线段垂直平分线与角平分线练习题

合集下载

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案

线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题----d542b8a4-6ead-11ec-9974-7cb59b590d7d线段的垂直平分线与角平分线1.如图1所示△ ABC,BC=8cm,AB的垂直平分线在点D处与AB相交,相交边AC在点E处。

如果△ BCE等于18cm,AC的长度等于()a.6cmb。

8厘米2.如图3,在△abc中,∠c=90,ad平分∠bac,de⊥ab于e,则下列结论:①ad平分∠cde;②∠bac=∠bde;③de平分∠adb;④be+ac=ab。

其中正确的有3.已知1)如图所示,ab=AC=14cm,ab的垂直平分线在点D处与ab相交,在点E处与AC相交。

如果△ EBC是24厘米,然后是BC=2)如图,ab=ac=14cm,ab的垂直平分线交ab于点d,交ac于点e,如果bc=8cm,那么△ebc的周长是3)如图所示,ab=AC,ab的垂直平分线在点D处与ab相交,在点E处与AC相交。

如果∠ 那么a=28度∠ EBC是b4.在△ ABC,ab=AC,由ab的垂直平分线与边缘AC所在的直线相交形成的锐角为50°,以及底角的大小∠ B的△ ABC是。

5.已知线段ab外两点p、q,且pa=pb,qa=qb,则直线pq与线段ab的关系是_________.6.∠aob的平分线上一点m,m到oa的距离为1.5cm,则m到ob的距离为_________.7.如图所示,在△ 美国广播公司,∠ C=90°,ad是角平分线,de⊥ AB在E中,de=3厘米,BD=5厘米,然后BC=1厘米。

8.如图所示△ 美国广播公司,∠ ACB=90°,被平分∠ 美国广播公司⊥ D中的AB,如果AC=3cm,那么AE+de等于()ceec?c.10cmd.12cm阿德卡问题4ba问题5db一10.在△abc中,ab=ac,ab的垂直平分线与ac所在直线相交所得的锐角为40°,则底角b的大小为________________。

线段的垂直平分线和角的平分线中考真题

线段的垂直平分线和角的平分线中考真题

线段的垂直平分线和角的平分线中考真题1(2016黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°2(2016广州)已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()(A)3 (B)4 C、4.8 (D)53(2016荆州)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.44(2016天门)如图,在△ABC中,AB=BC,∠ABC=110.AB的垂直平分线DE交AC于点D,连接BD,则∠ABD = ▲度.5(2016毕节)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点6、(2016长沙)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.8(2016西宁)如图6,OP平分AOBPD⊥于点D,4PC=AOP,PC∥OA,OA∠,︒=∠15则=PD.9(2016常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA 的距离为.10(2016怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD11(2016淮安)、如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15 B .30 C .45D .6012(2016铜仁)如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP ∥OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于( )A. 1 B. 2 C. 4 D. 813(2016湖州)如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8 B .6 C .4 D .214(2016莆田)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的选项是( )A .PC ⊥OA ,PD ⊥OB B .OC=ODC .∠OPC=∠OPD D .PC=PD15(2016台湾)证明命题“角的一部分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程. 下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC ,点P 在OC 上. _____________________________________. 求证:______________________.请你补全已知和求证,并写出证明过程.(第9题图)。

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题

垂直平分线与角平分线典型题Prepared on 24 November 2020线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习: 已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

角平分线与线段垂直平分线(学生版)

角平分线与线段垂直平分线(学生版)

第二节:角平分线与垂直平分线二、题型分析题型一:等距离转化问题例1.如图,点P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D,若PD=2,则点P到边OB的距离是()A.4 B.C.2 D.1例2.如图,AD是∠BAC的平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=4,则AC的长是()A.5 B.6 C.8 D.7例3.如图,△ABC中,AD是角平分线,BE是△ABD中的中线,若△ABC的面积是24,AB=5,AC=3,则△ABE的面积是()A.15 B.12 C.7.5 D.6例4.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F (1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.例5.△ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,求AB的长.针对练习:1.在△ABC中,∠B=90°,AB=BC,CD平分∠ACB交AB于点D,DE⊥AC于E,且AC=8cm,则△ADE的周长为()A.6cm B.8cm C.10cm D.不能确定2.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP 长的最小值为()A.1 B.6 C.3 D.123.如图,在Rt△ABC中,BD是角平分线,若CD=4,AB=12,则△ABD的面积是()A.48 B.24 C.16 D.124.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=PC:PB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有()A.①②④B.①③④C.②③④D.①③5.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.426.如图,△ABC中,AB=8,BC=10,BD是△ABC的角平分线,DE⊥AB于点E,若DE=4,则三角形ABC的面积为.7.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=10cm,△ABD的面积为20cm2,则CD的长为cm.8.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AC=5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm9.如图,在Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD⊥BC于D,BF平分∠ABC交AC于F,AD于E,则线段AE的长为()A.3 B. C.1.8 D.410.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是.11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.题型二:角平分线判定与角度数计算问题例1.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为()A.54°B.50°C.48°D.46°例2.已知,如图,点B、C分别在射线OA、OD上,AB=CD,△PAB的面积等于△PCD的面积求证:OP平分∠AOD.针对练习:1.如图所示,已知∠ADC+∠ABC=180°,DC=BC.求证:点C在∠DAB的角平分线上.2.在△ABC中,AE、BF是角平分线,交于O点.(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.(2)如图2,若OE=OF,AC≠BC,求∠C的度数.(3)如图3,若∠C=90°,BC=8,AC=6,S△CEF=4,求S△AOB.3.在平面直角坐标系中,OA=OB,P A⊥PB.(1)如图1,当P在第一象限时,求证:OP平分∠BP A.(2)如图2,当P在第四象限时,直接写出∠OP A的度数.4.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.题型三:三角形的角平分线及三角形内心例1.点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是()A.1B.2C.3D.4例2.如图,在△ABC中,AB=8,AC=6,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为()A.12B.15C.16D.18针对练习:1.如图所示,等腰Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于D,过D作DE⊥AB于E,若CD=b,BD =a,那么AB的长度是()A.a+b B.a+2b C.2a+b D.2a+2b2.在△ABC中,∠ABC与∠ACB的角平分线BO,CO相交于点O,连接AO,过点O作EF∥BC交AB,AC于点E,F,AB=5,AC=4(1)求△AEF的周长;(2)若点O到BC距离为4,且三角形ABC的周长比三角形OBC周长多4,求△OAB的面积.3.在△ABC中,AD是它的角平分线.(1)如图1,求证:S△ABD:S△ACD=AB:AC=BD:CD;(2)如图2,E是AB上的点,连接ED,若BD=3,BE=CD=2,AE=2CD,求证:△BED是等腰三角形;(3)在图1中,若3∠BAC=2∠C,∠ADB>∠B>∠BAD,直接写出∠BAC的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,BD是△ABC的一条角平分线.点O是BD上一点,过点O分别作AC、BC的垂线,垂足分别为F、E,连接OC、OA,若∠FCO=45°,求证:点O在∠BAC的平分线上.5.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+=2AF,请加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.6.如图,在△ABC中,AB=AC,∠A=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点E作EF⊥BD交BD于点G,交BC于点F.(1)若BE=4,求AD的长;(2)求证:FC=2AD.7.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.8.如图,在△ABC中,AD平分∠BAC,则=吗?请说明理由.题型四:角平分线几种模型例1.(1)如图(a)所示,BD、CE分别是△ABC的外角平分线,过点A作AD⊥BD,AE⊥CE,垂足分别为D、E,连接DE,求证:DE=(AB+BC+AC);(2)如图(b)所示,BD、CE分别是△ABC的内角平分线,其他条件不变,DE与△ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所示,BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,DE与△ABC 三边又有怎样的数量关系?并证明这个数量关系.例2.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.针对练习:1.如图,已知在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线,E是AB上一点,且AE=AD,连接ED,作EF ⊥BD于F,连接CF.则下面的结论:①CD=CF;②∠EDF=45°;③∠BCF=45°;④若CD=4,AD=5,则S△ADE=10.其中正确结论的个数是()A.1个B.2个C.3个D.4个2.已知:如图,在△ODC中,∠D=90°,CE是∠DCO的角平分线,且OE⊥CE,过点E作EF⊥OC于点F,猜想:线段EF与OD之间的数量关系,并证明.3.等腰直角三角形ABC中,∠A=90°,∠B的平分线交AC于D,过点C向BD作垂线,并与BD延长线交于点E,求证:BD=2CE.题型四:线段垂直平线与线段例1.如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10B.12C.14D.16例2.如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PC C.PB<PC D.PB=2PC例3.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE的延长线于点E,则DE的长为()A.B.C.D.例4.如图,BD垂直平分AG于D,CE垂直平分AF于E,若BF=1,FG=3,GC=2,则△ABC的周长为.例5.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,CE=3,线段CB的长为.例6.如图,四边形ABCD中,∠A=∠B=90°,AB=25cm,DA=15cm,CB=10cm.动点E从A点出发,以2cm/s的速度向B点移动,设移动的时间为x秒.(1)当x为何值时,点E在线段CD的垂直平分线上?(2)在(1)的条件下,判断DE与CE的位置关系,并说明理由.针对练习:1.如图,Rt△ABC中,∠C=90°,AB边上的中垂线分别交BC、AB于点D、E,若BC=7cm,AC=4cm,△ADC的周长为cm.2.如图所示,DE、FG分别是△ABC两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG 的周长是.3.如图,在△ABC中,∠C=90°,∠B=22.5°,AB的垂直平分线交AB于点D,交BC于点E,若CE=3,则AC=.4.如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于()A.6cm B.5cm C.4cm D.3cm5.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D是线段CE的中点,AD⊥BC于点D.若∠B=36°,BC=8,则AB的长为.6.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE 垂直平分CD.7.如图,△ABC中,AB>AC,AD是BC边上的高,F是BC的中点,EF⊥BC交AB于E,若BE:AB=3:4,则BD:DC=.8.如图,△ABC中,AC的垂直平分线DE分别交BC于点E,交AC于点D,连接BD,AB=AD,∠CED=45°+∠BAC,△ABD的面积为54,则线段BD的长为.9.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.题型五:线段垂直平分线与角度问题例1.如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠BAC=124°,则∠DAE的度数为()A.68°B.62°C.66°D.56°例2.如图,在△ABC中,点D在BC边上,DE垂直平分AC边,垂足为点E,若∠B=70°且AB+BD=BC,则∠BAC的度数是()A.65°B.70°C.75°D.80°例3.如图,OE,OF分别是AC,BD的垂直平分线,垂足分别为E,F,且AB=CD,∠ABD=120°,∠CDB=38°,求∠OBD的度数.例4.如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC边上.(1)判断△ABC的形状;(2)若点A在线段DC的垂直平分线上,求的值.例5.已知:如图,AF平分∠BAC,BC垂直平分AD,垂足为E,CF上一点P,连结PB交线段AF相交于点M.(1)求证:AB∥CD;(2)若∠DAC=∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.针对练习:1.如图,在△ABC中,AB,AC的垂直平分线DF,EG交于点M,点F,G在BC上.若∠GAF=46°,则∠M的度数为()A.67°B.65°C.55°D.45°2.如图,已知△ABC中,DE、FG分别是AB,AC边上的垂直平分线,∠BAC=100°,AB>AC,则∠EAG的度数是()A.10°B.20°C.30°D.40°3.如图,在△ABC中,DE是AB的垂直平分线,且分别交AB、AC于点D和E,∠A=50°,∠C=60°,则∠EBC为()A.30°B.20°C.25°D.35°4.如图,AD垂直平分BC,连接AB,∠ABC的平分线交AD于点O,连接CO并延长交AB于E,若∠AOC=125°,则∠ABC=°.5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF =48°,则∠ABC的度数为=.6.如图,在△ABC中,AB、AC的垂直平分线交BC于E、F,垂足分别为点M、N,若∠BAC+∠EAF=144°,则∠BAC的度数为.7.如图,在△ABC中,∠ABC=90°,∠C=25°,DE是边AC的垂直平分线,连结AE,则∠BAE等于.8.如图,在△ABC中,AD平分∠BAC,点E在AC的垂直平分线上.(1)若AB=5,BC=7,求△ABE的周长;(2)若∠B=57°,∠DAE=15°,求∠C的度数.9.如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF=90°,AF=3,AE=4.(1)求边BC的长;(2)求出∠BAC的度数.10.如图,△ABC中,CE、AD分别垂直平分AB、BC,求△ABC各内角的大小.11.已知,在△ABC中,DE垂直平分AB,垂足为点D,交直线BC于点E.MN垂直平分AC,垂足为点M,交直线BC于点N,连接AE,AN.(1)如图①,若∠BAC=100°,求∠EAN的大小;(2)如图②,若∠BAC=70°,求∠EAN的大小;(3)若∠BAC=α(α≠90°),用含α的式子表示∠EAN的大小(直接写出结果即可).题型六:尺规作图例1.在Rt△ABC中,∠C=90°,AC=6,BC=8.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.例2.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)针对练习1.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.2.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.3.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等.4.已知∠AOB及射线OA边上的点M(如图),请用尺规过点M作OB的平行线EF,不写作法,保留作图痕迹.5.如图,∠MON内有定点P.(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).6.如图,已知△ABC,请用直尺和圆规依次完成下列操作.(1)在线段AC上找一点M,使点M到AB和BC的距离相等;(2)在射线BM上找一点N,使NB=NC.7.如图,已知△ABC.(1)画AC边上的高线(不限工具);(2)尺规作图:①∠BAC的平分线;②在∠BAC的平分线上作一点P,使PB=PC.11.如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.。

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。

ECFA D B例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。

求证:直线AB 是线段CD 的垂直平分线。

AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC 中,AB=AC ,∠BAC=1200,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,E 、G 在BC 上,BC=15cm ,求EG 的长度。

AD FB E G C例5::如图所示,Rt △ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交AC 于点E ,CD 交BE 于点F 。

求证:BE 垂直平分CD 。

CEA DB F例6::在⊿ABC 中,点O 是AC 边上一动点,过点O 作直线M N ∥BC ,与 ∠ACB 的角平分线交于点E ,与∠ACB 的外角平分线交于点F ,求证:OE=OF例7、如图所示,AB>AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE AB ⊥于E ,DF AC F ⊥于,求证:BE=CF 。

AEB M CFD21 AO F E CB M N答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

线段垂直平分线与角平分线练习题

线段垂直平分线与角平分线练习题

线段垂直平分线与角平分线练习题线段的垂直平分线和角的平分线是三角形中常见的概念。

下面是一些与此相关的选择题。

1.在三角形ABC中,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A。

50° B。

65° C。

80° D。

95°2.在三角形ABD中,AD=4,AB=3,AC平分∠BAD,则S△A。

3:4 B。

4:3 C。

16:19 D。

不能确定3.在三角形ABC中,∠C=90°,AD平分∠BAC,DE⊥XXX于E,则下列结论正确的有()A。

2个 B。

3个 C。

4个 D。

1个4.在四边形ABCD中,AD∥BC,∠D=90°,AP平分∠DAB,PB平分∠ABC,点P恰好在CD上,则PD与PC的大小关系是()A。

PD>PC B。

PD<PC C。

PD=PC D。

无法判断除了选择题,还有以下问题:5.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是什么?6.已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状是什么?7.在三角形ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD于E,F在BC上,并且BF=AB,则下列四个结论正确的有()A。

①②③④ B。

①③ C。

②④ D。

②③④8.在直角三角形ABC中,AC=4㎝,AB=7㎝,AD平分∠BAC交BC于D,DE⊥AB,则EB的长度是多少?A。

3㎝ B。

4㎝ C。

5㎝ D。

不能确定9.XXX的爸爸想在本镇的三条相互交叉的公路建一个加油站,要求它到三条公路的距离相等,可供选择的地址有几个?A。

1 B。

2 C。

3 D。

410.到三角形三条边的距离都相等的点是这个三角形的什么?A。

三条中线的交点 B。

三条高的交点线段的垂直平分线和角的平分线是三角形中常见的概念。

以下是与此相关的选择题和问题。

1.在三角形ABC中,AD平分∠CAE,∠B=30°,∠CAD=65°,求∠ACD的度数。

八年级上学期数学期末专题:点段垂直平分线与角平分线综合(原题和解析)

八年级上学期数学期末专题:点段垂直平分线与角平分线综合(原题和解析)

【期末压轴题】专题04:线段的垂直平分线与角平分线综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC 中,CD 是AB 边上的高,BE 平分△ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积是( )A .9B .7C .10D .18 2.如图,△ABC 中,△A =△ACB ,CP 平分△ACB ,BD ,CD 分别是△ABC 的两外角的平分线,下列结论中:△CP △CD △△P =12A ∠△BC =CD △01902D A ∠=-∠△PD //AC ,其中正确的结论有( )A .1个B .2个C .3个D .4个 3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接P A 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .85.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A .1△1△1B .2△3△4C .1△2△3D .3△4△5 6.在下列各原命题中,逆命题是假命题的是( )A .两直线平行,同旁内角互补;B .如果两个三角形全等,那么这两个三角形的对应边相等;C .如果两个三角形全等,那么这两个三角形的对应角相等;D .两个相等的角是对顶角.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△ 8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个 9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°10.如图,在△ABC 中,△BAC 和△ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD △BC 于D ,下列三个结论:△△AOB =90°+△C ;△当△C =60°时,AF +BE=AB ;△若OD=a ,AB +BC +CA =2b ,则S △ABC =ab .其中正确的个数是( )A .1个B .2个C .3个D .0个 11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .112.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =二、填空题 13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△ 17.如图,反比例函数k y x=的图象经过点(-1,-,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC时,点A 的坐标是____________.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)19.如图,在ABC 中,AB 、AC 的垂直平分线分别交BC 于D 、E 两点,并且相交于点F ,且70DFE ∠=︒,则DAE ∠的度数是______.20.如图,AP ,BP 分别平分△ABC 内角△CAB 和外角△CBD ,连接CP ,若△ACP =130°,则△APB =___.三、解答题21.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,△PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设△PFM =α,△EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且△MGH=△PNF ,试找出△FMN 与△GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作△PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 22.如图1,将线段AB 平移至CD ,使A 与D 对应,B 与C 对应,连AD 、BC .(1)填空:AB 与CD 的关系为__________,B 与D ∠的大小关系为__________. (2)如图2,若60B ∠=︒,F 、E 为BC 的延长线上的点,∠=∠EFD EDF ,DG 平分CDE ∠交BE 于G ,求FDG ∠.(3)在(2)中,若B α∠=,其它条件不变,则FDG ∠=__________.23.如图1所示,已知点E 在直线AB 上,点F ,G 在直线CD 上,且EFG FEG ∠=∠,EF 平分AEG ∠.(1)判断直线AB 与直线CD 是否平行,并说明理由.(2)如图2所示,H 是AB 上点E 右侧一动点,EGH ∠的平分线GQ 交FE 的延长线于点Q ,设Q α∠=,EHG β∠=.△若40HEG ∠=︒,20QGH ∠=︒,求Q ∠的度数.△判断:点H 在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.24.如图,已知△ABC 和△CDE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,(1)求证:BD =AE , 并求出△DOE 的度数;(2)判断△CFG的形状并说明理由;(3)求证:OA+OC=OB;(4)判断下列两个结论是否正确,若正确请说明理由:△OC平分△FOG;△CO平分△FCG.25.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x +2)=x2+ax+6(a,b为常数).(1)求点A,B的坐标;(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且△ABC=△ADC=90°,AO=DO,DB平分△ADC.过点C作CE△DB于点E,求证:DE=OB;(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ△BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).26.在△ABC中,AB=CD△AB于点D,CD.(1)如图1,当点D是线段AB中点时,△AC的长为;△延长AC至点E,使得CE=AC,此时CE与CB的数量关系为,△BCE与△A 的数量关系为.(2)如图2,当点D不是线段AB的中点时,画△BCE(点E与点D在直线BC的异侧),使△BCE=2△A,CE=CB,连接AE.△按要求补全图形;△求AE的长.27.如图1,已知线段AC△y轴,点B在第一象限,且AO平分△BAC,AB交y轴于点D,连接OB,OC.(1)可以判断AOD的形状为三角形(直接写答案);(2)若OE平分△AOB且△B=2△BAO,证明:AO=BE+OB;(3)如图2,若点B,C关于y轴对称,AO△BO,点M为OA上一点,且△ACM=45°,点B的坐标为(3,1),求点M的坐标.28.如图,已知点B(-2,0),C(2,0),A为y轴正半轴上一点,点D为第二象限内的一个动点,M在BD的延长线上,CD交AB于点F,且△ABD=△ACD.(1)求证:△BDC=△BAC;(2)求证:DA平分△CDM;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,△BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC的度数?【期末压轴题】专题04:线段的垂直平分线与角平分线综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC中,CD是AB边上的高,BE平分△ABC,交CD于点E,BC=6,DE=3,则△BCE的面积是()A.9B.7C.10D.18【标准答案】A【思路点拨】作EH△BC于点H,根据角平分线的性质得出EH=DE,最后根据三角形的面积公式进行求解.【精准解析】如图,作EH△BC于点H,△BE平分△ABC,CD是AB边上的高,EH△BC,△EH=DE=3,△1163922BCES BC EH=⋅=⨯⨯=△.故选A.【名师指导】本题考查角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.如图,△ABC中,△A=△ACB,CP平分△ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:△CP△CD△△P=12A∠△BC=CD△01902D A∠=-∠△PD//AC,其中正确的结论有()A.1个B.2个C.3个D.4个【标准答案】D【思路点拨】根据邻补角平分线性质可判断△;根据三角形外角与角平分线定义列出等式2△PBG=△A+2△PCB,△PBG=△P+△PCB,可判断△,根据外角性质与角平分线定义,结合三角形内角和△BCD+△CBD=12BCF∠+12CBE∠=1902A︒+∠可判断△,利用等腰三角形性质与外角性质,可得△DBC=△A,可得△D=90°12DBC-∠,得出2△D+△DBC=180°,当△A=60°时,△D=△DBC=60°成立,可判断△,根据△DBC=△A=△ACB,利用平行线判定定理可判断△.【精准解析】解:△△BCA+△BCF=180°,CP平分△ACB,CD平分△FCB,△△PCB=12BCA∠,△DCB=12BCF∠,△△PCD=△PCB+△DCB =12BCA∠+()11118090 222BCF BCA BCF∠=∠+∠=⨯︒=︒,△CP△CD;故△正确;延长CB到G,△BD平分△CBE,△△EBD=△DBC,△△EBD=△PBA,△CBD=△PBG,△△PBA =△PBG,△△ABG=2△GBP,△△ABG=△A+△ACB,即2△PBG=△A+2△PCB,△PBG=△P+△PCB,△△PBG=12△A+△PCB,△△P=12△A,△CD 平分△BCF ,△△BCD =12BCF ∠, △DBC =12CBE ∠, △△BCD +△CBD =12BCF ∠+12CBE ∠, =()()1122A ABC A ACB ∠+∠+∠+∠, =()1122A ABC ACB A ∠+∠+∠+∠, =1902A ︒+∠, △△D=180°-(△BCD +△CBD )=180°-11909022A A ︒-∠=︒-∠, 故△正确;△AB =BC ,△△BAC =△ACB ,△2△DBC =△EBC =△A +△ACB =2△A ,△△DBC =△A ,△△D =90°12DBC -∠, △2△D +△DBC =180°,当△A =60°时,△D =△DBC =60°,△BC =CD ,故△不正确,△△DBC =△A =△ACB ,△PD△AC ,故正确的结论有4个.故选D .【名师指导】本题考查三角形内角与外角平分线,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定,掌握三角形内角与外角平分线定义,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定是解题关键.3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小【标准答案】A【思路点拨】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,运用三角形面积公式,三角形三边关系定理判断即可.【精准解析】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,△CAB ∠和CBA ∠的角平分线交于点P ,△PD =PE =PF =h ,△1S =1h 2AB ,2S =1h 2BC ,3S =1h 2AC ,△23()S S +=1h 2BC +1h 2AC =1()h 2AC BC +, △AC +BC >AB ,△23()S S +>1S ,△123S S S <+,△A 符合题意,B ,C ,D 都不符合题意,故选A .【名师指导】本题考查了角的平分线的性质定理,三角形的面积公式,三角形的三边关系定理,灵活运用角的平分线的性质和三角形三边关系定理是解题的关键.4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .8【标准答案】B【思路点拨】 作DF △AC 于F ,如图,根据角平分线定理得到DE =DF =4,再利用三角形面积公式和S △ADB +S △ADC =S △ABC 得到12×4×7+12×4×AC =26,然后解一次方程即可.【精准解析】解:作DF △AC 于F ,如图,△AD 是△ABC 中△BAC 的角平分线,DE △AB ,DF △AC ,△DE =DF =4,△S △ADB +S △ADC =S △ABC , △12×4×7+12×4×AC =26,△AC =6,故选:B .【名师指导】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,三角形的面积公式等知识,解题的关键是学会添加常用辅助线,学会利用面积法构建方程解决问题. 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A.1△1△1B.2△3△4C.1△2△3D.3△4△5【标准答案】B【思路点拨】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【精准解析】解:过点O作OD△AC于D,OE△AB于E,OF△BC于F,△点O是内心,△OE=OF=OD,△S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:B.【名师指导】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.6.在下列各原命题中,逆命题是假命题的是()A.两直线平行,同旁内角互补;B.如果两个三角形全等,那么这两个三角形的对应边相等;C.如果两个三角形全等,那么这两个三角形的对应角相等;D.两个相等的角是对顶角.【标准答案】C【思路点拨】先写出逆命题,再根据相关性质,定义判断即可.【精准解析】解:A逆命题是同旁内角互补,两直线平行,是真命题,△A不符合题意;B 逆命题是如果两个三角形的对应边相等,那么这两个三角形全等,是真命题,△B 不符合题意;C 逆命题是如果两个三角形的对应角相等,那么这两个三角形全等,是假命题,△C 符合题意;D 逆命题是如果两个角是对顶角,那么这两个角相等,是真命题,△D 不符合题意;故选C .【名师指导】本题考查了命题,互逆命题,命题的真假,熟练确定逆命题,灵活运用相关知识判断是解题的关键.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△【标准答案】C【思路点拨】 证明ABE AFC ∆≅∆,由全等三角形的性质得到BE CF =,可得AEB ACF ∠=∠,则60CON CAE MOB ∠=∠=︒=∠,得出180120BOC CON ∠=︒-∠=︒;ABE AFC S S ∆∆=,得到AP AQ =,利用角平分线的判定定理得AO 平分EOF ∠,在OF 上截取OD OB =,根据SAS 可证明FBD ABO ∆≅∆,得出DF OA =,由此可以解决问题.【精准解析】解:△AB AF =,AC AE =,60FAB EAC ∠=∠=︒,FAB BAC EAC BAC ∴∠+∠=∠+∠,即FAC BAE ∠=∠,在ABE ∆与AFC ∆中,AB AF BAE FAC AE AC =⎧⎪∠=∠⎨⎪=⎩,()ABE AFC SAS ∴∆≅∆,BE FC ∴=,AEB ACF ∠=∠,故△正确,180EAN ANE AEB ∠+∠+∠=︒,180CON CNO ACF ∠+∠+∠=︒,ANE CNO ∠=∠,60CON CAE MOB ∴∠=∠=︒=∠,180120BOC CON ∴∠=︒-∠=︒,故△正确,连接AO ,过A 分别作AP CF ⊥与P ,AM BE ⊥于Q ,如图1,ABE AFC ∆≅∆,ABE AFC S S ∆∆∴=, ∴1122CF AP BE AQ =,而CF BE =, ∴=AP AQ ,OA ∴平分FOE ∠,所以△正确,在OF 上截取OD OB =,60BOF ∠=︒,OBD ∴∆是等边三角形,BD BO ∴=,60DBO ∠=︒,FBD ABO ∴∠=∠,BF AB =,()FBD ABO SAS ∴∆≅∆,DF OA ∴=,OF DF OD OA OB ∴=+=+;故△正确;故选:C . 【名师指导】本题考查了等边三角形的性质、全等三角形的判定和性质、角平分线的判定定理等知识,利用全等三角形面积相等证明高相等是解决问题的关键.8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个【标准答案】D【思路点拨】 由等边三角形的性质得出AB =DB ,△ABD =△CBE =60°,BE =BC ,得出△ABE =△DBC ,由SAS 即可证出△ABE △△DBC ;由△ABE △△DBC ,得出△BAE =△BDC ,根据三角形外角的性质得出△DMA =60°;由ASA 证明△ABP △△DBQ ,得出对应边相等BP =BQ ,即可得出△BPQ 为等边三角形;由△ABE △△DBC 得到△ABE 和△DBC 面积等,且AE =CD ,从而证得点B 到AE 、CD 的距离相等,利用角平分线判定定理得到点B 在角平分线上.【精准解析】解:△△ABD 、△BCE 为等边三角形,△AB =DB ,△ABD =△CBE =60°,BE =BC ,△△ABE =△DBC ,△PBQ =60°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩△△ABE △△DBC (SAS ),△△正确;△△ABE △△DBC ,△△BAE =△BDC ,△△BDC +△BCD =180°-60°-60°=60°,△△DMA =△BAE +△BCD =△BDC +△BCD =60°,△△正确;在△ABP 和△DBQ 中,60BAP BDQ AB DB ABP DBQ ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩△△ABP △△DBQ (ASA ),△BP =BQ ,△△BPQ 为等边三角形,△△正确;△△ABE △△DBC△AE =CD ,S △ABE =S △DBC ,△点B 到AE 、CD 的距离相等,△B 点在△AMC 的平分线上,即MB 平分△AMC ;△△正确;故选:D .【名师指导】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、角平分线的判定定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°【标准答案】B【思路点拨】 仔细分析题意,可连接BO ,CO ,根据角平分线性质和中垂线性质不难得到△OAB =△OBA ;然后结合三角形内角和定理以及等边对等角可得△ABC 的度数;接下来根据全等三角形的判定易得△ABO △△ACO ,进而结合全等三角形的性质可得△OCB 的度数;最后根据折叠变换的性质得出EO =EC ,由等边对等角以及三角形内角和定理的知识即可求出△OEC 的度数.【精准解析】解:连接BO ,CO ,△△BAC=46°,△BAC的平分线与AB的中垂线交于点O,△△OAB=△OAC=23°,△OD是AB的垂直平分线,△OA=OB,△OA=OB,△OAB=23°,△△OAB=△ABO=23°,△AB=AC,△△ABC=△ACB=67°,△△OBC=△ABC-△ABO=67°-23°=44°,△AB=AC,△OAB=△OAC,AO=AO,△△ABO△△ACO(SAS),△BO=CO,△△OBC=△OCB=44°,△点C沿EF折叠后与点O重合,△EO=EC,△△EOC=△OCE=44°,△△OEC=180°-△EOC-△OCE=180°-2×44°=92°,故选:B.【名师指导】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.10.如图,在△ABC中,△BAC和△ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD△BC于D,下列三个结论:△△AOB=90°+△C;△当△C=60°时,AF+BE=AB;△若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A .1个B .2个C .3个D .0个【标准答案】B【思路点拨】 由角平分线的定义结合三角形的内角和的可求解△AOB 与△C 的关系,进而判定△;在AB 上取一点H ,使BH =BE ,证得△HBO △△EBO ,得到△BOH =△BOE =60°,再证得△HAO △△F AO ,得到AF =AH ,进而判定△正确;作OH △AC 于H ,OM △AB 于M ,根据三角形的面积可证得△正确.【精准解析】解:△△BAC 和△ABC 的平分线相交于点O ,△△OBA =12△CBA ,△OAB =12△CAB ,△△AOB =180°−△OBA −△OAB =180°−12△CBA −12△CAB=180°−12(180°−△C )=90°+12△C ,△错误;△△C =60°,△△BAC +△ABC =120°,△AE ,BF 分别是△BAC 与ABC 的平分线,△△OAB +△OBA =12(△BAC +△ABC )=60°,△△AOB =120°,△△AOF =60°,△△BOE =60°,如图,在AB 上取一点H ,使BH =BE ,△BF 是△ABC 的角平分线,△△HBO =△EBO ,在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,△△HBO △△EBO (SAS ),△△BOH =△BOE =60°,△△AOH =180°−60°−60°=60°,△△AOH =△AOF ,在△HAO 和△F AO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△HAO △△F AO (ASA ),△AF =AH ,△AB =BH +AH =BE +AF ,故△正确;作OH △AC 于H ,OM △AB 于M ,△△BAC 和△ABC 的平分线相交于点O ,△点O 在△C 的平分线上,△OH =OM =OD =a ,△AB +AC +BC =2b△S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,△正确. 故选:B .【名师指导】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO △△EBO ,得到△BOH =△BOE =60°,是解决问题的关键.11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .1【标准答案】A【思路点拨】根据“手拉手”模型证明BCE ACD ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=︒,即可证明△;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN ≌,结合角平分线的判定定理即可证明△;利用面积法表示BCF △和DCF 的面积,然后利用比值即可证明△;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ 为等边三角形,再结合“手拉手”模型推出BCF ACQ ≌即可证明△.【精准解析】解:△△ABC 和CDE △均为等边三角形,△60ACB ECD ∠=∠=︒,AC BC =,EC DC =,△ACB ACE ECD ACE ∠+∠=∠+∠,△BCE ACD ∠=∠,在BCE 和ACD △中, BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩△()BCE ACD SAS ≌,△CBE CAD ∠=∠,△AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,△60AFB ACB ∠=∠=︒,故△正确;△如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=︒,△BCE ACD ≌,△CEM CDN ∠=∠,在CEM 和CDN △中,CME CND CEM CDN CE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CEM CDN AAS ≌,△CM CN =,△CF 平分BFD ∠,故△正确;△如图所示,作FP BD ⊥于P 点, △1122BCF S BF CM BC FP ==,1122DCF S DF CN CD FP ==, △11221122BCFDCF BF CM BC FP S S DF CN CD FP ==, △CM CN =,△整理得:BF BC DF CD=, △3BC CD =,△33BF CD DF CD==, △3BF DF =,故△正确;△如图所示,在AD 上取点Q ,使得FC FQ =,△60AFB ACB ∠=∠=︒,CF 平分BFD ∠,△120BFD ∠=︒,1602CFD BFD ∠=∠=︒, △FCQ 为等边三角形,△60FCQ ∠=︒,CF CQ =,△60ACB ∠=︒,△ACB ACF FCQ ACF ∠+∠=∠+∠,△BCF ACQ ∠=∠,在BCF △和ACQ 中,BC AC BCF ACQ CF CQ =⎧⎪∠=∠⎨⎪=⎩△()BCF ACQ SAS ≌,△BF AQ =,△AQ AF FQ =+,FQ FC =,△BF AF FC =+,故△正确;综上,△△△△均正确;故选:A .【名师指导】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.12.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =【标准答案】D【思路点拨】 A.根据BC AC =,90ACB ∠=︒可知45CAB ABC ∠=∠=︒,再由AD 平分BAC ∠可知22.5BAE EAF ∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,可求出EAF FBC ∠=∠,由BC AC =可求出Rt ADC Rt BFC ∆≅∆,故可求出AD BF =;B.由选项A中Rt ADC Rt BFC ∆≅∆可直接得出结论;C.由选项A中Rt ADC Rt BFC ∆≅∆可知,CF CD =,故AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,根据45CAB ∠=︒可知,18067.5ABF EAF CAB ∠=︒-∠-∠=︒,即可求出AF AB =,即AC CD AB +=;D.由选项C可知,ABF ∆是等腰三角形,由于BE AD ⊥,故12BE BF =,在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B中22.5CBF ∠=︒相矛盾,故BE CF ≠;【精准解析】解:A.BC AC =,90ACB ∠=︒,45CAB ABC ∴∠=∠=︒, AD 平分BAC ∠,22.5BAE EAF ∴∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,EAF FBC ∴∠=∠,BC AC =,EAF FBC ∠=∠,BCF AEF ∠=∠,Rt ADC Rt BFC ∴∆≅∆,AD BF ∴=;故选项A 正确; B.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,故选项B 正确; C.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,∴在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,45CAB ∠=︒,18018067.54567.5ABF F CAB ∴∠=︒-∠-∠=︒-︒-︒=︒,AF AB ∴=,即AC CD AB +=,故C 正确;D.由选项C 可知,ABF ∆是等腰三角形,BE AD ⊥,12BE BF ∴=, 在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B 中22.5CBF ∠=︒相矛盾,故BE CF ≠,故选项D 错误;故选:D .【名师指导】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.二、填空题13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______【标准答案】60︒或90︒或120︒【思路点拨】根据ECB ∠,DBC ∠的角平分线交于点M ,可求得1902M A ∠=︒-∠,延长 CB 至F ,根据BM 为ABC ∆的外角DBC ∠的角平分线,可得 BN 是ABC ∆的外角ABF ∠的平分线, 根据CN 平分 ACB ∠,得到2ACB NCB ∠=∠,则有NBF NCB N ∠=∠+∠,可得 2ABF ACB N ∠=∠+∠,可求得12N A ∠=∠;再根据NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠90=︒,分四种情况:△290MCN N ∠=∠=︒;△ 290MCN M ∠=∠=︒;△2M N ∠=∠;△2N M ∠=∠,分别讨论求解即可. 【精准解析】 解:外角ECB ∠,DBC ∠的角平分线交于点 M ,()12MCB MBC ECB DBC ∴∠+∠=∠+∠ ()11801802ACB ABC =︒-∠+︒-∠ ()13602ACB ABC =︒-∠-∠ ()13601802A =︒-︒+∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒△()11180180909022M MCB MBC A A ⎛⎫∠=︒-∠+∠=︒-︒+∠=︒-∠ ⎪⎝⎭; 如图示,延长CB 至F ,BM 为ABC ∆的外角DBC ∠的角平分线,BN ∴是ABC ∆的外角ABF ∠的平分线,2ABF NBF ∴∠=∠, CN 平分ACB ∠,2ACB NCB ∴∠=∠,NBF NCB N ∠=∠+∠,222NBF NCB N ∴∠=∠+∠,即2ABF ACB N ∠=∠+∠,又ABF ACB A ∠=∠+∠,△2ACB N ACB A ∠+∠=∠+∠2A N ∴∠=∠,即12N A ∠=∠; NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠ 11802=⨯︒ 90=︒;如果CMN ∆中,存在一个内角等于另一个内角的2倍,那么分四种情况:△290MCN N ∠=∠=︒,则45N ∠=︒, 290A N ∠=∠=︒;△290MCN M ∠=∠=︒,则45M ∠=︒, 45N ∠=︒,290A N ∠=∠=︒;△2M N ∠=∠,则1190222A A ︒-∠=⨯∠,解得 60A ∠=︒;△2N M ∠=∠,则1129022A A ⎛⎫∠=︒-∠ ⎪⎝⎭,解得 120A ∠=︒. 综上所述,A ∠的度数是60︒或90︒或120︒.【名师指导】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.【标准答案】4360BPC ∠-︒【思路点拨】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【精准解析】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠ 1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠ 1902BAC =︒+∠, 即2180BAC BPC ∠=∠-︒;如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【名师指导】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB 的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.【标准答案】6【思路点拨】连接AQ ,过点D 作DH BC ⊥于H .利用三角形的面积公式求出DH ,由题意得: PB PQ AP PQ AQ +=+≥,求出AQ 的最小值,AQ 最小值是与DH 相等,也就是AQ BC ⊥时,根据面积公式求出DH 的长度即可得到结论.【精准解析】解:连接AQ ,过点D 作DH BC ⊥于H .△DBC △面积为18,BC =6, △1182BC DH =, △6DH =,△MN 垂直平分线段AB ,△PA PB =,△PB PQ AP PQ AQ +=+≥,△当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小,△//AD BC ,△AQ =DH =6,△PB PQ +的最小值为6.故答案为:6.【名师指导】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△【标准答案】△△△【思路点拨】如图,连接AO ,根据等腰三角形的性质得到CE △AB ,求得OA =OB ,根据线段垂直平分线的性质得到OF =OB ,得到点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,根据全等三角形的性质得到△CAO =△CBO ,求得△CAO =△CFJ ,得到△JOB =△JCF =90°,根据垂直的定义得到OF △OB ,故△CE =AC ,AC +CF =AF ,显然AF不一定等于AB 、故△错误;根据等腰直角三角形的性质得到AE =CE =BE =12AB ,CE △AB ,求得△ACE 面积为12AE •CE =12BE 2,得到△BOF 面积为12OF •OB =12OB 2,于是得到S △AEC <S △BOF ,故△正确.【精准解析】解:如图,连接AO ,△CA =CB ,AE =EB ,△CE △AB ,△OA =OB ,△OD 垂直平分线段BF ,△OF =OB ,△OA =OF =OB ,△点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,在△ACO 与△BCO 中,AC BC CO CO AO BO =⎧⎪=⎨⎪=⎩, △△ACO △△BCO (SSS ),△△CAO =△CBO ,△OA =OF ,△△CAO =△CFJ ,△△CFJ =△OBJ ,△△CJF =△OJB ,△△JOB =△JCF =90°,△OF △OB ,故△正确;CE =AC ,AC +CF =AF ,显然AF 不一定等于AB 、故△错误;△△ABC 为等腰直角三角形,E 为AB 中点,△AE =CE =BE =12AB ,CE △AB ,△△ACE 面积为12AE •CE =12BE 2,△OF △OB ,OF =OB ,△△BOF 面积为12OF •OB =12OB 2,在Rt △OBE 中,OB 为斜边,BE 为直角边,△OB >BE , △12BE 2<12OB 2,△S △AEC <S △BOF ,故△正确.故答案为:△△△.【名师指导】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,三角形的面积公式,正确的识别图形是解题的关键.17.如图,反比例函数k y x =的图象经过点(-1,-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC 时,点A 的坐标是____________.【标准答案】)2 【思路点拨】把点(-1,-)代入反比例函数k y x=,求出k . 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,则有△AOE △△OCF ,进而可得出AE =OF 、OE =CF ,根据角平分线的性质及三角形面积可得出AP CP =,易证APE CPF ,利用三角形性质可得出CF AE =即OE AE =A 的坐标为(a (a >0),由OE AE =可求出a 值,进而得到点A 的坐标.【精准解析】解:把点(-1,-k y x=得: k=−1×(-△y = 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,如图所示.△△ABC 为等腰直角三角形,△OA =OC ,OC △AB ,△△AOE +△COF =90°.△△COF +△OCF =90°,△△AOE =△OCF .在△AOE 和△OCF 中,90AEO OFC AOE OCF OA OC ∠∠︒⎧⎪∠∠⎨⎪⎩==== , △△AOE △△OCF (AAS ),△AE =OF ,OE =CF .设点P 到AB 的距离为h ,△BP 平分△ABC ,△h PC =,△1·21·2ABP CBP h AB S AP AB CP S BC PC BC ==== △,APE CPF AEP CFP ∠=∠∠=∠,△APECPF , △CF CP AE AP ==, △OE AE =. 设点A的坐标为(a , 解得:a或a =(舍去),2=, △点A的坐标为)2, 故答案为:)2.【名师指导】本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质、三角形的面积、相似三角形的判定与性质以及等腰直角三角形,构造全等三角形,利用全等三角形的对应边相等是解题的关键.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)【标准答案】△△△△△【思路点拨】△根据45ACB ∠=︒,BE AC ⊥,即可得解;△先证明EH 是AF 的垂直平分线,根据垂直平分线的性质即可得结论;△根据“边角边”即可证明ABD CFD ≌;△根据ABD CFD ≌可得AB CF =,再结合CH CF FH =+进而可以判断CH AB AH =+; △由DF AD AF =-结合△即可得结论.【精准解析】解:△△BE AC ⊥,90BEA BEC ∴∠=∠=︒,45ACB =︒∠,9045EBD ACB ∴∠=︒-∠=︒,故△正确;△EH 是AEB ∠的角平分线,1452HEB HEA AEB ∴∠=∠=∠=︒, 45HEB EBC ∴∠=∠=︒,//EH BC ∴,AD BC ⊥,AD EH ∴⊥,90AOE FOE ∴∠=∠=︒,9045OAE HEA ∴∠=︒-∠=︒,9045OFE HEB ∠=︒-∠=︒,45OAE OFE ∴∠=∠=︒,AE FE ∴=,又EH 平分AEB ∠,EH ∴是AF 的垂直平分线,AH HF ∴=,故△正确;。

垂直平分线与角平分线(习题及答案).

垂直平分线与角平分线(习题及答案).

垂直平分线与角平分线(习题)➢复习巩固1.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点2.如图,在△ABC 中,AF 平分∠BAC,AC 的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C 的度数为.第2 题图第3 题图3.如图,AD 是∠BAC 的平分线,DE⊥AB 于点E,若S△ABC=6,AB=4,AC=3,则线段DE 的长为.4.如图,P 是∠AOB 平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D,连接CD.求证:OP 是CD 的垂直平分线.5.如图,点P 为锐角∠ABC 内一点,点M 在边BA 上,点N 在边BC 上,且PM=PN,∠BMP+∠BNP=180°.求证:BP 平分∠ABC.16.如图,点D 在边AC 上,∠ABD+∠ABC =180°,CE 平分∠ACB 交AB 于点E,连接DE.求证:DE 平分∠ADB.7.如图,在△ABC 中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC 的平分线AM 交BC 于点D;②作边AB 的垂直平分线EF,EF 与AM 相交于点P;③连接PB,PC.若∠ABC=70°,则∠BPC 的度数为.8.如图,已知△ABC(AC<BC),求作:(不写作法,保留作图痕迹)(1)BC 边上的高;(2)在BC 上确定一点P,使PA+PC=BC.9.如图,已知线段a,利用尺规求作以a 为底、以2a 为高的等腰三角形.(不写作法,保留作图痕迹)10.如图,有三幢公寓楼分别建在点A,点B,点C 处,AB,AC,BC 是连接三幢公寓楼的三条道路,要修建一超市P,按照设计要求,超市要在△ABC 的内部,且到A,C 的距离必须相等,到两条道路AC,AB 的距离也必须相等,请利用尺规作图确定超市P 的位置.(不写作法,保留作图痕迹)【参考答案】➢复习巩固1. D2. 24°3. 12 74.证明略;提示:先证Rt△POC≌Rt△POD(HL),得到OC=OD,由“到一条线段两个端点距离相等的点,在这条线段的垂直平分线上”求证5.证明略;提示:过点P 分别作PD⊥AB 于D,PE⊥BC 于E,先证△PMD≌△PNE(AAS),得到PD=PE,再由“在一个角的内部,到角的两边距离相等的点在这个角的平分线上”求证6.证明略;提示:过点E 分别作EF⊥AC 于F,EH⊥BD 于H,EG⊥BC 于G,证EF=EG=EH,求证7. 80°8.作图略提示:(1)过直线外一点作已知直线的垂线;(2)作线段AB 的垂直平分线9.作图略10.作图略提示:作线段AC 的垂直平分线和∠CAB 的角平分线;。

线段的垂直平分线与角平分线练习题

线段的垂直平分线与角平分线练习题

线段的垂直平分线与角平分线一、例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm 针对性练习:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交BC 于点E ,如果BC=8cm , 那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度, 那么∠EBC 是4、如图,△ABC 中,DE 、FG 分别是边AB 、AC 的垂直平分线,则∠B∠BAE ,∠C ∠GAF , 若∠BAC=1260,则∠EAG= 。

例2. 已知:如图所示,AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

针对性练习:已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 求证:点O 在BC 的垂直平分线例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。

针对性练习:1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,则底角B 的大小为________________。

例4、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,证:BD =AC +CD.BACON图1课堂练习:1.如图,AC =AD ,BC =BD ,则( ) A.CD 垂直平分AD B.AB 垂直平分CD C.CD 平分∠ACB D.以上结论均不对2.如果三角形三条边的中垂线的交点在三角形的外部, 那么,这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形 3.如图,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5 cm ,BC =4cm ,那么△DBC 的周长是( ) A.6 cm B.7 cm C.8 cm D.9 cm4.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线 MN 分别交BC 、AB 于点M 、N . 求证:CM =2BM .二、角平分线例1、 已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC , PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。

线段的垂直平分线、角平分线经典习题及答案#精选、

线段的垂直平分线、角平分线经典习题及答案#精选、

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。

例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。

求证:直线AB 是线段CD 的垂直平分线。

AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。

⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。

求证:BE垂直平分CD。

CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。

E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。

角平分线与垂直平分线练习题(经典)

角平分线与垂直平分线练习题(经典)

0角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。

角平分线的判定: 到一个叫两边的距离相等的点在这个角的平分线上。

例1.如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例2.如图,已知在R t△ABC 中,∠C =90°, BD 平分∠AB C, 交AC于D .(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交B D于P , 求∠BP A的度数.3、考点深入练习例3:如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC,在CF 的延长线上截取CG=AB ,连结A D、AG 。

求证:(1)AD=AG,(2)AD 与AG的位置关系如何。

例4:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(8分)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC ⊥BEBPABCD GHFE DCBA例5:△D AC, △EBC 均是等边三角形,A E,BD 分别与C D,C E交于点M,N. 求证:(1)A E=B D (2)CM=CN (3) △CMN 为等边三角形(4)M N∥BC垂直平分线的性质与判定强化练习1如图1,在△A BC中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E,△BCE 的周长等于18cm,则AC 的长等于 ( ) A.6cm B.8cm C.10cm D .12c m2题2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是( )A.ED BC ∥ B .ED AC ⊥C .ACE BCE ∠=∠D.AE CE =3、△A BC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD-∠DA C=22.5°,则∠B等于( )A.37.5°B.67.5°C.37.5°或67.5° D.无法确定 4、线段的垂直平分线上的点_____________________________________. 5、到一条线段的两个端点的距离相等的点,______________________.6、如图,在△A BC 中,AC 的垂直平分线交A C于E ,交BC 于D ,△ABD 的周长是12 cm,AC=5c m,则AB+BD +AD= c m;AB+BD+DC = cm;△ABC 的周长是 cm。

线段垂直平分线和角平分线的性质(习题课)

线段垂直平分线和角平分线的性质(习题课)

变式:如图,在△ABC中,BD平分∠ABC, ∠A=90°, DA=6cm,BC=10cm,求△BDC的面积.
E

性质重现
(一)线段垂直平分线的性质 线段垂直平分线上的点到这条线段两端 点的距离相等。
(二)角平分线的性质:
角平分线上的点到角两边的距离相等
生活中的应用
例3、如图,初一(3)班与初一(4)班两个班的学 生分别在M、N两处参加植树劳动,现要在道路AB、AC 的交叉区域内设一个茶水供应点P,使P到两条道路的 距离相等,且使PM=PN,请你找出P点。
10.1线段垂直平分线
线和段角和平角(分习平线题分性课质线)的性应质用的 应用
性质再现
一、线段垂直平分线的性质
线段垂直平分线上的点到这条线段 两端点的距离相等。
几何语言:∵OB,AO=OB)
∴AC=BC
A
O
B
几何中的应用
例1:在△ABC中,边BC的垂直平分线分别交AB、BC 于点E、D;BE=6, BC=10,求△BCE的周长。
B
P .N
.M
A
C
作法:∠BAC的平分线与线段NM中垂线的交点 P就是所求的点。
作业:
课后习题
图9
变式练习
1、在△ABC中, 边BC的垂直平分线分别交AB、BC 于点E、D, AB=10,AC=6,△ACE的周长为 16 。
2、在△ABC中,边BC的垂直平分线分别交AB、图 B9 C于点
E 、D,△ACE的周长为16cm, ⊿ABC的周长为24cm则
BD长为
4 cm。
图9
3、如图,在△ABC中,AB的垂直平分线分别交AB、 BC于点D、E,AC的垂直平分线分别交AC、BC于点F、 G,若BC=20,则△AEG的周长为多少?

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。

证毕。

例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。

例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。

证毕。

例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。

例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。

例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。

根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。

线段垂直平分线和角的平分线典型习题(一、二)-2

线段垂直平分线和角的平分线典型习题(一、二)-2

2013年线段垂直平分线和角的平分线典型习题(一)一、填空题:1、如图,∠A =520,O 是AB 、AC 的垂直平分线的交点,那么∠OCB = 。

2、如图,已知AB =AC ,∠A =440,AB 的垂直平分线MN 交AC 于点D ,则∠DBC = 。

第1题图 OC B A第2题图 N M D C B A 第3题图 E DC B A 第4题图 E ABCD3、如图,在△ABC 中,∠C =900,∠B =150,AB 的中垂线DE 交BC 于D 点,E 为垂足,若BD =8,则AC = 。

4、如图,在△ABC 中,AB =AC ,DE 是AB 的垂直平分线,△BCE 的周长为24,BC =10,则AB = 。

5、如图,EG 、FG 分别是∠MEF 和∠NFE 的角平分线,交点是G ,BP 、CP 分别是∠MBC 和∠NCB 的角平分线,交点是P ,F 、C 在AN 上,B 、E 在AM 上,若∠G =680,那么∠P = 。

选择第1题图 FE DC B A选择第2题图 4321D C B A 选择第4题图 E F D C BA二、选择题:1、如图,△ABC 的角平分线CD 、BE 相交于点F ,且∠A =600,则∠BFC 等于( )A 、800B 、1000C 、1200D 、14002、如图,△ABC 中,∠1=∠2,∠3=∠4,若∠D =360,则∠C 的度数为( )A 、820B 、720C 、620D 、5203、某三角形有一个外角平分线平行于三角形的一边,而这三角形另一边上的中线分周长为2∶3两部分,若这个三角形的周长为30cm,则此三角形三边长分别是()A、8 cm、8 cm、14cmB、12 cm、12 cm、6cmC、8 cm、8 cm、14cm或12 cm、12 cm、6cmD、以上答案都不对4、如图,Rt△ABC中,∠C=900,CD是AB边上的高,CE是中线,CF是∠ACB的平分线,图中相等的锐角为一组,则共有()A、0组B、2组C、3组D、4组5、如果三角形两边的垂直平分线的交点在第三边上,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、不能确定三、解答题:1、如图,Rt△ABC的∠A的平分线与过斜边中点M的垂线交于点D,求证:MA=MD。

角平分线与垂直平分线练习(较难题型)

角平分线与垂直平分线练习(较难题型)

角平分线与垂直平分线练习(较难题型)1.如图1,点H在QR边上,PH所在的直线是△PQR的对称轴,且PQ≠QR。

设HM∥PR,交PQ于点M。

下列结论中正确的是:①HM=PM;②HM=QM;③M是PQ的中点;④HM平分∠PHQ;⑤HM⊥PQ。

答案:①、④、⑤。

2.如图2,在△ABC中,直线l为BC边的垂直平分线,直线l与∠XXX的角平分线相交于点P。

已知∠ACP=15°,∠BAC=100°。

求∠ABP的度数。

答案:∠ABP=35°。

3.如图3,在△ABC中,∠C=90°,AD为角平分线,BC=32cm,4.如图4,将△ABC绕顶点A旋转到△ADE的位置,BC 与DE相交于点F。

下列结论中正确的有:①BC=DE;③FA 平分∠CFD;④∠CAE=∠BAD;⑤∠CAE=∠BFD;⑥AC=CF。

答案:①、③、④。

5.(1) 如图,在△ABC中,ED垂直平分AB,交AC于点D,交AB于E,AC=5,BC=4.求△BCD的周长。

答案:△BCD的周长为12.2) 如图,在△ABC中,DE⊥BC,交AC于点E,垂足为D。

已知BC=10cm,△ABE的周长为15cm,△XXX的周长为25cm。

判断D是否是BC的中点。

答案:D不是BC的中点。

6.(1) 如图,在△ABC中,AB=AC,BC=12,∠BAC=120°。

AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点G,垂足分别为D,F。

求∠EAG的度数和△AEG的周长。

答案:∠EAG=30°,△AEG的周长为24.2) 如图,在△ABC中,BC=12,∠BAC=100°。

AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点G。

求∠EAG的度数和△AEG的周长。

答案:∠EAG=40°,△AEG的周长为24.3) 如图,在△ABC中,BC=12,∠BAC=70°。

专题:线段垂直平分线与角平分线

专题:线段垂直平分线与角平分线

1.已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状为2. 如图1,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,则AC=图1 图2 图33.如图2,在△ABD中,AD=4,AB=3,AC平分∠BAD,则S△ABC:S△ACD=4.如图3,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE ∥AC,则△PDE的周长是___________cm.5. 如图4,△ABC中,DE、FG分别为AB、AC的垂直平分线。

(1)如果BC=16cm,那么△AEG的周长为_______;(2)如果∠BAC=100°,那么∠EAG=_______.图46. ⑴如图5,若P点是∠ABC和∠ACB的角平分线的交点,∠A=α,则∠P= ;⑵如图6,若P点是∠ABC和外角∠ACE的角平分线的交点,∠A=α,则∠P= ;⑶如图7,若P点是外角∠CBF和∠BCE的角平分线的交点,∠A=α,则∠P= 。

图5 图6图77. 如图,EG、FG分别是∠MEF和∠NFE的角平分线,交点是G,BP、CP分别是∠MBC和∠NCB的角平分线,交点是P,若∠G=68°,那么∠P=。

8. 随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。

A、1B、2C、3D、49. 如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC 于点F.求证:BF=2CF.10. 如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.11. 在Rt△ABC中,∠C=90°,AD平分∠BAC,DE垂直平分AB。

线段的垂直平分线练习题与角平分线练习题

线段的垂直平分线练习题与角平分线练习题
A、1处B、2处C、3处D、4处
11、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,那么△DEB的周长为〔 〕
A、4㎝B、6㎝C、10㎝D、不能确定
18、如图11.3—4,在△ABC中∠C=900,AC=BC,AD平分.交BC于点D,DE⊥BE
5、三角形的三条角平分线相交于一点,并且这一点到________________相等。
6、点O是△ABC内一点,且点O到三边的距离相等,∠A=60°,那么∠BOC,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD∶CD=9∶7,那么D到AB的距离为.
求证:〔1〕DE+BD=AC
〔2〕假设AB=6cm,求△DBE的周长
19、如图11.3—6,:AB=AC,BD=CD,
求证:DE=DF
2、∠AOB的平分线上一点M,M到OA的距离为1.5cm,那么M到OB的距离为_________.
3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.
4、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,那么BC=_____cm.
①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.
1、:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,假设∠B=300,求∠C的度数。
二.解答:
1、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。
8、三角形中到三边距离相等的点是〔 〕

线段垂直平分线和角的平分线部分典型题

线段垂直平分线和角的平分线部分典型题

线段垂直平分线和角的平分线部分典型习题1、△ABC中,AB=AC,∠BAC=100°,两腰AB、AC的垂直平分线交于点P,则()A、点P在△ABC 内B、点P在△ABC 底边上C、点P在△ABC 外D、点P的位置与△ABC 的边长有关2、如果三角形两边的垂直平分线的交点恰好落在第三边上,则这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、等边三角形3、已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4、如图1,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是。

5、如图2,四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的长的大小关系是()A、AB>AD+BCB、AB=AD+BCC、AB<AD+BCD、无法确定6、在直角梯形ABCD中,∠A=∠B=90°,M是AB上一点,连接MD、MC,MD、MC分别平分∠ADC、∠BCD,求证:(1)AM=BM ;(2)∠DMC=90°.7、如图3-①所示,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

同时请你参考这个作全等三角形的方法,解答下列问题:(1)如图3-②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。

请你判断并写出FE与FD之间的数量关系;(2)如图3-③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线与角的平分线
一、选择题 1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒ B .65︒ C .80︒ D .95︒ 2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ; ②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。

其中正确的有 ( )
A .2个
B .3个
C .4个
D .1个 4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC
的大小关系是 ( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断 。

5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是
( )
A 、三角形三条角平分线的交点;
B 、三角形三条垂直平分线的交点;
C 、三角形三条中线的交点;
D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为
( )
A 、锐角三角形;
B 、直角三角形;
C 、钝角三角形;
D 、不能确定
7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有 ( )
A 、①②③④
B 、①③
C 、②④
D 、②③④
7题图 8题图 9题图
F D
E
C B
A
D
E C B A P
D C
B
A
E
D
C
B A D
C
B A
E D C
B
A
图3 图4
图1
图2
c b a
O
C
B A
D
P
8、如图所示,在ABC ∆中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE
⊥AB ,则EB 的长是 ( )
A 、3㎝
B 、4㎝
C 、5㎝
D 、不能确定
9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。

A 、1
B 、2
C 、3
D 、4
10、到三角形三条边的距离都相等的点是这个三角形的 ( )
A.三条中线的交点 B.三条高的交点
C.三条边的垂直平分线的交点 D.三条角平分线的交点 二、填空题。

1. 如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .
2.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,若BD=10,则CD=
3.如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= ,△BDC 的周长C △BDC = .
4.如图,∠1=50°,∠2=80°,DB=AB ,CE=CA ,则∠D= ,∠DAE= . 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将ΔABD 分为三个三角形,则S ABO ∆:S BCO ∆:S CAO ∆等于______. 三、解答题
1.如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,求PD 的长.
第5题
第4题
第2题
第3题
第1题
B
2.已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
3.如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
4.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .求∠PAQ 的度数.
5、如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F , 求证:(1)AE=AF ,(2)DA 平分∠EDF
D
E
C
B A
O
M B A N C
Q P
6、如图,在△ABC 中,AB=AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足 分别为E 、F ,添加一个条件,使DE= DF , 并说明理由.
7、如图,已知:AD 平分BAC ∠,EF 垂直平分AD ,交BC 延长线于F ,连结AF 。

求证:CAF B ∠=∠。

8、如图,AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB.
求证:CD=AD+BC.
9、△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AB ,AD=24,求BC.
A
D
B
C
E。

相关文档
最新文档