圆的标准方程完整ppt课件
合集下载
高中数学必修二课件:圆的一般方程(42张PPT)
此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )
圆的标准方程PPT(张小平)课件.ppt
圆心为C的圆的标准方程为(x+3)2 ( y 2)2 25.
。
小结:
一、圆的标准方程
(x a)2 (y b)2 r2
O
圆心C(a,b),半径r
特别地若圆心为O(0,0),则圆的标准方程为:x2 y2 r 2
二、点与圆的位置关系:
(1)点P在圆上 x0 a2 y0 b2 r2 (2)点P在圆内 x0 a2 y0 b2 r2
y
y
解
析
几
何
的
基
本
思 想
y0
o
形
数
l : Ax By C 0
P0 (x0,y0)
0
x
。
书 山 有 路 勤 为 径,学 海 无 崖 苦 作 舟
五家渠高级中学 张小平
。
师生互动探究
1、什么是圆?
平面内与定点距离等于定长的点的集合(轨迹)是圆.
2、确定圆需要几个要素?
圆心--确定圆的位置(定位) 半径--确定圆的大小(定形)
解2:设圆C的方程为 (x a)2 ( y b)2 r2 ,
∵圆心在直线l:x-y+1=0上
圆经过A(1,1),B(2,-2)
a b 1 0
a 3
(1 a)2 (1 b)2 r2 b 2
(2 a)2 (2 b)2 r2 r 5
准方程.
y
弦AB的垂
直平分线
A(1,1)OxD来自CB(2,-2)
l : x y 1 0
圆心:两条直线的交点 半径:圆心到圆上一点
。
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且
选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)
究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
圆的标准方程ppt课件完整版x-2024鲜版
2024/3/28
25
两圆相离条件(内含和外离)
内含
两圆圆心之间的距离小于两圆半径之差。
外离
两圆圆心之间的距离大于两圆半径之和。
2024/3/28
26
判断方法总结及示例
要点一
判断方法
首先根据两圆圆心距和半径和、半径差的大小关系,确定 两圆的位置关系类型(相交、相切、相离),然后根据具 体类型进一步判断是相交、内切、外切、内含还是外离。
04
2024/3/28
05
4. 从中可以看出,圆心坐标 为 $(2, -3)$,半径 $r = 1$
。
12
03
圆的图像与性质分析
2024/3/28
13
圆心位置对图像影响
圆心决定圆的位置
在平面直角坐标系中,圆心的坐标决定了圆在平面上的位置。
圆心与圆上任一点的距离等于半径
根据圆的定义,圆心到圆上任意一点的距离都等于半径,因此圆心的位置会影响圆的整体形状和大小 。
$(x - a)^{2}$ 和 $(y - b)^{2}$ 分别表示 点 $(x, y)$ 到圆心 $(a, b)$ 的水平和垂 直距离的平方。
2024/3/28
$r$ 表示圆的半径, 即从圆心到圆上任一 点的距离。
10
从一般方程到标准方程的转换
一般方程形式为
$x^{2} + y^{2} + Dx + Ey + F = 0$
当两个质点发生碰撞时,可以通过它们的运动轨迹(即两个圆的 方程)来求解碰撞点的坐标。
分析物体的受力情况
在某些物理问题中,可以通过分析物体运动轨迹的形状(如圆形 或椭圆形)来推断物体所受的力。
31
圆的标准方程 圆的一般方程 教学课件(共39张PPT)高中数学北师大版(2019)选择性必修第一册
(, )
r
由两点间的距离公式得
x
a
2
y b
2
r,
(, )
O
将上式两边平方得 x a
2
y b
2
r 2 .①
x
思考一下
以方程①的解为坐标点一定在圆 C 上吗?
设以方程①的任意解 x, y 为坐标的点记为点 Q ,
因为 x, y 是方程①的解,代入方程①可得: x a 2 y b 2 r 2
10
D +3E
20
4 D+2 E
F050ຫໍສະໝຸດ 5D 5EF0
解得 D
F
2, E
0
4, F
2
2
x
+
y
故所求圆的方程为
20 ,
2x
4y
20
0.
例 5:讨论方程 x +y
2
2
x 3
解: 将原方程组整理为 1 2 x2
当
2
y2 表示的是什么图形?
1 y2
2
0,
6x 9
1 时,方程(1)是一元一次方程 6x 9
思考交流
对于点 Px0 , y0 和圆 C : x a 2 y b 2 r 2 ,由圆的标准方程的概念,可知点 P
在圆 C 上的充要条件是 x0 a2 y0 b2 r 2 .
2
2
当点 P 不在圆 C 上时,一定有 x0 a y0 b r 2 ,此时,存在以下两种情况:
PC r
x0 a 2 y0 b2
r
x0 a y0 b r 2
圆的标准方程ppt课件
_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
圆的标准方程ppt课件
通过配方,可以将其 转化为标准形式,进 而确定圆心和半径。
一般形式下圆的方程 为 $x^2+y^2+Dx+Ey +F=0$,其中 $D^2+E^2-4F>0$。
拓展延伸
与直线方程联立,可以求解交点。
极坐标形式下圆的方程及其求解 方法
极坐标形式下圆的方程为 $rho=a(1+costheta)$或 $rho=a(1+sintheta)$,其中
圆的面积
S = πr²。
弧长与扇形面积计算
ห้องสมุดไป่ตู้弧长公式
l = θ/360° × 2πr,其中θ 为圆心角的度数。
扇形面积公式
S = θ/360° × πr²,其中θ 为圆心角的度数。
弓形面积计算
弓形面积 = 扇形面积 - 三 角形面积,其中三角形面 积可通过底和高计算得出。
02 圆的标准方程及其推导
数学建模竞赛
在数学建模竞赛中,圆的方程常常作为数学模型的基础,用于解决 各种实际问题,如城市规划、交通流量分析等。
06 总结回顾与拓展延伸
总结回顾本次课程重点内容
01
圆的标准方程的定义和形式
02
圆心和半径的确定方法
03
圆的方程与直线方程联立求解交点
04
圆的方程在实际问题中的应用
拓展延伸
一般形式下圆的方程 及其求解方法
圆的要素
圆心、半径。
03
圆的表示方法
一般用圆心和半径表示,如圆O(r)。
圆心、半径与直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
§4. 圆的标准方程PPT完美课件
§ 4 . 圆 的 标 准方程 PPT完 美课件
例 2.已知圆的方程是 x2 +y2 =r2 ,求经
过圆上一点 M(x0,y0) 的切线的方程。 y
分析:利用平面向量知识.
设P(x,y)是切线上不同于M的 任意一点,则
P(x,y) M(x0, y0)
OM MP
OM MP= 0
O
x
x0x +y0 y = r2
2x + 6 y =10
§ 4 . 圆 的 标 准方程 PPT完 美课件
§ 4 . 圆 的 标 准方程 PPT完 美课件
例3、图中是某圆拱桥的一孔圆拱的示意图,
该圆拱跨度AB=20m,拱高OP=4m,在建造时
每隔4m需用一个支柱支考: 1.是否要建立直角坐标系?怎样建立? 2.圆心和半径能直接求出吗? 3.怎样求出圆的方程? 4.怎样求出支柱A2P2的长度?
•
2对教育来说,阅读是最基础的教学手 段,教 育里最 关键、 最重要 的基石 就是阅 读。
•
3但是现在,我们的教育在一定程度上 ,还不 够重视 阅读, 尤其是 延伸阅 读和课 外阅读 。
•
4. “山不在高,有仙则名。水不在深 ,有龙 则灵” 四句, 简洁有 力,类 比“斯 是陋室 ,惟吾 德馨” ,说明 陋室也 可借高 尚之士 散发芬 芳
§ 4 . 圆 的 标 准方程 PPT完 美课件
§ 4 . 圆 的 标 准方程 PPT完 美课件
例3:如图是某圆拱桥的一孔圆拱的示意图。该圆拱跨度 AB=20m, 拱高OP=4m,在建造时每隔4m需用一个支柱 支撑,求支柱A2P2的长度(精确到0.01m)
y
思考
利用圆的几
何性质,你能否 用直线方程求出 圆心坐标?进而 写出圆的方程?
圆的标准方程完整ppt课件(2024)
r^{2}$。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
2024/1/30
9
方程中参数的意义
2024/1/30
$a, b$
01
圆心坐标,表示圆心的位置。
$r$
02
半径,表示圆的大小。
$x, y$
03
圆上任意一点的坐标,满足方程 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
10
03
圆的图形特征与性质
2024/1/30
圆关于经过圆心的任意直 线都是对称的。
2024/1/30
周期性
圆上任意一点绕圆心旋转 360度后回到原位,具有 周期性。
应用
利用对称性和周期性可以 简化一些复杂的几何问题 。
13
切线与法线的性质
切线
与圆有且仅有一个公共 点的直线。
2024/1/30
法线
过切点且与切线垂直的 直线。
切线与半径垂直
切线长定理
已知圆与直线相切求参数
利用圆心到直线的距离等于半径,可以列出方程求解参数 。
24
判断点与圆的位置关系
计算点到圆心的距离与半径比较
若距离小于半径,则点在圆内;若距离等于半径,则点在圆上;若距离大于半 径,则点在圆外。
利用点与圆方程的关系判断
将点的坐标代入圆方程,若得到的值小于0,则点在圆内;若得到的值等于0, 则点在圆上;若得到的值大于0,则点在圆外。
圆与双曲线的关系
双曲线的一种特殊情况是等轴双曲线,其渐近线方程就是圆的方程。此外,双曲线的焦点 到任意一点的距离之差为定值,这个定值也可以和圆的半径建立联系。
圆与抛物线的关系
抛物线的一种特殊情况是顶点在原点,对称轴为y轴的抛物线,其准线方程就是圆的方程 。同时,抛物线的焦点到任意一点的距离等于该点到准线的距离,这个性质也可以和圆的 性质进行类比。
2.4.1圆的标准方程课件共23张PPT
上、圆内,还是圆外.
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
圆的标准方程精品课件
3
证明
设P和Q是圆上关于任意直线l对称的两点,则 AP=BQ,且PO=QO。由于PQ与l垂直,所以 △APO≌△BQA,从而证明了P和Q关于l对称。
06 圆的实际应用
生活中的圆的应用
交通工具
车轮、自行车轮胎、火车 铁轨等都采用了圆形的结 构,使得运动更加平稳和 高效。
建筑学
建筑物的窗户、门洞、柱 基等常采用圆形或圆弧形, 不仅美观大方,而且符合 结构力学原理。
圆的弦长定理
总结词
弦长与半径的关系
详细描述
在圆中,通过圆心的弦被平分,并且弦长等于两个半径之和。如果弦不经过圆心,则弦长小于两个半径之和。这 个定理用于计算弦的长度以及与半径之间的关系。
04 圆的面积与周长
圆的面积计算公式
圆的面积计算公式
$S = pi r^{2}$,其中$S$表示圆的面积,$r$表示圆的半径。
圆的标准方程的图形表示
以圆心为坐标原点,以半径为长度单 位,在平面直角坐标系中画出的圆形。
圆的标准方程推导
推导过程
通过将圆上任一点的坐标表示为$(x, y)$,利用点到圆心 的距离等于半径的性质,将圆的方程转化为标准形式。
推导步骤
设圆上任一点$P(x, y)$,圆心$O(h, k)$,半径为$r$,则 $OP = r$,即$sqrt{(x - h)^{2} + (y - k)^{2}} = r$,平 方两边得到标准方程。
自然界
自然界中许多物体呈现圆 形或类圆形,如星球、花 朵、叶子等。
02 圆的标准方程
圆的标准方程形式
圆的标准方程
圆的标准方程的应用
$(x - h)^{2} + (y - k)^{2} = r^{2}$, 其中$(h, k)$是圆心坐标,$r$是半径。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
1.点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数 a 的 取值范围. 2.根据下列条件,求圆的方程:
(1)求过两点A(0,4)和B(4,6),且圆心在直线xy+1=0上的圆的标准方程。
(2)圆心在直线5x-3y=8上,又与两坐标轴相 切,求圆的方程。
(3)求以C(1,3)为圆心,且和直线3x-4y-7=0
程,并判断点 M1(5,7), M2( 5,1)是否在这个圆上。
解:圆心是 A(2,3,) 半径长等于5的圆的标准方程 是:
(x2)2(y3)225
把 M1(5,7的)坐标代入方程 (x2)2(y3)225 左右两边相等,点M 1 的坐标适合圆的方程,所以点
M
在这个圆上;
1
把点 M2( 5,1的)坐标代入此方程,左右两边不 相等,点 M的2坐标不适合圆的方程,所以点 M不2在 这个圆上.
跟踪训练 已知两点M(3,8)和N(5,2). (1)求以MN为直径的圆C的方程; (2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在 圆内,还是在圆外?
解:(1)法一:设圆心 C(a,b),半径为 r, 则由 C 为 MN 的中点得 a=3+2 5=4,b=8+2 2=5, 由两点间的距离公式得
解2:设圆C的方程为 (xa)2(yb)2r2,
∵圆心在直线l:x-y+1=0上 圆经过A(1,1),B(2,-2)
待定系数法
a b1 0 (1a)2 (1b)2 r2
(2a)2 (2b)2 r2
a 3
b
2
r 5
圆 心 为 C 的 圆 的 标 准 方 程 为 ( x + 3 ) 2 ( y 2 ) 2 2 5 .
圆心在y轴上且过原点: x 2 + (y-b)2 = b2 (b≠0)
圆与x轴相切:
(x a)2 + (y-b)2 = b2 (b≠0)
圆与y轴相切:
(x a)2 + (y-b)2 = a2 (a≠0)
圆与x,y轴都相切: (x a)2 + (y±a)2 = a2 (a≠0)
典型例题
例1 写出圆心为 A(2,3),半径长等于5的圆的方
(x-a)2+(y-b)2=r2
y M(x,y)
OC
x
三个独立条件a、b、r确定一个圆的方程.
想一想?
问题:是否在圆上的点都适合这个方程?是否适合 这个方程的坐标的点都在圆上?
(xa)2(yb)2r2
点M(x, y)在圆上,由前面讨论可知,点M的坐标 适合方程;反之,若点M(x, y)的坐标适合方程,这 就说明点 M与圆心的距离是 r ,即点M在圆心为A (a, b),半径为r的圆上.
知识点一:圆的标准方程
y
标准方程
M(x,y)
(xa)2(yb)2r2
OC
x
圆心C(a,b),半径r 特别地,若圆心为O(0,0),则圆的方程为:
x2y2 r2
应用举例 1.说出下列圆的方程: (1)圆心在点C(3, -4), 半径为7. (2) 经过点P(5,1),圆心在点C(8,-3).
2. 说出下列方程所表示的圆的圆心坐标和半径: (1) (x + 7)2 + ( y 4)2 = 36 (2) x2 + y2 4x + 10y + 28 = 0 (3) (x a)2 + y 2 = m2
即:x-3y-3=0
联 立 直 线 l,C D 的 方 程 : x x 3 y y 1 3 0 0 ,解 得 : x y 3 2
∴圆心C(-3,-2)
rA C(13)2(12)25.
圆 心 为 C 的 圆 的 标 准 方 程 为 ( x + 3 ) 2 ( y 2 ) 2 2 5 .
r=|CM|= 4-32+5-82= 10,
∴所求圆的方程为(x-4)2+(y-5)2=10.
.
9
知识探究二:点与圆的位置关系
探究:在平面几何中,如何确定点与圆的位置关
系?
M
M
OM
O
O
点在圆内
点在圆上
|OM|<r
|OM|=r
(x0-a)2+(y0-b)2>r2; (x0-a)2+(y0-b)2=r2
点在圆外 |OM|>r
(x0-a)2+(y0-b)2<r2
知识点二:点与圆的位置关系
点与圆的位置关系:
(x0-a)2+(y0-b)2>r2时,点M在圆C外; (x0-a)2+(y0-b)2=r2时,点M在圆C上; (x0-a)2+(y0-b)2<r2时,点M在圆C内.
例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程。
特殊位置的圆的方程:
圆心在原点:
x2 + y2 = r2 (r≠0)
圆心在x轴上:
(x a)2 + y2 = r2 (r≠0)
圆心在y轴上:
x2+ (y b)2 = r2 (r≠0)
圆过原点:
(x a)2 + (y-b)2 = a2+b2 (a2+b2≠0)
圆心在x轴上且过原点: (x a)2 + y2 = a2 (a≠0)
解:设所求圆的方程为:
(xa)2(yb)2r2
待定系数 法
因为A(5,1),B (7,-3),C(2,8)都在圆上
(5a)2 (1b)2 r2 (7 a)2 (3b)2 r2 (2a)2 (8b)2 r2
a 2,
b
3,
r 5 .
所求圆的方程为 (x2)2(y3)225
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在 直线l:x-y+1=0上,求圆心为C的圆的标准方程.
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在 直线l:x-y+1=0上,求圆心为C的圆的标准方程.
解:∵A(1,1),B(2,-2)
线 线 段 段 A A B B 的 的 垂 中 直 点 平 D ( 分 3 2 ,线 1 C 2 D ),的 k A 方 B 3 .1 ( x 3 ) . 23 2
4.1.1 圆的标准方程
y
OA
x
r
复习引入 探究新知
复习引入
问题1:平面直角坐标系中,如何确定一个 圆?
应用举例 课堂小结
圆心:确定圆的位置 半径:确定圆的大小
课后作业
探究新知
问题2:圆心是A(a,b),半径是r的圆的方程是什么?
设点M (x,y)为圆C上任一点,则|MC|= r。
(xa)2(yb)2r