受弯构件的挠度验算
受弯构件挠度计算

④纵向受拉钢筋的应力取等于钢筋应变与其弹性模量的乘积, 但其绝对值不应大于其相应的强度设计值
等效矩形应力图
等效矩形应力图
fc C
1 fc
M
xc
yc
z
M
x=b1 xc
C yc
z
Ts
M = C· z
x β1 xc
C f bx
Ts 1 c
基本计算公式
基本计算公式
1 ffcc
M
x =b xn
3.1.1概述 3.1.2单筋矩形截面受弯构件承载力计算 3.1.3双筋矩形截面受弯构件承载力计算 3.1.4T形截面受弯构件承载力计算 3.1.5构造要求
3.1.1概述 受弯构件是钢筋混凝土结构中应用最广泛的一种构件。梁和 板是典型的受弯构件。梁和板的区别在于:梁的截面高度一 般大于其宽度,而板的截面高度则远小于其宽度。
梁的截面形式一般有矩形、T形和I形;板的截面形式有矩形、多 孔形和槽形等仅在受弯构件受拉区配置纵向受力钢筋的构件称为 单筋受弯构件,同时也在受压区配置纵向受力钢筋的构件称为双 筋受弯构件 。
对于单筋梁,梁中通常配有纵向受力钢筋、架立筋和箍 筋,有时还配有弯起钢筋对于板,通常配有受力钢筋和 分布钢筋。受力钢筋沿板的受力方向配置,分布钢筋则 与受力钢筋相垂直,放置在受力钢筋的内侧。
受弯构件正截面的破坏形式
(1)适筋破坏 这种破坏的特点是受拉区纵向受力钢筋首先屈服,然后受压区混凝 土被压碎。梁完成破坏之前,受拉区纵向受力钢筋要经历较大的塑 性变形,沿梁跨产生较多的垂直裂缝,裂缝不断开展和延伸,挠度 也不断增大,所以能给人以明显的破坏预兆。 (2)超筋破坏 其特点是破坏时受压区混凝土被压碎而受拉区纵向受力钢筋没有达 到屈服。梁破坏时由于纵向受拉钢筋尚处于弹性阶段,所以梁受拉 区裂缝宽度小,形不成裂缝,破坏没有明显预兆,呈脆性性质。 (3)少筋破坏 其特点是一裂即坏。梁受拉区混凝土一开裂,裂缝截面原来由混凝 土承担的拉力转由钢筋承担.破坏时钢筋和混凝土的强度虽然得到了 充分利用,但破坏前无明显预兆,呈脆性性质。
受弯构件的挠度验算(混凝土结构设计原理)

Bs
1 2 bh0 Ec h0 As Es
h0
E 1.15
Es A h
2 s 0
开裂截面的内力臂系数 试验和理论分析表明,在短期弯矩Msk=(0.5~0.7)Mu范围, 裂缝截面的相对受压区高度 变化很小,内力臂的变化也不大。 对常用的混凝土强度和配筋情况, 值在0.83~0.93之间波动。 《规范》为简化计算,取=0.87。
⑶长期荷载作用下的抗弯刚度
在长期荷载作用下,由于混凝土的徐变,会使梁的挠度随时 间增长。此外,钢筋与混凝土间粘结滑移徐变、混凝土收缩等 也会导致梁的挠度增大。根据长期试验观测结果,长期抗弯刚 度B可按下式计算, Bs B
θ ––– 考虑荷载长期作用对挠度增大的影响系数。;
' 0时, =2.0; ' =时, =1.6; ' 为中间数值时, 按线性内插法取用。
1.1 0.65
sk te
在短期弯矩Msk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。 该参数反映了裂缝间混凝土参与受拉工作的情况,随着弯矩增 加,由于裂缝间粘结力的逐渐破坏,混凝土参与受拉的程度减 小,平均应变增大, 逐渐趋于1.0,抗弯刚度逐渐降低。
a
a
b
b
h0 由三角形oab和o’a’b’相似,得:
c s
lcr
求解εcmεsm
1、几何关系: 2、物理关系:
1
e cm e sm
h0
es
s
Es
,
c
c ec Ec
c e cm e c ' Ec c
e sm e s
钢筋混凝土受弯构件的裂缝宽度和挠度验算

受压翼缘加强系数
3、钢筋应变不均匀系数
sm sk s sm s sk
钢筋应力不均匀系数 是反映裂缝间混凝土参加受拉工作 程度的影响系数。 越小,裂缝之间的混凝土协助钢筋抗拉的
作用越强。
1.1 0.65 ftk s sk te
sk分布图
1.1 0.65 ftk s sk te
sm sk
Sm cm cck
sm
cm
c
(
' f
Mk
0 )bh02Ec
cm
Mk
bh02 Ec
sm
Mk
Ash0 Es
ቤተ መጻሕፍቲ ባይዱ
Bs
Mk
M k h0
sm cm
cm
Mk
bh02 Ec
Bs
1
Ash02 Es
1
bh03 Ec
Bs
Es Ash02
E
E 0.2 6 E
1 3.5 f
Bs
1.15
Es Ash02 0.2
6E
1 3.5 f
1.1 0.65 ftk s sk te
在短期弯矩Mk=(0.5~0.7)Mu范围,三个参数、 和 中, 和 为常数,而 随弯矩增长而增大。
wm smlm cmlm
εsm、εcm——分别为裂缝间钢筋及砼的平均应变; lm——裂缝间距。
平均裂缝宽度wm
wm smlm cmlm
sm
(1
cm sm
8.2 受弯构件挠度验

8.2 受弯构件挠度验第8.2.1条钢筋混凝土和预应力混凝土受弯构件在正常使用极限状态下的挠度,可根据构件的刚度用结构力学方法计算。
在等截面构件中,可假定各同号弯矩区段内的刚度相等,并取用该区段内最大弯矩处的刚度。
当计算跨度内的支座截面刚度不大于跨中截面刚度的两倍或不小于跨中截面刚度的二分之一时,该跨也可按等刚度构件进行计算,其构件刚度可取跨中最大弯矩截面的刚度。
受弯构件的挠度应按荷载效应标准组合并考虑荷载长期作用影响的刚度B进行计算,所求得的挠度计算值不应超过本规范表3.3.2规定的限值。
第8.2.2条矩形、T形、倒T形和I形截面受弯构件的刚度B,可按下列公式计算:B=Mk /Mq(θ-1)+MkBs(8.2.2)式中Mk--按荷载效应的标准组合计算的弯矩,取计算区段内的最大弯矩值;Mq--按荷载效应的准永久组合计算的弯矩,取计算区段内的最大弯矩值;Bs--荷载效应的标准组合作用下受弯构件的短期刚度,按本规范第8.2.3条的公式计算;θ--考虑荷载长期作用对挠度增大的影响系数,按本规范第8.2.5条取用。
第8.2.3条在荷载效应的标准组合作用下,受弯构件的短期刚度Bs可按下列公式计算:1钢筋混凝土受弯构件B s =EsAsh2/1.15ψ+0.2+6αEρ/1+3.5γ'f(8.2.3-1)2预应力混凝土受弯构件1)要求不出现裂缝的构件B s =0.85EcI(8.2.3-2)2)允许出现裂缝的构件B s =0.85EcI/kcr+(1-kcr)ω(8.2.3-3)k cr =Mcr/Mk(8.2.3-4)ω=(1.0+0.21/αE ρ)(1+0.45γf)-0.7 (8.2.3-5)M cr =(σpc+γftk)W(8.2.3-6)γf =(bf-b)hf/bh(8.2.3-7)式中ψ--裂缝间纵向受拉钢筋应变不均匀系数,按本规范第8.1.2条确定;αE --钢筋弹性模量与混凝土弹性模量的比值:αE=Es/Ec;ρ--纵向受拉钢筋配筋率:对钢筋混凝土受弯构件,取ρ=As /(bh);对预应力混凝土受弯构件,取ρ=(Ap+As)/(bh);I--换算截面惯性矩;γf--受拉翼缘截面面积与腹板有效截面面积的比值;b f 、hf--受拉区翼缘的宽度、高度;K cr --预应力混凝土受弯构件正截面的开裂弯矩Mcr与弯矩Mk的比值,当kcr >1.0时,取kcr=1.0;σpc--扣除全部预应力损失后,由预加力在抗裂验算边缘产生的混凝土预压应力;γ--混凝土构件的截面抵抗矩塑性影响系数,按本规范第8.2.4条确定。
钢桥受弯构件验算内容-公式

一、受弯构件(一)在主平面内受弯的实腹式构件抗弯强度应符合下列规定1、翼缘板弯曲正应力满足下列要求:双向受弯的实腹式构件:f d ≥γ0(M y W y,eff +M z W z,eff )式中:γ0——结构重要性系数;M y 、M z ——计算截面的弯矩设计值;W y,eff 、W z,eff ——有效截面相对于y 轴和z 轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
2、腹板剪应力应满足下列要求。
闭口截面腹板剪应力应按剪力流理论计算。
γ0τ≤f vd式中:γ0——结构重要性系数;τ——剪应力;f vd ——钢材的抗剪强度设计值。
3、平面内受弯实腹式构件腹板在正应力 σx 和剪应力 τ 共同作用时,应满足下列要求。
γ0√(σx f d )2+(τf vd)2≤1 式中:σx ——x 方向正应力;f d ——钢材的抗拉、抗压和抗弯强度设计值。
(二)受弯构件的整体稳定性应符合下列规定1、等截面实腹式受弯构件,应按下列规定验算整体稳定。
γ0(βm,yM y χLT,y M Rd,y +M z M Rd,z )≤1 γ0(M y M Rd,y +βm,z M z χLT,z M Rd,z)≤1 M Rd,y =W y,eff f dM Rd,z =W z,eff f dλLT,y =√W y,eff f y M cr,y ,λLT,z =√W z,eff f y M cr,z式中: M y 、M z ——构件最大弯矩;βm,y、βm,z——等效弯矩系数;χLT,y、χLT,z——M y和M z作用平面内的弯矩单独作用下,构件弯扭失稳模态的整体稳定折减系数;λ̅̅̅LT,y、λLT,z——弯扭相对长细比;W y,eff、W z,eff——有效截面相对于y轴和z轴的截面模量,其中受拉翼缘应考虑剪力滞影响,受压翼缘应同时考虑剪力滞和局部稳定影响。
M cr,y、M cr,z——M y和M z作用平面内的弯矩单独作用下,考虑约束影响的构件弯扭失稳模态的整体弯扭弹性屈曲弯矩,可采用有限元方法计算。
第七讲--钢筋混凝土受弯构件的变形与裂缝

5.3 裂缝宽度验算
(3)三级:允许出现裂缝的构件,按荷载效应 准永久组合,并考虑长期作用影响计算时构件的 最大裂缝宽度ωmax,不应超过下页表中规定的最 大裂缝宽度限值ωlim。 即: ω max≤ω lim
注:上述一级、二级裂缝控制属于构件的抗裂能力控制, 对于一般的钢筋混凝土构件来说,在使用阶段都是带裂 缝工作的,故按三级标准来控制裂缝宽度。
11
5.3 裂缝宽度验算
3.2 影响裂缝宽度的主要因素 ①纵向钢筋的应力:裂缝宽度与钢筋应力近似呈线 性关系。 ②纵筋的直径:当构件内受拉纵向钢筋截面总面积 相同时,采用细而密的钢筋,则会增大钢筋表面积, 因而使粘结力增大,裂缝宽度变小。 ③纵筋表面形状:带肋钢筋的粘结强度较光圆钢筋 大得多,可减小缝度宽度。 ④纵筋配筋率:构件受拉区的纵筋配筋率越大,裂 缝宽度越小。
对于因基础不均匀沉降、构件混凝土收缩或温度变化等外加 变形或约束引起的裂缝,主要是通过采用合理结构方案、构 造措施来控制。
(2)荷载(直接作用)引起的裂缝,如受弯、受 拉等构件的垂直裂缝,受弯构件的斜裂缝。
试验结果表明,只要能满足斜截面承载力计算要求,并相应 配置了符合计算及构造要求的腹筋,则构件的斜裂缝宽度不 会太大,能满足正常使用要求。
15
5.3 裂缝宽度验算 4 减小裂缝宽度的措施
1、增大钢筋截面面积; 2、在钢筋截面面积不变的情况下,采用较小直径的钢 筋; 3、提高混凝土强度等级; 4、增大构件截面尺寸; 5、减小混凝土保护层厚度。
注:采用较小直径的变形钢筋是减小裂缝宽度最有效的措施。 需要注意的是,混凝土保护层厚度应同时考虑耐久性和减小裂 缝宽度的要求。除结构对耐久性没有要求,而对表面裂缝造成 的观瞻有严格要求外,不得为满足裂缝控制要求而减小混凝土 保护层厚度。
本科毕业设计-钢桥验算(受弯构件-抗倾覆验算-挠度及预拱度验算)

第五章 整体分析验算5.1 一般规定5.1.1 局部受压稳定折减系数钢桥在验算受压稳定性时,一般结构在屈曲前后仍在小变形假设范围内处于弹性状态,即弹性屈曲。
对于局部受压的板件,由于构件的弹性屈曲,对构件材料的标准值有所影响。
在计算时,需要考虑弹性屈曲引起的局部稳定折减,局部稳定折减系数ρ应按下列规定计算[3]:()020.4=1110.4=112p λρλρελ⎧≤⎪⎪⎧⎨⎪>++⎨⎪⎪⎪⎩⎩时:时: (5-1)()00.80.4p ελ=- (5-2)1.05p p b t λ⎛== ⎝ (5-3) 式中:p λ——相对宽厚比; t ——加劲板的母板厚度;y f ——屈服强度; E——弹性模量;cr σ——加劲板弹性屈曲欧拉应力;p b ——加劲板局部稳定计算宽度,对开口刚性加劲肋,按加劲肋的间距 b i计算;对闭口刚性加劲肋,按加劲肋腹板间的间距计算;对柔性加劲肋,按腹板间距或腹板至悬臂端的宽度i b 计算;k ——加劲板的弹性屈曲系数,可参考规范《公路钢结构桥梁设计规范》附录B 计算,计算如下。
参考规范《公路钢结构桥梁设计规范》附录B 规定,加劲肋和加劲板对弹性屈曲系数k 有很大的影响。
对纵向加劲肋等间距布置且无横向加劲肋布置的顶板和底板,其弹性屈曲系数k 可由式5-4、5-5计算:*4l l k γγ≥=时: (5-4)()()(()2202*011211l l l l l n a k n b a k n b αγαααδγγααδ⎧++⎛⎫⎪==≤ ⎪⎪+⎝⎭⎪<⎨⎪⎛⎫==>⎪ ⎪+⎝⎭⎪⎩时: (5-5)式中:n ——受压板被纵向加劲肋分割的板元数,1l n n =+; l n ——等间距布置纵向加劲肋根数;a ——加劲板的计算长度(横隔板或刚性横向加劲肋的间距);b——加劲板的计算宽度(腹板或刚性纵向加劲肋的间距);α——加劲板的长宽比,按时5-6计算:abα=(5-6) l δ——单根纵向加劲肋的截面面积与母板的面积之比, 按式5-7计算:l l Abtδ= (5-7)t ——加劲板的厚度;l A ——单根纵向加劲肋的截面面积;l γ——纵向加劲肋相对刚度,按式5-8计算:l l EIbDγ= (5-8)l I ——单根纵向加劲肋对加劲板的抗弯惯性矩;D——单宽板刚度,按式5-9计算:()32121Et D ν=- (5-9) ν——泊松比; t ——加劲板的厚度;E——弹性模量。
受弯构件的挠度验算

钢筋保 安全 砼强度 护层 级别 等级
a(mm)
构件截面尺寸 b(mm) h(mm)
示例 Ⅱ C25 40
200
500
1
2
3
计算跨度 L(m) 5.6
受弯构件跨中挠度验算
永久荷载标准值 可变荷载标准值
(KN/m)
(KN/m)
gk
qk
gk
12.4
注:示例是以均布单跨简支梁为例,红色为已知数据;挠度公式中的S是与荷载、支撑有关的系数,均布单跨简支
受弯构件跨中挠度验算
可变荷载标准值 (KN/m)
截面配筋
跨中弯矩
qk 面积As(mm2) 配筋率ρ M(KN·m)
8.0
942
0.0102 79.968
弹性模量(N/mm2).00E+05 2.80E+04
短期抗弯刚度
α
(N·mm2)
α=Es/Ec
Bs=(0.025+0.28* αρ)Ecb(h-a)3
7.143 2.479E+13
支撑有关的系数,均布单跨简支梁时,S取5/48。
抗弯刚度 (N·mm2)
要求f<[f] 挠度f(mm) 挠度限值[f](查表)
B=0.65×Bs f=S×ML2/B L<6m时,[f]=L/200
1.611E+13 16.21
28
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受弯构件跨中挠度验算
可变荷载标准值 (KN/m) qk 8.0 截面配筋 跨中弯矩 弹性模量(N/mm )(查 表) 钢筋Es 2.00E+05 砼Ec 2.80E+04刚度 (N·mm2)
Bs=(0.025+0.28* α ρ )Ecb(h-a)
3
面积As(mm2) 配筋率ρ M(KN·m) 942 0.0102 79.968
受弯构件跨中挠度验算
序号 钢筋保 安全 砼强度 护层 级别 等级 a(mm) Ⅱ C25 40 构件截面尺寸 b(mm) 200 h(mm) 500 计算跨度 L(m) 5.6 永久荷载标准值 可变荷载标准值 (KN/m) (KN/m) gk 12.4 qk gk
示例 1 2 3
注:示例是以均布单跨简支梁为例,红色为已知数据;挠度公式中的S是与荷载、支撑有关的系数,均布单跨简支
2.479E+13
支撑有关的系数,均布单跨简支梁时,S取5/48。
要求f<[f] 抗弯刚度 (N·mm2) B=0.65×Bs 1.611E+13 挠度f(mm) f=S×ML2 /B 16.21 挠度限值[f](查表) L<6m时,[f]=L/200 28