高中数学必修二好题解答题精选(附答案)
高一数学必修2习题(答案详解)
高一数学必修2习题(答案详解)高一数学必修2习题(答案详解)一、选择题1. 题目:已知集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},则A∩B的最小值是()选项:A. 0B. 1C. 2D. 3解析:集合A和集合B的交集即为A∩B。
在这里,A和B的交集为{3, 4},共有两个元素。
因此,答案为C. 2。
2. 题目:若sinθ=1/2,θ∈(0, π),则cosθ的值为()选项:A. 1/2B. -1/2C. √3/2D. -√3/2解析:根据三角函数的定义,sinθ=对边/斜边。
在这里,sinθ=1/2,代表一个直角三角形中,对边的长度是斜边长度的一半。
根据勾股定理,可知另外一个边的长度为√3/2。
因此,cosθ=邻边/斜边=√3/2。
答案为C. √3/2。
二、填空题1. 题目:已知事件A的概率为0.6,事件B的概率为0.4,事件A 和事件B同时发生的概率为0.3,则事件A和事件B互不独立。
事件A的补事件的概率是()。
解析:事件A的概率为0.6,补事件即为事件A不发生的概率,即1-0.6=0.4。
2. 题目:已知函数y=2x-1,若x=3,则y的值为()。
解析:将x=3代入函数中,得到y=2*3-1=5。
三、计算题1. 题目:已知函数y=2x+3,求当x=1时,y的值。
解析:将x=1代入函数中,得到y=2*1+3=5。
2. 题目:已知函数y=3x^2-2x+1,求当x=2时,y的值。
解析:将x=2代入函数中,得到y=3*2^2-2*2+1=13。
四、解答题1. 题目:求解方程2x-5=7。
解析:将方程两边都加上5,得到2x=12。
再将方程两边都除以2,得到x=6。
因此,方程的解为x=6。
2. 题目:求解方程3x^2-5=0。
解析:将方程两边都加上5,得到3x^2=5。
再将方程两边都除以3,得到x^2=5/3。
对方程两边取平方根,得到x=±√(5/3)。
因此,方程的解为x=±√(5/3)。
高中数学必修二答案(共7篇)
高中数学必修二答案(共7篇)高中数学必修二答案(一): 高一数学必修一必修二课后习题答案习题1-11.右2.14/33.768习题1-21.第一象限不一定可能超过360度2.⑴305 度42分第四象限⑵35度8分第一象限⑶249度30分第三象限⑷123度3.⑴-660度;-300度;60度⑵-45度;-405度;315度⑶-136度42分;223度18分;-496度42分⑷-585度;-225度;135度希望对你有些帮助不把分赏给我你就对不起我了哦,我找了很久的高中数学必修二答案(二): 高中数学必修二关于直线的倾斜角斜率直线l的方程为y=xtanα+2,则(A)α一定是直线的倾斜角(B)α一定不是直线的倾斜角(C)π-α一定是直线的倾斜角(D)α不一定是直线的倾斜角D倾斜角要求在[0,π)高中数学必修二答案(三): 高中数学必修二习题《两点间的距离》、《点到直线的距离》、《两条平行直线间的距离》,就是它们求与直线L:5x-12y+6=0平行且与L的距离为2的直线的方程.求求大家了,有答有赏!5x-12y+4=0 5x-12y+8=0高中数学必修二答案(四): 高中数学必修二的内容【高中数学必修二答案】高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线② 异面直线性质:既不平行,又不相交.③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aα a∩α=A a‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为. ②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修二答案(五): 求学海导航高一数学必修2答案全部谁有高一必修2数学的学海导航练习册的答案..即高中新课标同步攻略...首都师范大学出版社出的【高中数学必修二答案】我有,给个邮箱地址,发给你ps 实物我还要用,没有扫描仪,只能用相机拍下来o(∩_∩)o~高中数学必修二答案(六): 高中数学必修1第二章函数末的复习题二A组的答案亲,我们没有答案的,你有什么问题直接发,我们才能给你解答高中数学必修二答案(七): 人教A版高中数学必修二习题4.1 A组 T6 B组人教A版高中数学必修二习题4.1 A组6、△ABC的顶点B、C的坐标分别是(-3,-1),(2,1),顶点A在圆(x+2)2+(y-4)2=4上运动,求△ABC的重心G的轨迹方程.设顶点A为(x,y),重心G为(E,F),所以:E=(-3+2+x)/3=(x-1)/3,得:x=3E+1F=(-1+1+y)/3,得:Y=3F把X,Y代入圆中:(3E+1+2)^+(3F-4)^2=4所以△ABC的重心G的轨迹方程为 (3X+3)^2+(3Y-4)^2=4B组2、长为2a的线段AB的两个端点A和B分别在x轴和y轴上滑动,求线段AB的中点的轨迹方程.令AB中点为M根据直角三角形斜边上的中线等于斜边的一半,在直角三角形OAB中,OM=AB/2=a根据圆的定义,M的轨迹是以O为圆心,a为半径的圆 (除去与坐标轴的4个交点)轨迹方程为x^2+y^2=a^2(x≠0,±a)高中数学必修二教案高中数学必修二电子书。
必修2数学经典练习题(含答案)
(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A. 92π B. 72π C. 52π D. 32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
人教版高中数学必修二教材课后习题答案及解析
精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档'⅛.⅛∣ U s≡ 回 * ⅛峦讯Ilr÷ 训ft⅛W⅛SWH*JF⅛⅛⅛⅛k⅛i⅛fca Jff ⅛M⅛l i I∏⅛⅛^M FI即題电楼册Jff論草审誓⅛r測帝诩J 芹觀用菲劳口刚门)孫屮i⅛⅛⅛^f?⅛M⅛⅛t^f6> t V⅞⅛J M-J l⅛ JV^U⅛ J 写⅛Iiir起草轴JV r窮阜常爭叩HT—悌*皐垂聚草阖睡谦Hf/覃甲HH燈l⅛JVJ¾⅞φtfl⅛⅛*⅛f⅛≡ψ-f∏W⅛3}⅛⅛⅞ 业* 阳堕壬卑卑掘卿麴电(D ⅛3XP=G—佔一刊⅛i^⅛^1f⅛=⅛⅛1⅛S⅛⅛ JH ^>vi<ε*>)3 *∖X^riI花一=广T "出瞬时単⅛rτn⅛②“①甲前山乃用帀4总才吕)y艸讯询n甲川讪i 2—HW3⅛B⅛ff^*σr^)⅛⅛⅛U3 W V⅛l⅛(3),o∙ U C I Z⅛⅛t f⅛⅛'tv r)z-[ <⅛i l⅛¼tyJV r UU∖∙*1 “旳・11YΛ t '6 璋-寡:幵仙⅛i?Jf厘爪吾(Q T r⅛≡⅛⅛ ι>tf>o畔ι>^>0甲•盟漏∣⅛[Q巧修(「【)甲晉牡血一【)+;W-Dy V *鬧嘅丽(-^ *1 )蒔("T 1 料?I r M -⑴T- (F 「广=Kf 1/ •暈両拠MFM手【I P}片和评沖(^-O - ^L-O)/ = E- 1)* “ ⅞r覽丽轴口]狛f1 √ ⅞r⅞¾at Λ+x^∕⅜ ^¾⅛π⅞∣pj¾⅛>⅞ι⅛⅛⅞⅞也鄂GTirO巾刼酬Ey書J戸T卩啊・丁Jv刃K •丁田丿号却<7呼网护F祁冷⅛TFH JV =∣J<∕R V J Hy衍丨= Iffdl + I Od! ≡ MB⅜φs∕z⅞t(jc-t)+t(r-i)Z + 止土竺二U广+ "一Ij亠屮产十√<+^Λ囲i JV - O0 ⅛Uc∕i- Vrf ∣F∕d∣+ kΛ∕ ■;SΨXW≡O = I-¢-^3 ft≡5'θ=s-γ^P=£盅FqOh【【-1C十丄记IIlHHU捕精品文档精品文档精品文档精品文档精品文档。
高中数学必修2精选习题(含答案)
高中数学必修2精选习题(含答案)一、选择题:(每小题3分,共30分)1.垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 2. 下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 ( )A 、 l ∥αB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有 4. 直线k 10x y -+=,当k 变动时,所有直线都通过定点( ) A (0,0)B (0,1)C (3,1)D (2,1)5.用单位立方块搭一个几何体,使它的主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与156.如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则梯形ABCD 的面积是( )A .10B .5C .5 2D .1027.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=08.与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09. 已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是 ( )俯视图主视图A .k ≥12B .k ≤-2C .k ≥12 或k ≤-2D .-2≤k ≤1210. 在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题:(每小题4分,共16分)11若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________.12.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________13. 正四棱锥S ABCD -S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________。
高一数学必修2经典习题答案
高一数学必修2经典习题答案数学2(必修)第一章空间几何体[基础训练A组]一、选择题1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A因为四个面是全等的正三角形,则44S S===表面积底面积3.B 长方体的对角线是球的直径,2450l R R S Rππ======4.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a222aa r r r r r r=====内切球内切球外接球外接球内切球外接球,,:5.D213(1 1.51)32V V V rππ=-=+-=大圆锥小圆锥6.D 设底面边长是a,底面的两条对角线分别为12,l l,而22222212155,95,l l=-=-而222124,l l a+=即22222155954,8,485160a a S ch-+-====⨯⨯=侧面积二、填空题1.5,4,3符合条件的几何体分别是:三棱柱,三棱锥,三棱台2.1:333333123123::::11:r r r r r r===3.316a画出正方体,平面11AB D与对角线1AC的交点是对角线的三等分点,三棱锥11O AB D-的高23111,2336h V Sh a a====或:三棱锥11O AB D-也可以看成三棱锥11A OB D-,显然它的高为AO,等腰三角形11OB D 为底面。
4. 平行四边形或线段5设ab bc ac===则1abc c a c===l==15设3,5,15ab bc ac===则2()225,15abc V abc===三、解答题1.解:(1)如果按方案一,仓库的底面直径变成16M ,则仓库的体积23111162564()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭如果按方案二,仓库的高变成8M ,则仓库的体积23211122888()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭(2)如果按方案一,仓库的底面直径变成16M ,半径为8M .棱锥的母线长为l ==则仓库的表面积218()S M π=⨯⨯= 如果按方案二,仓库的高变成8M .棱锥的母线长为10l == 则仓库的表面积 2261060()S M ππ=⨯⨯=(3)21V V > ,21S S < ∴方案二比方案一更加经济2. 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==;24,S S S rl r πππ=+=+=侧面表面积底面2111333V Sh π==⨯⨯⨯=第一章 空间几何体 [综合训练B 组]一、选择题1.A恢复后的原图形为一直角梯形1(11)222S =⨯=+2.A2312,,23R r R r h V r h R πππ=====3.B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ=== 4.A(3)84,7S r r l r ππ=+==侧面积5.C 中截面的面积为4个单位, 12124746919V V ++==++6.D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯=二、填空题1.6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2.16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯=3.<设334,3V R a a R π====2264S a S R π=====<正球从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5.(1)4 (2)圆锥6. 设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =,而22S r r r aππ=+⋅=圆锥表,即23,3r a r ππ===,即直径为三、解答题解:'1(),3V S S h h ==319000075360024001600h ⨯==++2. 解:2229(25)(25),7l l ππ+=+=空间几何体 [提高训练C 组] 一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l ==12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥 4.D 121:():()3:13V V Sh Sh ==5.C121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面2134123V ππ=⨯⨯=二、填空题1.设圆锥的底面半径为r ,母线为l ,则123r l ππ=,得6l r =,226715S r r r r ππππ=+⋅==,得r =h =211153377V r h ππ==⨯= 2.109Q22223,S R R R Q R πππ=+===全32222221010,,2233339V R R h h R S R R R R Qπππππ==⋅==+⋅== 3.821212,8r r V V ==4.12234,123V Sh r h R R ππ=====5.28'11()(416)32833V S S h =+=⨯⨯=三、解答题1.解:圆锥的高h =1r =,22(2S S S πππ=+=+=+侧面表面底面 解:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=V V V =-圆台圆锥222112211()331483r r r r h r h πππ=++-=第二章 点、直线、平面之间的位置关系 [基础训练A 组]一、选择题1. A ⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能 ⑵两条直线没有公共点,则这两条直线平行或异面⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,VF BF ,则AC 垂直于平面VBF ,即AC PF ⊥,而//DE AC ,DE PF ∴⊥5.D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥D ABC -体积最大时,平面DAC ABC ⊥,取AC 的中点O , 则△DBO 是等要直角三角形,即045DBO ∠= 二、填空题1.异面或相交 就是不可能平行2.0030,90⎡⎤⎣⎦ 直线l 与平面α所成的030的角为m 与l 所成角的最小值,当m 在α内适当旋转就可以得到l m ⊥,即m 与l 所成角的的最大值为0903.作等积变换:123411(),33d d d d h +++=而h =4.060或0120 不妨固定AB ,则AC 有两种可能5.2 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间; (2)是对的;(3)是错的;(4)是对的 三、解答题1.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪⊂⇒⊂⇒⎬⎪⎭2.略第二章 点、直线、平面之间的位置关系 [综合训练B 组] 一、选择题1.C 正四棱柱的底面积为4,正四棱柱的底面的边长为2,正四棱柱的底面的对角线为即2R =2424R S R ππ===球2.D 取BC 的中点G ,则1,2,,EG FG EF FG ==⊥则EF 与CD 所成的角030EFG ∠=3.C 此时三个平面两两相交,且有三条平行的交线4.C 利用三棱锥111A AB D -的体积变换:111111A AB D A A B D V V --=,则1124633h ⨯⨯=⨯⨯5.B11211332A A BD D A BAa V V Sh --===⨯=6. D 一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了 二、填空题1.27 分上、中、下三个部分,每个部分分空间为9个部分,共27部分 2.异面直线;平行四边形;BD AC =;BD AC ⊥;BD AC =且BD AC ⊥3.0604.060 注意P 在底面的射影是斜边的中点5.三、解答题 1.证明://b c ,∴不妨设,b c 共面于平面α,设,a b A a c B ==,,,A a B a A B αα∴∈∈∈∈,即a α⊂,所以三线共面 2.提示:反证法 3.略第二章 点、直线、平面之间的位置关系 [提高训练C 组] 一、选择题1. A ③若m//α,n //α,则m n //,而同平行同一个平面的两条直线有三种位置关系 ④若αγ⊥,βγ⊥,则//αβ,而同垂直于同一个平面的两个平面也可以相交2.C 设同一顶点的三条棱分别为,,x y z ,则222222222,,x y a y z b x z c +=+=+=得2222221()2x y z a b c ++=++=3.B 作等积变换A BCD C ABD V V --=4.B BD 垂直于CE 在平面ABCD 上的射影 5.C BC PA BC AH ⊥⇒⊥6.C 取AC 的中点E ,取CD 的中点F,1,22EF BE BF ===cos EF BF θ==7.C 取SB 的中点G ,则2a GE GF ==,在△SFC中,EF =,045EFG ∠=二、填空题1.5cm 或1cm 分,A B 在平面的同侧和异侧两种情况2.48 每个表面有4个,共64⨯个;每个对角面有4个,共64⨯个3.090 垂直时最大4.030底面边长为1,tan θ=5.11 沿着PA 将正三棱锥P ABC -侧面展开,则',,,A D E A 共线,且'//AA BC 三、解答题:略第三章 直线和方程 [基础训练A 组] 一、选择题1.Dtan 1,1,1,,0ak a b a b b α=-=--=-=-=2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-=3.B42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b =-+=-><5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在6.C2223,m m m m +--不能同时为0 二、填空题1.22d ==2.234:23,:23,:23,l y x l y x l x y =-+=--=+3.250x y --='101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5.23y x=平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2)三、解答题解:(1)把原点(0,0)代入A x B yC ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠ (5)证明:()00P x y ,在直线A x B yC ++=0上00000,Ax By C C Ax By ∴++==--()()000A x xB y y ∴-+-=。
高中数学 必修二 习题:第3章 直线与方程3.2.2 Word版含解析
第三章 3.2 3.2.2一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( )A .2,5B .2,-5C .-2,-5D .-2,5[答案] B[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1 [答案] C[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李,行李费用y (元)与行李质量x (kg)的关系如图所示,则旅客最多可免费携带行李的重量为( )A .20 kgB .25 kgC .30 kgD .80 kg [答案] C[解析] 由图知点A (60,6)、B (80,10),由直线方程的两点式,得直线AB 的方程是y -610-6=x -6080-60,即y =15x -6.依题意,令y =0,得x =30,即旅客最多可免费携带30千克行李.4.如右图所示,直线l 的截距式方程是x a +yb=1,则有( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[答案] B[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.5.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[答案] A[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C .25D .2[答案] A[解析] 直线方程为y -91-9=x -3-1-3,化为截距式为x -32+y 3=1,则在x 轴上的截距为-32.二、填空题7.已知点P (-1,2m -1)在经过M (2,-1)、N (-3,4)两点的直线上,则m =________[答案] 32[解析] 解法一:MN 的直线方程为:y +14+1=x -2-3-2,即x +y -1=0,代入P (-1,2m -1)得m =32.解法二:M 、N 、P 三点共线, ∴4-(2m -1)-3+1=4-(-1)-3-2,解得m =32.8.过点(0,3),且在两坐标轴上截距之和等于5的直线方程是________.[答案] 3x +2y -6=0[解析] 设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧b =3a +b =5,解得a =2,b =3,则直线方程为x 2+y3=1,即3x +2y -6=0. 三、解答题9.已知点A (-1,2)、B (3,4),线段AB 的中点为M ,求过点M 且平行于直线x 4-y2=1的直线l 的方程.[解析] 由题意得M (1,3),直线x 4-y 2=1的方程化为斜截式为y =12x -2,其斜率为12,所以直线l 的斜率为12.所以直线l 的方程是y -3=12(x -1),即x -2y +5=0.10.求分别满足下列条件的直线l 的方程:(1)斜率是34,且与两坐标轴围成的三角形的面积是6;(2)经过两点A (1,0)、B (m,1);(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等. [解析](1)设直线l 的方程为y =34x +b .令y =0,得x =-43b ,∴12|b ·(-43b )|=6,b =±3. ∴直线l 的方程为y =43x ±3.(2)当m ≠1时,直线l 的方程是 y -01-0=x -1m -1,即y =1m -1(x -1) 当m =1时,直线l 的方程是x =1. (3)设l 在x 轴、y 轴上的截距分别为a 、b . 当a ≠0,b ≠0时,l 的方程为x a +yb =1;∵直线过P (4,-3),∴4a -3b =1.又∵|a |=|b |,∴⎩⎪⎨⎪⎧4a -3b =1a =±b,解得⎩⎪⎨⎪⎧ a =1b =1,或⎩⎪⎨⎪⎧a =7b =-7. 当a =b =0时,直线过原点且过(4,-3), ∴l 的方程为y =-34x .综上所述,直线l 的方程为x +y =1或x 7+y -7=1或y =-34x .一、选择题1.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( )A .2 014B .2 015C .2 016D .2 017[答案] D[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.2.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )[答案] B[解析] 直线x m -yn =1化为y =n m x -n ,直线x n -ym=1化为 y =mnx -m ,故两直线的斜率同号,故选B .3.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为( )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[答案] C[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧ x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .4.过P (4,-3)且在坐标轴上截距相等的直线有( )A .1条B .2条C .3条D .4条[答案] B[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0). 令y =0得x =3+4kk ,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B . 二、填空题5.直线l 过点P (-1,2),分别与x 、y 轴交于A 、B 两点,若P 为线段AB 的中点,则直线l 的方程为________.[答案] 2x -y +4=0 [解析] 设A (x,0)、B (0,y ). 由P (-1,2)为AB 的中点,∴⎩⎨⎧x +02=-10+y 2=2,∴⎩⎪⎨⎪⎧x =-2y =4.由截距式得l 的方程为 x -2+y4=1,即2x -y +4=0. 6.已知A (3,0)、B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.[答案] 3[解析] 直线AB 的方程为x 3+y4=1,∴y =4-4x3,∴xy =x (4-43x )=4x -43x 2=-43(x 2-3x )=-43[(x -32)2-94]=-43(x -32)2+3,∴当x =32时,xy 取最大值3.三、解答题7.△ABC 的三个顶点分别为A (0,4)、B (-2,6)、C (-8,0).(1)分别求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边的中垂线所在直线的方程; (4)求AC 边上的高所在直线的方程; (5)求经过两边AB 和AC 的中点的直线方程.[解析] (1)由A (0,4),C (-8,0)可得直线AC 的截距式方程为x -8+y4=1,即x -2y +8=0.由A (0,4),B (-2,6)可得直线AB 的两点式方程为y -46-4=x -0-2-0,即x +y -4=0.(2)设AC 边的中点为D (x ,y ),由中点坐标公式可得x =-4,y =2,所以直线BD 的两点式方程为y -62-6=x +2-4+2,即2x -y +10=0.(3)由直线AC 的斜率为k AC =4-00+8=12,故AC 边的中垂线的斜率为k =-2.又AC 的中点D (-4,2),所以AC 边的中垂线方程为y -2=-2(x +4), 即2x +y +6=0.(4)AC 边上的高线的斜率为-2,且过点B (-2,6),所以其点斜式方程为y -6=-2(x +2),即2x +y -2=0.(5)AB 的中点M (-1,5),AC 的中点D (-4,2), ∴直线DM 方程为y -25-2=x -(-4)-1-(-4),即x -y +6=0.8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形为平行四边形,求点M 的坐标.[解析] 容易求得抛物线与x 轴的交点分别为(-3,0)、(1,0)不妨设A (-3,0)、B (1,0),由已知,设M (a ,b )、N (0,n ),根据平行四边形两条对角线互相平分的性质,可得两条对角线的中点重合.按A 、B 、M 、N 两两连接的线段分别作为平行四边形的对角线进行分类,有以下三种情况:①若以AB 为对角线,可得a +0=-3+1,解得a =-2;②若以AN为对角线,可得a+1=-3+0,解得a=-4;③若以BN为对角线,可得a+(-3)=1+0,解得a=4.因为点M在抛物线上,将其横坐标的值分别代入抛物线的解析式,可得M(-2,3)或M(-4,-5)或M(4,-21).。
高中数学必修2课后习题及答案
高中数学必修2课后习题及答案一、选择题1.某团体每个月会员费35元,今年第一季度总收入为6300元,那么该团体今年的会员人数是多少?A. 180人B. 160人C. 200人D. 150人答案:C. 200人2.已知等差数列的公差为3,首项为4,末项是多少?A. 19B. 20C. 21D. 22答案:C. 213.有一辆以10 m/s的速度匀速行驶的火车,从静止开始先行驶了180 m,然后经过几秒后停下,停下的时间是多少秒?A. 20秒B. 15秒C. 18秒D. 12秒答案:B. 15秒二、填空题1.某个等差数列的首项为7,公差为4,其中第5项是多少?答案:232.一辆汽车以每小时60千米的速度行驶2小时,其行驶的路程是多少千米?答案:120千米3.某个几何图形的边数比顶点数多4,那么该几何图形的顶点数是多少?答案:6三、解答题1.给定一个正三角形ABC,其中AB=AC=8cm,P是BC的中点。
求证:PA ⊥ BC。
证明:由三角形的性质可知,对于等边三角形,它的中线同时也是它的高线。
所以,以P为中心,PC为半径画一个圆,该圆将三角形ABC分成了三个等腰三角形。
所以,该圆除了包括等边三角形的三个顶点外,还包括了等腰三角形的三个顶点。
而根据等腰三角形的性质可知,该圆经过了A点,即PA ⊥ BC得证。
2.某公司甲、乙两人同时开始独立地向北方和东方行走,甲每分钟向北方走2米,乙每分钟向东方走3米。
如果两人行走相同的时间后,他们此时相隔5米,那么他们行走的时间是多少?解答:设甲行走x分钟后,乙行走y分钟。
由于甲每分钟向北方走2米,乙每分钟向东方走3米,所以甲走的距离为2x米,乙走的距离为3y米。
根据勾股定理可知,他们相隔的距离为$\\sqrt{(2x)^2 + (3y)^2}$米。
由于他们相隔的距离为5米,所以$\\sqrt{(2x)^2 + (3y)^2} = 5$。
即(2x)2+(3x)2=25。
人教版高中数学必修二第八章第1节《基本立体图形》解答题专题训练 (1)(有解析)
第八章第1节《基本立体图形》解答题专题训练 (1)一、解答题(本大题共20小题,共240.0分)1.(1)用与球心距离为1的平面去截球,所得的截面面积为4π,求球的表面积(2)正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高2.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?3. 如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=6,CD=2√2,AD=1,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.4. 如图,已知AB是圆锥SO的底面直径,O是底面圆心,SO=2√3,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.5. 从一张半径为6的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为h米的rad.圆锥筒(如图2).若所裁剪的扇形铁皮的圆心角为2π3图1 图2 图3(1)求圆锥筒的容积;(2)在(1)中的圆锥内有一个底面圆半径为x的内接圆柱(图3),求内接圆柱侧面积最大时x的值.6. 正四棱台两底面边长分别为3和9。
(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45∘,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高。
7. 正三棱锥的高为1,底面边长为2√6,内有一个球与它的四个面都相切,求:(1)棱锥的表面积;(2)内切球的半径.8. 如图,在四棱锥P−ABCD中,AB//CD,∠ABC=90∘,ΔADP是等边三角形,AB=AP=2,BP=3,AD⊥BP.(Ⅰ)求BC的长度;(Ⅱ)求直线BC与平面ADP所成的角的正弦值.9. 一个圆锥的高为2cm,母线与轴的夹角为30∘,求圆锥的母线长及圆锥的轴截面的面积.10. 在三棱锥P—ABC中,PA⊥平面ABC,AB⊥BC,PA=AB=1,AC=√2.三棱锥P—ABC的所有顶点都在球O的表面上,则球O的半径为________;若点M是△ABC的重心,则过点M的平面截球O所得截面的面积的最小值为________.11. 如图(1)是一直角墙角,∠AOB=90∘,墙角的两堵墙面和地面两两互相垂直.ABCD是一块长AB为6米,宽BC为2米的板材,现欲用板材与墙角围成一个直棱柱空间堆放谷物.(1)若按如图(1)放置,如何放置板材才能使这个直棱柱空间最大?(2)由于墙面使用受限,OA面只能使用2米,OB面只能使用4米.此矩形板材可以折叠围成一个直四棱柱空间,如图(2),如何折叠板材才能使这个空间最大?12. 如图所示的三棱柱ABC−A1B1C1,请用两个平面把它分成三部分,并使每一部分都是三棱锥.13. 如图,在直三棱柱ABC−A′B′C′中,底面是边长为3的等边三角形,AA′=4,M为AA′的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC′到M的最短路线长为√29,设这条最短路线与CC′的交点为N,求:(1)该三棱柱的侧面展开图的对角线长;(2)PC与NC的长;(3)三棱锥C−MNP的体积.14. 如图,已知一个圆锥的底面半径与高均为2,且在这个圆锥中有一个高为x的内接圆柱.求:(1)求出此圆锥的侧面积;(2)用x表示此圆柱的侧面积表达式;(3)当此圆柱的侧面积最大时,求此圆柱的体积.15. 一个正四棱台的高是17cm,上、下底面边长分别为4cm和16cm.求这个棱台的侧棱长和斜高.16. 已知圆台上、下底面的底面积分别为16π,81π,且母线长为13.(1)求圆台的高;(2)求圆台的侧面积.17. 如图,已知圆锥的轴截面ABC是边长为2cm的正三角形,O是底面圆心.(1)求圆锥的表面积;(2)经过圆锥的高AO的中点O’作平行于圆锥底面的截面,求截得的圆台的体积.18. 已知在三棱柱ABC−A1B1C1中,AB=BC=BB1=4,∠ABC=120∘,侧棱与底面垂直,点M,N分别是CC1,A1B1的中点.(1)求三棱柱ABC−A1B1C1外接球的表面积;(2)设平面ABC截三棱柱ABC−A1B1C1的外接球面所得小圆的圆心为O,求直线OB1与平面BMN所成角的正弦值.19. 如图,梯形ABCD满足,将梯形ABCD绕AB所在直线旋转一周,所得几何体记为Ω.(1)求Ω的体积V;(2)求Ω的表面积S.20. 一个圆锥的母线长为20cm,底面面积为100πcm2.(1)求圆锥的高;(2)用一个平行于圆锥底面的平面去截这个圆锥,截得的截面面积为4πcm2,求截得的圆台的母线长.【答案与解析】1.答案:解:(1)截面圆的半径r=2,球半径R=√12+22=√5,S球=4πR2=20π,(2)正三棱台ABC−A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,故OA=√33AB=43√3,O1A1=√33A1B1=23√3,侧棱长AA1=√32+(43√3−23√3)2=√933,又OE=2√33,O1E1=√33,斜高EE1=√32+(23√3−√33)2=23√21.解析:本题考查了球的表面积,三棱台的相关计算,意在考查学生的计算能力和空间想象能力,属基础题,(1)截面圆的半径r=2,球半径R=√12+22=√5,得到球表面积.(2)如图所示:计算OA=43√3,O1A1=23√3,OE=2√33,O1E1=√33,根据勾股定理计算得到答案.2.答案:解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S▵PEF=12a2,S▵DPF=S▵DPE=12×2a×a=a2,S△DEF=S正方形ABCD−S△PEF−S△DPF−S△DPE,=(2a)2−12a2−a2−a2=32a2.解析:本题考查折叠问题,棱锥的概念,属于基础题.(1)根据棱锥的概念,可知是三棱锥;(2)根据折叠前后图形的特点,即得4个面的特点;(3)用三角形的面积公式得三个侧面的面积,正方形的面积减去三个侧面的面积即得底面的面积.3.答案:解:如图,∵∠ADC=135°,∴∠CDE=45°,又CD=2√2,∴DE=CE=2,又AB=6,AD=1,∴BC=5.则圆台上底面半径r1=2,下底面半径r2=6,高ℎ=3,母线长l=5,圆锥底面半径为2,高ℎ′=2.∴几何体的表面积S=S圆台底面+S圆台侧面+S圆锥侧面=π×62+π×(2+6)×5+π×2×2√2=(76+4√2)π;体积为V=V圆台−V圆锥=13π(36+12+4)×3−13π×4×2=1483π.解析:本题考查了旋转体的结构特征,表面积和体积计算,属于中档题.画出四边形ABCD绕AD旋转一周所成几何体,即可求出表面积和体积.4.答案:解:(1)∵AB是圆锥SO的底面直径,O是底面圆心,SO=2√3,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.∴r=AB2=2,l=√AO2+SO2=√4+12=4,∴圆锥的侧面积S=πrl=π×2×4=8π;(2)取AO的中点E,连接PE,CE,则PE//SO,∵SO⊥平面ABC,∴PE⊥平面ABC,因为CE⊂平面ABC,所以PE⊥CE,∠PCE是直线PC与底面所成角,∴PE=1SO=√3,CE=√22−12=√3,2∵PE=CE,PE⊥CE,∴∠PCE=π,4∴直线PC与底面所成的角为π.4解析:本题考查圆锥的侧面积的求法,考查线面角的求法,考查圆锥性质、线面角等基础知识,考查运算求解能力、考查函数与方程思想,是基础题.=2,l=√AO2+SO2=4,由此能求出圆锥的侧面积;(1)求出r=AB2(2)取AO的中点E,连接PE,CE,则PE//SO,可证∠PCE是直线PC与底面所成角,由此能求出直线PC与底面所成的角.5.答案:解:(1)设圆锥筒的半径为r,容积为V,rad,∵所裁剪的扇形铁皮的圆心角为2π3,解得r=2,∴ℎ=√62−22=4√2,∴V=13Sℎ=13×π×22×4√2=16√2π3,∴圆锥筒的容积为16√2π3;(2)设内接圆柱高为h,由圆锥内接圆柱的轴截面图,得x2=√2−ℎ4√2,解得ℎ=4√2−2√2x,所以内接圆柱侧面积为:,所以当x=1时内接圆柱侧面积最大.解析:本题考查圆柱、圆锥、圆台的侧面积、表面积和体积,简单组合体及其结构特征,考查了函数的最值的求解,属于中档题.(1)利用圆的周长公式和弧长公式求得圆锥底面圆的半径,从而求得圆锥的高,然后求得圆锥筒的体积;(2)利用比例关系,用x表示圆柱的高,从而表示出圆柱的面积,利用二次函数求最值.6.答案:解:(1)如图所示,设O1、O分别为上、下底面的中心,过C1作C1E⊥AC于E,过E作EF⊥BC于F,连接C1F,则C1F为正四棱台的斜高,由题意知∠C1CO=45∘,CE=CO−EO=CO−C1O1=√22×(9−3)=3√2,又EF=CE⋅sin45∘=3√2×√22=3,所以斜高C1F=√C1E2+EF2=√(3√2)2+32=3√3,所以棱台的侧面积为S侧=12×(4×3+4×9)×3√3=72√3.(2)由题意知,设棱台的侧面高为ℎ斜,则棱台的上下底面积为S上底+S下底=32+92=90,所以12×(3+9)⋅ℎ斜×4=90,所以ℎ斜=90×212×4=154,又EF=9−32=3,即得棱台的高为ℎ=√ℎ斜2−EF2=94.解析:本题考查了多面体(棱柱、棱锥、棱台)及其结构特征和棱柱、棱锥、棱台的侧面积、表面积和体积,属于基础题.(1)利用正四棱台的结构特征,结合棱台的侧面积公式计算得结论;(2)利用正四棱台的结构特征,先求得棱台的侧面的斜高,进而利用勾股定理可计算得棱台的高.7.答案:解:(1)如图,过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,∴AE是BC边上的高和中线,D为△ABC的中心.∵AB=2√6,∴S△ABC=√34×(2√6)2=6√3,DE=13×√32AB=√2,PE=√3.S△PAB=S△PBC=S△PCA=12×2√6×√3=3√2.∴S表=9√2+6√3;(2)设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,∵PD=1,∴V P−ABC=13⋅6√3⋅1=2√3,则由等体积可得r=√39√2+6√3=√6−2.解析:本题考查棱锥的全面积和体积的求法,考查等积法求球的半径,解题时要认真审题,注意空间思维能力的培养,属于中档题.(1)过点P作PD⊥平面ABC于D,连结并延长AD交BC于E,连结PE,△ABC是正三角形,AE是BC边上的高和中线,D为△ABC的中心.由此能求出棱锥的全面积;(2)求出棱锥的体积,设球的半径为r,以球心O为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,由此能求出球的半径.8.答案:解:(I)取AD中点F,连PF、BF,∵△ADP是等边三角形,∴PF⊥AD,又∵AD⊥BP,∴AD⊥平面PFB,∵BF⊂平面PFB,∴AD⊥BF,∴BD=AB=2,∴BC=√3.(II)∵AD⊥平面PFB,AD⊂平面APD∴平面PFB⊥平面APD,过点B作BG⊥PF交PF的延长线与点G,则BG⊥平面APD,延长AD,BC交于点H,则∠BHG为直线BC与平面ADP所成的角,由题意得PF=BF=√3,又∵BP=3,∴∠GPB=30°,BG=3,在直角梯形ABCD中,2AD=BD=AB=2,BC=√3,∴CD=1,∴BH=2BC=2√3,∴在.即直线BC与平面ADP所成的角的正弦值为√34∴直线BC与平面ADP所成的角的正弦值为√3.4解析:本题考查线估长的求法,考查考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.(I)取AD中点F,连PF、BF,推导出PF⊥AD,AD⊥BP,从而AD⊥平面PFB,进而AD⊥BF,由此能求出BC.(II)推导出平面PFB⊥平面APD,作BG⊥PF交PF为G,则BG⊥平面APD,AD、BC交于H,∠BHG 为直线BC与平面ADP所成的角,由此能求出直线BC与平面ADP所成的角的正弦值.9.答案:解:如图所示:圆锥的轴截面为等腰三角形PAB,则PO为高,PA为母线,由题意知,PO=2cm,∠APO=30°,在Rt△PAO中,AO =PO ⋅tan30∘=2×√33=2√33(cm), PA =PO cos30∘=4√33(cm), ∴S ΔAPB =12PO ⋅2AO =PO ⋅AO =2×2√33=4√33(cm 2), 所以,圆锥的母线长为4√33cm ,轴截面的面积为4√33cm 2. 解析:本题考查了圆锥及其结构特征,圆锥的有关面积问题,属于中档题.先得到圆锥的轴截面为等腰三角形,求出AO 和PA ,再利用三角形的面积公式,即可求出结果.10.答案:√32;4π9 解析:本题考查棱锥及其外接球的结构特征,几何体中的截面问题,属于中档题.易知球O 的直径为棱长为1的正方体的体对角线,即可求得球O 的半径;分析可知当过点M 的平面截球O 所得截面的面积取得最小值时,点O 到截面的的距离为OM ,求得截面圆的半径,即可得截面面积的最小值.解:∵AB ⊥BC ,PA =AB =1,AC =√2,则BC =1,且PA ⊥平面ABC ,∴球O 的直径为棱长为1的正方体的体对角线,则球O 的半径为R =12PC =12×√12+12+12=√32; 设AC 中点为D ,连接BD ,OD ,则OD = //12PA ,故OD =12,OD ⊥DM , ∵点M 是△ABC 的重心,∴DM =13BD =13×12AC =√26, 则在Rt △ODM 中,OM =√OD 2+DM 2=√(12)2+(√26)2=√116, 当过点M 的平面截球O 所得截面的面积取得最小值时,点O 到截面的的距离为OM ,∴截面圆的半径r =√R 2−OM 2=√(√32)2−(√116)2=23, 即截面面积的最小值为.故答案为√32;4π9.11.答案:解:(1)设OA=x,OB=y,x,y∈(0,6),且x2+y2=36,因为直三棱柱的高为定值,故底面面积最大时体积最大,∵∠AOB=90∘∴SΔAOB=12xy≤x2+y24=9,当且仅当x=y=3√2取到等号.即板材放置时,使得板材与墙面OA成45°角使这个直棱柱空间最大.(2)因为直四棱柱的高为定值,故底面面积最大时体积最大,如图取底面截面:又SΔAOB的面积为定值,只需寻找SΔAPB面积的最大值.又在ΔAPB中AB=2√5,只需寻找AB边上高的最大值即可.作PH⊥AB,设PA=x,AH=y,则BH=2√5−y,PB=6−x,PH2=x2−y2=(6−x)2−(2√5−y)2∴3x−√5y=4,PH=√x2−y2=√−4y2+8√5y+169,当y=√5时,PH最大,此时x=3,即板材放置时,沿中间折叠,使得PA=PB,才能使这个空间最大.解析:(1)设OA=x,OB=y,x,y∈(0,6),且x2+y2=36,底面面积最大时体积最大,S△AOB= 12xy≤x 2+y 24=9,由此能求出板材放置时,使得板材与墙面OA成45°角,能使这个直棱柱空间最大.(2)底面面积最大时体积最大,只需寻找S△APB面积的最大值,即只需寻找AB边上高的最大值即可.作PH⊥AB,设PA=x,AH=y,则PB=6−x,BH=2√5−y,从而得出板材放置时,沿中间折叠,使得PA=PB,才能使这个空间最大.12.答案:解:如图,用过A1,B,C1点的平面先把三棱柱分成两部分,其中上面的部分为三棱锥B−A1B1C1.剩下的部分用过A1,B,C三点的平面再分成两部分,则下面的部分为三棱锥A1−ABC,剩下的部分为三棱锥A1−BCC1.(答案不唯一)解析:本题考查棱柱和棱锥的几何特征,属于基础题.根据棱台和棱锥的几何特征,过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,每一部分都是一个三棱锥.13.答案:解:(1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,故对角线长为√42+92=√97.(2)将该三棱柱的侧面沿棱BB′展开,如图,设PC=x,则MP2=MA2+(AC+x)2.∵MP=√29,MA=2,AC=3,∴x=2,即PC=2.又NC//AM,故PCPA =NCAM,即25=NC2.∴NC=45.(3)S△PCN=12×CP×CN=12×2×45=45.在三棱锥M—PCN中,M到面PCN的距离,即ℎ=√32×3=3√32.∴V C—MNP=V M—CNP=13·ℎ·S△CNP=13×3√32×45=2√35.解析:本题主要考查三棱柱的结构及特征,侧面展开图为矩形,以及三棱锥的体积的计算.(1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,即可得出矩形对角线的长.(2)设PC=x,由勾股定理得MP2=MA2+(AC+x)2,结合MP=√29,以及PCPA =NCAM即可得解.(3)先计算出点M到平面PCN的距离,由V C—MNP=V M—CNP即可得解.14.答案:解:(1)圆锥的底面半径R与高H均为2,则圆锥的母线长为L=2√2,∴圆锥的侧面积为;(2)设圆柱的半径为r,圆柱的高为x,则r2=2−x2,解得r=2−x,且0<x<2;∴圆柱的侧面积为S圆柱侧=2πrx=2π(2−x)x=−2πx2+4πx,(0<x<2);(3)由S圆柱侧=−2πx2+4πx=2π[−(x−1)2+1],0<x<2;当x=1时,S圆柱侧取得最大值为2π,此时r=1,圆柱的体积为.解析:本题考查了旋转体的结构特征,表面积与体积的计算问题,属于基础题.(1)求出圆锥的母线长,计算圆锥的侧面积;(2)利用相似三角形求出圆柱的底面圆半径r,计算圆柱的侧面积;(3)利用二次函数的性质求出圆柱侧面积取最大值时x的值,再计算对应圆柱的体积.15.答案:解:如图所示,设棱台的两底面的中心分别是O1和O,B1C1和BC的中点分别是E1和E,连接O1O,E1E,O1B1,OB,O1E1,OE.则四边形OBB1O1和OEE1O1都是直角梯形.∵A1B1=4cm,AB=16cm,∴O1E1=2cm,OE=8cm,O1B1=2√2 cm,OB=8√2 cm.∴B1B2=O1O2+(OB−O1B1)2=361,E1E2=O1O2+(OE−O1E1)2=325.∴B1B=19cm,E1E=5√13 cm.即棱台的侧棱长为19cm,斜高为5√13 cm.解析:本题考查棱台的结构特征,属于中档题.设棱台的两底面的中心分别是O1和O,B1C1和BC的中点分别是E1和E,在直角梯形OBB1O1和直角梯形OEE1O1中,由B1B2=O1O2+(OB−O1B1)2,E1E2=O1O2+(OE−O1E1)2即可求解.16.答案:解:(1)依题意,圆台上、下底面的底面积分别为16π,81π,所以圆台的上底面半径r1=4,下底面半径r2=9,又圆台的母线长为13,故圆台的高ℎ=√132−(9−4)2=12;(2)圆台的侧面积S=π(r1l+r2l)=π×4×13+π×9×13=169π.解析:(1)利用圆台上、下底面的底面积分别求出上下底面的半径,然后利用半径求出圆台的高即可;(2)直接利用圆台的侧面积公式进行求解即可.本题考查了旋转体的理解和应用,涉及了圆台的侧面积公式的应用,解题的关键是熟练掌握圆台的侧面积公式,属于基础题.17.答案:解:(1)由题意可知BC=AC=2cm,则OC=1cm,即该圆锥的底面半径r=1cm,母线l=2cm.所以该圆锥的表面积为S表面=πr2+πrl=π×12+π×1×2=3π(cm2);(2)在中,AC=2, OC=1,∴AO=√AC2−OC2=√22−1=√3(cm).∵O′是AO的中点,∴AO′=√32cm.∴小圆锥的高ℎ′=√32cm,小圆锥的底面半径r′=12cm,则截得的圆台的体积为V台=V大−V小=13×π×12×√3−13×π×(12)2×√32=7√324π(cm3).解析:本题考查圆锥的表面积和圆台的体积的求解,解决的关键是能得到圆锥的底面半径和高度,以及圆台的底面的半径以及高度,属于中档题.(1)根据题意求得圆锥的底面半径和母线长即可求表面积;(2)利用大圆锥的体积减去小圆锥的体积得出圆台的体积.18.答案:解:(1)由空间几何关系可知,三棱柱ABC−A1B1C1的外接球也就是三棱柱ABC−A1B1C1外接圆柱的外接球,取AC的中点H,因为AB=BC,所以BH⊥AC,延长BH到D,使得BC⊥DC,所以BD为圆柱底面圆的直径,因为AB=BC=4,∠ABC=120∘,所以BD=8,又DD1=BB1=4,所以2r=BD1=√BD2+DD12=4√5,所以外接球的表面积S=4πr2=π(2r)2=80π.(2)据(1)可知,以CA所在的直线为x轴,以BH所在的直线为y轴,以过点H 且和AA 1平行的直线为z 轴,建立空间直角坐标系如图所示:所以A(2√3,0,0),B(0,−2,0),C(−2√3,0,0),A 1(2√3,0,4),C 1(−2√3,0,4),B 1(0,−2,4),所以BC ⃗⃗⃗⃗⃗ =(−2√3,2,0),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,4),因为CM ⃗⃗⃗⃗⃗⃗ =12CC 1⃗⃗⃗⃗⃗⃗⃗ ,所以BM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +12CC 1⃗⃗⃗⃗⃗⃗⃗ =(−2√3,2,2),同理BN ⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +12B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(√3,1,4).设平面BMN 的法向量m⃗⃗⃗ =(x,y,z), 则{m ⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BN ⃗⃗⃗⃗⃗⃗ =0即{−√3x +y +z =0√3x +y +4z =0,取x =√3,则z =−2,y =5,所以m ⃗⃗⃗ =(√3,5,−2), 由(1)可知,截面圆的圆心O 在BH 的延长线上,且HO =2,所以OB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−4,4),设直线OB 1与平面BMN 所成的角大小为θ,所以sinθ=|m ⃗⃗⃗ ⋅OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ |⋅|OB 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√32⋅√32=78 所以直线OB 1与平面BMN 所成角的正弦值为78.解析:本题考查几何体与球的问题以及空间向量求线面角,属于中档题.(1)由空间几何关系可知,三棱柱ABC −A 1B 1C 1的外接球也就是三棱柱ABC −A 1B 1C 1外接圆柱的外接球,根据几何关系求出求出球的半径,即可求解;(2)以CA 所在的直线为x 轴,以BH 所在的直线为y 轴,以过点H 且和AA 1平行的直线为z 轴,建立空间直角坐标系,利用直线的方向向量以及平面的法向量可得线面角的正弦值. 19.答案:解:(1)几何体为圆柱与圆锥的组合体,圆锥和圆柱的底面半径为r =BC =1,圆锥的高为ℎ1=√3,圆柱的高ℎ2=√3,∴V=π×12×√3+12π×1×√3=4√33π.(2)圆锥的母线长l=2.∴几何体的面积S=π×12+π×1×2+2π×1×√3=3π+2√3π.解析:本题考查了旋转体的结构特征,体积,表面积计算,属于基础题.(1)分别求出圆锥和圆柱的体积,再相加即可;(2)几何体的表面积分为三部分,即圆柱的底面积,侧面积和圆锥的侧面积,分别求出各部分面积相加即可.20.答案:解:(1)设圆锥的高为h,圆锥的母线长为l,底面半径为r,则l=20,πr2=100π⇒r=10,则圆锥的高ℎ=√l2−r2=10√3,故圆锥的高为10√3cm2(2)设截得的圆台的母线长为l’,由截得的截面面积为4πcm2,得截得的截面直径为4cm,底面直径为20cm,由图得:.所以截得的圆台的母线长为16cm.解析:本题主要考查圆锥的结构特征,圆锥的表面积问题,属于基础题.(1)根据底面圆面积求得r,再求ℎ=√l2−r2即可;(2)由题意易知截面直径为4,再由20−l′20=420即可求解l′.。
(完整版)高中数学必修2直线与方程练习题及答案详解(最新整理)
这样的直线有 3 条: y 2x , x y 3 0 ,或 x y 1 0 。
4. 解:设直线为 y 4 k(x 5), 交 x 轴于点 ( 4 5, 0) ,交 y 轴于点 (0,5k 4) , k
S 1 4 5 5k 4 5, 40 16 25k 10
2k
2. l2 : y 2x 3,l3 : y 2x 3,l4 : x 2 y 3, 3. 2x y 5 0 k ' 1 0 1 , k 2, y (1) 2(x 2)
20 2 4. 8 x2 y2 可 看 成 原 点 到 直 线 上 的 点 的 距 离 的 平 方 , 垂 直 时 最 短 :
是
.
5.当 0 k 1 时,两条直线 kx y k 1、 ky x 2k 的交点在
象
2
限.
三、解答题
1.经过点 M (3, 5) 的所有直线中距离原点最远的直线方程是什么?
2.求经过点 P(1, 2) 的直线,且使 A(2, 3) , B(0, 5) 到它的距离相等的直线方程
3.已知点 A(1,1) , B(2, 2) ,点 P 在直线 y 1 x 上,求 PA 2 PB 2 取得 2
A. 2x y 1 0 B. 2x y 5 0
C. x 2 y 5 0 D. x 2 y 7 0
3.已知过点 A(2, m) 和 B(m, 4) 的直线与直线 2x y 1 0 平行,
则 m 的值为( )
A. 0
B. 8
C. 2
D.10
4.已知 ab 0,bc 0 ,则直线 ax by c 通过( )
k 2,
2
y 3 2(x 2), 4x 2 y 5 0 2
2.A
k AB
高中必修二数学练习题及讲解答案
高中必修二数学练习题及讲解答案### 高中必修二数学练习题及讲解答案#### 练习题一:函数的性质题目:已知函数 \( f(x) = 2x^2 - 3x + 1 \) ,求该函数的单调区间。
解答:首先,我们需要找到函数的导数来确定其单调性。
对 \( f(x) \) 求导得到 \( f'(x) = 4x - 3 \)。
令 \( f'(x) = 0 \) 求得极值点:\[ 4x - 3 = 0 \]\[ x = \frac{3}{4} \]接下来,我们分析 \( f'(x) \) 的正负来确定单调性:- 当 \( x < \frac{3}{4} \) 时,\( f'(x) < 0 \),所以 \( f(x) \) 在 \( (-\infty, \frac{3}{4}) \) 上单调递减。
- 当 \( x > \frac{3}{4} \) 时,\( f'(x) > 0 \),所以 \( f(x) \) 在 \( (\frac{3}{4}, +\infty) \) 上单调递增。
因此,函数 \( f(x) \) 的单调递减区间为 \( (-\infty,\frac{3}{4}) \),单调递增区间为 \( (\frac{3}{4}, +\infty) \)。
#### 练习题二:三角函数的图像与性质题目:已知 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 位于第一象限,求 \( \cos(\alpha) \) 的值。
解答:根据正弦和余弦的关系,我们知道:\[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \]已知 \( \sin(\alpha) = \frac{3}{5} \),代入上式得:\[ \left(\frac{3}{5}\right)^2 + \cos^2(\alpha) = 1 \]\[ \frac{9}{25} + \cos^2(\alpha) = 1 \]\[ \cos^2(\alpha) = 1 - \frac{9}{25} \]\[ \cos^2(\alpha) = \frac{16}{25} \]因为 \( \alpha \) 在第一象限,余弦值为正,所以:\[ \cos(\alpha) = \frac{4}{5} \]#### 练习题三:不等式的解法题目:解不等式 \( |x - 2| + |x + 3| > 8 \)。
高中数学必修二好题解答题精选(附答案)
一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).参考答案与试题解析一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.【解答】解:(1)不存在点M,使得FM⊥平面BDM.证明如下:∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,∴DA,DC,DE所在直线两两互相垂直,以D为坐标原点,分别以DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系.则D(0,0,0),F(2,0,2),B(2,2,0),设M(0,b,c),则,,.设平面DBM的一个法向量为,由,取y=﹣1,则.若与共线,则,即c2﹣2c+2=0,此方程无解.∴不存在点M,使得FM⊥平面BDM;(2)由(1)知,是平面BDM的一个法向量,而ABF的一个法向量为.由|cos<>|==,得,即b=2c.再由与共线,可得b=2c=2.即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.【解答】解:(1)连接BD1,在△DD1B中,E、F分别为线段DD1、BD的中点,∴EF为中位线,∴EF∥D1B,∵D1B?面ABC1D1,EF?面ABC1D1,∴EF∥平面ABC1D1;(2)由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,∵四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,∴四棱柱ABCD﹣A1B1C1D1的外接球的半径R=2,设AA1=a,则,解得a=,在直四棱柱ABCD﹣A1B1C1D1中,∵BC⊥平面CDD1C1,CD1?平面CD﹣D1C1,∴BC⊥CD1,在RT△CC1D1中,BC=2,CD1=,D1C⊥BC,∴tan∠D1BC=,则∠D1BC=60°,∴异面直线EF与BC所成的角为60°.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【解答】(1)解:∵PA⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵PA⊥平面ABCD,∴PA⊥AB,又∵PA=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又PA⊥BC,BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,又AF?平面PAB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE?平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.【解答】解:(I)连接AB1交A1B于点M,连接MD.∵三棱柱ABC﹣A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,∴M为AB1的中点.∵D是AC的中点,∴MD∥B1C.又MD?平面A1BD,B1C?平面A1BD,∴B1C∥平面A1BD.(II)作CO⊥AB于点O,则CO⊥平面ABB1A1,以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).∵AB=2,AA1=,D是AC的中点,∴A(1,0,0),B(﹣1,0,0),C(0,0,),A1(1,,0),B1(﹣1,,0),C1(0,,).∴D(,0,),=(,0,),=(2,,0).设是平面A1BD的法向量为=(x,y,z),∴,,∴,令x=﹣,得=(﹣,2,3).∵E(1,a,0),则=(1,a﹣,﹣),=(﹣1,0,﹣).设平面B1C1E的法向量为=(x,y,z),∴,.∴,令z=﹣,得=(3,,﹣).∵平面B1C1E⊥平面A1BD,∴=0,即﹣3+﹣3=0,解得a=.∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.【解答】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.(2)连BD,由直四棱柱ABCD﹣A1B1C1D1,可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形,故NA∥BD,∴NA⊥平面ACC1A1,又∵NA?平面AFC1,∴平面AFC1⊥ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.【解答】(Ⅰ)证明:连接AC,交BD于O,则O为AC的中点,连接OM,∵M为PC的中点,则OM∥PA,∵OM?平面BMD,PA?平面BMD,∴PA∥平面BMD,∵PA?平面GPA,平面GPA∩平面MDB=GH,∴PA∥GH,而PA?平面PAD,GH?平面PAD,∴GH∥面PAD;(Ⅱ)解:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),M(0,1,1),设=(0,λ,λ),则,=(0,λ,λ﹣2),设平面PAG的一个法向量为.由,取z=1,得.,由PD与面GAP所成的角的正弦值为,得|cos<>|=,解得:或λ=﹣1(舍).∴G为DM的中点,则H为OD的中点,此时,PA=,GH==,.D到平面PCAH的距离d==.由,,得cos<>===.∴sincos<>=.则GH与PA间的距离为h=.∴四棱锥D﹣PAHG的体积V==.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.【解答】(Ⅰ)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.∵BD2+BC2=DE2+BE2+BC2=DC2,∴∠CBD=90°,∴BD⊥BC.又AC⊥平面CDE,BD?平面BCDE,∴BD⊥AC,故BD⊥平面ABC.∵BD?平面ABD,∴平面ABD⊥平面ABC.(Ⅱ)解:过点D作DH⊥CE.∵AC⊥DH,∴DH⊥平面ACE.∴∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,∴CE=,∴DH===.∵AC==,∴AD==,在Rt△AHD中,sin∠DAH==.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.【解答】(Ⅰ)证明:∵AD⊥平面PCD,∴AD⊥PC,又∵CD⊥PC,AD∩CD=D,∴PC⊥平面ABCD,∵BD?平面ABCD,∴PC⊥BD,设AB=AD=1,则CD=2,由题意知在梯形ABCD中,有BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,又PC∩BC=C,∴BD⊥平面BCP.∵BD?平面BDP,∴平面BPD⊥平面BCP.(2)解:以点D为原点,DA、DC、DQ为x轴、y轴、z轴建立空间直角坐标系.设AB=1,PC=a,则D(0,0,0),A(1,0,0),B(1,1,0),P(0,2,a),=(1,0,0),=(0,2,a),设=(x,y,z)为平面ADP的一个法向量,则==0,可得,令z=﹣2,则y=a,∴=(0,a,﹣2).同理可得平面ABP的一个法向量=(a,0,1).∴|cos|===,解得:a=,∴λ=.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.【解答】解:(Ⅰ)化圆C:x2+y2﹣2mx﹣y=0(m>0)为.则圆心坐标为C(m,),∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴m=2或m=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅱ)点A(0,2)关于直线x+y+2=0的对称点为A′(﹣4,﹣2),则|PA|+|PQ|=|PA′|+|PQ|≥|A′Q|,又A′到圆上点Q的最短距离为|A′C|﹣r=﹣=3﹣=2.∴|PA|+|PQ|的最小值为2,直线A′C的方程为y=x,则直线A′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.【解答】(1)解:由题意可得点C和点M(﹣6,6)关于直线x﹣y+6=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由且,解得:m=0,n=0.故原C的方程为x2+y2=r2.再把点P(2,2)代入圆C的方程,求得r=.故圆的方程为:x2+y2=8;(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣2=k(x﹣2),PB:y﹣2=﹣k(x﹣2).由,得(1+k2)x2+4k(1﹣k)x+4(1﹣k)2﹣8=0,∵P的横坐标x=2一定是该方程的解,∴,同理,x B=.由于AB的斜率k AB====1=k OP(OP的斜率),∴直线AB和OP一定平行.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.【解答】解:①由题意可知,设圆心为(a,a+1),则圆C为:(x﹣a)2+[y﹣(a+1)]2=2,∵圆C经过点P(3,6)和点Q(5,6),∴,解得:a=4.则圆C的方程为:(x﹣4)2+(y﹣5)2=2;②当直线l的斜率存在时,设直线l的方程为y=k(x﹣3)即kx﹣y﹣3k=0,∵过点(3,0)的直线l截圆所得弦长为2,∴,则.∴直线l的方程为12x﹣5y﹣36=0,当直线l的斜率不存在时,直线l为x=3,此时弦长为2符合题意,综上,直线l的方程为x=3或12x﹣5y﹣36=0.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.【解答】解:(Ⅰ)由题可设圆心C(a,a),半径r,∵.∴a=±1.又∵圆C与x轴正半轴相切,∴a=1,r=1.∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1.(Ⅱ)①当直线l的斜率不存在时,直线l的方程为x=1,此时弦长|AB|=2.②当直线l的斜率存在时,设直线l的方程:点C到直线l的距离,弦长,当k=0时,弦长|AB|取最小值,此时直线l的方程为.由①②知当直线l的方程为时,弦长|AB|取最小值为.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.【解答】解:(1)解方程组,得交点M(1,2).……………………………(3分)将点M(1,2)的坐标代入直线l3:2x+my﹣8=0的方程,得m=3.…………(6分)(2)法一:设点N的坐标为(m,n),则由题意可………(9分)解得…………………………………………………………………………(12分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)法二:由(1)知M(1,2),所以,过M且与x﹣3y﹣5=0垂直的直线方程为:y﹣2=﹣3(x﹣1),即3x+y﹣5=0.…………………………………………………………………(8分)解方程组得交点为H(2,﹣1)………………………………………(10分)因为M,N的中点为H,所以,x N=2×2﹣1=3,y N=2×(﹣1)﹣2=﹣4.……(13分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.【解答】解:(Ⅰ)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x﹣1.由题意可得,圆心在直线y=3上,联立,解得圆心坐标为(4,3),故圆C1的半径为4.则圆C1的方程为(x﹣4)2+(y﹣3)2=16;(Ⅱ)∵圆C1的方程为(x﹣4)2+(y﹣3)2=16,即x2+y2﹣8x﹣6y+9=0,圆C2:x2+y2﹣6x﹣3y+5=0,两式作差可得两圆公共弦所在直线方程为2x+3y﹣4=0.圆C1的圆心到直线2x+3y﹣4=0的距离d=.∴两圆的公共弦MN的长为2=2.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.【解答】(Ⅰ)解:由题意,,即2a2﹣a﹣1=0,解得a=1(a>0).∴圆心坐标为(0,1),半径为1,由圆心到直线2x+y+m=0的距离d==,可得m=0或m=﹣2,∵点F(,)在直线2x+y+m=0上,∴m=﹣2.故m=﹣2,圆C的方程为x2+(y﹣1)2=1;(Ⅱ)证明:设Q(t,﹣2),则QC的中点坐标为(),以QC为直径的圆的方程为,即x2+y2﹣tx+y﹣2=0.联立,可得AB所在直线方程为:tx﹣3y+2=0.∴直线AB恒过定点(0,);(Ⅲ)解:由题意可设直线l的方程为y=kx+t,△ABC的面积为S,则S=|CA|?|CB|?sin∠ACB=sin∠ACB,∴当sin∠ACB最大时,S取得最大值.要使sin∠ACB=,只需点C到直线l的距离等于,即=,整理得:k2=2(t﹣1)2﹣1≥0,解得t≤1﹣.①当t∈[0,1﹣]时,sin∠ACB最大值是1,此时k2=2t2﹣4t+1,即u=2t2﹣4t+1.②当t∈(1﹣,1)时,∠ACB∈(,π).∵y=sin x是(,π)上的减函数,∴当∠ACB最小时,sin∠ACB最大.过C作CD⊥AB于D,则∠ACD=∠ACB,∴当∠ACD最大时,∠ACB最小.∵sin∠CAD=,且∠CAD∈(0,),∴当|CD|最大时,sin∠CAD取得最大值,即∠CAD最大.∵|CD|≤|CP|,∴当CP⊥l时,|CD|取得最大值|CP|.∴当△ABC的面积最大时,直线l的斜率k=0,∴u=0.综上所述,u=.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.【解答】解:(1)由题意知,a=4时圆心M坐标为(0,﹣2),半径为2,圆心到直线距离d=,∴弦|AB|=;(2)设A(x1,y1),B(x2,y2),联立,整理得50y2+(28+a)y+4=0.∵△=(28+a)2﹣16×50>0,∴.,则,.于是==.∴a=2.∴圆的方程为x2+y2+2y=0.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.【解答】解:(1)①设点P的坐标为(,y0),∵OP=,∴+y02=,解得y0=±1.又点P在第一象限,∴y0=1,即P的坐标为(,1).易知过点P的圆O的切线的斜率必存在,可设切线的斜率为k,则切线为y﹣1=k(x﹣),即kx﹣y+1﹣k=0,于是有=1,解得k=0或k=.因此过点P的圆O的切线方程为:y=1或24x﹣7y﹣25=0;②设A(x,y),则B(,),∵点A、B均在圆O上,∴有圆x2+y2=1与圆(x+)2+(y+y0)2=4有公共点.于是1≤≤3,解得﹣≤y0≤,即点P纵坐标的取值范围是[﹣,];(2)设M(x,y),假设存在点D(m,n),使为定值t(t>0),则MC2=t2MD2,即(x﹣2)2+y2=t2(x﹣m)2+t2(y﹣n)2,∴,∵M在圆O:x2+y2=1上,∴,解得t=,m=,n=0.∴存在定点D(),使为定值.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.【解答】(Ⅰ)证明:因为ABC﹣A1B1C1是正三棱柱,所以CC1⊥平面ABC因为AD?平面ABC,所以CC1⊥AD因为△ABC是正三角形,D为BC中点,所以BC⊥AD,…(4分)因为CC1∩BC=C,所以AD⊥平面B1BCC1.…(5分)(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,…(8分)因为A1B?平面ADC1,OD?平面ADC1,所以A1B∥平面ADC1;(10分)(Ⅲ)解:V C1﹣ADB1=V A﹣C1DB1==.…(14分)22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC 所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为。
高中数学必修二练习题及答案解析.doc
高中数学必修二练习题及答案解析时间120分钟,满分150分。
一、选择题1.若直线a和b没有公共点,则a与b的位置关系是A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为A. 3B. 4C. 5D. 63.已知平面a和直线1,则a内至少有一条直线与1A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB, A1D1 所成的角等于A. 30°B. 45°C. 60°D. 90°5.对两条不相交的空间直线a与b,必存在平面a , 使得A. a? a , b? aB. a? a , b〃 aC. a± a , b± aD. a? a , b± a6.下面四个命题:若直线a, b异面,b, c异面,则a, c异面;若直线a, b相交,b, c相交,则a, c相交;若a〃b,则a, b与c所成的角相等;若a_Lb, b±c,则a〃c.其中真命题的个数为A. 4B. 3C. 2D. 17.在正方体ABCD-A1B1C1D1中,E, F分别是线段A1B1, B1C1上的不与端点重合的动点,如果A1E-B1F,有下面四个结论:EFXAA1;②EF//AC;③EF与AC异面;④EF〃平面ABCD.其中一定正确的有A.①②B.②③C.②④D.①④8.设a, b为两条不重合的直线,a, B为两个不重合的平面,下列命题中为真命题的是A.若a, b与a所成的角相等,则a〃bB.若a〃 ci , b〃 B , ci 〃 B,贝U a〃bC.若a?ct , b?B , a//b,贝I] a 〃 BD.若a_L ci , b± B , a _L B,则a_Lb9.已知平面ci上平面B , Q C B =1,点AC a , A?l, 直线AB//1,直线AC±1,直线m〃a, n〃 B ,则下列四种位置关系中,不一定成立的是A. AB〃mB. AC±mC. AB〃BD. AC± B10.)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为43A. — B. .533C. 4D. -511.已知三棱锥D—ABC的三个侧面与底面全等,且AB = AC = 3, BC = 2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为11A. B. C. 0D. -212.如图所示,点P在正方形ABCD所在平面外,PA_L平面ABCD, PA=AB,则PB与AC所成的角是A.90°B. 60°C. 45°D. 30°二、填空题13.下列图形可用符号表示为14.正方体ABCD-A1B1C1D1 中,二面角C1-AB-C 的平面角等于.15.设平面a 〃平面B , A, CC ci , B, DC B ,直线AB与CD交于点S,且点S位于平面a, B之间,AS = 8, BS = 6, CS = 12,则SD=.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:AC±BD;AACD是等边三角形;AB与平面BCD成60°的角;AB与CD所成的角是60° .其中正确结论的序号是.三、解答题17.如下图,在三棱柱ABC-A1B1C1中,AABC与AA1B1C1都为正三角形且AA1±面ABC, F、Fl分别是AC,A1C1的中点.求证:平面AB1F1 〃平面C1BF;平面AB1F11 平面ACC1A1.[分析]本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.如图所示,在四棱锥P—ABCD中,PA_L平面ABCD, AB = 4, BC = 3, AD = 5, ZDAB= ZABC = 90° , E 是CD的中点.证明:CD 平面PAE;若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.如图所示,边长为2的等边APCD所在的平面垂直于矩形ABCD所在的平面,BC = 2, M为BC的中点.证明:AM1PM;求二面角P-AM—D的大小.20.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形, B1CXA1B证明:平面AB1C1平面A1BC1;设D是A1C1上的点,且A1B〃平面B1CD,求AID DC1 的值.221.如图,AABC 中,AC = BC = 2, ABED 是边长为1的正方形,平面ABEDX底面ABC,若G, F分别是EC, BD的中点.求证:GF〃底面ABC;一、选择题1、给出的下列命题中,正确命题的个数是梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.C.D.参考答案与解析:思路解析:逐个对各选项分析:梯形是一个平面图形,所以其四个顶点在同一个平面内,①对;两条平行直线是可以确定一个平面的,三条平行直线有可能确定三个平面,②错;三个公共点可以同在两个相交平面的公共直线上,③错;设这四条直线分别为11、12、13、14,取其中两条相交直线11和12,则它们可确定一个平面Q,取13,设其与11、12的交点分别为A、B,则由题意知这两点不同,且AE 11, 12,所以有A、BC ci ,从而13£ a ;同理可证明14F Q .所以每两条都相交且交点各不相同的四条直线一定共面,④对.答案:B主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于A.90°B. 60°C. 45°D. 30°图2-1-17参考答案与解析:思路解析:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE二BC, GF-SA,且GF//SA,所以ZGFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE二a, EA二a, EF二成的角为45° .答案:Ca,因此Z\EFG为等腰直角三角形,ZEFG-450,所以EF与SA所主要考察知识点:空间直线和平面3、如果直线a 〃平面Q,那么直线a与平面a内的A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交参考答案与解析:思路解析:利用线面平行的定义.直线a〃平面Q,则a与a无公共点,与a内的直线当然均无公共点.答案:D主要考察知识点:空间直线和平面4、若点M在直线a上,a在平面a内,则M、a、a间的上述关系可记为A. M G a, a G ciB. a, aC. Ma, a aD. Ma, a a a参考答案与解析:B主要考察知识点:空间直线和平面5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,贝UA.M 一定在直线AC上B.M 一定在直线BD上C.M可能在AC±,也可能在BD上D.M不在AC±,也不在BD上参考答案与解析:A 主要考察知识点:空间直线和平面6、下列说法正确的是A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面a和平面B有不同在一条直线上的三个交点参考答案与解析:解析:A错,不共点的三点;B错,如空间四边形;D错,两平面的三个交点在同一直线上.答案:C主要考察知识点:空间直线和平面7、若点M在直线a上,a在平面a内,则M, a, a间的上述关系可记为A. M G a, a G aB. M £ a,c. , D.,参考答案与解析:解析:要明确数学符号语言的表示.答案:B主要考察知识点:空间直线和平面8、异面直线是指A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线参考答案与解析:解析:A错,有可能平行;B错,有可能平行或相交;C错,有可能平行或相交;D正确.主要考察知识点:空间直线和平面9、若a〃 a , b〃 Q ,则直线a、b的位置关系是A.平行B.相交C.异面D. A、B、C均有可能参考答案与解析:解析:平行、相交、异面都有可能,此题的难点在于可能选平行,易和平行公理混淆.答案:D主要考察知识点:空间直线和平面10、下列命题:若直线1平行于平面。
高中数学必修二第八章立体几何初步典型例题(带答案)
高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。
数学必修二试题全(附答案)
第一章空间几何体4. A, 〃为球面上相异两点,则通过4 8两点可作球的大圆(圆心与球心重合的截面圆) 有( ).B. 无穷多个6.下图为长方体木块堆成的几何体的三视图,堆成这个几何体的木块共有( A. 1块 B. 2块 C. 3块 D. 4块 7.关于斜二测画法画直观图说法不正确的是().一、选择题1.右面的三视图所示的几何体是(A.六棱台B.六棱锥C.六棱柱D.六边形则这两个球的半径之比为(). 2. 已知两个球的表面积之比为1 : 9,A. 1 : 3B. 1 : V3C. 1 : 9 3. 一个长方体去掉一个小长方体,所得几何体的正 (主)视图与侧(左)视图分别如右图所示,则该几何体的俯 视图为( ).D. 1 : 81(第3题)A. 一个 C.零个D. 一个或无穷多个5.右图是一个几何体的三视图,则此几何体的直观图是((第5题)).ABCD正视图 侧视图俯视正视图A.在实物图中取坐标系不同,所得的直观图有可能不同B.平行于坐标轴的线段在直观图中仍然平行于坐标轴C.平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°8.如图,下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥(第8题)A. ®@B. ®®C.①④D.②④9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能是().10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是().A.原三角形的内心的平行投影还是投影三角形的内心B.原三角形的重心的平行投影还是投影三角形的重心C.原三角形的垂心的平行投影还是投影三角形的垂心D.原三角形的外心的平行投影还是投影三角形的外心二、填空题11.一圆球形气球,体积是8 cm3,再打入一些空气后,气球仍然保持为球形,体积是27 cm3.则气球半径增加的百分率为_______________ .12.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是 _______________ .13.右图是一多面体的展开图,每个面内都给了字母, AB C D请根据要求回答问题:① 如果力是多面体的下底面,那么上面的面是 _____ ;② 如果面尸在前面,从左边看是面方,那么上面的面是 ________ 14. 一个几何体的三视图如下图所示,则此几何体的体枳是(第14题)三、解答題15. 圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为 6 ,且底面圆直径与母线长相等,求四棱柱的体积.16. 下图是一个几何体的三视图(单位:cm ) (1)画出这个几何体的直观图(不要求写画法);侧视图俯视图(2)求这个几何体的表面积及体积.A'俯视图(第16题)17.如图,在四边形宓9中,ZDAB=90° , ZADC=135<> , AB=5,切=2迈,AD=2,求四边形磁9绕直线血?旋转一周所成几何体的表面积及体积.18.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积卩正方体,f球,孑何柱的大小.19.如图,一个圆锥形容器的高为a,内装有一定量的水.如果将容器倒置,这时水所形成的圆锥的高恰为即求原来水面的高度.20.如图,四棱柱的底面是菱形,各侧面都是长方形.两个对角面也是长方形,面积分别为Q, 求四棱柱的侧面积.参考答案一、选择题1.B解析:由正视图和侧视图可知几何体为锥体,由俯视图可知几何体为六棱锥.2.A解析:由设两个球的半径分别为r,R,则4 F :4兀用=1 : 9.・•・/ : #=1 : 9, 即r :R=1 : 3.3.C解析:在根据得到三视图的投影关系,•・•正视图中小长方形位于左侧,.••小长方形也位于俯视图的左侧;•・•小长方形位于侧视图的右侧,.••小长方形一定位于俯视图的下侧,・•・图C正确.4.D解析:A, 8不在同一直径的两端点时,过月,方两点的大圆只有一个;A,方在同一直径的端点时大圆有无数个.5.D解析:由几何体的正视图和侧视图可知,几何体上部分为圆锥体,由三个视图可知几何体下部分为圆柱体,・•・几何体是由圆锥和圆柱组成的组合体.6.D解析:由三视图可知几何体为右图所示,显然组成几何体的长方体木| U __________ 块有4块.(第6题)解析:由平行于x轴和z轴的线段长度在直观图中仍然保持不变,平行于y轴的线段长度在直观图中是原来的一半,・•・C不对.8. D解析:①的三个视图均相同;②的正视图和侧视图相同;③的三个视图均不相同;④的正视图和侧视图相同.・••有且仅有两个视图相同的是②④.9. A解析:B是经过正方体对角面的截面;C是经过球心且平行于正方体侧面的截面:D是经过一对平行的侧面的中心,但不是对角面的截面.10. B解析:在平行投影中线段中点在投影后仍为中点,故选B.二、填空题11.50%.解析:设最初球的半径为r,则8=芈打入空气后的半径为斤,则27=- R.3 3・•・: r =27 : 8. A R'. r=3 : 2.二气球半径增加的百分率为50%.12.160.解析:依条件得菱形底面对角线的长分别是口7 = V200和5? = 456 .・・・菱形的边长为J 響' +年、=浮=8.・••棱柱的侧面积是5X4X8 = 160.13.F, C.解析:将多面体看成长方体,A,尸为相对侧面.如果川是多面体的下底面,那么上面的面是尺如果面尸在前面,从左边看是面8则右面看必是刀,于是根据展开图,上面的面应该是C14.80.解析:由三视图可知,几何体是由棱长为4的正方体和底面边长为4,高为3的四棱锥组成,因此它的体积是卩=4'+丄X4‘X3=64 + 16 = 80.3三、解答题15.参考答案:设圆柱底面圆半径为r,则母线长为2_r.•・•圆柱表面积为6 ,:.6 =2 f+4 y. :. r=l.I四棱柱的底面是圆柱底面的内接正方形,・•・正方形边长为血.・•・四棱柱的体积K=(V2):X2 = 2X2 = 4.16.⑴略.(2)解:这个几何体是三棱柱.由于底面△磁的%边上的高为1, BC=2, :. AB=41 .故所求全面积S=2S4S 露c c+2S 如* =8+6血(cm 2). 几何体的体积V=Sg ・BB'=丄X2XlX3 = 3(cm 3).217. 解:S 绅=S 下底而+S 台開而+ S mwA- =X5‘+X(2 + 5)X5+ X2X2V2 =(60+4V2)则 6a 2=4 n Z=6 n R=S. :. a 2= — ,— , R=——6 4兀6兀:.v 正方体v 卩冈柱v y 球.19.解:设水形成的“圆台”的上下底面半径分别为r, R,高为力,则.R a 则依条件得三• h • {f+rR+R) = — • — • f—-1 ,化简得{h —a)z=— — a.332 \2)820.解:设底面边长为a,侧棱长为厶底面的两对角线长分cl = Q\ ① dl = Q 2②+%)"③18.解:设正方体的边长为a,球的半径为r,圆柱的底面直径为2R 、(K MW )2=(兀 kX2Q'=4 H 2(/T)3=4 H别为c, d.(卩正方体)'=&)'=(£)'=16 ~9162(第20题)由①得尸辛,由②得d=牛, 代入③得齒+傷卜乳:・ ef + Q } =4 柑, ・・・2』a=J@+@ . 故 S 制=4a2=2jQ 汁Q].第二章 点、直线、平面之间的位置关系一、选择题1. 垂直于同一条直线的两条直线一定( ). A.平行B.相交C.异面D.以上都有可能2. 正四棱柱ABCD-A^C.D,中,AA^AB ,则异面直线人3与㈣所成角的余弦值为 ( ). A.丄B. ?C. 35553. 经过平面外两点与这个平面平行的平面( ). A.可能没有 B.至少有一个 C.只有一个4. 点、E, F, G,力分别为空间四边形如?中也BC, CD, S6•与劭所成角的大小为90° ,则四边形曰创是(). A.菱形 B.梯形 C.正方形 D.空间四边形5. 己知m, n 为异面直线,MU 平面 ,mu 平面, D =],则( ). A. 2与加,刀都相交B. 1与m, m 中至少一*条相交C. 2与加,"都不相交D. /只与也,m 中一条相交6. 在长方体ABC —A'&CA 中,AB=AD=2百,CG=近,则二面角C 「BD~C 的大小为 ( ). A. 30°B. 45°C. 60°D. 90°7. 如果平面 外有两点仏B,它们到平面 的距离都是a,则直线M 和平面D. D. 〃的中点, 的位置关系一定是( ).有无数个 若AC=BD,且12. 正三棱柱AB&ABG 的各棱长均为2, E,尸分别是必4G 的中点,则朋的长A.平行B.相交C.平行或相交D. ABu 8.设皿是两条不同的直线,, 是两个不同的平面.下列命题中正确的是( ). A. 丄,也丄 ,n// =>也丄刀B. // ,也丄,n// => m-Ln D. 丄, 门 =m,"丄a=> n 丄9.平面 〃平面 ,AB, G?是夹在 和 之间的两条线段,E,尸分别为 切的中点,则疔与 的关系是( ). A.平行B.相交C.垂直D.不能确定 10.平面 丄平面 ,JG a, BE B,曲与两平面 ,0所成的角分别为兰和分别作两平面交线的垂线,垂足为才 4 6则 AB : A f B'等于( ).A. 2 : 1B. 3 : 1C. 3 : 2D. 4 : 3 二、填空题 11.下图是无盖正方体纸盒的展开图,在原正方体中直线肋,G?所成角的大小(第12题)13.如图,SC是平面的斜线,且AO=a,"与成60°角,OC , AA'丄于才,Z店心45°,则点虫到直线兀的距离是___________________ .A14.已知正四棱锥的底面边长为2,侧棱长为石,则侧面与底面所成二面角的大小为_____ •15.已知a, b为直线,为平面,&〃,/>〃,对于a, b的位置关系有下面五个结论:①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有_____________ 个.三、解答题16.正方体的棱长为a.(1)求证:勿丄平面ACCxAv.(2)设尸为A刀中点,求点尸到平面ACQA,的距离.17.如图,個刀是正方形,0是该正方形的中心,尸是平面個刀外一点,丹丄底面個力, £是的中点.求证:⑴刃〃平面宓:(2)別丄平面PAC.A1 (第17题)18.如图,在四棱锥产曲8中,FD丄平面ABC0, PD=DC=BC=\, AB=2, AB//DC. Z应P=90。
高一数学必修2习题(答案详解)
一、选择题【共10道小题】1、给出的下列命题中,正确命题的个数是( )①梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.2C.3D.4参考答案与解析:思路解析:逐个对各选项分析:梯形是一个平面图形,所以其四个顶点在同一个平面内,①对;两条平行直线是可以确定一个平面的,三条平行直线有可能确定三个平面,②错;三个公共点可以同在两个相交平面的公共直线上,③错;设这四条直线分别为l1、l2、l3、l4,取其中两条相交直线l1和l2,则它们可确定一个平面α,取l3,设其与l1、l2的交点分别为A、B,则由题意知这两点不同,且A∈l1,B∈l2,所以有A、B∈α,从而l3∈α;同理可证明l4∈α.所以每两条都相交且交点各不相同的四条直线一定共面,④对.答案:B主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( )A.90°B.60°C.45°D.30°图2-1-17参考答案与解析:思路解析:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE=BC,GF=SA,且GF∥SA,所以∠GFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE=a,EA=a,EF=a,因此△EFG为等腰直角三角形,∠EFG=45°,所以EF与SA所成的角为45°.答案:C主要考察知识点:空间直线和平面3、如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交参考答案与解析:思路解析:利用线面平行的定义.直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.答案:D主要考察知识点:空间直线和平面4、若点M在直线α上,α在平面α内,则M、a、α间的上述关系可记为( )A.M∈a,a∈αB.M∈a,aαC.M a,aαD.M a,aα参考答案与解析:B主要考察知识点:空间直线和平面5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上参考答案与解析:A主要考察知识点:空间直线和平面6、下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点参考答案与解析:解析:A错,不共点的三点;B错,如空间四边形;D错,两平面的三个交点在同一直线上.答案:C主要考察知识点:空间直线和平面7、若点M在直线a上,a在平面α内,则M,a,α间的上述关系可记为()A.M∈a,a∈αB.M∈a,C.,D.,参考答案与解析:解析:要明确数学符号语言的表示.答案:B主要考察知识点:空间直线和平面8、异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线参考答案与解析:解析:A错,有可能平行;B错,有可能平行或相交;C错,有可能平行或相交;D正确.答案:D主要考察知识点:空间直线和平面9、若a∥α,b∥α,则直线a、b的位置关系是()A.平行B.相交C.异面 D.A、B、C均有可能参考答案与解析:解析:平行、相交、异面都有可能,此题的难点在于可能选平行,易和平行公理混淆.答案:D主要考察知识点:空间直线和平面10、下列命题:①若直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线,则a∥α;④若直线a∥b,bα,那么直线a就平行于平面α内的无数条直线.其中真命题的个数为( )A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α.∴①是假命题.对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行.∴②是假命题.对于③,∵直线a∥b, ,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α.∴③是假命题.对于④,∵a∥b, ,那么aα或a∥α,∴a可以与平面α内的无数条直线平行.∴④是真命题.综上所述,真命题的个数为1.答案:A主要考察知识点:空间直线和平面二、填空题【共4道小题】1、空间三条直线两两相交,点P不在这三条直线上,那么由点P和这三条直线最多可以确定的平面的个数为__________.参考答案与解析:解析:(1)当题中三条直线共点但不共面相交时,可确定3个平面;而P点与每条直线又可确定3个平面,故共确定6个.主要考察知识点:空间直线和平面2、和两条平行直线中的一条是异面直线的直线与另一条直线的位置关系是_______.参考答案与解析:思路解析:由公理4可知不可能平行,只有相交或异面.答案:相交或异面主要考察知识点:空间直线和平面3、看图填空.(1)AC∩BD=_______;(2)平面AB1∩平面A1C1=________;(3)平面A1C1CA∩平面AC=________;(4)平面A1C1CA∩平面D1B1BD=_________;(5)平面A1C1∩平面AB1∩平面B1C=_________;(6)A1B1∩B1B∩B1C1=_________.参考答案与解析:解析:两个面的两个公共点连线即为交线.答案:(1)O(2)A1B1(3)AC(4)OO1(5)B1(6)B1主要考察知识点:空间直线和平面4、已知平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定平面_______个.参考答案与解析:解析:分类,如果这四点在同一平面内,那么确定一个平面,如果这四点不共面,则任意三点可确定一个平面,可确定四个.答案:1或4主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.参考答案与解析:解析:本题是一个证明三点共线的问题,利用公理3,两平面相交时,有且只有一条公共直线.因此只需证明P、Q、R三点是某两个平面的公共点,即可得这三个点都在两平面的交线上,因此是共线的.证明:设△ABC确定平面ABC,直线AB交平面α于点Q,直线CB交平面α于点P,直线AC 交平面α于点R,则P、Q、R三点都在平面α内,又因为P、Q、R三点都在平面ABC内,所以P、Q、R三点都在平面α和平面ABC的交线上,而两平面的交线只有一条,所以P、Q、R三点共线.主要考察知识点:空间直线和平面2、如图,已知正方体ABCD—A′B′C′D′.①哪些棱所在直线与直线BA′是异面直线?②直线BA′和CC′的夹角是多少?③哪些棱所在的直线与直线AA′垂直?参考答案与解析:解析:①由异面直线的定义可知,棱AD,DC,CC′,DD′,D′C′,B′D′所在直线分别与直线BA′是异面直线.②由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以BA′与CC′的夹角为45°.③直线AB,BC,CD,DA,A′B′,B′C′,C′D′,D′A′分别与直线AA′垂直.主要考察知识点:空间直线和平面3、已知直线b∥c,且直线a与b、c都相交,求证:直线a,b,c共面.参考答案与解析:证明:∵b∥c,∴不妨设b,c共面于平面α.设a∩b=A,a∩c=B,∴A∈a,B∈a,A∈α,B∈α,即.∴三线共面.主要考察知识点:空间直线和平面一、选择题【共10道小题】1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交 D.平行或异面参考答案与解析:解析:两平行平面内的直线可能平行,也可能异面,就是不可能相交.答案:D主要考察知识点:空间直线和平面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个B.2个C.3个 D.4个参考答案与解析:解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知Pβ过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.答案:A主要考察知识点:空间直线和平面3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内 D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.答案:A主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.bαC.b与α相交D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个 D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④ D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个 D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有()A.1个B.2个C.3个 D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面1、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面2、如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.参考答案与解析:共线或在与已知平面垂直的平面内主要考察知识点:空间直线和平面3、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面4、正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1与过点A,C,E的平面的位置关系是_________.参考答案与解析:解析:如图所示,连结BD,设BD∩AC=O,连结BD1,在△BDD1中,E 为DD1的中点,O为BD的中点,∴OE为△BDD1的中位线.∴OE∥BD1.又平面ACE,OE平面ACE,∴BD1∥平面ACE.答案:平行主要考察知识点:空间直线和平面1、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.参考答案与解析:解析:①平面α∥平面β,平面α与β没有公共点,但不一定总有AD∥BE. 同理不总有BE∥CF.②过A点作DF的平行线,交β,γ于G,H两点,AH∥DF.过两条平行线AH,DF的平面,交平面α,β,γ于AD,GE,HF.根据两平面平行的性质定理,有AD∥GE∥HF.AGED为平行四边形.∴AG=DE.同理GH=EF.又过AC,AH两相交直线之平面与平面β,γ的交线为BG,CH.根据两平面平行的性质定理,有BG∥CH.在△ACH中,.而AG=DE,GH=EF,∴.主要考察知识点:空间直线和平面2、如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.参考答案与解析:解析:要说明SA∥平面MDB,就要在平面MDB内找一条直线与SA平行,注意到M是SC的中点,于是可找AC的中点,构造与SA平行的中位线,再说明此中位线在平面MDB内,即可得证.证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.主要考察知识点:空间直线和平面3、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD 的中心,求证:MN∥平面PB1C.参考答案与解析:证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.一、选择题【共10道小题】1、二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角参考答案与解析:解析:根据二面角的定义讨论,故选C.答案:C主要考察知识点:空间直线和平面2、α、β、γ、ω是四个不同平面,若α⊥γ,β⊥γ,α⊥ω,β⊥ω,则( )A.α∥β且γ∥ωB.α∥β或γ∥ωC.这四个平面中可能任意两个都不平行D.这四个平面中至多有一对平面平行参考答案与解析:解析:若α∩β=a.∵α⊥γ,β⊥γ,∴α⊥γ.同理a⊥ω.∴γ∥ω;若α∥β,则γ与ω相交或平行,∴α∥β或γ∥ω.答案:B主要考察知识点:空间直线和平面3、已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是( )A.0B.1C.2D.3参考答案与解析:解析:①m∥α,n∥α不一定有m∥α.②③正确.答案:C主要考察知识点:空间直线和平面4、如图2-3-15,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )图2-3-15A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直参考答案与解析:思路解析:∵PA⊥平面ABCD,∴PA⊥BC.又∵BC⊥AB,PA∩AB=A,∴PC⊥平面PAB,从而平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A得AD⊥平面PAB.∵AD平面PAD,∴平面PAD⊥平面PAB.答案:A主要考察知识点:空间直线和平面5、如图2-3-16,等边三角形ABC的边长为1,BC边上的高为AD,若沿AD折成直二面角,则A 到BC的距离是……()图2-3-16A.1B.C.D.参考答案与解析:思路解析:折叠后BD=DC=,且∠BDC为二面角的平面角,∠BDC=90°,∴BC=.取BC中点E,连结DE,则DE⊥BC,进一步易证AE⊥BC,AE的长为所求距离.∵AD=,DE=BC=,∴AE=.答案:C主要考察知识点:空间直线和平面6、下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行参考答案与解析:思路解析:在空间中垂直于同一直线的两条直线,可能平行相交,也可能异面,所以A,B错,垂直于同一直线的直线和平面的位置关系可以是直线在平面内,直线和平面平行,所以D错.答案:C主要考察知识点:空间直线和平面7、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是( )A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交参考答案与解析:解析:取BD中点E,连结AE、CE.∵AB=AD=BC=CD,∴AE⊥BD,CE⊥BD.∴BD⊥平面AEC.又AC面AEC,∴BD⊥AC.答案:C主要考察知识点:空间直线和平面8、线段AB的长等于它在平面α内射影长的2倍,则AB所在直线与平面α所成的角为()A.30°B.45°C.60°D.120°参考答案与解析:解析:由直角三角形的边角关系,可知直线与平面α所成的角为60°.答案:C主要考察知识点:空间直线和平面9、设α,β为两个不重合的平面,l,M,n为两两不重合的直线,给出下列四个命题:①若α∥β,,则l∥β;②若, ,M∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若,,且l⊥M,l⊥n,则l⊥α.其中正确命题的序号是( )A.①③④B.①②③C.①③D.②④参考答案与解析:解析:由面面平行的判定定理,知②错误;由线面垂直的判定定理知④错误.答案:C主要考察知识点:空间直线和平面10、下列说法中正确的是()①过平面外一点有且只有一条直线和已知平面垂直②过直线外一点有且只有一个平面和已知直线垂直③过平面外一点可作无数条直线与已知平面平行④过直线外一点只可作一条直线与已知直线垂直A.①②③B.①②③④C.②③D.②③④参考答案与解析:解析:由线面垂直的性质及线面平行的性质,知①②③正确;④错,过直线外一点作平面与直线垂直,则平面内的所有直线都与该直线垂直.答案:A主要考察知识点:空间直线和平面二、填空题【共4道小题】1、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面2、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面3、设三棱锥P ABC的顶点P在平面ABC上的射影是H,给出下列命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心.请把正确命题的序号填在横线上:______________.参考答案与解析:解析:①若P A⊥BC,PB⊥AC,则H为垂心.②∵PA⊥PB,PA⊥PC,∴PA⊥面PBC.∴PA⊥BC.又PH⊥面ABC,∴PH⊥BC.∴BC⊥面PAH.∴AH⊥BC.同理BH⊥AC,∴H为垂心.③∵H为AC中点,∠ABC=90°,∴AH=BH=CH.又PH⊥面ABC,由勾股定理知PA=PB=PC.④∵PA=PB=PC,又PH⊥面ABC,同③可知AH=BH=CH,∴H为外心.答案:①②③④主要考察知识点:空间直线和平面4、如图,P是二面角α-AB-β的棱AB上一点,分别在α、β上引射线PM、PN,截PM=PN,如果∠BPM=∠BPN=45°,∠MPN=60°,则二面角α-AB-β的大小是___________.参考答案与解析:解析:过M在α内作MO⊥AB于点O,连结NO,设PM=PN=a,又∠BPM=∠B PN=45°,∴△OPM≌△OPN.∴ON⊥AB.∴∠MON为所求二面角的平面角.连结MN,∵∠MPN=60°,∴MN=a.又,∴MO2+NO2=MN2.∴∠MON=90°.答案:90°主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,在正方体ABCD—A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1.参考答案与解析:解析:要证明EF∥BD1,可构造与它们都垂直的一个平面.由于A1D,AC 均为各面的对角线,通过对角线的平行性可构造垂直关系.证明:连结A1C1,由于AC∥A1C1,EF⊥AC,∴EF⊥A1C1.又EF⊥A1D,A1D∩A1C1=A1,∴EF⊥平面A1C1D. ①∵BB1⊥平面A1B1C1D1,A1C1平面A1B1C1D1,∴BB1⊥A1C1.又A1B1C1D1为正方体,∴A1C1⊥B1D1.∵BB1∩B1D1=B1,∴A1C1⊥平面BB1D1D.而BD1平面BB1D1D,∴BD1⊥A1C1.同理,DC1⊥BD1,DC1∩A1C1=C1,∴BD1⊥平面A1C1D. ②由①②可知EF∥BD1.主要考察知识点:空间直线和平面2、在长江汽车渡口,马力不足或装货较重的汽车上岸时,采用沿着坡面斜着成S形的方法向上开,这是为什么?你能从数学的角度进行解释吗?参考答案与解析:答案:在汽车马力恒定的情况下,行驶单位路程内,垂直上升高度愈大,汽车愈费“力”,当“力”所不及时,就会发生危险.日常经验告诉我们,走S形可减少这种危险,从数学的角度看,可作如下解释.图2-3-22如图,AB表示笔直向上行走的路线(AB⊥CA),α表示它与水平面所成的交角,CB表示斜着向上行走的路线,β表示它与水平面所成的夹角,它们所达到的高度都是BD.现在的问题就是要研究α和β这两个角哪个大,越大越费力.在Rt△BAD中,sinα=.①在Rt△BCD中,sinβ=.②比较①与②,因为AB、CB分别是直角三角形ABC的直角边和斜边,也就是说AB<CB,所以>.又因为α、β都是锐角,所以α>β.因此汽车沿着CB方向斜着向上开要省力.山区修筑的公路,采取盘山而上的方法,也是这个道理.主要考察知识点:空间直线和平面3、如图,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,BC=2,求以BC为棱、以面BCD和面BCA为面的二面角的大小.参考答案与解析:解:取BC的中点E,连结AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC.∴DE⊥BC.∴∠AE D为二面角A-BC-D的平面角.又∵△ABC≌△DBC,且△ABC为以BC为底的等腰三角形,故△DBC也是以BC为底的等腰三角形,∴.又△ABD≌△BDC,∴AD=BC=2.在Rt△DEB中,,BE=1,∴,同理.在△AE D中,∵AE=DE=,AD=2,∴AD2=AE2+DE2.∴∠AE D=90°.∴以面BCD和面BCA为面的二面角的大小为90°.主要考察知识点:空间直线和平面一、选择题【共12道小题】1、下列说法中正确的是( )A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等参考答案与解析:B主要考察知识点:简单几何体和球2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥参考答案与解析:D主要考察知识点:简单几何体和球3、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A. B. C.D.参考答案与解析:解析:设球半径为R,截面半径为r.+r2=R2,∴r2=.∴.答案:A主要考察知识点:简单几何体和球4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是( )参考答案与解析:解析:由几何体的直观图画法及主体图形中虚线的使用,知A正确.答案:A主要考察知识点:简单几何体和球5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于( )A. B.C. D.参考答案与解析:解析:设长方体的底面边长分别为a、b,过相对侧棱的截面面积S′=①,S=ab②,由①②得:(a+b)2=+2S,∴a+b=,S侧=2(a+b)h=2h.答案:C主要考察知识点:简单几何体和球6、设长方体的对角线长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是( )A. B. C.D.参考答案与解析:解析:设长方体的过一顶点的三条棱长为a、b、c,并且长为a、b的两条棱与对角线的夹角都是60°,则a=4cos60°=2,b=4cos60°=2.根据长方体的对角线性质,有a2+b2+c2=42,即22+22+c2=42.∴c=.因此长方体的体积V=abc=2×2×=.答案:B主要考察知识点:简单几何体和球7、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3 D.S1<S3<S2参考答案与解析:解析:由截面性质可知,设底面积为S.;;可知:S1<S2<S3故选A.用平行于底面的平面截棱锥所得截面性质都是一些比例关系:截得面积之比就是对应高之比的平方,截得体积之比,就是对应高之比的立方,所谓“高”,是指大棱锥、小棱锥的高,而不是两部分几何体的高.答案:A主要考察知识点:简单几何体和球8、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A. B. C.D.参考答案与解析:解析:球心到正四面体一个面的距离即球的半径r,连结球心与正四面体的四个顶点.把正四面体分成四个高为r的三棱锥,所以4×S·r=·S·h,r= h (其中S为正四面体一个面的面积,h为正四面体的高)答案:C主要考察知识点:简单几何体和球9、若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.1∶16B.3∶27C.13∶129D.39∶129参考答案与解析:解析:由题意设上、下底面半径分别为r,4r,截面半径为x,圆台的高为2h,则有,∴x=.∴.答案:D主要考察知识点:简单几何体和球10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A. B. C.D.。
人教版高中数学必修二教材课后习题答案及解析【精品】
•教材习题解答练习0M1.⑴(6“21 略,瓷⑴四梭柱(闍略打(引匮锥与半除俎成的向单组命怵(圏略X (3)13棱柱与珠组成的简单组台体(图略门(4>«个麗台组合而成的筒单姐台■体(图略】.x(i)Ea^(~視图略儿(幼四十黑柱组成的简单爼合怵(三视国略几4三楼耗.•敦材习也孵答⑴如图1-2 - 3 -门/13听小'yA.「门如1痢11 门2 3H t圈1 i所示’14图I 2 3 19点评木懸舟省工州图卅的二P见却询制法.2. <1)三懂拄H刀isfn〔希四fttt*⑴)四磧柱与恫柱组合血磴的简羊组合林.証略*札卷5用B组1:略:签咯*乳此題菩徐不唯一冷一种省秦擡樹15个4、止方体齟會閔施的他单址合怩+如RJ1 - 2 - 3 2L♦教材习题擀答练习(『)1,解:设圆锥的底面半径为严母线畏沟h別由JS意得乂岡讹的削山111科图为T-J.-1-K J. (1 S 皿即I A捋◎代入①式得Q=3JI F.畀。
如|划t 2 220F3 1 2 3 21SirJu哉園隼的底面(8直卷为彩鬲二点评柠畫俯面堰幵国右側锥的不变关泵辰公式的应用,2 .解*机器零件的表面机pf# fti 是圆柱的«面积加上桂柱的全面积.VHIS 的側商報 Si /-2ftXXX2G- 15O!E=sl71(mm )*棱柱的它而积 > 12X j <ft-2 X 6 X -i- X 12> 12 迖孕切 ms. 2 Him )*二一牛机器的金面S=St-h*-l 579.25(mm >.JN IQ 000个零杵的全而积为15 7t?2 500 nun 15.旳2 5 m\故需锌的重虽为】$, 792 5XO P U^l t 7l kfi,点评 本IB 哮査良余儿何的驶働税求孝和鮮实际问昭及埸算能力. ♦教材习题解答K 卩}1. 刑大到原来的8倍戈2, *¥:il :A 休的钊'fO 检为尽!*球的壯栓R 舟 *点评 以上三1»常直公貳的灵活运用能力+ 习题I 3(1\JA 组1 •解’傭而都星等禮梯形・R 上底为8 cm,下底为18 cm.Wft-fc U erm 可得斜高(由『号)‘ =12, S«=5xi^^X 12=780( cm 2h答:780 cm\点评本題夸曹棱台申的庖制梯形的应用和棱幷的1W 面面祝公式+乙鸠:恤台的M Efii ft! $ ―只“+孙・/•捌台底附积节一乩亠:S,.—煮厂+R X rtl 己知得就"R )/=(r-R g :・t 七圣.恵评木题有直对iifiitt 面积、底而和、表面积概急的理解•要将三者区别幵来* 男蚪考査了解方程的能力.3.解假止方休的楼辰协•刚V 命_T x T /r "T*剩.余儿何休的V-V,.lt V "二川―彳―土才”S=inR £ = 4n/(鬻)'皿 >/.^60 OOOjr^sl04(cw- 3.解八 *= -yrK —所权播惟怖休积与霖F的几何休的林积之比为1 1二点评辰题槽査三杭惟体积的求法和"割补注”求M何住的休枳的方迭.4,当三棱柱形客器的憶面AA.B.B水平枚置时,液面部分是四棱柱形*其商为原三棱柱障寻器的髙*憫陵A-1, 乳设十底面AEC水平放置时・液而高为乩由已卿条件知•四桂柱底面与原三桂柱诧酣啣积2比为工;4•由于两种状态下我体休枳相3X8=4XAM=6-Pljt AfJC*Tftt置时*菠面高为£点评展塵考査休砂变換能力,奥註总在几何徉转换过包"「+水旳休枳妁终干变+ 5•解*由J8意*需贴瓷砖的部分为网梅柱与网複台的啊倆积之和・民心十二1> U),■,»{)- 12St>)ii;rii )*四楼合的斜离"二JltV -(迪「=5再『<m)・吕叶” =I》即打曲吃"-1 55S(cni ),故捕翼■«*的面報數为13 800+1 55»=14酹9仪“」>点评辰矚毒查倚单组合护的傭面积求法和解决致:际问題的能力氐攝示*先求出竽嚴梯形的面祝•再乘以化京到上海的铁路険长0P可•请冋学们自已完城”H W1.解,由三视图逝出它的言观国如l¥l 1 - 3 - 2 16所娠..Fl A | H| —(| f J| —.A B —C D -'- H cut ♦A t D, ■ ('i /J - A r D'™C B' 4 cm*球的苴悴为彳EF= (Hl12 cm J XI) f;「16 rm<EJf 1^(i8 rm*A L A"=B0=「|广=1」|打CTU.伍求出料棱育AHEF而上的料髙和-JP宁亍了之疗cm.再求E四債舍UF(^ Ifll上的卅高h —買”?12;' - 2 ^/7LILI+则久=用幷=% *严TWmV)■几=+卫=亠・2 -芋和冋Sn ttlf-S n KH B=<8-4) X2 X20=^480 mv 卫側” =4 XH X2()=肌0 cm . 也汁—给时”匚亠九—2(匚严p 皿亠2(工^)卞2听亠豹X !fit 12X6 = (11275 ^416)cm?=-1( 12X 8^2OX lfi+/12XSX2OX16) X 2•>=十(更7^+ 1】们rm .•5代奖杯的表而探s+ snia(1-FS H44ifiir !曲-J 12^5 -F 4 16^-1 193( m T杯的体机卩一'j 9 夕_匕|+巧.耐+较“卄=yK+64D + y (32 阿+ 416)*1067 cm\答t豐杯ffl我血枳约为I 193 g •悴积约为 1 067 cm\点评転題考煮吧察国闿想線力,运尊能力據解综合|^ 139 17题的能力.2.证期’如图1 - 3 - 2 - 17所示•因为三棱柱的侧面制是矩形•則傭面积为底乘以高.而髙相等•所以要证任意啊个侧面的面积和去于第三个侧面的tfliffi-H要证明三Stt±.底面匕任意H边的和大f第三边即可<而这是显ffi的.点评本題痔査将空佃问應转化城平丽间趣的能力.3. 为釉的直观即如阳】3 2 1SC1 >所示”三规阳如图】3 2 3S(2)所示.图】3 2 19点评本题考査画直观图和三槻图的能力,2 18(2)以直帝边为轴雌縛而戚的儿何体的直现將如阳】如用1 3 219(2)所示+汕(1〉所示.三觇图(I >iF■枫♦教材习题解答塩习参考JRIJMAffi(幼三橈柱或是三陵育t(3川j丄*{」打』川■”;(5ht・石\玄如1 舲所示,朗I 32点评 号育市三视图还原咸丈抑悶和将实詢圏同成直氐團的能力* 4.略.5”解巾癒蔥得三梭柱的底面三角形外接圆足E1拄的底面三角瑶F 卜接的亶植 是碉柱的底面直栓或母縊,植岡桂的廣面羊栓为尺"则卩=竄曙*2R=2nR' •化疋=彩. 征中股边长为s 则轧・寻—氏即 心冲・5心—%」普R . X 钳—$ 一心* 21i •芈说 0 学/?-翠 € 乩解丸求出一乍接头需要的铁皮玄「热后再计阜恵量且r rs, =n(r t +n)^=it(25+L0) XS5=1 225^(^),Z* S - lOgDQOXSj = 1Z 250 ^>()K12 25OD0()X 3t iTO 1 3】-37 &75 000(cm ) =3 797t 5(m H 7»8<m 答 制作l 万个这惮的接1需屢3缺列的铁皮. 点评 启匮考査■台需面积前求法及单经换1T 7,表面积肉为◎匸怵稅约为176,H 视图略. 8用9*<1)64;(2)S ;(3)2^;(4)24I (5)S T 48 cm cm . 10.它ff J fi'J 董面积分别对36K cm *21 JT w *里巧;B&(P>n)匚(1)三视宙如国I - 33两就.直观圏如图1 -:甘所示. 点评 程题痔查空河担象能JJ 和呦阳能力. 怕)» =8> ^0X 30X^1)60 二! 800#<CTTI 几 V^SX-j-S^n, • A=2XyX30X30X 丿30;■尸=9 0007?(cjn ). 点评 术■■卜题喝資齐面休的衣而积和休稅求沈. 〔:1 略.圏1 - U乙解 V-f '. F J? 4 XX ].[ X2;/ -63 H7h!Df ),■J2水巾球的怵积为匕 V. ■— 13 6115 几 卩“呻=期 X60K55 = 264 OOOlcm^hA V 4 200 000 2fiJ 000 200 000 = 61 ODO>43 fill. 故水槽中水不会镒昭*rm ■ 12n rm + 144J3 r cm图1 34点评示題哮育训搔方法.点评本題哮責休枳公试的求法和解窘球问赳的能力.3, 解它是由闍1恥所賦的国形L绕线f艇转而成的•其屮匸与0不相乞点评布腿韦賈观察图形的能力和魁象能力.4. 如图1 鼬”由題意得*Hd mEFF g且四边形ABCD为正方带.AOF=y(cm)t OF= /EF -OP点评考査四撓惟的休积求法和平面图形•与立体图刑z何的关系.•教材习题解答练习(P-)1.1>解汝育线sf川間两樹交•交点分别ArAJ九匚如圈? 1 1 0・则A*區C三点不在一直践上*A Ae iNF »「匸s同理廿匚i机一仏A由^.A.i二疽线可1ft定一平面. 点评本题考査公理2,2. ⑴不并面的四点町御邃4个平面.(2)共点的三旃肯线可确定1个或吕个平而.点评本地占査公理2的应用,3, (1)X (2)V (3)^/ ( Hv/(DV平面”与平面B相兗』h与君有一条公其直线二•有无数爹个公其鼠(2)在已知亘线上耽不同两点.再加上直燼外一点构成不共线三原*由您理2知确定一平潮.⑶抚两备直线t分SM -点(T同于交点)・朝构虑不其线-点・rtl公理2可知砸定一令平面.H J•三个不共耀的点•可确定一个平面•化两平而範合.1/3II 爭 1 35£ yi()O~~(cm>,* yi 00 X'.图I 361^ 2 1 1 ?21^2 I 1 23♦教材习题解答练习2J因为“与平【帀厘金乎廿吐却则^与口的也逹先糸为相交+即4与住台一节公捷点.所W(A)UD)两选项排除*苦“内存在一餐线仃与4平行.则不妨设应与“ 交J柑点•住Q内‘过O盘作亶线c#緘则由公理4可知口〃一这与口与{交于”点矛盾,所以选答索(BX点评此魁考査直线与平面的位賈关泵•同时为将来判斷直线与平面平和罢宦了基础+♦教材习题解答阁 2 ! - 4 9 点评本壮舟宜空间平而的垃国关条歴空何悴阁能力+习题2-KP.J三个平而两两相交川;么它门的交线冇-荒或三金.如盟2 1 1 9人组匕如惘2】1 10b3•门2 (梯形的h,T底平帕由平厅线定文知共而)⑵X(肖附上两点恰好为直径两端点时冷过这三点不能确定平面)[加W (由平杼公理4可得结论)(!)X 导\胡卜吋*/也无公其点)(5)X (“鼻可能平忏•也可能相交)点评木題考資平面的tt痕+空阖两直线的位罢关盘4. 【1眉£由斥面苣线所成柏定又或等角定理)⑵* (由界面直錢所虜角取垂面内蛹纽垂直的郷定)<3)2 f由公理2可得结论)〔门平行戒在平面内【5)平行或护交(仍ftl交或痒潮点评車魁考查空间购直线的位掘关乘+5. 典而点评本圍考査參理2的应用.6. 证明’ *:AA f//bK W AA'= ”用・/.四边能盘且F削为平行四边形.7J f+ 同理Ii('£ Ii\'f.AZAfJ('=Z.VB'C\二△AM 宜△ATfL”点评本趙哮査公理4蜃其应用.m直线悶购平打且不共面,一共前建三个平面•妁果三条直域交于一点剧最参确定三卜平面.8.正方休餐而所在平面分空何成27部分.点评松考査孕生的空何怨象能力TB组1.(l)C ⑵D ⑶1:点评加题考背空间想喩能力•异面育线所成角的求法.2.证明t fcM 平面ABC.所以PE甲喲Ati(\pe^.所以卩在平面ABC:与晋面«的灾红上.同理可证,Q 和R均在这条直线I:.所以畀三点共线.点评先确定一輦宜期•再证羽具他点也在这条直域上.无址明:如图2 1 I 13,11接ACEF』;几TEF井别为AB .BC点*.Jj<;DU1“r= * e『--—=■-DC DA3:A\GJL丄一1「*图2 1」】3 ▼ 3AEF# HG H EF 护HG人四边磁EWH沟梯形.二梯闿関腰£H*Ff;相空.设处点为K,VFJ/C吓閒ABJ儿AK€ 平面ABD,FGU平ffi CBDt代K€平面CBD・血平而AIH)门平而CfU)-BPtr・K13UXEH.FQ.BD交于一点K,点评木起哮艸公理2和公刊:匚♦教材丁题解答练习|P“1, ⑴平面WrVD*平面A'MLry和却平面R卍「「*平面tV”门心、平面ECC®;平面 A % £01点评頁査肓线与平面平行的判定定理.2. ££^ B/J)//平面AEf'+证闍主如图2 2 1 id■连接H打交如m连接0艮在△ dBm中・OE为三用腦耳I位线,/.()E// BO,. Z V BD, C平而AEL\()?;c 平面AEGU#晋而AEC.♦教材习题解答练习(%)UI ■错谍.反长方怦为樸型+如劇222F 分别为ATT’Uir 的中点加7TU 平面A7J7?* D\EFC T 而A f lV('t I)\A t I),/f 平而 BCCE\ EF#平面BCC.但平面 EC与平面A%" LD 中交.(2」止确.点评本題考査平面与平面平存的定文和判定定理的务fF. Z 提示,餐昜证明-VIX /f EF. \A //EH.进而可证平面AMN..「平面EFDK3」A)不止确”白怏方肚为模型*如觀22 2p14则在平面A BCD 内与BC TJ T 的所有直拔都4 * <z2与平商JXL/T 平fr + (U 于面AHCD 与甲面 /Tl1;e ___________皿:足相交的./馆〕不疋蹴以长方体为模取.如陌222st14 • ATT# 平面 A BCD〃平圏 2 2211® ABCD 与面放:「少期空.f 「[不疋确*以长方怵为摸型*如圏2 • 2亠2 • 1鉄"0'〃平面BCrB^HC// 平面A^C'D K但平面BCXTB 1与"7H :P‘相交.(b 〉平面与平面平疔的定义.A(D).点评 星题迪过对两平面平行判定的分析J 音拒学生周密分析问题的能力./J"£li f7 ’一z1序Z \Z[圈 2 22 13♦教材习题解答(1) X 同时过疋』两自线的平面不符合蚤件.(2) X "与皿内直觀有平厅和异面的曲种位置癸JK. unX胡与h可能出现w种悅胃.黄系;平厅、相交,界耐(*26”‘过“作平齒P 交* 于一虎评事馳曹查线itii的平行真系的判定礙性喷.习题2.2(l\t) .X组h(A)以怅方休为模星*如阁2 2 4 —则平面AHCD与-F ^ABB 线 D平杼・S1 网f而和交-点许廉題曹靑两平而平h■的判定.(力(D)直甥口不与世平怡则心或4与a ffi*. 点评肚题E霆也线与平而前位邀关乐.(恥(「)*:0 $PGm翼由P和H线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).参考答案与试题解析一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.【解答】解:(1)不存在点M,使得FM⊥平面BDM.证明如下:∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,∴DA,DC,DE所在直线两两互相垂直,以D为坐标原点,分别以DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系.则D(0,0,0),F(2,0,2),B(2,2,0),设M(0,b,c),则,,.设平面DBM的一个法向量为,由,取y=﹣1,则.若与共线,则,即c2﹣2c+2=0,此方程无解.∴不存在点M,使得FM⊥平面BDM;(2)由(1)知,是平面BDM的一个法向量,而ABF的一个法向量为.由|cos<>|==,得,即b=2c.再由与共线,可得b=2c=2.即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.【解答】解:(1)连接BD1,在△DD1B中,E、F分别为线段DD1、BD的中点,∴EF为中位线,∴EF∥D1B,∵D1B?面ABC1D1,EF?面ABC1D1,∴EF∥平面ABC1D1;(2)由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,∵四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,∴四棱柱ABCD﹣A1B1C1D1的外接球的半径R=2,设AA1=a,则,解得a=,在直四棱柱ABCD﹣A1B1C1D1中,∵BC⊥平面CDD1C1,CD1?平面CD﹣D1C1,∴BC⊥CD1,在RT△CC1D1中,BC=2,CD1=,D1C⊥BC,∴tan∠D1BC=,则∠D1BC=60°,∴异面直线EF与BC所成的角为60°.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【解答】(1)解:∵PA⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵PA⊥平面ABCD,∴PA⊥AB,又∵PA=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又PA⊥BC,BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,又AF?平面PAB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE?平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.【解答】解:(I)连接AB1交A1B于点M,连接MD.∵三棱柱ABC﹣A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,∴M为AB1的中点.∵D是AC的中点,∴MD∥B1C.又MD?平面A1BD,B1C?平面A1BD,∴B1C∥平面A1BD.(II)作CO⊥AB于点O,则CO⊥平面ABB1A1,以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).∵AB=2,AA1=,D是AC的中点,∴A(1,0,0),B(﹣1,0,0),C(0,0,),A1(1,,0),B1(﹣1,,0),C1(0,,).∴D(,0,),=(,0,),=(2,,0).设是平面A1BD的法向量为=(x,y,z),∴,,∴,令x=﹣,得=(﹣,2,3).∵E(1,a,0),则=(1,a﹣,﹣),=(﹣1,0,﹣).设平面B1C1E的法向量为=(x,y,z),∴,.∴,令z=﹣,得=(3,,﹣).∵平面B1C1E⊥平面A1BD,∴=0,即﹣3+﹣3=0,解得a=.∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.【解答】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.(2)连BD,由直四棱柱ABCD﹣A1B1C1D1,可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形,故NA∥BD,∴NA⊥平面ACC1A1,又∵NA?平面AFC1,∴平面AFC1⊥ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.【解答】(Ⅰ)证明:连接AC,交BD于O,则O为AC的中点,连接OM,∵M为PC的中点,则OM∥PA,∵OM?平面BMD,PA?平面BMD,∴PA∥平面BMD,∵PA?平面GPA,平面GPA∩平面MDB=GH,∴PA∥GH,而PA?平面PAD,GH?平面PAD,∴GH∥面PAD;(Ⅱ)解:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),M(0,1,1),设=(0,λ,λ),则,=(0,λ,λ﹣2),设平面PAG的一个法向量为.由,取z=1,得.,由PD与面GAP所成的角的正弦值为,得|cos<>|=,解得:或λ=﹣1(舍).∴G为DM的中点,则H为OD的中点,此时,PA=,GH==,.D到平面PCAH的距离d==.由,,得cos<>===.∴sincos<>=.则GH与PA间的距离为h=.∴四棱锥D﹣PAHG的体积V==.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.【解答】(Ⅰ)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.∵BD2+BC2=DE2+BE2+BC2=DC2,∴∠CBD=90°,∴BD⊥BC.又AC⊥平面CDE,BD?平面BCDE,∴BD⊥AC,故BD⊥平面ABC.∵BD?平面ABD,∴平面ABD⊥平面ABC.(Ⅱ)解:过点D作DH⊥CE.∵AC⊥DH,∴DH⊥平面ACE.∴∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,∴CE=,∴DH===.∵AC==,∴AD==,在Rt△AHD中,sin∠DAH==.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.【解答】(Ⅰ)证明:∵AD⊥平面PCD,∴AD⊥PC,又∵CD⊥PC,AD∩CD=D,∴PC⊥平面ABCD,∵BD?平面ABCD,∴PC⊥BD,设AB=AD=1,则CD=2,由题意知在梯形ABCD中,有BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,又PC∩BC=C,∴BD⊥平面BCP.∵BD?平面BDP,∴平面BPD⊥平面BCP.(2)解:以点D为原点,DA、DC、DQ为x轴、y轴、z轴建立空间直角坐标系.设AB=1,PC=a,则D(0,0,0),A(1,0,0),B(1,1,0),P(0,2,a),=(1,0,0),=(0,2,a),设=(x,y,z)为平面ADP的一个法向量,则==0,可得,令z=﹣2,则y=a,∴=(0,a,﹣2).同理可得平面ABP的一个法向量=(a,0,1).∴|cos|===,解得:a=,∴λ=.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.【解答】解:(Ⅰ)化圆C:x2+y2﹣2mx﹣y=0(m>0)为.则圆心坐标为C(m,),∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴m=2或m=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅱ)点A(0,2)关于直线x+y+2=0的对称点为A′(﹣4,﹣2),则|PA|+|PQ|=|PA′|+|PQ|≥|A′Q|,又A′到圆上点Q的最短距离为|A′C|﹣r=﹣=3﹣=2.∴|PA|+|PQ|的最小值为2,直线A′C的方程为y=x,则直线A′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.【解答】(1)解:由题意可得点C和点M(﹣6,6)关于直线x﹣y+6=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由且,解得:m=0,n=0.故原C的方程为x2+y2=r2.再把点P(2,2)代入圆C的方程,求得r=.故圆的方程为:x2+y2=8;(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣2=k(x﹣2),PB:y﹣2=﹣k(x﹣2).由,得(1+k2)x2+4k(1﹣k)x+4(1﹣k)2﹣8=0,∵P的横坐标x=2一定是该方程的解,∴,同理,x B=.由于AB的斜率k AB====1=k OP(OP的斜率),∴直线AB和OP一定平行.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.【解答】解:①由题意可知,设圆心为(a,a+1),则圆C为:(x﹣a)2+[y﹣(a+1)]2=2,∵圆C经过点P(3,6)和点Q(5,6),∴,解得:a=4.则圆C的方程为:(x﹣4)2+(y﹣5)2=2;②当直线l的斜率存在时,设直线l的方程为y=k(x﹣3)即kx﹣y﹣3k=0,∵过点(3,0)的直线l截圆所得弦长为2,∴,则.∴直线l的方程为12x﹣5y﹣36=0,当直线l的斜率不存在时,直线l为x=3,此时弦长为2符合题意,综上,直线l的方程为x=3或12x﹣5y﹣36=0.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.【解答】解:(Ⅰ)由题可设圆心C(a,a),半径r,∵.∴a=±1.又∵圆C与x轴正半轴相切,∴a=1,r=1.∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1.(Ⅱ)①当直线l的斜率不存在时,直线l的方程为x=1,此时弦长|AB|=2.②当直线l的斜率存在时,设直线l的方程:点C到直线l的距离,弦长,当k=0时,弦长|AB|取最小值,此时直线l的方程为.由①②知当直线l的方程为时,弦长|AB|取最小值为.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.【解答】解:(1)解方程组,得交点M(1,2).……………………………(3分)将点M(1,2)的坐标代入直线l3:2x+my﹣8=0的方程,得m=3.…………(6分)(2)法一:设点N的坐标为(m,n),则由题意可………(9分)解得…………………………………………………………………………(12分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)法二:由(1)知M(1,2),所以,过M且与x﹣3y﹣5=0垂直的直线方程为:y﹣2=﹣3(x﹣1),即3x+y﹣5=0.…………………………………………………………………(8分)解方程组得交点为H(2,﹣1)………………………………………(10分)因为M,N的中点为H,所以,x N=2×2﹣1=3,y N=2×(﹣1)﹣2=﹣4.……(13分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.【解答】解:(Ⅰ)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x﹣1.由题意可得,圆心在直线y=3上,联立,解得圆心坐标为(4,3),故圆C1的半径为4.则圆C1的方程为(x﹣4)2+(y﹣3)2=16;(Ⅱ)∵圆C1的方程为(x﹣4)2+(y﹣3)2=16,即x2+y2﹣8x﹣6y+9=0,圆C2:x2+y2﹣6x﹣3y+5=0,两式作差可得两圆公共弦所在直线方程为2x+3y﹣4=0.圆C1的圆心到直线2x+3y﹣4=0的距离d=.∴两圆的公共弦MN的长为2=2.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.【解答】(Ⅰ)解:由题意,,即2a2﹣a﹣1=0,解得a=1(a>0).∴圆心坐标为(0,1),半径为1,由圆心到直线2x+y+m=0的距离d==,可得m=0或m=﹣2,∵点F(,)在直线2x+y+m=0上,∴m=﹣2.故m=﹣2,圆C的方程为x2+(y﹣1)2=1;(Ⅱ)证明:设Q(t,﹣2),则QC的中点坐标为(),以QC为直径的圆的方程为,即x2+y2﹣tx+y﹣2=0.联立,可得AB所在直线方程为:tx﹣3y+2=0.∴直线AB恒过定点(0,);(Ⅲ)解:由题意可设直线l的方程为y=kx+t,△ABC的面积为S,则S=|CA|?|CB|?sin∠ACB=sin∠ACB,∴当sin∠ACB最大时,S取得最大值.要使sin∠ACB=,只需点C到直线l的距离等于,即=,整理得:k2=2(t﹣1)2﹣1≥0,解得t≤1﹣.①当t∈[0,1﹣]时,sin∠ACB最大值是1,此时k2=2t2﹣4t+1,即u=2t2﹣4t+1.②当t∈(1﹣,1)时,∠ACB∈(,π).∵y=sin x是(,π)上的减函数,∴当∠ACB最小时,sin∠ACB最大.过C作CD⊥AB于D,则∠ACD=∠ACB,∴当∠ACD最大时,∠ACB最小.∵sin∠CAD=,且∠CAD∈(0,),∴当|CD|最大时,sin∠CAD取得最大值,即∠CAD最大.∵|CD|≤|CP|,∴当CP⊥l时,|CD|取得最大值|CP|.∴当△ABC的面积最大时,直线l的斜率k=0,∴u=0.综上所述,u=.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.【解答】解:(1)由题意知,a=4时圆心M坐标为(0,﹣2),半径为2,圆心到直线距离d=,∴弦|AB|=;(2)设A(x1,y1),B(x2,y2),联立,整理得50y2+(28+a)y+4=0.∵△=(28+a)2﹣16×50>0,∴.,则,.于是==.∴a=2.∴圆的方程为x2+y2+2y=0.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.【解答】解:(1)①设点P的坐标为(,y0),∵OP=,∴+y02=,解得y0=±1.又点P在第一象限,∴y0=1,即P的坐标为(,1).易知过点P的圆O的切线的斜率必存在,可设切线的斜率为k,则切线为y﹣1=k(x﹣),即kx﹣y+1﹣k=0,于是有=1,解得k=0或k=.因此过点P的圆O的切线方程为:y=1或24x﹣7y﹣25=0;②设A(x,y),则B(,),∵点A、B均在圆O上,∴有圆x2+y2=1与圆(x+)2+(y+y0)2=4有公共点.于是1≤≤3,解得﹣≤y0≤,即点P纵坐标的取值范围是[﹣,];(2)设M(x,y),假设存在点D(m,n),使为定值t(t>0),则MC2=t2MD2,即(x﹣2)2+y2=t2(x﹣m)2+t2(y﹣n)2,∴,∵M在圆O:x2+y2=1上,∴,解得t=,m=,n=0.∴存在定点D(),使为定值.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.【解答】(Ⅰ)证明:因为ABC﹣A1B1C1是正三棱柱,所以CC1⊥平面ABC因为AD?平面ABC,所以CC1⊥AD因为△ABC是正三角形,D为BC中点,所以BC⊥AD,…(4分)因为CC1∩BC=C,所以AD⊥平面B1BCC1.…(5分)(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,…(8分)因为A1B?平面ADC1,OD?平面ADC1,所以A1B∥平面ADC1;(10分)(Ⅲ)解:V C1﹣ADB1=V A﹣C1DB1==.…(14分)22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC 所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为。