典型光学仪器的基本原理

合集下载

光学显微镜的基本原理

光学显微镜的基本原理

光学显微镜的基本原理
光学显微镜是一种利用透镜或物镜和目镜的组合来放大和观察微小物体的仪器。

其基本原理如下:
1. 放大原理:光学显微镜利用物镜和目镜的组合放大物体的细节。

物镜放大物体的细节,然后目镜进一步放大物镜中的影像,使得观察者可以看到更清晰的样品细节。

2. 折射原理:当光线从一种介质进入另一种介质时,会发生折射现象。

显微镜中,光线从空气中进入玻璃物镜中,再从玻璃目镜中进入空气或者观察者的眼睛中。

通过适当选择物镜和目镜的焦距,可以使光线聚焦在样品上并最终进入眼睛,形成放大的影像。

3. 分辨原理:显微镜的分辨率指的是能够分辨的两个最近物体之间的最小距离。

分辨力受到光波长的限制,显微镜通常使用可见光,其波长约为400-700纳米。

根据铺赛-瑞利准则,分
辨力取决于光学系统的数值孔径和波长,分辨力越高,能够看到的细节就越清晰。

4. 照明原理:显微镜中的样品通常需要照明才能看到。

光源(如白炽灯、LED等)发出光线,并经过准直器和滤光器的
控制,通过凸透镜产生平行光线,在物镜下方照射样品。

照明光线被样品反射、折射或透射后,通过物镜和目镜进入观察者视野。

总结起来,光学显微镜的基本原理可以归结为放大原理、折射
原理、分辨原理和照明原理。

这些原理的有效结合使得光学显微镜成为了一种广泛使用的观察和研究微小物体的工具。

第二章光学仪器的基本原理

第二章光学仪器的基本原理

第二章光学仪器的基本原理§1 光阑透镜、反射镜和棱镜等光学元件的框架都有一定的尺寸大小。

它们必然限制成像光束的截面。

有些成像系统为了限制成像光束的截面,还特别附加有一定形状的开孔屏。

我们定义,凡是在光学系统中起拦光作用的光学元件的边框和特加的有一定形状的孔屏统称为光阑。

一、孔径光阑入射光瞳和出射光瞳在实际光学系统中,不论有多少个光阑,一般来说,其中只有一个为孔径光阑,它起着控制进入光学系统的光能量的多少、成像质量以及物空间的深度等作用,故有时也称有效光阑。

研究实际物体对光学系统的孔径光阑的问题十分复杂,很难普遍讨论。

下面仅对轴上物点分析光学系统中对成像起限制作用的孔径光阑。

图2-1中MN为薄透镜L的边缘,AB为开有圆孔的光阑。

在这一系统中,有两个光阑:透镜的框边和光阑AB。

依图2-1所示,这两个光阑中对光线起限制作用的是光阑AB,因此光阑AB是该光学系统的孔径光阑。

轴上物点的位置不同,也会影响孔径光阑,如图2-2所示的光学系统中包括透镜L和开孔屏D,它们都是光阑。

若轴上物点位于Q1点,系统中对成像光束起最大限制作用的是孔屏D。

因此,D是系统对Q1处的物点的孔径光阑。

同样是这个光学系统,若物点放在Q2处,则对成像光束起最大限制作用的是透镜L的边框,因此L是Q2物点的孔径光阑。

找到了孔径光阑,一般情况下还不能直接找出其成像光束通过光学系统的孔径角。

换句话说,给定的轴上物点对孔径光阑的张角并不是实际通过光学系统的光束的孔径角。

产生这种结果的原因是在孔径光阑前后可能还存在其它透镜,对光束起折射作用。

为此我们需要引入入射光瞳和出射光瞳两个新概念。

在图2-3中,有三个光阑:L1边框、AB孔径和L2边框。

对光线起有效控制的是AB光阑。

因此AB是孔径光阑。

A′B′是AB经前方透镜L1所成的像,显然物点Q发出的能够通过光学系统的光束,对L1的最大张角正是物点对A′B′的孔径角。

定义A′B′为入射光瞳。

同理,孔径光阑AB经后方透镜L2所成的像对像点Q′的孔径角为出射光束的最大孔径角,定义这个像A″B″为光学系统的出射光瞳。

光学基本仪器实验报告

光学基本仪器实验报告

实验报告实验名称:光学基本仪器实验实验日期:____年__月__日实验地点:____实验室实验人员:____(姓名)、____(姓名)、____(姓名)一、实验目的1. 熟悉光学基本仪器的构造、工作原理和使用方法;2. 掌握光学仪器的调节和操作技巧;3. 通过实验验证光学原理,加深对光学知识点的理解;4. 培养团队协作能力和实验技能。

二、实验原理光学基本仪器实验主要涉及以下几种光学原理:1. 光的直线传播:光在同一种均匀介质中沿直线传播;2. 光的反射:光线从一种介质射向另一种介质时,在界面处发生反射;3. 光的折射:光线从一种介质射向另一种介质时,在界面处发生折射;4. 光的干涉:两束相干光相遇时,光波叠加产生的现象;5. 光的衍射:光波遇到障碍物或通过狭缝时,在障碍物边缘或狭缝后发生弯曲的现象。

三、实验仪器1. 平行光管:产生平行光束,用于测量透镜焦距等实验;2. 透镜:具有会聚或发散光线的作用,用于成像、聚焦等实验;3. 双棱镜:利用光的折射和反射原理,产生分光现象;4. 干涉仪:利用光的干涉原理,测量光波波长、光程差等;5. 衍射光栅:利用光的衍射原理,进行光谱分析等;6. 光具座:用于放置光学仪器,保证实验过程中的稳定性;7. 读数显微镜:用于测量微小长度、角度等;8. 其他辅助工具:如光源、白屏、狭缝等。

四、实验内容1. 平行光管实验:测量透镜焦距、调节自准直方法等;2. 双棱镜实验:观察光的折射和反射现象,测量光程差等;3. 干涉实验:观察双光束干涉现象,测量光波波长;4. 衍射光栅实验:观察光的衍射现象,进行光谱分析;5. 光学显微镜实验:观察显微镜的成像原理,测量物体尺寸等。

五、实验步骤及结果1. 平行光管实验:(1)将平行光管放置在光具座上,调整光源使其发出平行光;(2)将待测透镜放置在平行光管的光路中,调整透镜位置,使光束聚焦在白屏上;(3)测量透镜到白屏的距离,即为透镜焦距;(4)重复实验,求平均值。

现代光学基础课件:第四章 光学仪器的基本原理

现代光学基础课件:第四章 光学仪器的基本原理
• 上式分母中的a′相对于x′而言,是一个很小的值, 可以略去。
• 放大镜放大率的公式,通常采用以下形式
M 250 f'
• 放大镜的放大率仅由放大镜的焦距f ′ 所决定,焦 距越大则放大率越小。
§4-3 目 镜
放大镜是一种通过直接放大实物达到增大视角的助视仪器。下面将介绍 一种放大像的助视仪器——目镜。 一、目镜
• 由于场镜的物为虚物,所以这种目镜无法对物镜所成的像进行测量。
• 此目镜的视角较大(可达400),在250范围内像更清晰。而且结构 紧凑,适用于生物显微镜。
2、冉斯登目镜 1
Q 'Q
2
⑴ 结构:如图示 3
⑵ 特点:
F2 F
o1
• 场镜、视镜均为同种材
3
F1' 3
o2
2
2
料的平凸透镜,二镜凸 面相向,平面朝外。
网膜 脉络膜 黄斑中心凹
前室
晶状体
盲斑
总能将像成在网膜上。
后室
角膜和晶状体之间的空间称为前室;充满1.336的水状液;
晶状体和网膜所包围的空间称为后室;充满1.336的玻状体
人眼的构造剖视图
瞳孔 虹膜 角膜
1.376
前室
1.336
晶状体
巩膜
网膜 脉络膜 黄斑中心凹
视轴
光轴
盲斑
后室 1.336
眼睛的像方节点与中心凹的连线为眼睛的视轴, 在观察物 体时眼睛本能地把物体瞄准在这根轴上。
x'
f1' f1'
• 物镜的像被目镜放大,其放大率为
Me
250 f2 '
• 式中: f2' 为目镜的焦距。由此,显微镜系统的

光学仪器的基本原理 光度学的基本概念

光学仪器的基本原理 光度学的基本概念
4-1 助视仪器的放大本领
正常眼明视距离为25cm
一.放大本领定义
l ' tgu' u '
M
l tgu u
二.简单放大镜的放大本领
M
y s
y 25
y f 25
y 25 f
以cm为单位
一般3~5×复式放大镜可达20× ,物放在焦点内侧,成一放大正立虚象
三.显微镜的放大本领
书上导出方法可得 M
1
2
三.光源较远时物镜的聚光本领·相对孔径
E
d ds
B0n2
sin 2
u
代换 sin u
sin u
d x
2 x p
x xp
f
x f
x p f
f
p
∵ x
f
为物象的横向放大率 E' B0n'2 sin 2 u' B0n'2
4
d pd
1 4
B0 n' 2
2 p
d
第四章 光学仪器的基本原理
教学目的:
本章围绕衡量光学仪器特性的三个本领进行教学。通过本章的 学习,使学生掌握仪器常用的放大本领。了解仪器的震光本领及其 相关因素。使学生了解光度学中的一些基本概念,了解相差的一些 类型及成因 .
重点:放大本领和分辨本领 难点:光度学中的概念 教学方法:课堂讲授、结合仪器演示
d/ f'
显微镜物镜:象分辨本领 y' 1.22 s'
d
yn sin u y'n'sin u'
y 1 0.61 小y小
n sin u
三.分光仪器的色分辨本领
1.棱镜光谱仪 角色散率

第4章光学仪器的基本原理(第1讲)

第4章光学仪器的基本原理(第1讲)

为f ’: 1 1 1 f ' 2(m)
f ' s' s
光焦度 : 1 0.5(D)
f'
50度的近视眼镜。
§4.1 人的眼睛
第四章 光学仪器的基本原理
2、远视眼的矫正
方法:使放在明视距离处的物体经 凸透镜成像在被矫正眼的近点上。
例子 某人的近点为50cm。应戴 的凸透镜的焦距f ’ 为:
放大本领 、聚光本领、分辨本领
§4.1 人的眼睛
一、人眼的构造
1、从前到后,角膜前 房虹膜(中心为瞳 孔)晶状体玻璃 体视网膜。
2、眼睛有视觉暂留作用, 时间一般为简化眼模型
人眼可视为只有一个折射球面的简化眼。曲率半径为 5.7 mm;眼折射率为4/3;光焦度为58.48 m-1;物方焦距为17.1 mm;像方焦距为22.8 mm。
§4.1 人的眼睛
第四章 光学仪器的基本原理
三、非正常眼的矫正
睫状肌完全放松时,眼睛看清楚的最远点,称远点;肌 肉最紧张时看清的最近点,称近点。
远点为无穷远处,近点则为25 cm。
1、近视眼的矫正
方法:戴凹透镜,使无穷远处的
物体经凹透镜发散成一虚像在有限
远处,从而看清远物
例子 如某人近视眼的远点在2m,则应戴凹透镜,其焦距
1 1 1 f ' 50(cm) f ' s' s
光焦度: 1 2(D) 即200度的远视眼镜。
f'
3、散光眼
散光眼轴上的物点将成为两条像线,矫正的方法是戴一 柱状透镜,使其与眼的像散作用相反而相互抵消。
§4.1 人的眼睛
第四章 光学仪器的基本原理
第四章 光学仪器的基本原理

光学仪器的基本原理教学

光学仪器的基本原理教学

光学仪器的基本原理教学光学仪器是一类广泛应用于光学实验和研究中的仪器设备,包括光学显微镜、光谱仪、干涉仪、激光仪等。

这些仪器的工作原理涉及光的传播、反射、折射、干涉等基本原理。

下面将分别介绍几种常见光学仪器的基本原理。

1.光学显微镜光学显微镜是一种基于光的成像原理实现对样品的观察和分析的仪器。

它包括物镜和目镜两个光学部件。

物镜负责放大样品的像,目镜负责将放大后的像再放大一次供观察者观察。

光学显微镜的基本原理是利用物镜收集的透过样品的光线,通过放大形成透射或反射样品的像。

物镜由一个或多个透镜组成,其中至少有一个透镜靠近样品。

物镜的工作距离决定了样品与物镜之间的距离。

在使用光学显微镜时,样品放置在物镜的焦点处,使得物镜成像距焦点最近。

光线通过样品后被物镜聚焦,形成实物像。

然后通过目镜观察这个实物像,再经过进一步放大,形成最终观察者所看到的虚拟像。

2.光谱仪光谱仪是一种用来分析和测量光的频率、波长和强度分布的仪器。

它是基于光的色散原理工作的,将光按波长分解成不同的光谱线。

光谱仪的基本原理是将出射光经过准直系统后,通过光栅、光晶体或玻璃棱镜将光分散成不同波长的光谱线,然后使用光电探测器测量不同波长的光的强度。

其中光栅是最常用的色散元件。

当入射平行光线通过光栅时,不同波长的光线会在光栅上发生衍射,形成交叉的光束。

测量仪器通过调整光栅的角度,可以使不同波长的光落在特定位置上,然后通过光电二极管等探测器测量光的强度,进而获取光的光谱信息。

3.干涉仪干涉仪是一种用来测量光路差和波长差的仪器。

它是基于干涉现象实现的,利用光的叠加作用实现干涉现象。

常见的干涉仪有马赫-曾德尔干涉仪和弗朗索瓦干涉仪。

它们的基本原理类似,在光路中引入一个光学路径差,使得途径不同路径的光线发生干涉,产生干涉条纹。

马赫-曾德尔干涉仪是通过将光源分成两束,经过不同路径后再重新叠加,观察干涉条纹来测量光程差的变化。

弗朗索瓦干涉仪则是利用分束器和反射镜使一束光经过不同路径后再次叠加,通过干涉条纹测量光波的相位差。

光学仪器的原理与设计

光学仪器的原理与设计

光学仪器的原理与设计光学仪器是利用光的传播和相互作用的原理,用于观测、测量和分析物体的工具。

它们在科学研究、医学诊断、工业制造等领域发挥着重要作用。

本文将介绍光学仪器的原理和设计,以及一些典型的光学仪器。

一、光的传播与相互作用原理光是一种电磁波,具有波粒二象性。

在光学仪器中,光的传播和相互作用是其基本原理。

光的传播可以通过折射、反射和散射等现象实现。

折射是光从一种介质传播到另一种介质时改变传播方向的现象,而反射是光从界面上的介质返回原来的介质的现象。

散射是光在物质中遇到不均匀性时改变传播方向的现象。

光的相互作用包括吸收、发射和干涉等现象。

吸收是光能量被物质吸收并转化为其他形式能量的过程。

发射是物质向外辐射光能的过程。

干涉是两束或多束光相互干涉形成干涉条纹的现象,利用干涉现象可以实现测量和分析。

二、光学仪器的设计原则光学仪器的设计需要考虑光的传播和相互作用原理,以及实际应用的需求。

设计光学仪器时需要考虑以下几个方面的原则。

首先,光学仪器的设计需要考虑光的传播路径。

光的传播路径应尽量简洁,以减少光的损失和干扰。

例如,光学显微镜的设计中,要尽量减少透镜和物镜之间的光损失,以提高成像质量。

其次,光学仪器的设计需要考虑光的聚焦和分光。

聚焦是将光束集中到一个点或一个小区域的过程,而分光是将光束按照不同波长或不同方向进行分离的过程。

例如,分光光度计的设计中,要通过光栅或棱镜将光束按照不同波长进行分离,以进行光谱分析。

最后,光学仪器的设计需要考虑光的检测和信号处理。

光的检测是将光能转化为电信号的过程,而信号处理是对电信号进行放大、滤波和数字化等处理的过程。

例如,光电倍增管和光电二极管等光检测器可以将光能转化为电信号,然后通过放大器和滤波器对信号进行处理。

三、光学仪器的应用光学仪器在科学研究、医学诊断和工业制造等领域有着广泛的应用。

以下是一些典型的光学仪器。

首先,显微镜是一种用于观察微小物体的光学仪器。

它利用透镜或物镜将物体放大,使人眼能够清晰地观察到微小细节。

常见的光学仪器知识点归纳

常见的光学仪器知识点归纳

常见的光学仪器知识点归纳光学仪器是利用光学原理和技术制造的用于观测、测量和分析光学现象和光学性质的工具。

常见的光学仪器有显微镜、望远镜、光谱仪、激光器等。

以下是常见的光学仪器知识点的归纳:1.显微镜:-组成结构:显微镜主要由物镜、目镜、光源和调焦系统等组成。

-工作原理:通过物镜放大物体的细节,再通过目镜观察放大后的像。

光源提供照明。

-数字显微镜:具备数字图像处理系统,可以将观察到的图像数字化和存储。

-应用领域:生物学、医学、材料科学等。

2.望远镜:-类型:天文望远镜、光学显微镜、光学望远镜等。

-分类:可分为折射望远镜和反射望远镜两种。

-折射望远镜:利用透镜集中光线,放大远处的物体,适合观察地面、天体等。

-反射望远镜:通过凹面镜将光线聚焦,适合观测天体等。

3.光谱仪:-基本原理:将光分解成一系列不同波长的分光线,再通过检测器接收光信号,用于分析物质组成和性质。

-分类:可分为离散光谱仪、连续光谱仪等。

-离散光谱仪:采用棱镜或光栅将光分散成不同波长的成分。

-连续光谱仪:利用干涉或衍射原理将光分解成连续的波长范围。

4.激光器:-基本原理:通过光放大器将光增强至激光状态,再通过光学谐振腔产生锐利的单色、单向和相干的激光。

-分类:可分为气体激光器、固体激光器、半导体激光器等。

-气体激光器:利用气体的激发态转变为基态释放能量产生激光。

-固体激光器:利用固体材料中的激发态原子(离子)释放能量产生激光。

5.干涉仪:-类型:干涉仪主要有薄膜干涉仪、迈克尔逊干涉仪、马赫-曾德尔干涉仪等。

-原理:利用光的干涉现象测量光的相位差或物体形状等。

-应用领域:干涉仪广泛应用于光学表面检测、薄膜厚度测量、干涉测量等领域。

以上只是对光学仪器知识的简单归纳,实际上,光学仪器领域还涉及到很多专业的知识,如光学设计、光学制造、光学检测等。

光学仪器的发展和创新在科学、医学和工业领域发挥重要作用,为人们提供了更好的观察、测量和分析手段。

显微镜的基本光学原理

显微镜的基本光学原理

显微镜的基本光学原理
显微镜是一种能够放大微观物体的光学仪器,它的基本光学原理包括
折射、放大和目镜成像。

1.折射原理:
显微镜使用了透镜,透镜能够将光线折射并汇聚到焦点上。

光线通过
物体时会发生折射,根据折射定律(即入射角和折射角之间的关系),透
镜会将光线折射成为新的路径。

透镜的折射能力取决于其曲率和材料的折
射率。

透镜使得光线聚焦,从而使得显微镜能够放大物体。

2.放大原理:
放大是显微镜的一个主要功能,实现放大的主要原理是物镜和目镜的
协同工作。

物镜是与被观察物体最靠近的镜头,它能够放大物体的细节。

当物镜聚焦时,它会在其焦点处形成一个放大的实物像。

目镜是长在显微
镜顶部的镜头,它进一步放大物体的像。

通过物镜和目镜的协同作用,显
微镜能够放大物体并呈现清晰的图像。

3.目镜成像原理:
目镜成像是通过目镜中的透镜实现的。

透镜将放大的物体像投影到人
眼观察的位置,使得人眼能够看到放大的图像。

目镜的焦点距离一般比物
镜的焦点距离要小,因此目镜能够形成一个虚拟放大的像,从而使得人眼
可以看到物体的放大图像。

目镜还可以调节焦距和调整放大倍率。

以上是显微镜的基本光学原理,它主要依赖于透镜的折射和放大功能,以及目镜的成像功能。

这些原理的协同作用使得显微镜具有放大物体并观
察细微结构的能力。

显微镜的应用广泛,包括生物学、医学、材料科学等领域,为人们的研究和观察提供了重要工具。

光学仪器的基本原理

光学仪器的基本原理

最终由目镜系统出射的光为平行光,成倒立象于无穷远处。(望远镜的结
构都这样)
3、放大本领
复杂的助视仪器总是由物镜和目镜组成,靠近物体的称为物镜;靠近人 眼的称为目镜。目镜通过放大物镜所成的像达到磁大人眼视角的目的。
• 要求:A、具有较高的放大本领和较大的视角;
B、具有一定的校正像差和色差的能力。 ∴ 目镜通常由两个或多个透镜组合而成。 2、结构: 场镜+视镜+(分划板或称刻度尺) • 场镜: 面向物体(即物镜的像)的透镜(或透镜组) • 视镜: 接近人眼的透镜(或透镜组) • 分划板:包含可移动叉丝的透明刻度尺,用于提高测量精度
O
F‘
s' s
[解] : 对所戴凸透镜而言,已知 s 0.25m s' 1.25m
由空气中的透镜成像公式有 :
1 f'
1 s'
1 s
1 1 3.2(D) 320(屈光度) 1.25 0.25
③ 散光眼:角膜为椭球面的人眼。也称为像散眼。
• 由于椭球有两个对称平面,分别包含长、短轴,因而具有两个不同的焦
f F1
'F1’
P y
1
f2
P`
Q o1
-U` y'
o2
物镜系统 Q’
O -U``
目镜系统
镜筒长度 l
Q’’
三、放大本领 1、表达式:
整个系统的像方焦距为:
f
'
f1'
f
' 2
25 25
显微镜作为一个放大镜,其放大本领为: M
f'
f1'
f
' 2
为保证成尽量大的像,物镜和目镜焦距均很小 l s1'

光学仪器的结构与成像原理

光学仪器的结构与成像原理

光学仪器的结构与成像原理一、光学仪器的基本结构1.透镜:透镜是光学仪器中最基本的元件,分为凸透镜和凹透镜,其作用是对光线进行聚焦或发散。

2.镜筒:镜筒是连接物镜和目镜的部分,起到支持和固定的作用。

3.物镜:物镜位于光学仪器的近端,负责收集来自被观察物体的光线,并形成实像。

4.目镜:目镜位于光学仪器的远端,用于观察物镜形成的实像,并将其放大。

5.支架:支架是用于支撑整个光学仪器的结构,保证仪器的稳定。

6.调节装置:调节装置包括焦距调节、放大倍数调节等,用于调整光学仪器的成像效果。

二、成像原理1.光的传播:光在真空中的传播速度为常数,约为3×10^8m/s。

在介质中传播时,光的速度会发生变化。

2.透镜成像:凸透镜会将平行光线聚焦于一点,形成实像;凹透镜则会将平行光线发散,形成虚像。

3.物镜成像:物镜收集来自被观察物体的光线,形成实像。

实像的大小、位置和方向取决于物体的位置、物镜的焦距等因素。

4.目镜成像:目镜对物镜形成的实像进行放大,形成虚像。

虚像的大小、位置和方向取决于目镜的焦距等因素。

5.成像公式:光学仪器成像的计算公式,如薄透镜公式、厚透镜公式等,用于计算物镜和目镜的焦距、物距、像距等参数。

6.放大倍数:光学仪器的放大倍数等于物镜和目镜的放大倍数的乘积。

放大倍数越大,观察到的物体越放大,但视场越小。

7.像的性质:光学仪器成像时,像的性质包括大小、形状、位置、方向等,这些性质可以通过成像公式进行计算。

三、常见光学仪器及其应用1.显微镜:显微镜是一种用于观察微小物体的光学仪器,广泛应用于生物学、医学等领域。

2.望远镜:望远镜是一种用于观察远处物体的光学仪器,广泛应用于天文观测、军事、航海等领域。

3.照相机:照相机是一种用于捕捉光学图像的仪器,广泛应用于摄影、电影、广告等领域。

4.投影仪:投影仪是一种将图像投射到屏幕上的光学仪器,广泛应用于教育、商务等领域。

5.眼镜:眼镜是一种用于矫正视力的光学仪器,根据个人视力需求,使用不同度数的透镜进行矫正。

典型光学仪器的基本原理

典型光学仪器的基本原理

光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。

人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。

眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。

视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。

视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。

放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。

物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。

视角愈大,像也愈大,愈能分辨物的细节。

移近物体可增大视角,但受到眼睛调焦能力的限制。

使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。

放大镜的作用是放大视角。

显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。

主要用于放大微小物体成为人的肉眼所能看到的仪器。

显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森父子所首创。

现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。

光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。

显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。

10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。

无疑光学部分是最为关键的,它由目镜和物镜组成。

光学仪器的基本原理

光学仪器的基本原理

光学仪器的基本原理光学仪器是利用光的特性,用于观测、测量或改变光的干涉、衍射、偏振等现象的装置。

它们被广泛应用于各个领域,包括物理学、天文学、生物学、化学等。

1.透镜的光学原理透镜是光学仪器中最基本的元件之一、透镜能够使光线发生折射,根据透镜的形状和焦距的不同,可以使光线汇聚或发散。

根据透镜的光学原理,我们可以利用透镜来实现放大、准直、聚焦等功能。

2.干涉仪的干涉原理干涉是指两束或多束光线相遇时相互干涉产生的干涉条纹现象。

常见的干涉仪有迈克尔逊干涉仪和杨氏干涉仪。

利用干涉原理,我们可以测量光的波长、折射率、薄膜的厚度等。

3.衍射仪的衍射原理衍射是光线通过一个孔或者绕过物体边缘时发生的弯曲现象。

常见的衍射仪有单缝衍射、双缝衍射、光栅衍射等。

衍射原理常用于测量光的波长、观察微小物体等。

4.偏振仪的偏振原理偏振是指光的振动方向被限制在特定方向上的现象。

偏振仪可以将不偏振的光转换为偏振光。

根据偏振原理,我们可以测量光的偏振方向、分析物质的性质等。

5.光谱仪的光谱原理光谱是指光线在经过其中一种介质后按照波长进行分散的现象。

光谱仪可以将不同波长的光线分离开来,常见的光谱仪有光栅光谱仪、光电倍增管光谱仪等。

利用光谱原理,我们可以确定光的波长、分析物质的组成等。

除了以上基本原理外,光学仪器还可以利用偏振、散射、吸收等现象来实现不同的功能。

例如,偏振显微镜可以观察材料的晶体结构;拉曼光谱仪可以通过光散射现象分析物质的化学成分。

总之,光学仪器利用光的特性和现象来实现观测、测量和实验的目的。

不同类型的光学仪器基于不同的原理,能够满足不同领域的需求。

通过深入理解光学仪器的基本原理,我们可以更好地设计、操作和应用光学仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。

2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。

眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。

3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。

4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。

5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。

物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。

6、视角愈大,像也愈大,愈能分辨物的细节。

移近物体可增大视角,但受到眼睛调焦能力的限制。

使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。

放大镜的作用是放大视角。

7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。

主要用于放大微小物体成为人的肉眼所能看到的仪器。

显微镜分光学显微镜和电子显微镜:光学显微
镜是在1590年由荷兰的詹森父子所首创。

现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。

8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。

9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。

10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。


疑光学部分是最为关键的,它由目镜和物镜组成。

早于1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。

光学显微镜的种类很多,主要有明视野显微镜(普通光学显微镜)、暗视野显微镜、荧光显微镜、相差显微镜、激光扫描共聚焦显微镜、偏光显微镜、微分干涉差显微镜、倒置显微镜。

11、电子显微镜:电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。

自1938年Ruska发明第一台透射电子显微镜至今,除了透射电镜本身的性能不断的提高外,还发展了其他多种类型的电镜。

如扫描电镜、分析电镜、超高压电镜等。

结合各种电镜样品制备技术,可对样品进行多方面的结构或结构与功能关系的深入研究。

显微镜被用来观察微小物体的图像。

常用于生物、医药及微小粒子的观测。

电子显微镜可把物体放大到200万倍。

12、望远镜:望远镜是一种利用透镜或反射镜以及其他光学器件观测遥远物体的光学仪器。

利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。

又称“千里镜”。

望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。

望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。

13、望远镜的分类:
(1)、折射望远镜:折射式望远镜,是用透镜作物镜的望远镜。

分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。

开普勒式望远镜的基本原理是首先远处的光线进入物镜的凸透镜,第1次成倒立、缩小的实像,相当于照相机;然后这个实像进入目镜的凸透镜,第2次成正立、放大的虚像,这相当于放大镜。

因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。

其中以双透镜物镜(普通消色差望远镜)应用最普遍。

它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,在满足一定设计条件时,还可消去部分球差和彗差。

由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。

口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。

为了增大相对口径和视场,可采用多透镜物镜组。

对于伽利略望远镜来说,结构非常简单,光能损失少。

镜筒短,很轻便。

而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。

对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。

一般的折射望远镜都是采用开普勒结构。

由于折射望远镜的成像质量在同样口径下
比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,并且主镜镜片会因为重力而发生形变,造成光学质量不佳,所以大口径望远镜都采用反射式
(2)伽利略望远镜
物镜是会聚透镜而目镜是发散透镜的望远镜。

光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。

伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。

其优点是镜筒短而能成正像,但它的视野比较小。

把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。

伽利略发明的望远镜在人类认识自然的历史中占有重要地位。

它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。

其优点是结构简单,能直接成正像。

(3)开普勒望远镜
原理由两个凸透镜构成。

由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。

但这种结构成像是倒立的,所以要在中间增加正像系统。

正像系统分为两类:棱镜正像系统和透镜正像系统。

我们常见的前宽
后窄的典型双筒望远镜既采用了双直角棱望远镜镜正像系统。

这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。

透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。

相关文档
最新文档