点距离已知,(1)根据|a|=-a 可知a 为负值,所以可判断b 为正,c 为负,从而可标示出点A 、B 、C 在数轴上的大概位置;(2)根据数轴上标出的点的位置得到a-b 和b-c 的符号,再去绝对值化简即可. 【详解】解:根据ab <0,ac>0,可知a ,b 异号,a ,c 同号. (1)∵|a|=-a , ∴a <0, ∴b >0,c <0,∵|c|>|b|>|a|,所以A 、B 、C 在数轴上的大致位置如下图:a ,b ,c 的大小关系为:c <a <b ; (2)由(1)可得:a-b <0,b-c >0, 原式=-a+b-(b-c ) =-a+b-b+c =c-a【点睛】本题考查正负数在数轴上的对应关系,关键是根据点所表示数的绝对值判断点在数轴上离原点的距离,也就是绝对值的几何意义.。

最新人教版数学七年级上册 有理数(提升篇)(Word版 含解析)

最新人教版数学七年级上册 有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。

七年级有理数(提升篇)(Word版 含解析)

七年级有理数(提升篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.4.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.7.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.8.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A 点以3厘米/秒运动,经过________秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?(3)如图2,AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60°/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q 运动的速度.【答案】(1)4(2)解:设经过a秒后P、Q相距5cm,由题意得,20-(2+3)a=5,解得:,或(2+3)a−20=5,解得:a=5,答:再经过3秒或5秒后P、Q相距5cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为 s或s,设点Q的速度为ycm/s,当2s时相遇,依题意得,2y=20−2=18,解得y=9当5s时相遇,依题意得,5y=20−6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.【解析】【解答】解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4秒,点P、Q两点相遇;故答案为:4.【分析】(1)设经过x秒两点相遇,根据总路程为20cm,列方程求解;(2)设经过a秒后P、Q相距5cm,分两种情况:用AB的长度−点P和点Q走的路程;用点P和点Q走的路程−AB的长度,分别列方程求解;(3)由于点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.9.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.【答案】(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式【解析】【解答】解:①表示2和5的两点间的距离为,表示-2和-5的两点之间的距离为,表示1和-3的两点之间的距离为;②表示和-1的两点和之间的距离为,若,则,∴,∴或③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;10.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故.①当C在A左侧时,,,;②C在A和B之间时,,点C不存在;③点C在B点右侧时,,,;故答案为或8.(2)解:依题意得:.点P对应的有理数为.(3)解:①甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得,.答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒.【解析】【分析】(1)根据题意可得,;(2)对点C的位置进行分类讨论,并用x表示出和的长度,利用“ ”列出方程即可求出答案;(3)对乙蚂蚁运动的方向进行分类讨论,根据到原点距离相等列出方程求解即可.11.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.【答案】(1)-9(2)5或-3(3)解:为负号,理由如下:∵点在点的右边且,∴,∵,∴,∴,∵,∴,∴,∴的值为负号.【解析】【解答】解:(1)∵线段AB的长表示为6,∴,∵,∴,∴∴ =-9;(2)∵的最小值是4,∴ AB=4,∴,∵,∴,∴或-3;【分析】(1)根据线段的长表示为6,可以得出,再结合可得互为相反数,即得到答案 =-9;(2)根据的含义为点P到点,点的距离和,其取最小值4,故P在点,之间,即PA+PB=AB=4,再根据和可以求出的值;(3)根据点在点的右边且可以判定出,由可知,即,根据可以判断的符号.12.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.【答案】(1)-4,-3,-2,-1,0,1,2(2)-5或4(3)【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,∴当数轴上表示x的点在表示-4的点的左侧时,,不符合题意,当数轴上表示x的点在表示2的点的右侧时,,不符合题意,当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,,符合题意,∴,∴使,整数是-4,-3,-2,-1,0,1,2.故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,∴x=-5符合题意,当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,∴x=4符合题意,综上所述:当时,的值是:-5或4.故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,∴当数轴上表示x的点在表示-7的点的左侧时,,当数轴上表示x的点在表示4的点的右侧时,,当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,,∴当取最小值时,.故答案是:.【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.。

(完整版)初一数学有理数难题及答案

(完整版)初一数学有理数难题及答案

初一数学《有理数》拓展试题一、选择题(每小题 3 分,共 30 分)1、设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则 a-b+c 的值为( ) A.-1 B.0 C.1 D.22、有理数 a 等于它的倒数,则 a 2004 是 ---------------------------------------------------- ( )A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数3、若ab ≠ 0 ,则 a + a 的取值不可能是-----------------------------------------------( )A .0 B.1 C.2 D.-24、当x=-2 时, ax 3+ bx - 7 的值为9,则当x=2 时, ax 3 + bx - 7 的值是( )A 、-23B 、-17C 、23D 、175、如果有 2005 名学生排成一列,按 1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第 2005 名学生所报的数是………………………( )A 、1B 、2C 、3D 、4 6、若 |a|=4, |b|=2,且 |a+b|=a+b, 那么 a-b 的值只能是 ().A.2B. -2C. 6D.2 或 67、 x 是任意有理数,则 2|x |+x 的值( ).A.大于零B. 不大于零C. 小于零D.不小于零 8、观察这一列数: - 3 , 5 , - 9 , 17 , - 33,依此规律下一个数是()4 7 10 13 16A. 45 21B. 45 19C. 65 21D. 65 199、若 4x + 1表示一个整数,则整数 x 可取值共有( ).A.3 个B.4 个C.5 个D.6 个10、1 -2 +3 -4 + ⋅ ⋅ ⋅ - 14 + 15- 2 + 4 - 6 + 8 - ⋅ ⋅ ⋅ + 28 - 30等于( ) A. 1 4 B. - 1 4 C. 12D. - 12二、填空题(每小题 4 分,共 32 分)11.请将 3,4,-6,10 这四个数用加减乘除四则运算以及括号组成结果为 24 的算式(每个数有且只能用一次);bba ab b cc∑ 53 3 ⎭⎝12. (-3)2013×( - 1)2014=;313.若|x-y+3|+ (x +y - 2013)2=0,则 2x =.x - y14. 北京到兰州的铁路之间有 25 个站台(含北京和兰州),设制种票才能满足票务需求.15. 设a , b , c 为有理数,则由+ + 构成的各种数值是16. 设有理数 a ,b ,c 在数轴上的对应点如图所示,则 │b -a│+│a+c│+│c -b │=_;17.根据规律填上合适的数: 1,8,27,64,,216;18、 读一读:式子“1+2+3+4+5+…+100”表示从 1 开始的 100 个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表 100示为 n ,这里“∑ ”是求和符号,例如“1+3+5+7+9+…+99”(即从 1 开始的 100 以内 n =150的连续奇数的和)可表示为∑(2n -1); 又如“13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 +103 ”10n =1可表示为∑ n 3 ,同学们,通过以上材料的阅读,请解答下列问题:n =1(1)2+4+6+8+10+…+100(即从 2 开始的 100 以内的连续偶数的和)用求和符号可表示为 ;(2)计算: ∑(n 2 -1) =(填写最后的计算结果)。

专题14 有理数(拓展提高)(解析版)

专题14 有理数(拓展提高)(解析版)

专题1.4 有理数(拓展提高)一、单选题1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0是最小的有理数D.整数和分数统称有理数【答案】D【分析】整数包括正整数、负整数、零;不是正数,有可能是负数和零,零既不是正数,也不是负数;有理数可这样分,正数、零、负数;有理数的概念:整数和分数统称为有理数【详解】A、负整数和0就不是正数,显然A错误;B、不是正数,有可能是零,所以B错误;C、负有理数比零小,错误;D、正确,故选D.【点睛】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.2.在31,7π,0,0.6四个数中,有理数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据有理数的定义即可求解.【详解】解:在31,7π,0,0.6四个数中,317,0,0.6是有理数,共3个,故选:C.【点睛】本题考查有理数的定义,整数和分数统称为有理数.3.在﹣3,12-,0,2四个数中,是负整数的是()A.﹣3 B.12-C.0 D.2【答案】A【分析】根据有理数的分类进行分析即可求解.【详解】解:-3是负整数,12-为负分数,0为整数,2为正整数故选:A.【点睛】本题主要考查学生有理数的分类以及各类数的概念,要求学生熟练掌握各类数的概念.4.在下列六个数中:0,2π,227-,0.101001,﹣10%,5213,分数的个数是( ) A .2个B .3个C .4个D .5个 【答案】B 【分析】根据分数的定义解答即可.【详解】在下列六个数中:0,2π,227-,0.101001,﹣10%,5213中,分数有227-,0.101001,﹣10%共3个.故选:B .【点睛】本题主要考查了有理数的分类,熟记分数的定义是解答本题的关键.5.下列说法中正确的是( )A .在有理数中,零的意义仅表示没有B .一个数不是负数就是正数C .正有理数和负有理数组成全体有理数D .零是整数【答案】D【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数).【详解】解:A 、在有理数中,零的意义表示没有、也可以表示正数和负数的分界点,故选项错误; B 、0不是正数也不是负数,故选项错误;C 、正有理数和负有理数和0组成全体有理数,故选项错误;D 、零是整数,正确.故选:D .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.6.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A 【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.二、填空题7.在有理数3-,7,2,123,43-,0,0.01-,10.1%-中,属于非负数的有________个. 【答案】4【分析】根据大于或等于零的数是非负数,可得答案.【详解】解:7,2,123,0,是非负数,共4个,故答案为:4.【点睛】本题考查了非负数,大于或等于零的数是非负数.8.有六个数:5,0,132,0.3-,14-,π-,其中分数有a 个,非负整数有b 个,有理数有c 个,则a b c +-=______.【答案】0【分析】根据分数、非负整数和有理数的定义得到a ,b ,c 的值,即可求解. 【详解】解:分数有132,0.3-,14-,∴3a =, 非负整数有0,5,∴2b =,有理数有5,0,132,0.3-,14-,∴5c =, ∴3250a b c +-=+-=,故答案为:0.【点睛】本题考查有理数的定义,掌握分数、非负整数和有理数的定义是解题的关键.9.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b ,a 的形式,则4a b -的值________.【答案】15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b =-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b 、a 的形式∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3,∴4a b -=123+=15.故答案为15.【点睛】题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b=-3是解答本题的关键.10.(1)、字母a 没有“-”号,所以a 是正数.(_______)(2)、任何一个有理数都可以在数轴上表示出来.(_______)(3)一个数的绝对值必是正数.(_______)(4)符号不同的两个数互为相反数.(_______)(5)有理数就是自然数和负数的统称.(_______)【答案】(1)错, (2)对, (3)错, (4)错, (5)错.【分析】(1)根据0既不是正数,也不是负数,可得凡是前面没有“-”号的数不一定都是正数,据此判断即可;(2)所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案;(3)根据绝对值的定义进行判断即可;(4)符号不同、且绝对值相等的两个数互为相反数;(5)根据有理数的定义、分类进行判断求解.【详解】解:(1)错误,比如:a=0,或a=-3时;(2)任何一个有理数都可以在数轴上找到对应的点,所以说法正确;(3)根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,可得绝对值是非负数≥0,故错误;(4)只有符合不同的两个数互为相反数,故原题错误;(5)有理数就是正有理数、负有理数和零的统称,故原题错误.【点睛】本题考查有理数分类、相反数,绝对值的定义,只有符号不同的两个数互为相反数,0的相反数是0;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.把下列各数填在相应的大括号内:-5,34-,-12,0,0.12..,-3.14,+1.99,+6,227.(1)正数集合:{ …};(2)负数集合:{ …};(3)分数集合:{ …};(4)非负整数集合:{ …}.【答案】(1)0.12..,+1.99,+6,227;(2)-5,34-,-12,-3.14;(3)34-,0.12..,-3.14,+1.99,227;(4)0,+6【分析】利用正数,负数,非负整数,以及分数的定义判断即可.【详解】解:(1)正数集合:{ 0.12..,+1.99,+6,227…};(2)负数集合:{ -5,34-,-12,-3.14 …};(3)分数集合:{34-,0.12..,-3.14,+1.99,227…};(4)非负整数集合:{ 0,+6 …}.【点睛】此题考查了正数,负数,非负整数,以及分数的定义,弄清各自的定义是解本题的关键.12.将下列各数填入相应的括号内:﹣2.5,152,0,8,﹣2,2π,﹣1.121121112……正数集合:{};负数集合:{ }; 整数集合:{ };无理数集合:{ };【答案】正数集合:{152,8,2π};负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}; 【分析】直接利用正数、负数、整数、无理数的定义分别分析得出答案.【详解】﹣2.5,152,0,8,﹣2,2π,﹣1.121121112…… 正数集合:{152,8,2π}; 负数集合:{﹣2.5,﹣2,﹣1.121121112……};整数集合:{0,8,﹣2};无理数集合:{2π,﹣1.121121112……}. 故答案为:152,8,2π;﹣2.5,﹣2,﹣1.121121112……;0,8,﹣2;2π,﹣1.121121112……. 【点睛】本题考查了实数的分类,正确掌握相关定义是解题的关键.13.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数【答案】90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.14. 将一列有理数﹣1,2,﹣3,4,﹣5,6…如图所示有序排列,4所在位置为峰1,﹣9所在位置为峰2….(1)处在峰5位置的有理数是_____;(2)2022应排在A ,B ,C ,D ,E 中_____的位置上.【答案】24 A【分析】根据图示信息找出A ,B ,C ,D ,E 各个位置数据的表达式,代入即可【详解】解:(1)观察发现:峰n 中,A 位置的绝对值可以表示为:5n ﹣3;B 位置的绝对值可以表示为:5n ﹣2;C 位置(峰顶)的绝对值可以表示为:5n ﹣1;D 位置的绝对值可以表示为:5n ;E 位置的绝对值可以表示为:5n+1;∴处在峰5位置的有理数是5×5﹣1=24;(2)根据规律,∵2022=5×405﹣3, ∴2022应排在A 的位置.故答案为:(1)24;(2)A .【点睛】此题属于找规律题,考查提取信息和总结的能力.三、解答题15.下列各数填入它所在的数集中:18-,227,3.1416,0,2001,35,0.142-,95%,π. 正数集:{ …};整数集:{ …};自然数集:{ …};分数集:{ …}.【答案】见解析【分析】根据有理数的分类即可求出答案.【详解】解:正数集:{ 227,3.1416,2001,95%,π}整数集:{-18,0,2001 }分数集:{ 227,3.1416,35,-0.142,95% }非负整数集:{0,2001}【点睛】本题考查有理数的分类,解题的关键是熟练运用有理数的分类,本题属于基础题型,注意:π不是有理数.16.将下列各数填入它所属于的集合的圈内:20,-0.08,-213,4.5,3.14,-1,+43,+5.【答案】见解析【分析】分别判断题干中的8个数字是否符合四个圆圈的内容,相应填入数字即可【详解】负整数,即既是负数,也是整数;正整数,即既是正数,也是整数;负分数,即既是负数,也是分数;正分数,即既是正数,也是分数;故负整数集合为:-1;正整数集合:20、+5;负分数集合为:-0.08、1 23正分数集合为:4.5、3.14、﹢4 3【点睛】本题考查有理数的分类,解题的关键是细心,切勿遗漏或重复填写数字17.把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4,34,0,-3.14,29,+2,-312,-1.414,-17,23.正数:{ …}非负整数:{ …}整数:{ …}负分数:{ …}【答案】6,2.4,29,+2,23;6,0,+2;6,-3,0,+2,-17;-34,-3.14,-312,-1.414.【分析】根据大于零的数是正数,可得正数集合;根据大或等于零的整数是非负整数,可的非负整数集合;根据分母为1的数是整数,可得整数集合;根据小于零的分数是负分数,可得负分数集合.【详解】正数:{6,2.4,29,+2,23…}非负整数:{6,0,+2 …}整数:{6,-3,0,+2,-17 …}负分数:{-34,-3.14,-312,-1.414 …}【点睛】本题考查了有理数,熟练掌握有理数的分类是解本题的关键.注意整数和正数的区别,注意0是整数,但不是正数.18.把下列各数填入相应的数集中:+125、-5%、200、-3、6.8、0、-215、0.12003407、1、-43.555、77%、-334(1)非负数集合:______________________(2)负有理数集合:________________________ (3)正整数集合:______________________(4)负分数集合:___________________________【答案】(1)+125、200、6.8、0、0.12003407、1、77%;(2)-5%、-3、-215、-43.555、-334;(3)200、1;(4)-5%、-215、-43.555、-334.【分析】根据有理数的分类,可得答案【详解】解:(1)非负数集合:+125、200、6.8、0、0.12003407、1、77%; (2)负有理数集合:-5%、-3、-215、-43.555、-334; (3)正整数集合:200、1;(4)负分数集合:-5%、-215、-43.555、-334. 【点睛】本题考查了有理数,熟知有理数的分类是解题关键.19.把下列各数填在相应的横线处:115 , 0.81 -3 25% -3.1 -4 , 171 , 0 , 3.142,,,,, 正数集合:_____;负数集合:_____;整数集合:_____;负分数集合:_____;有理数集合:_____.【答案】见解析【分析】根据有理数的分类进行填空即可. 【详解】解:正数集合:115 0.81 25% 171 , 3.142,,,,; 负数集合:-3,-3.1,-4;整数集合:15,-3,-4,171,0;负分数集合:-3.1; 有理数集合:1115 0.81 -3 -3.1 -4 171 , 0 3.1424,,,,,,,,. 【点睛】本题考查了有理数的分类.掌握有理数的分类是解题的关键.20.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.615454542.6154••=为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,② ②-①得:99261.54 2.61258.93x =-= 25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•= (2)试说明3.1415••是一个有理数,即能用一个分数表示.【答案】(1)149;(2)见解析 【分析】(1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,① 两边乘10得:1015.5x •=,② ②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,① 两边同乘以100得:••100314.15x =,② ②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.。

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)

初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()+7.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.228.若ab>0,且a+b<0,那么()A.a>0,b>0 B.a>0,b<0 C.a<0,b<0 D.a<0,b>09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)10.为确保信息安全,信息需加密传输,发送方由明文?密文(加密),接收方由密文?明文(解密),个自然1,…且公式,则13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b= (用a,b的一个代数式表示).18=ad,例如<)()()()﹣20.a、b<0;③ab.,且<22.的圆形,+24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3),求+当A|;②b|;(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x= 时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30两数在(4(5)“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;①②34))(×)×35.(1(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);;););););););2+)39.1+21×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12= .40.(1、B两(2B (3)(4)) 1.(【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋?赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,佛山期末)要使∵为整数,4.(8A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014?新华区模拟)有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解﹣6.(+)②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013?天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F,3+F=12,E+D=1B,那么A+C=()A.16 B.1C C.1A D.22【分析】首先把A+C利用十进制表示,然后化成16进制即可.【解答】解:A+C=10+12=22=16+6,则用16进制表示是16.9.(369147258【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010?广州)为确保信息安全,信息需加密传输,发送方由明文?密文(加密),接收方由密文?明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余a对应,所得的)C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()=,+,=,=,效数字;注意后面的单位不算入有效数字.14.(2016秋?余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是N或P (填入M、N、P、R中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2310023100234+3101,=,仿照以上推理计算:M=.故答案为.16.(0;【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.=1×23+1×22+0×21+1×20=8+4+0+1=13.【解答】解:(1101)2故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012?台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b= (用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,+.18.(=ad,例如=2x、y<<的值,当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春?宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010= ﹣2009 .【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.20.(a﹣b <0;②根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004?乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+= 1﹣.,++﹣.+++++.+++++变形为++++…++,再根据加法交换律和结合律计算即可求解.解:++++=+++++=+(+)++)=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋?湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣(﹣﹣).﹣+﹣)[+﹣(+)[﹣]﹣÷﹣;(﹣+)+×+=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.(2016秋?东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;26.(,求+(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.28.(2016秋?镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,②①②③|x+1如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.河北))﹣18.)﹣﹣)【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.30.(2015秋?古田县校级期末)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7 ,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x= 7或﹣3 .(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1 .(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;7;(4)∵|+3|+|x解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)【分析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)同理即可得到所求式子的值.【解答】解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,234n n+1+323.(1(≤x(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4;当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4;当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8,所以x=﹣2时,y有最大值y=4.【点评】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.33.(2014?香洲区校级二模)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①②③④②1④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.34.(2015秋?南江县校级期中)计算:(×)×(×)×(×)×…×(×)×(×).【分析】利用去掉括号找出算式的规律求解即可.【解答】解:(×)×(×)×(×)×…×(×)×(×)=××××××…××××=×.35.( 1.5(1【解答】(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.【点评】本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.36.(2015秋?浠水县期末)已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ﹣1 ,b= 1 ,c= 5(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运(3t秒钟的值((,=x+1﹣1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0.∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)=x+1﹣x+1+2x+10=2x+12;(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC﹣AB=2,BC﹣AB的值不随着时间t的变化而改变.【点评】本题考查了数轴与绝对值,正确理解AB,BC的变化情况是关键.37.(2015?芜湖三模)阅读材料:求1+2+22+23+24+…22013的值.23420122013∴.);;(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).【分析】(1)(2)(5)(8)可直接按照有理数的混合运算进行;(3)(7)(9)(10)(11)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)(6)可利用分配律计算;(12)可利用结合律进行运算,最后得出结果.+=×××=6﹣=;×﹣×+××﹣(﹣)﹣(﹣=×)﹣×(﹣﹣×××=﹣10.5×﹣10.5×=﹣10.5×(+)=﹣10.5×10=﹣105.【点评】本题考查的是有理数的运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.39.(2014秋?沙坪坝区期中)1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式4=3nn【解答】解:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=440,②1×2+2×3+3×4+…n(n+1)=n(n+1)(n+2),(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3)(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12=4290.故答案为:440,n(n+1)(n+2),n(n+1)(n+2)(n+3),4290.【点评】此题考查了规律型:数字的变化类,其中弄清题意,得出一般性的规律是解本题的关键.40.(2015秋?昌江县校级期中)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是 4 ,A、B两(2B (3)(4)4,(2B (3)(4)那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|.故答案为:(1)4,7;(2)1,2;(3)﹣13,9【点评】此题考查了数轴,弄清题中的规律是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学《有理数》拓展提高试题(一)姓名 友情提醒:试卷较难,请耐心想一想
一、 选择题(每小题3分,共30分)
1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为
( )
A.-1
B.0
C.1
D.2
2、有理数a 等于它的倒数,则a 2004是----------------------------------------------------( )
A.最大的负数 B.最小的非负数 C.绝对值最小的整数 D.最小的正整数
3、若0ab ≠,则a b a b
+的取值不可能是-----------------------------------------------( ) A .0 B.1 C.2 D.-2
4、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )
A 、-23
B 、-17
C 、23
D 、17
5、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………… ( )
A 、1
B 、2
C 、3
D 、4
6、若|a|=4,|b|=2,且|a+b|=a+b, 那么a-b 的值只能是( ).
A.2
B. -2
C. 6
D.2或6
7、 x 是任意有理数,则2|x |+x 的值( ).
A.大于零
B. 不大于零
C. 小于零
D.不小于零
8、观察这一列数:34-,57, 910-, 1713,3316
-,依此规律下一个数是( ) A.4521 B.4519 C.6521 D.6519
9、若1
4+x 表示一个整数,则整数x 可取值共有( ). A.3个 B.4个 C.5个 D.6个
10、30
28864215144321-+⋅⋅⋅-+-+-+-⋅⋅⋅+-+-等于( ) A .41 B .41- C .21 D .2
1-
二、填空题(每小题4分,共32分)
11.请将3,4,-6,10这四个数用加减乘除四则运算以及括号组成结果为24的算式
(每个数有且只能用一次)_______________ ______ ;
12. (-3)2013×( -31)2014= ; 13.若|x-y+3|+()22013y x -+=0,则y
x x 2-= . 14.北京到兰州的铁路之间有25个站台(含北京和兰州),设制 种票才能满足票
务需求.
15.设c b a ,,为有理数,则由c
c b b a a ++ 构成的各种数值是 16.设有理数a ,b ,c 在数轴上的对应点如图所示,
则 │b-a │+│a+c │+│c-b•│=____ _ ___;
17.根据规律填上合适的数: 1,8,27,64, ,216;
18、 读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为100
1n n =∑,这里“∑”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为50
1(21);n n =-∑又如“333333333312345678910+++++++++”可表示为103
1n n =∑,同学们,通过以上材料的阅读,请解答下列问题: (1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)
用求和符号可表示为 ;
(2)计算:5
21(1)n n =-∑= (填写最后的计算结果)。

三、解答题
19、计算:
⎪⎭⎫ ⎝
⎛--+-⎪⎭⎫ ⎝⎛---32775.2324523(4分)
20、计算:5025249⨯⎪⎭⎫ ⎝⎛- (4分)
21、已知02a 1b =-+-,
求()()()()
()()2006200612211111+++⋅⋅⋅+++++++b a b a b a ab 的值 (7分)
22、(7分)阅读并解答问题
求2008322.......221++++的值,
解:可令S =2008322......221++++,
则2S =20094322......222++++ ,
因此2S-S =122009-,
所以2008322......221++++=122009-
仿照以上推理计算出2009325......551++++的值
23. (8分)三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为0,a
b ,b 的形式,试求20012000b a +的值.
24、(8分)电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由 K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3跳4个单位到K 4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K 100所表示的数恰是20,试求电子
跳蚤的初始位置K
点所表示的数。

(附答案,见下页)
答案‘
一、选择题
1、B
2、D
3、B
4、A 5 、A 6、D 7、D 8、D 9、D 10、D
二、填空题
11、(答案不唯一)、12、3
1- 13、670 14、702 15、1,-1,3,-3 16、-2c 17、125 18、(1)∑=50
1
n )n 2( (2)50
三、解答题
19、解:原式=15.175.56.4375.26.43
2775.23246.4-=-=--=---++ 20、解:原式=()49825005025150105025110-=--=⎪⎭
⎫ ⎝⎛⨯-⨯-=⨯⎪⎭⎫ ⎝⎛-- 21、2008
2007 22、4
2152010- 23、解:由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a
b ,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使a
b 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a
b .只能是1=b ,于是a =-1。

∴原式=2. 24、解: 设K0点所表示的数为x ,则K1,K2,K3,…,K100所表示的数分别为1x -,
12x -+,123x -+-,…,1234
99100x -+-+-+. 由题意知:123499100x -+-+-+=20所以x=- 30.。

相关文档
最新文档