人教A版高一数学必修第二册全册复习测试题卷含答案解析(60)
人教A版高中数学必修第二册强化练习题-8.6.1直线与直线垂直(含答案)
人教A版高中数学必修第二册8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练题组一 求异面直线所成的角1.(2024安徽六安期中)如图,已知正四棱锥P-ABCD的所有棱长均为2,E为棱PA的中点,ABCD-A1B1C1D1中,E,F与直线AD1所成角的大小为在正方体ABCD-A(1)求异面直线CD1与BC1所成的角;(2)求证:MN∥平面ABCD.题组二 空间两条直线所成角的应用5.(多选题)(2024山东德州夏津第一中学月考)已知E,F 分别是三棱锥P-ABC 的棱PA,BC 的中点,且PC=6,AB=8.若异面直线PC 与AB 所成角的大小为60°,则线段EF 的长可能为( )A.7B.13C.5D.376.在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,异面直线AB 与A 1C 所能力提升练在正四面体S-ABC 中3.4.(2024贵州凯里第一中学模拟)平面α过直三棱柱ABC-A 1B 1C 1的顶点B 1,平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,且AA 1=AB=BC,AB ⊥BC,则A 1B 与l 所成角的正弦值为( )A.32 B.22 C.12 D.335.已知正三棱柱ABC-A 1B 1C 1的侧面积为12,当其外接球的表面积取最小值时,异面直线AC 1与B 1C 所成角的余弦值为 .题组二 异面直线所成角的应用6.(2024上海青浦高级中学期末)在棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为底面ABCD 内(包括边界)的动点,满足直线D 1P 与CC 1所成角的大小为π6,则线段DP 扫过的面积为( )A.π12B.π6C.π3D.π27.(2024广东阳江期末)在四面体A-BCD 中,AB=CD=1,BC=2,且AB ⊥BC,CD ⊥BC,异面直线AB 与CD 所成的角为π3,则该四面体外接球的表面积为 .8.(2022河南濮阳第一高级中学月考)在四棱柱ABCD-A 1B 1C 1D 1中,侧面都是矩形,底面ABCD 是菱形且AB=BC=23,∠ABC=120°,若异面直线A 1B 和AD 1所成的角为90°,求AA 1的长度.答案与分层梯度式解析8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练1.B2.C3.A 5.BD 6.DPC,EO=1PC=1,在所以BB1∥平面AEF,平面DBB1,所以BB1又与直线AD1所成的角为连接B N,CN,因为点M为A1B1的中点,A1B1=AB,所以MB1=AN,又MB1∥AN,所以四边形ANB1M为平行四边形,所以AM∥B1N,所以异面直线AM与B1C所成的角为∠CB1N(或其补角),设∠CB1N=θ,在正△ABC中,由AB=4,可得CN=23,在直角△BNB1中,BB1=3,BN=2,所以B1N=22+32=13,在直角△BCB1中,BC=4,BB1=3,所以B1C=42+32=5,在△B 1CN 中,由余弦定理的推论可得cos θ=B 1C 2+B 1N 2-C N 22B 1C·B 1N=52+(13)2-(23)22×5×13=135.故选A.4.解析 (1)连接A 1B,A 1C 1,因为A 1D 1=BC 且A 1D 1∥BC,所以四边形A 1D 1CB 为平行四边形,所以CD 1∥A 1B,则∠A 1BC 1或其补角为异面直线CD 1与BC 1所成的角,易知A 1C 1=A 1B=BC 1,所以△A 1C 1B 为等边三角形,所以∠A 1BC 1=60°,所以异面直线CD 1与BC 1所成的角为60°.(2)证明:连接C 1D,BD,则N 为C 1D 的中点,又M 为BC 1的中点,所以MN ∥BD,又MN ⊄平面ABCD,BD ⊂平面ABCD,所以MN ∥平面ABCD.5.BD 如图,取AC 的中点H,连接EH,FH,因为E,F 分别为PA,BC 的中点,PC=6,AB=8,所以AB ∥HF,HE ∥PC,HF=4,HE=3,所以异面直线PC 与AB 所成的角即为∠EHF(或其补角),所以∠EHF=60°或∠EHF=120°.当∠EHF=60°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=12,解得EF=13;当∠EHF=120°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=-12,解得EF=37.故选BD.易错警示 通过立体图形无法直接判断∠EHF是锐角还是钝角,因此∠EHF可能是异面直线所成的角,也可能是其补角,所以需要进行分类讨论.6.D ∵AB∥DC,∴∠A1CD(或其补角)即为异面直线AB与A1C所成的角,由图可知∠A1CD为.锐角,∴∠A1CD=π3设DD1=x,连接A1D,则A1C=12+12+x2=2+x2,A1D=x2+1.在∴∴7.垂直于上底面于点D,则ADD∥O2A,1∴或其补角,当在当在Rt△ABD中,AB=BD2+A D2=2.综上,AB=2或AB=2.能力提升练1.A2.A3.C4.A 6.A1.A 取SM的中点E,连接EN,AE,如图,∵N是SB的中点,∴EN∥MB,EN=12MB,∴∠ANE或其补角即为异面直线BM与AN所成的角.设正四面体的棱长为4,∵M是SC的中点,N是SB的中点,△SAB和△SBC均为正三角形,∴BM⊥SC,AN⊥SB,且BM=AN=23,∴EN=3,在△ASE中,由余弦定理得AE2=SA2+SE2-2SA·SE·cos∠ASE=16+1-2×4×1×12=13,在△ANE中,由余弦定理的推论得cos∠ANE=AN2+N E2-A E22AN·NE =12+3−132×23×3=16,∴异面直线BM与AN所成角的余弦值为16.故选A.2.A 如图,过点A作AN∥OM,交圆O于点N,连接ON,PN,则∠PAN或其补角即为异面直线OM与AP所成的角,设AO=ON=1,易知∠OAN=∠ONA=∠AOM=30°,则AN=3,因为轴截面PAB为等腰直角三角形,所以PN=PA=2,在△APN中,由余弦定理的推论得cos∠PAN=PA2+A N2-P N22PA·AN =2+3−226=64,所以异面直线OM与AP所成角的余弦值为64.故选A.3.C 如图,连接AD1,AP,易得AD1∥BC1,所以∠AD1P(或其补角)即为异面直线D1P与BC1所成的角.设正方体的棱长为1,DP=x,x∈[0,1],在△AD 1P 中,AD 1=2,AP=D 1P=1+x 2,故cos ∠AD 1P=(2)2+(1+x 2)2-(1+x 2)222·1+x 2=221+x 2,∵x ∈[0,1],∴cos ∠AD 1P=221+x2∈又∠AD 1P 是△AD 1P 的内角,∴∠AD 1P 故选C.B 1则ABC 1,所以B 1C 2∥平面⊂由小题速解 因为平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,平面ABC 1∩平面BB 1C 1C=BC 1,所以l ∥BC 1,则A 1B 与l 所成的角为∠A 1BC 1(或其补角),下同解析.5.答案 514解析 设正三棱柱的底面边长为a,高为h,外接球的半径为R,由题意知3ah=12,即ah=4,易得△ABC 外接圆的半径r=a2sin π3=a3,则R 2=r 2+ℎ24=a 23+ℎ24≥aℎ3=43,当且仅当a=32h 时取等号,此时外接球的表面积最小.将三棱柱补成一个四棱柱,如图,连接DB 1,DC,则AC 1∥DB 1,∴∠DB 1C(或其补角)为异面直线AC 1与B 1C 所成的角,易得B 1C=DB 1=a 2+ℎ2,DC=3a,∴cos ∠DB 1C=2(a 2+ℎ2)-3a 22(a 2+ℎ2)=514.解题技法 补形平移是常用的一种作平行线的方法,一般是补一个相同形状的几何体,构成一个特殊的几何体,方便作平行线,如此题将三棱柱补成一个四棱柱.6.A 因为DD 1∥CC 1,所以直线D 1P 与CC 1所成的角即为DD 1与D 1P 所成的角,易知DD 1⊥PD,所以DD 1与D 1P 所成的角为∠DD 1P,即∠DD 1P=π6,故tan ∠DD 1P=DPDD 1=33,即DP=33,所以点P 的轨迹是以D 为圆心,33为半径的圆的四分之一,故线段DP 扫过的面积为14π×=π12.故选A.7.答案 16π3或8π解析 由题意,可以将四面体A-BCD 补成一个直三棱柱,如图所示.∵CD∥BE,∴直线AB与CD所成的角为∠ABE或其补角,∵异面直线AB与CD所成的角为π3,∴∠ABE=π3或∠ABE=2π3.设△ABE外接圆的半径为r,当∠ABE=π3时,AE=BE=AB=1,则2r=1sinπ3,解得r=33;当∠ABE=2π3时,AE=3,则则8.BC且A1D1=BC,所以A1B∥CD1,所成的角为∠AD1C,故∠AD1均为矩形,设在故。
最新人教A版高一数学必修二测试题全套及答案
最新人教A版高一数学必修二测试题全套及答案第一章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.下列关于投影的说法中不正确的是( )A.平行投影的投影线是互相平行的B.中心投影的投影线是互相垂直的C.线段上的点在中心投影下仍然在线段上D.平行的直线的中心投影不一定是平行直线答案:B2.下列说法中,正确的个数为( )①相等的角在直观图中对应的角仍然相等;②相等的线段在直观图中对应的线段仍然相等;③平行的线段在直观图中对应的线段仍然平行;④线段的中点在直观图中仍然是线段的中点.A.1 B.2C.3 D.4解析:①③④正确.答案:C3.如图所示为一个简单几何体的三视图,则其对应的实物是( )解析:根据三种视图的对角线位置关系,容易判断A是正确结论.答案:A4.如图所示,该直观图表示的平面图形为( )A.钝角三角形B.锐角三角形C.直角三角形D.正三角形解析:直观图中三角形有2条边与坐标轴平行,这2条边互相垂直.答案:C5.如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数是( )A.2 B.3C.4 D.6解析:由正视图可知,几何体的最右边有2个小正方体,中间和左边各有1个小正方体.答案:C6.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30解析:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5;截去的锥体的底面是两直角边的长分别为3和4的直角三角形,高为3,所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.答案:C7.棱台上、下底面面积分别为16,81,有一平行于底面的截面,其面积为36,则截面截得两棱台高的比为( )A .11B .12C .23D .34解析:将棱台还原为棱锥,设顶端小棱锥的高为h. 两棱台的高分别为x 1,x 2,则 ⎝ ⎛⎭⎪⎫h h +x 12=1636,解得x 1=h 2.⎝ ⎛⎭⎪⎫h h +x 1+x 22=1681,解得x 2=34h.故x 1x 2=23. 答案:C8.某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是(锥体体积公式:V =13Sh ,其中S为底面面积,h为高)( )A.3 B.2C. 3 D.1解析:由图可知,三棱锥的底面为边长为2的正三角形,左侧面垂直于底面,且为边长为2的正三角形,所以该三棱锥的底面积S=12×2×3,高h=3,所以其体积V=13Sh=13×3×3=1.故选D.答案:D9.若圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A.缩小到原来的一半B.扩大到原来的两倍C.不变D.缩小到原来的1 6解析:设变化前的圆锥的高为h,底面半径为r,体积为V,变化后的圆锥的高为h′,底面半径为r′,体积为V′,则V′V=13πr′2h′13πr2h=14r2·2hr2h=12.答案:A10.如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:该零件是一个由两个圆柱组成的组合体,其体积V=π×32×2+π×22×4=34π(cm3),原毛坯的体积V毛坯=π×32×6=54π(cm3),被切部分的体积V切=V毛坯-V=54π-34π=20π(cm3),所以V切V毛坯=20π54π=1027.答案:C11.如图,如果底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是( )A.13πr2(a+b) B.12πr2(a+b)C.πr2(a+b) D.2r2(a+b)解析:将这样两个完全相同的几何体拼在一起组成一个高为a+b的圆柱,故圆柱被截后剩下部分的体积为12πr2(a+b).答案:B12.一个球与一个正三棱柱的三个侧面和两个底面都相切,如果这个球的体积是323π,那么这个三棱柱的体积是( )A.96 3 B.16 3 C.24 3 D.48 3解析:由球的体积公式可求得球的半径R=2.设球的外切正三棱柱的底面边长为a,高即侧棱长为h,则h=2R=4.在底面正三角形中,由正三棱柱的内切球特征,有a2×33=R=2,解得a=4 3.故此三棱柱的体积V=12×32×(43)2×4=48 3.答案:D第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.如图所示的螺母是由________和______两个简单几何体构成的.答案:正六棱柱圆柱14.某几何体的三视图如图所示,则该几何体的体积是________.解析:由三视图知该几何体是一个底面半径为r=2,高为h=4的圆柱,中间挖去一个底面边长为a=2的正四棱柱,则其体积是V=πr2h-a2h=16π-16.答案:16π-1615.如图是一个几何体的三视图.若它的体积是33,则a=________.解析:由三视图可知几何体是一个三棱柱,其底面三角形的一边长为2,其边上的高为a,则V三棱柱=12×2×a×3=33a= 3.答案: 316.如图是一个棱长为1的无盖正方体盒子的平面展开图,A,B,C,D为其上四个点,则以A,B,C,D为顶点的三棱锥的体积为________.题图答图解析:将展开图还原为正方体如图.故以A,B,C,D为顶点的三棱锥的体积V=VC-ABD=1 3×⎝⎛⎭⎪⎫12×12×1=16×1=16.答案:16三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2cm,如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的表面积;(2)求该几何体的外接球的体积.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的表面积是2×4×4+4×4×2=64 cm2故该几何体的表面积是64 cm2.(2)由长方体与球的性质可得,长方体的对角线是球的直径.记长方体的对角线为d,球的半径是r,d=16+16+4=36=6,所以球的半径r=3.因此球的体积V=43πr3=43×27π=36π cm3.所以外接球的体积是36π cm3.18.(10分)把一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与等腰三角形的底边边长x的函数关系式,并求出函数的定义域.解:在Rt△EOF中,EF=5 cm,OF=12x cm,则EO=25-14x2 cm,于是V=13x225-14x2 cm3.依题意,函数的定义域为{x|0<x<10}.19.(10分)某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其中正视图与侧视图为两个全等的等腰三角形,俯视图为一个圆,三视图尺寸如图所示(单位cm).(1)求出这个工件的体积;(2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米1元,现要制作10个这样的工件,请计算喷漆总费用(精确到整数部分).解:(1)由三视图可知,几何体为圆锥,底面直径为4,母线长为3,设圆锥高为h,则h=32-22=5,则V=13Sh=13πR2h=13π×4×5=453π(cm3).(2)圆锥的侧面积S1=πRl=6π,则表面积=侧面积+底面积=6π+4π=10π(cm2),喷漆总费用=10π×10=100π≈314(元).20.(10分)已知圆柱OO1的底面半径为2,高为4.(1)求从下底面出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO1的截面ABCD将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求V Ⅰ:VⅡ(体积之比).解:(1)将侧面沿某条母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长41+π2.(2)连接OA,OB,因为截面ABCD将底面圆周截去14,所以∠AOB=90°,因为OA=OB=2,所以AB=22,而截面ABCD是矩形且AD=4,所以SABCD=8 2.(3)依题知V圆柱=Sh=16π,三棱柱AOB-DO1C的体积是8,则VⅠ+8=14V圆柱=4π,所以VⅠ=4π-8,而VⅡ=V圆柱-VⅠ=12π+8,于是VⅠ:VⅡ=π-23π+2.第二章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.下列推理不正确的是( )A.A∈b,A∈β,B∈b,B∈βbβB.M∈α,M∈β,N∈α,N∈βα∩β=直线MNC.直线m不在α内,A∈m AαD.A,B,C∈α,A,B,C∈β,且A,B,C不共线α与β重合解析:由空间中点线面的位置关系知选C.答案:C2.下列说法中正确的是( )A.经过三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定4个平面解析:考查确定平面的公理二及其推论,易知选D.答案:D3.如图,α∩β=l,A∈α,B∈α,AB∩l=D,C∈β,C l,则平面ABC与平面β的交线是( )A.直线AC B.直线ABC.直线CD D.直线BC解析:D∈l,lβ,∴D∈β,又C∈β,∴CDβ;同理,CD平面ABC,∴平面ABC∩平面β=CD.答案:C4.设a、b为两条直线,α、β为两个平面,下列四个命题中,正确的命题是( ) A.若a、b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若aα,bβ,a∥b,则a∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析:A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.答案:D5.设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析:A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.答案:C6.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A 1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E解析:由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,C正确.答案:C6题图7题图7.如上图,ABCD-A1B1C1D1是长方体,AA1=a,∠BAB1=∠B1A1C1=30°,则异面直线AB与A1C1所成的角、AA1与B1C所成的角分别为( )A.30°,30° B.30°,45°C.45°,45° D.60°,45°解析:∵AB∥A1B1,∴∠B1A1C1是AB与A1C1所成的角,∴AB与A1C1所成的角为30°.∵AA1∥BB1,∴∠BB1C是AA1与B1C所成的角,又BB1=a,AB1=A1C1=2a,AB=3a,∴B1C1=BC=a,则BB1C1C是正方形,∴∠BB1C=45°.答案:B8.在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为( )A.2 3 B.27C.4 3 D.47解析:连接CM,则由题意知PC⊥平面ABC,可得P C⊥CM,所以PM=PC2+CM2,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×3 2=23,所以PM的最小值为27.答案:B9.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.当A1M+MC取得最小值时,B1M的长为( )A. 3B. 6C.2 3 D.2 6题图答图解析:将侧面CDD1C1绕DD1逆时针转90°展开,与侧面ADD1A1共面(如图),连接A1C′,当A1,M,C′共线时,A1M+MC取得最小值.由AD=CD=1,AA1=2,得M为DD1的中点.在长方体ABCD-A1B1C1D1中,B1A1⊥平面A1D1DA,则B1A1⊥A1M,又A1M=2,故B1M=B1A21+A1M2=12+22= 3.故选A.答案:A10.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n等于( )A.8 B.9C.10 D.11解析:取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF 相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.答案:A11.正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )A.点H是△A1BD的垂心B.AH⊥平面CB1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°解析:因为AH⊥平面A 1BD ,BD 平面A 1BD , 所以BD⊥AH.又BD ⊥AA 1,且AH∩AA 1=A , 所以BD⊥平面AA 1H.又A 1H 平面AA 1H.所以A 1H⊥BD,同理可证BH⊥A 1D , 所以点H 是△A 1BD 的垂心,A 正确. 因为平面A 1BD∥平面CB 1D 1, 所以AH⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD.因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H≠45°,所以∠A 1AH≠45°,故D 错误. 答案:D12.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π6解析:如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO⊥平面ABC ,连接OA ,则∠PAO 即为PA 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3, 则S =34×(3)2=334,VABC -A 1B 1C 1=S×PO=94,∴PO= 3.又AO =33×3=1, ∴tan∠PAO=PO AO =3,∴∠PAO=π3. 答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.已知PA 垂直平行四边形ABCD 所在平面,若PC⊥BD,平行四边形ABCD 一定是________. 解析:如图,∵PA⊥平面ABCD , ∴PA⊥BD.∵PC⊥BD,∴BD⊥平面PAC. ∴AC⊥BD. 答案:菱形14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN 等于________.解析:∵B 1C 1⊥平面A 1ABB 1,MN 平面A 1ABB 1,∴B 1C 1⊥MN, 又∠B 1MN 为直角,∴B 1M⊥MN 而B 1M∩B 1C 1=B 1.∴MN⊥平面MB 1C 1,又MC 1平面MB 1C 1, ∴MN⊥MC 1,∴∠C 1MN =90°. 答案:90°15.如图,圆锥SO 中,AB ,CD 为底面圆的两条直径,AB∩CD=O ,且AB⊥CD,SO =OB=2,P为SB的中点.则异面直线SA与PD所成角的正切值为________.题图答图解析:连接PO,则PO∥SA,PO=SA2=2,∴∠OPD即为异面直线SA与PD所成的角,且△OPD为直角三角形,∠POD为直角,∴tan∠OPD=ODOP=22= 2.答案: 216.如图,正方体ABCD-A1B1C1D1,给出下列四个结论:①P在直线BC1上运动时,三棱锥A-D1PC的体积不变;②P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;③P在直线BC1上运动时,二面角P-AD1-C的大小不变;④M是平面A1B1C1D1上到点D和C1距离相等的点,则M点运动的路线是过D1点的直线.其中正确结论的编号是________(写出所有真命题的编号).解析:因为BC1∥AD1,所以BC1∥平面ACD1,BC1上任意一点到平面ACD1的距离为定值,所以VA-D1PC=VP-ACD1为定值,①正确;因为P到平面ACD1的距离不变,但AP的长度在变化,所以AP与平面ACD1所成角的大小是变量,②错误;平面PAD1即平面ABC1D1,又平面ABC1D1与平面ACD1所成二面角的大小不变,故③正确;M点运动的路线为A1D1,④正确.答案:①③④三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形.证明:(1)因为D,E分别为AP,AC的中点,所以DE∥PC.又DE平面BCP,所以DE∥平面BCP.(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF,所以四边形DEFG为平行四边形.又PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.18.(10分)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B 1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.因为DE平面AA1C1C,AC平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC平面ABC,所以AC⊥CC1.因为AC⊥BC,CC1平面BCC1B1,BC平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.因为BC1平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C平面B1AC,AC∩B1C=C,所以BC 1⊥平面B 1AC.因为AB 1平面B 1AC ,所以BC 1⊥AB 1.19.(10分)如图,在三棱锥V -ABC 中,平面VAB⊥平面ABC ,△VAB 为等边三角形,AC⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB∥平面MOC ;(2)求证:平面MOC⊥平面VAB ; (3)求三棱锥V -ABC 的体积.证明:(1)如图,因为O ,M 分别为AB ,VA 的中点,所以OM∥VB. 因为VB 平面MOC , 所以VB∥平面MOC.(2)因为AC =BC ,O 为AB 的中点,所以OC⊥AB. 因为平面VAB⊥平面ABC ,且OC 平面ABC , 所以OC⊥平面VAB.所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以S △VAB =3, 又因为OC⊥平面VAB ,所以 V C -VAB =13OC·S △VAB =33.因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,所以三棱锥V -ABC 的体积为33.20.(10分)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点.(1)求证:EF∥平面A1B1 BA;(2)求证:平面AEA1⊥平面BCB1;(3)求直线A1B1与平面BCB1所成角的大小.解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF平面A1B1BA,所以EF∥平面A1B1BA.(2)证明:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,又AE平面AEA1,所以平面AEA1⊥平面BCB1.(3)取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=12B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1=B1M2+A1M2=4.在Rt△A1NB1中,sin∠A1B1N=A1NA1B1=12,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成的角为30°.第三章检测试题时间:90分钟分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知直线l的方程为y=-x+1,则直线l的倾斜角为( )A.30°B.45°C.60°D.135°解析:由题意可知,直线l的斜率为-1,故由tan135°=-1,可知直线l的倾斜角为135°.答案:D2.已知点A(0,4),B(4,0)在直线l上,则l的方程为( )A.x+y-4=0 B.x-y-4=0C.x+y+4=0 D.x-y+4=0解析:由截距式方程可得l的方程为x4+y4=1,即x+y-4=0.答案:A3.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是( )A.π3B.π4C.2π3D.3π4解析:因为kMN =-3-22+3=-1,所以kl=1,由此可得,直线l的倾斜角为π4.答案:B4.若直线mx+ny+3=0在y轴上的截距为-3,且它的倾斜角是直线3x-y=33的倾斜角的2倍,则( )A.m=-3,n=1 B.m=-3,n=-3C.m=3,n=-3 D.m=3,n=1解析:依题意得-3n=-3,-mn=tan120°=-3,得m=3,n=1.故选D.答案:D5.两条直线l1:2x+y+c=0,l2:x-2y+1=0的位置关系是( )A .平行B .垂直C .重合D .不能确定解析:l 1的斜率k 1=-2,l 2的斜率k 2=12,因k 1k 2=-1,所以两直线垂直.故选B.答案:B6.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0 D .x -y +1=0解析:由已知得直线l 是线段AB 的垂直平分线,所以直线l 的斜率为1,且过线段中点⎝ ⎛⎭⎪⎫52,72,由点斜式得方程为y -72=x -52,整理得x -y +1=0.故选D.答案:D7.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:由题意知:-m n =-43,即3m =4n ,且有-1n =13,∴n=-3,m =-4.答案:C8.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0 D .-3x +4y +5=0解析:设所求直线上的任一点为(x ,y),则此点关于x 轴对称的点的坐标为(x ,-y),因为点(x ,-y)在直线3x -4y +5=0上,所以3x +4y +5=0.答案:A9.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析:由题意知点P 关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线所经过的路程PMN 的长为|CD|=210.答案:A10.点P(7,-4)关于直线l :6x -5y -1=0的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(-5,6) D .(-2,3) 解析:设Q(m ,n),则⎩⎪⎨⎪⎧n +4m -7×65=-1,6×m +72-5×n -42-1=0,解得m =-5,n =6,所以点P(7,-4)关于直线l :6x -5y -1=0的对称点Q 的坐标是(-5,6),故选C.答案:C 11.已知点M(1,0)和N(-1,0),直线2x +y =b 与线段MN 相交,则b 的取值范围为( )A .[-2,2]B .[-1,1] C.⎣⎢⎡⎦⎥⎤-12,12 D .[0,2]解析:直线可化为y =-2x +b ,当直线过点M 时,可得b =2;当直线过点N 时,可得b =-2.所以要使直线与线段MN 相交,b 的取值范围为[-2,2].答案:A12.函数y =x 2+1+x 2-4x +8的最小值是( ) A .0 B.13 C .13D .不存在解析:y =x 2+1+x 2-4x +8 =x -02+0-12+x -22+0-22.令A(0,1),B(2,2),P(x,0),则原问题转化为在x 轴上求一点P(x,0),使它到A ,B 两点的距离之和最小.如图所示,取点A 关于x 轴的对称点A′,连接A′B,交x 轴于点P ,则|AP|+|PB|=|A′P|+|PB|≥|A′B|. ∵A(0,1),∴A′(0,-1).∴|A′B|=2-02+2+12=13,即函数y =x 2+1+x 2-4x +8的最小值是13. 答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.过点(1,3)且在x 轴的截距为2的直线方程是__________. 解析:由题意设所求直线的方程为x 2+yb =1,又点(1,3)满足该方程,故12+3b =1,∴b=6.即所求直线的方程为x 2+y6=1,化为一般式得3x +y -6=0. 答案:3x +y -6=014.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为________.解析:设直线方程为y =16x +b ,与坐标轴截距分别为-6b ,b ,所以12|-6b|·|b|=3,解得b =±1,所以直线方程为x -6y +6=0或x -6y -6=0. 答案:x -6y +6=0或x -6y -6=015.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________.解析:设P(x,1),则Q(2-x ,-3),将Q 坐标代入x -y -7=0得,2-x +3-7=0.∴x =-2,∴P(-2,1),∴k l =-23.答案:-2316.已知a ,b ,c 为某一直角三角形的三边长,c 为斜边,若点(m ,n)在直线ax +by +2c =0上,则m 2+n 2的最小值为________.解析:点(m ,n)在直线ax +by +2c =0上,且m 2+n 2为直线上的点到原点的距离的平方.当两直线垂直时,距离最小.故d =|a·0+b·0+2c|a 2+b 2=2c a 2+b 2=2c c =2.所以m 2+n 2≥4.答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)(1)已知直线y=33x-1的倾斜角为α,另一直线l的倾斜角β=2α,且过点M(2,-1),求l的方程;(2)已知直线l过点P(-2,3),且与两坐标轴围成的三角形面积为4,求直线l的方程.解:(1)∵已知直线的斜率为33,即tanα=33,∴α=30°.∴直线l的斜率k=tan2α=tan60°= 3.又l过点(2,-1),∴l的方程为y-(-1)=3(x-2),即3x-y-23-1=0.(2)显然,直线l与两坐标轴不垂直,否则不构成三角形,设l的斜率为k,则k≠0,则l的方程为y-3=k(x+2).令x=0,得y=2k+3;令y=0,得x=-3k-2.于是直线与两坐标轴围成的三角形面积为1 2|(2k+3)(-3k-2)|=4,即(2k+3)(3k+2)=±8,解得k=-12或k=-92.∴l的方程为y-3=-12(x+2),或y-3=-92(x+2).即x+2y-4=0或9x+2y+12=0.18.(10分)已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,(1)若l1与l2交于点P(m,-1),求m,n的值;(2)若l1∥l2,试确定m,n需要满足的条件;(3)若l1⊥l2,试确定m,n需要满足的条件.解:(1)将点P(m,-1)代入两直线方程得:m2-8+n=0和2m-m-1=0,解得m=1,n =7.(2)由l1∥l2得:m2-8×2=0m=±4,又两直线不能重合,所以有8×(-1)-nm≠0,对应得n≠±2,所以当m=4,n≠-2或m=-4,n≠2时,l1∥l2.(3)当m=0时,直线l1:y=-n8和l2:x=12,此时l1⊥l2,当m≠0时,此时两直线的斜率之积等于1 4,显然l1与l2不垂直,所以当m=0,n∈R时直线l1和l2垂直.19.(10分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎨⎧x -2y +1=0,y =0,解得点A 的坐标为(-1,0).又直线AB 的斜率k AB =1,x 轴是∠A 的平分线,所以k AC =-1,则AC 边所在的直线方程为y =-(x +1).①又已知BC 边上的高所在直线的方程为x -2y +1=0,故直线BC 的斜率k BC =-2, 所以BC 边所在的直线方程为y -2=-2(x -1).②解①②组成的方程组得⎩⎨⎧x =5,y =-6.即顶点C 的坐标为(5,-6).20.(10分)如图所示,已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB 的直线l 将△ABC 分成两部分,求此两部分面积的比.解:由已知可得k AB =-12,过点M(-4,2)且平行于AB 的直线l 的方程为x +2y =0.直线AC 的方程为5x -2y +10=0,由方程组⎩⎨⎧x +2y =0,5x -2y +10=0,得直线l 与AC 的交点坐标为P(-53,56).所以|CP||CA|=|x P ||x A |=56.所以两部分的面积之比为5262-52=2511.第四章检测试题 时间:90分钟 分值:120分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.以点A(1,-2),B(3,4)为直径端点的圆的方程是( ) A .(x -2)2+(y +1)2=10 B .(x -2)2+(y -1)2=10 C .(x -2)2+(y +1)2=10 D .(x -2)2+(y -1)2=10解析:圆心为⎝⎛⎭⎪⎫1+32,-2+42,即(2,1),r =12|AB|=10,故方程为(x -2)2+(y -1)2=10.答案:D2.圆x 2+y 2=4与圆x 2+y 2-6x +8y -24=0的位置关系是( ) A .相交 B .相离 C .内切 D .外切解析:圆x 2+y 2=4的圆心为A(0,0),半径为r =2,圆x 2+y 2-6x +8y -24=0的圆心为B(3,-4),半径为R =7,因为|AB|=5=R -r =7-2,故两圆内切.答案:C3.点P(1,-2,5)到坐标平面xOz 的距离为( ) A .1 B .2 C .5 D .-2解析:因为空间一点到平面xOz 的距离等于|y|,所以点P(1,-2,5)到坐标平面xOz 的距离为2.故选B.答案:B4.要使圆x 2+y 2+Dx +Ey +F =0与x 轴的两个交点分别位于原点的两侧,则有( ) A .D 2+E 2-4F>0,且F<0 B .D<0,F>0 C .D≠0,F≠0 D .F<0解析:令y =0,则x 2+Dx +F =0.设两个交点的横坐标分别为x 1,x 2,则x 1x 2=F<0,且x 2+y 2+Dx +Ey +F =0表示圆时D 2+E 2-4F>0.答案:A5.圆x 2+y 2-4x -2y -20=0的斜率为-43的切线方程是( )A .4x +3y -36=0B .4x +3y +14=0C .4x +3y -36=0或4x +3y +14=0D .不能确定解析:由直线与圆的位置关系可知,一定有两条斜率都为-43的平行直线与圆相切.答案:C6.如图,等腰梯形ABCD 的底边长分别为2和14,腰长为10,则这个等腰梯形的外接圆E 的方程为( )A .x 2+(y -2)2=53B .x 2+(y -2)2=64C .x 2+(y -1)2=50 D .x 2+(y -1)2=64解析:由题图易知,等腰梯形的高为102-62=8,显然,外接圆的圆心E 一定在y 轴上,设圆心E 到下底边的距离为a ,则72+a 2=12+(8-a)2,解得a =1.故外接圆E 的圆心为(0,1),半径为72+12=52,故所求外接圆E 的方程为x 2+(y -1)2=50.答案:C7.若曲线x 2+y 2+a 2x +(1-a 2)y -4=0关于直线y -x =0的对称曲线仍是其本身,则实数a 等于( )A .±12B .±22C.12或-22D .-12或22解析:将(y ,x)代入曲线方程,得 y 2+x 2+a 2y +(1-a 2)x -4=0. 于是1-a 2=a 2,解得a =±22. 答案:B8.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:设圆C 2的圆心为(a ,b).因为圆C 1的圆心坐标为(-1,1),所以⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎨⎧a =2,b =-2.又因为圆C 2的半径与圆C 1的半径长相等, 所以圆C 2的方程为(x -2)2+(y +2)2=1. 答案:B9.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN|=23,则k 的值是( )A .-34B .0C .0或-34D.34解析:圆心(3,2)到直线y =kx +3的距离d =|3k +1|k 2+1,则|MN|=24-3k +12k 2+1=23,解得k =0或k =-34.答案:C10.已知圆C :x 2+y 2-4x -2y +1=0,直线l :3x -4y +m =0,圆上存在两点到直线l 的距离为1,则m 的取值范围是( )A .(-17,-7)B .(3,13)C .(-17,-7)∪(3,13)D .[-17,-7]∪[3,13]解析:当圆心到直线的距离d 满足r -1<d<r +1时,圆上存在两个点到直线的距离为1,即满足1<|2+m|5<3,解得m∈(-17,-7)∪(3,13).答案:C11.设点M(x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN=45°,则x 0的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-12,12 C .[-2,2]D.⎣⎢⎡⎦⎥⎤-22,22解析:点M(x 0,1)在直线y =1上,而直线y =1与圆x 2+y 2=1相切.据题意可设点N(0,1),如图,则只需∠OMN≥45°即可,此时有tan∠OMN=|ON||MN|≥tan45°,得0<|MN|≤|ON|=1,即0<|x 0|≤1.当M 位于点(0,1)时,显然在圆上存在点N 满足要求.综上可知,-1≤x 0≤1.答案:A12.已知线段AB 的端点B 的坐标为(m ,n),端点A 在圆C :(x +1)2+y 2=4上运动,且线段AB 的中点M 的轨迹方程为⎝⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,则m +n 等于( )A .-1B .7C .1D .-7解析:设点M ,A 的坐标分别为(x ,y),(x 0,y 0),因为点M 是线段AB 的中点,所以⎩⎨⎧x 0=2x -m ,y 0=2y -n ,又点A 在圆C 上,所以(2x -m +1)2+(2y -n)2=4,即⎝⎛⎭⎪⎫x +1-m 22+⎝ ⎛⎭⎪⎫y -n 22=1,即为中点M 的轨迹方程,又中点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=1,比较得⎩⎪⎨⎪⎧1-m 2=-32,-n 2=-32,解得⎩⎨⎧m =4,n =3.所以m +n =7.故选B.答案:B第Ⅱ卷(非选择题,共60分)二、填空题(每小题5分,共20分)13.点M(4,-3,5)到x 轴的距离为m ,到xOy 坐标平面的距离为n ,则m 2+n =________. 解析:由题意,得m 2=(-3)2+52=34,n =5,所以m 2+n =39. 答案:3914.若P(2,1)是圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:由圆的方程得圆心坐标为O(1,0),所以k PO =12-1=1.则直线AB 的斜率为k =-1,由点斜式方程得x +y -3=0.答案:x+y-3=015.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD,则四边形ABCD的面积为________.解析:将圆的方程化为标准形式为(x-3)2+(y-4)2=25,过点(3,5)的最长弦为直径,所以AC=10,最短弦为与AC垂直的弦,所以BD=46,所以四边形ABCD的面积为12 AC·BD=20 6.答案:20 616.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为________;(2)圆C在点B处的切线在x轴上的截距为________.解析:(1)过点C作CM⊥AB于M,连接AC,则|CM|=|OT|=1,|AM|=12|AB|=1,所以圆的半径r=|AC|=|CM|2+|AM|2=2,从而圆心C(1,2),即圆的标准方程为(x-1)2+(y -2)2=2.(2)令x=0得,y=2±1,则B(0,2+1),所以直线BC的斜率为k=2+1-20-1=-1,由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,则圆C在点B处的切线方程为y-(2+1)=1×(x-0),即y=x+2+1,令y=0得x=-2-1,故所求切线在x 轴上的截距为-2-1.答案:(1)(x-1)2+(y-2)2=2 (2)-2-1三、解答题(写出必要的计算步骤,只写最后结果不得分,共40分)17.(10分)已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:x-2y-3=0上,(1)求此圆的标准方程;(2)判断点M1(0,1),M2(2,-5)与该圆的位置关系.解:(1)如图,因为点A(2,-3),B(-2,-5),所以线段AB 的中点D 的坐标为(0,-4).又k AB =-5--3-2-2=12,所以线段AB 的垂直平分线的方程是y =-2x -4. 联立方程组⎩⎨⎧x -2y -3=0,y =-2x -4,解得⎩⎨⎧x =-1,y =-2.所以圆心坐标为C(-1,-2),半径 r =|CA|=2+12+-3+22=10.所以此圆的标准方程是(x +1)2+(y +2)2=10.(2)将点M 1(0,1),M 2(2,-5)分别代入(x +1)2+(y +2)2中,得值分别为10,18, 故点M 1(0,1)在圆上,点M 2(2,-5)在圆外.18.(10分)自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线L 所在的直线方程.解:已知圆的标准方程是(x -2)2+(y -2)2=1, 它关于x 轴对称的圆的方程是(x -2)2+(y +2)2=1. 设光线L 所在直线方程是y -3=k(x +3).由题设知对称圆的圆心C′(2,-2)到这条直线的距离等于1,即d =|5k +5|1+k 2=1. 整理得12k 2+25k +12=0, 解得k =-34或k =-43.故所求的直线方程是y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y+3=0.19.(10分)已知点P(2,0)及圆C :x 2+y 2-6x +4y +4=0. (1)若直线l 过点P 且与圆心C 的距离为1,求直线l 的方程.(2)设直线ax -y +1=0与圆C 交于A ,B 两点,是否存在实数a ,使得过点P(2,0)的直线l 2垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)设直线l 的斜率为k(k 存在),则方程为y -0=k(x -2),即kx -y -2k =0. 又圆C 的圆心为(3,-2),半径r =3,由|3k +2-2k|k 2+1=1,解得k =-34.所以直线方程为y =-34(x -2),即3x +4y -6=0.当l 的斜率不存在时,l 的方程为x =2,经验证x =2也满足条件.(2)把直线y =ax +1代入圆C 的方程,消去y ,整理得(a 2+1)x 2+6(a -1)x +9=0. 由于直线ax -y +1=0交圆C 于A ,B 两点, 故Δ=36(a -1)2-36(a 2+1)>0,解得a<0. 则实数a 的取值范围是(-∞,0). 设符合条件的实数a 存在.由于l 2垂直平分弦AB ,故圆心C(3,-2)必在l 2上.所以l 2的斜率k PC =-2. 而k AB =a =-1k PC ,所以a =12. 由于12(-∞,0),故不存在实数a ,使得过点P(2,0)的直线l 2垂直平分弦AB.20.(10分)在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A(4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解:(1)由题意可知直线l 的斜率存在,设直线l 的方程为y =k(x -4),即kx -y -4k =0,所以圆心C 1(-3,1)到直线l 的距离d =4-2322=1,由点到直线的距离公式得|-3k -1-4k|k 2+1=1,化简得24k 2+7k =0,解得k =0或k = -724.所以直线l 的方程为y =0或y =-724(x -4),即y =0或7x +24y -28=0. (2)设点P 的坐标为(m ,n),直线l 1,l 2的方程分别为y -n =k 1(x -m),y -n =-1k 1(x -m),即k 1x -y +n -k 1m =0,-1k 1x -y +n +1k 1m =0.因为直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,两圆半径相等,由垂径定理,得:圆心C 1(-3,1)到直线l 1的距离与圆心C 2(4,5)到直线l 2的距离相等,故|-3k 1-1+n -k 1m|k 21+1=|-4k 1-5+n +1k 1m|1k 2+1,化简得(2-m -n)k 1=m -n -3或(m -n +8)k 1=m +。
高一数学下学期(人教A版A卷)-(考试版)(范围:必修第二册第6、7、8章)
2022-2023学年高一下学期期中考前必刷卷数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第二册第6、7、8章。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得2分,有选错的得0分。
1.在ABC 中,点D 是线段BC (不包括端点)上的动点,若=+AB xAC y AD ,则()A .1x >B .1y >C .1x y +>D .1xy >2.欧拉公式i s co in s i x e x x +=(i )是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的()A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量()()1,,,2a k b k →→==,若a →与b →方向相同,则k 等于()A .1B .C .D4.ABC 中,若1,2,30a c B ︒===,则ABC 的面积为()A .12B .2C .1D 5.设复数z 满足|2|1z i -=,在复平面内z 对应的点到原点距离的最大值是()A .1BC D .36.已知在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3A =,则222b c a +的取值范围是()A .5,34⎛⎤⎥⎝⎦B .(]0,3C .5,24⎛⎤ ⎥⎝⎦D .5,23⎛⎤ ⎥⎝⎦7.已知在ABC 中,2B A =,ACB ∠的平分线CD 把三角形分成面积比为4:3的两部分,则cos A =()A .3B .3C .13D .238.设O 为ABC 所在平面内一点,满足2730OA OB OC --=,则ABC 的面积与BOC 的面积的比值为()A .2.5B .3C .3.5D .49.已知复数122z i =-,则下列结论正确的有()A .1z z ⋅=B .2z z=C .31z =-D .2020122z i =-+10.下列命题中正确的是:()A .两个非零向量a ,b ,若a b a b -=+ ,则a 与b 共线且反向B .已知0c ≠ ,且a c b c ⋅=⋅ ,则a b=C .若()3,4OA =- ,()6,3OB =- ,()5,3OC m m =---,ABC ∠为锐角,则实数m 的取值范围是34m >-D .若非零a ,b 满足a b a b ==- ,则a 与a b +的夹角是30︒11.如图所示设,Ox Oy 是平面内相交成2πθθ⎛⎫≠ ⎪⎝⎭角的两条数轴,12,e e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y = .在23πθ=的反射坐标系中,()()12,21a b ==- ,,.则下列结论中,正确的是()A .()1,3a b -=-B .a =C .a b⊥D .a 在b 上的投影向量为714- 12.在南方不少地区,经常看到一种用木片、竹篾或苇蒿等材料制作的斗笠,用来遮阳或避雨,有一种外形为圆锥形的斗笠,称为“灯罩斗笠”,不同型号的斗笠大小经常用帽坡长(母线长)和帽底宽(底面圆直径长)两个指标进行衡量,现有一个“灯罩斗笠”,帽坡长20厘米,帽底宽关于此斗笠,下列说法正确的是()A .斗笠轴截面(过顶点和底面中心的截面图形)的顶角为120︒B .过斗笠顶点和斗笠侧面上任意两母线的截面三角形的最大面积为平方厘米C .若此斗笠顶点和底面圆上所有点都在同一个球上,则该球的表面积为1600π平方厘米二、填空题:本题共4小题,共2013.若点A (-2,0),B (3,4),C (2,a )共线,则a =________.14.在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则该四边形的面积为________15.如图,在四面体A BCD -中,AC BD a ==,AC 与BD 所成的角为60°,M 、N 分别为AB 、CD 的中点,则线段MN 的长为______.16.如图,在ABC 中,已知2AB =,6AC =,60BAC ∠=︒,2BC BM =,3AC AN =,线段AM ,BN 相交于点P ,则MPN ∠的余弦值为___________.三、解答题:本题共6小题,共70分。
2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()
高中数学 全册综合检测试题课时作业(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题
全册综合检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题每小题5分,共40分 1.下列命题为假命题的是( D ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数的模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|解析:A 中,任何复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,所以A 正确;B 中,由复数为零的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;C 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),且z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|;反之,由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时,|z 1|=|z 2|,故C 正确;D 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 1>z 2,则a 1>a 2,b 1=b 2=0,此时|z 1|>|z 2|;若|z 1|>|z 2|,z 1与z 2不一定能比较大小,所以D 错误.2.随机调查某校50个学生在学校的午餐费,结果如表:餐费/元 6 7 8 人数102020这50A .7.2,0.56 B .7.2,0.56 C .7,0.6 D .7,0.6解析:根据题意,计算这50个学生午餐费的平均值是x =150×(6×10+7×20+8×20)=7.2,方差是s 2=150[10×(6-7.2)2+20×(7-7.2)2+20×(8-7.2)2]=150(14.4+0.8+12.8)=0.56.3.设α,β为两个平面,则α∥β的充要条件是( B ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:当α内有无数条直线与β平行,也可能两平面相交,故A 错.同样当α,β平行于同一条直线或α,β垂直于同一平面时,两平面也可能相交,故C ,D 错.由面面平行的判定定理可得B 正确.4.如图,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC 1与平面AB 1C 1所成的角为( A )A.π6B.π4 C.π3D.π2解析:如图,取B 1C 1中点为D ,连接AD ,A 1D ,因为侧棱垂直于底面,底边是边长为2的正三角形,所以三棱柱ABC A 1B 1C 1是正三棱柱,所以CC 1∥AA 1,所以AA 1与平面AB 1C 1所成的角即是CC 1与平面AB 1C 1所成的角,因为B 1C 1⊥A 1D ,B 1C 1⊥AA 1,所以B 1C 1⊥平面AA 1D ,所以平面AA 1D ⊥平面AB 1C 1,所以AA 1与平面AB 1C 1所成角为∠A 1AD ,因为AA 1=3,A 1D =3,所以tan ∠A 1AD =A 1D AA 1=33,所以∠A 1AD =π6,所以CC 1与平面AB 1C 1所成角为π6.5.正方形ABCD 的边长为2,点E 为BC 边的中点,F 为CD 边上一点,若AF →·AE →=|AE →|2,则|AF →|=( D )A .3B .5 C.32D.52解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立坐标系,如图所示,因为E 为BC 边的中点,所以E (2,1),因为F 为CD 边上一点,所以可设F (t,2)(0≤t ≤2),所以AF →=(t,2),AE →=(2,1),由AF →·AE →=|AE →|2可得:2t +2=22+1=5,所以t =32,所以AF →=⎝ ⎛⎭⎪⎫32,2, 所以|AF →|=322+22=52.6.已知点O 是△ABC 内部一点,并且满足OA →+2OB →+3OC →=0,△BOC 的面积为S 1,△ABC 的面积为S 2,则S 1S 2=( A )A.16B.13C.23D.34 解析:因为OA →+2OB →+3OC →=0,所以OA →+OC →=-2(OB →+OC →),如图,分别取AC ,BC 的中点D ,E ,则 OA →+OC →=2OD →,OB →+OC →=2OE →, 所以OD →=-2OE →,即O ,D ,E 三点共线且|OD →|=2|OE →|, 则S △OBC =13S △DBC ,由于D 为AC 中点,所以S △DBC =12S △ABC ,所以S △OBC =16S △ABC ,即S 1S 2=16.7.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意,事件A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =6P (A i B i C i )=6×12×13×16=16.8.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,半径为1的圆上任意一点,则AP →·BP →的取值X 围是( A )A .[1,13]B .(1,13)C .(4,10)D .[4,10]解析:取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CA →·CB →-2CD →·CP →+1=(23)2cos π3-2×3×1×cos〈CD →,CP →〉+1=7-6cos 〈CD →,CP →〉,所以当cos 〈CD →,CP →〉=1时,AB →·BP →取得最小值为1;当cos 〈CD →,CP →〉=-1时,AP →·BP→取得最大值为13,因此AP →·BP →的取值X 围是[1,13].二、多项选择题每小题5分,共20分9.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份某某通过联合调查,制定了中国仓储指数.由2017年1月至2018年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论错误的是( ABC ) A .2017年各月的仓储指数最大值是在3月份 B .2018年1月至7月的仓储指数的中位数约为55 C .2018年1月与4月的仓储指数的平均数约为52D .2017年1月至4月的仓储指数相对于2018年1月至4月,波动性更大解析:2017年各月的仓储指数最大值是在11月份,所以A 错误;由题图知,2018年1月至7月的仓储指数的中位数约为52,所以B 错误;2018年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2017年1月至4月的仓储指数比2018年1月至4月的仓储指数波动更大.所以D 正确.10.已知数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,对于这(n +1)个数据,下列说法错误的是( ACD )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数一定变大,方差可能不变解析:∵数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,而x n +1为世界首富的年收入,则x n +1会远大于x 1,x 2,x 3,…,x n ,∴对于这(n +1)个数据,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度受到x n +1比较大的影响,数据更加离散,则方差变大.故A 、C 、D 说法错误,符合题意.11.已知向量a ,e 满足a ≠e ,|e |=1,且对任意t ∈R ,恒有|a -t e |≥|a -e |成立,则( BC )A .a ⊥eB .a·e =1C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2t a ·e +2a ·e -1≥0对t ∈R 恒成立,即Δ=(-2a ·e )2-8a ·e +4≤0恒成立,∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0,即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).12.如图,在矩形ABCD 中,AB =2AD =2,E 为AB 的中点,将△ADE 沿DE 翻折到△A 1DE 的位置,A 1∉平面ABCD ,M 为A 1C 的中点,则在翻折过程中,下列结论正确的是( ABC )A .恒有BM ∥平面A 1DEB .B 与M 两点间距离恒为定值C .三棱锥A 1DEM 的体积的最大值为212D .存在某个位置,使得平面A 1DE ⊥平面A 1CD解析:如图,取A 1D 的中点N ,连接MN ,EN ,可得四边形BMNE 是平行四边形,所以BM ∥EN ,所以BM ∥平面A 1DE ,故A 正确;(也可以延长DE ,CB 交于H ,可证明MB ∥A 1H ,从而证 BM ∥平面A 1DE ) 因为DN =12,DE =2,∠A 1DE =∠ADE =45°,根据余弦定理得EN 2=14+2-2×2×12×22,得EN =52, 因为EN =BM ,故BM =52,故B 正确; 因为M 为A 1C 的中点,所以三棱锥C A 1DE 的体积是三棱锥M A 1DE 的体积的两倍,故三棱锥C A 1DE 的体积VC A 1DE =VA 1DEC =13S △CDE ·h ,其中h 表示A 1到底面ABCD 的距离,当平面A 1DE ⊥平面ABCD 时,h 达到最大值,此时VA 1DEC 取到最大值26,所以三棱锥M A 1DE 体积的最大值为212,即三棱锥A 1DEM 体积的最大值为212,故C 正确; 考察D 选项,假设平面A 1DE ⊥平面A 1CD ,因为平面A 1DE ∩平面A 1CD =A 1D ,A 1E ⊥A 1D , 故A 1E ⊥平面A 1CD ,所以A 1E ⊥A 1C , 则在△A 1CE 中,∠EA 1C =90°,A 1E =1,EC =2,所以A 1C =1,又因为A 1D =1,CD =2,所以A 1D +A 1C =CD , 故A 1,C ,D 三点共线.所以A 1∈CD ,得A 1∈平面ABCD ,与题干条件A 1∉平面ABCD 矛盾,故D 不正确.故选ABC.第Ⅱ卷(非选择题,共90分)三、填空题每小题5分,共20分13.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为 3 000,则成绩不超过60分的学生人数大约为900.解析:由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是710. 解析:从3名男同学和2名女同学中任选2名同学参加志愿者服务,共有10种情况.若选出的2名学生恰有1名女生,有6种情况,若选出的2名学生都是女生,有1种情况,所以所求的概率为6+110=710.15.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=2OA →+OB →,则a =-3,b =-10. 解析:因为OC →=2OA →+OB →, 所以1-4i =2(2+3i)+(a +b i)即⎩⎪⎨⎪⎧1=4+a ,-4=6+b ,所以⎩⎪⎨⎪⎧a =-3,b =-10.16.已知正方体ABCD A 1B 1C 1D 1的棱长为2,除平面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M ,则四棱锥M EFGH 的体积为23.解析:因为底面EFGH 的对角线EG 与FH 互相垂直, 所以S EFGH =12×EG ×FH =12×2×2=2,又M 到底面EFGH 的距离等于棱长的一半, 即h =12×2=1,所以四棱锥M EFGH 的体积:V M EFGH =13×S EFGH ×h =13×2×1=23.四、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)某市举办法律知识问答活动,随机从该市18~68岁的人群中抽取了一个容量为n 的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],并绘制如图所示的频率分布直方图,再将其分别编号为第1组,第2组,…,第5组.该部门对回答问题的情况进行统计后,绘制了下表.组号 分组 回答正确的人数回答正确的人数占本组的比例第1组 [18,28) 5 0.5第2组 [28,38) 18 a第3组 [38,48) 270.9 第4组 [48,58) x0.36 第5组[58,68]30.2(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.解:(1)第1组的人数为5÷0.5=10,第1组的频率为0.010×10=0.1,所以n=10÷0.1=100.第2组的频率为0.020×10=0.2,人数为100×0.2=20,所以a=18÷20=0.9.第4组的频率为0.025×10=0.25,人数为100×0.25=25,所以x=25×0.36=9.(2)第2,3,4组回答正确的人数的比为18279=231,所以第2,3,4组每组各应抽取2人、3人、1人.(3)记“第2组至少有1人获得幸运奖”为事件A,设抽取的6人中,第2组的2人为a1,a2,第3组的3人为b1,b2,b3,第4组的1人为c,则从6人中任意抽取2人所有可能的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),共15种.其中第2组至少有1人获得幸运奖的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),共9种.故P(A)=915=35.所以抽取的6人中第2组至少有1人获得幸运奖的概率为35.18.(12分)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层随机抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.设抽取的5人分别为A ,B, C, D ,E ,其中A ,B 为男生,C, D ,E 为女生,从5人中任意选取2人,试验的样本空间Ω={(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ) },共10个样本点.事件“至少有一名男生”包含的样本点有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),共7个样本点,故至少有一名男生的概率为P =710,即选取的2人中至少有一名男生的概率为710.19.(12分)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足sin 2A +sin 2B -sin 2C =-3sin A sin B .(1)求角C 大小;(2)若c =2,求3a +b 的取值X 围.解:(1)因为sin 2A +sin 2B -sin 2C =-3sin A sin B , 所以由正弦定理得a 2+b 2-c 2=-3ab ,所以cos C =a 2+b 2-c 22ab =-3ab 2ab =-32,因为C ∈(0,π),所以C =5π6. (2)由正弦定理得2R =csin C =4,所以3a +b =2R (3sin A +sin B ) =4[3sin A +sin(π6-A )]=4(3sin A +12cos A -32sin A )=4sin(A +π6),因为A ∈(0,π6),所以A +π6∈(π6,π3),所以sin(A +π6)∈(12,32),所以3a +b 的取值X 围是(2,23).20.(12分)如图,A ,C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A ,C 两岛之间的直线距离; (2)求∠BAC 的正弦值.解:(1)在△ABC 中,由已知,AB =10×5=50,BC =10×3=30,∠ABC =180°-75°+15°=120°.根据余弦定理,得AC 2=502+302-2×50×30cos120°=4 900,所以AC =70. 故A ,C 两岛之间的直线距离是70海里. (2)在△ABC 中,据正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC sin ∠ABC AC =30sin120°70=3314, 故∠BAC 的正弦值是3314.21.(12分)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 解:(1)证明:连接BD,如图,易知AC∩BD=H,BH=DH,又BG=PG,故GH∥PD,又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN,如图,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又因为PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,如图,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =33,所以直线AD与平面PAC所成角的正弦值为33.22.(12分)如图,在四棱锥PABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB ∥CD,AB⊥AD,CD=2AB=2AD=4.(1)求证:平面PCD⊥平面PAD;(2)求三棱锥PABC的体积;(3)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置,并证明;若不存在,请说明理由.解:(1)证明:因为AB∥CD,AB⊥AD,所以CD⊥AD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以CD⊥平面PAD.因为CD⊂平面PCD,所以平面PCD⊥平面PAD.(2)取AD的中点O,连接PO,如图.因为△PAD为正三角形,所以PO⊥AD.因为平面PAD ⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,所以PO为三棱锥PABC的高.因为△PAD为正三角形,CD=2AB=2AD=4,所以PO=3,所以V三棱锥PABC=S△ABC·PO=13×12×2×2×3=233.(3)在棱PC上存在点E,当E为PC的中点时,BE∥平面PAD.证明:如图,分别取CP,CD的中点E,F,连接BE,BF,EF,所以EF∥PD.因为AB∥CD,CD=2AB,所以AB∥FD,AB=FD,所以四边形ABFD为平行四边形,所以BF∥AD. 因为BF∩EF=F,AD∩PD=D,所以平面BEF∥平面PAD.因为BE⊂平面BEF,所以BE∥平面PAD.。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(56)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1. 向量 a ⃗=(1,2),b ⃗⃗=(2,λ),且 a ⃗⊥b ⃗⃗,则实数 λ= ( ) A . 3 B . −3 C . 7 D . −12. 袋中共有完全相同的 4 只小球,编号为 1,2,3,4,现从中任取 2 只小球,则取出的 2 只球编号之和是偶数的概率为 ( ) A . 25B . 35C . 13D . 233. 下列命题正确的是 ( ) A .三点确定一个平面B .一条直线和一个点确定一个平面C .圆心和圆上两点可确定一个平面D .梯形可确定一个平面4. 复数 1+i 2= ( ) A . 0B . 2C . 2iD . 1−i5. 已知 ∣a ⃗∣=1,∣b ⃗⃗∣=2,a ⃗ 与 b ⃗⃗ 的夹角为 π3,则 a ⃗⋅b ⃗⃗ 等于 ( ) A . 1B . 2C . 3D . 46. 已知平面向量 a ⃗=(1,x ),b ⃗⃗=(y,1),若 a ⃗∥b ⃗⃗,则实数 x ,y 一定满足 ( ) A .xy −1=0B .xy +1=0C .x −y =0D .x +y =07. 在平行四边形 ABCD 中,A (1,2),B (3,5),AD ⃗⃗⃗⃗⃗⃗=(−1,2),则 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗= ( ) A . (−2,4)B . (4,6)C . (−6,−2)D . (−1,9)8. 若 AB ⃗⃗⃗⃗⃗⃗=(1,1),AD ⃗⃗⃗⃗⃗⃗=(0,1),BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=(a,b ),则 a +b = ( ) A . −1B . 0C . 1D . 29. 已知直线 a 在平面 γ 外,则 ( ) A . a ∥γ B . a 与 γ 至少有一个公共点 C . a ∩γ=AD . a 与 γ 至多有一个公共点10. 下列四个长方体中,由图中的纸板折成的是 ( )A.B.C.D.二、填空题(共6题)11.思考辨析判断正误当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( )12.复数加法与减法的运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则(1)z1+z2=;(2)z1−z2=.13.利用“斜二测”法作多面体直观图时,需考虑个方向上的尺度.14.若向量a⃗与b⃗⃗的夹角为120∘,且∣a⃗∣=1,∣∣b⃗⃗∣∣=1,则∣∣a⃗−b⃗⃗∣∣=.15.当时,λa⃗=0⃗⃗.16.“直线a经过平面α外一点P”用集合符号表示为.三、解答题(共6题)=bsinA.17.△ABC的内角A,B,C的对边分别为a,b,c,已知asin A+C2(1) 求B;(2) 若△ABC为锐角三角形,且a=2,求△ABC面积的取值范围.18.画出如图水平放置的直角梯形的直观图.19.按图示的建系方法,画出水平放置的正五边形ABCDE的直观图.20. 根据图形用符号表示下列点、直线、平面之间的位置关系.(1) 点 P 与直线 AB ; (2) 点 C 与直线 AB ; (3) 点 M 与平面 AC ; (4) 点 A 1 与平面 AC ; (5) 直线 AB 与直线 BC ; (6) 直线 AB 与平面 AC ; (7) 平面 A 1B 与平面 AC .21. 有 4 条长为 2 的线段和 2 条长为 a 的线段,用这 6 条线段作为棱,构成一个三棱锥.问 a为何值时,可构成一个最大体积的三棱锥,最大值为多少?22. 类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴 x ,y 的交点为 O ,与 x ,y 轴正方向同向的单位向量分别是 i ⃗,j ⃗,且 i ⃗ 与 j ⃗ 的夹角为 θ,其中 θ∈(0,π2)∪(π2,π).由平面向量基本定理,对于平面内的向量 OP ⃗⃗⃗⃗⃗⃗,存在唯一有序实数对 (x,y ),使得 OP ⃗⃗⃗⃗⃗⃗=xi ⃗+yj ⃗,把 (x,y ) 叫做点 P 在斜坐标系 xOy 中的坐标,也叫做向量 OP⃗⃗⃗⃗⃗⃗ 在斜坐标系 xOy 中的坐标.在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如 θ=45∘ 时,方程x−24=y−1−5表示斜坐标系内一条过点 (2,1),且方向向量为(4,−5)的直线.),a⃗=(2,1),b⃗⃗=(m,6),且a⃗与b⃗⃗的夹角为锐角,求实数m的取值(1) 若θ=arccos(−13范围;(2) 若θ=60∘,已知点A(2,1)和直线l:3x−y+2=0.①求l一个法向量;②求点A到直线l的距离.答案一、选择题(共10题)1. 【答案】D【解析】由a⃗⊥b⃗⃗,所以有a⃗⋅b⃗⃗=1×2+2×λ=0⇒λ=−1.【知识点】平面向量数量积的坐标运算2. 【答案】C【解析】在编号为1,2,3,4的小球中任取2只小球,则有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6种取法,则取出的2只球编号之和是偶数的有{1,3},{2,4},共2种取法,即取出的2只球编号之和是偶数的概率为26=13,故选:C.【知识点】古典概型3. 【答案】D【解析】由不共线的三点确定一个平面,故A错误;由一条直线和该直线外一点确定一个平面,故B错误;当圆心和圆上两点在圆的直径上,不能说明该三点确定一个平面,故C错误;由于梯形是有一组对边平行的四边形,可得梯形确定一个平面,故D正确.故选:D.【知识点】平面向量的概念与表示4. 【答案】A【解析】因为i2=−1,所以1+i2=0.故选:A.【知识点】复数的乘除运算5. 【答案】A【解析】a⃗⋅b⃗⃗=∣a⃗∣∣b⃗⃗∣cosπ3=1×2×cosπ3=1.【知识点】平面向量的数量积与垂直6. 【答案】A【解析】因为a⃗∥b⃗⃗,所以1×1−xy=0,即xy−1=0.【知识点】平面向量数乘的坐标运算7. 【答案】A【解析】在平行四边形ABCD中,因为 A (1,2),B (3,5),所以 AB⃗⃗⃗⃗⃗⃗=(2,3), 又 AD ⃗⃗⃗⃗⃗⃗=(−1,2), 所以 AC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=(1,5),BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=(−3,−1), 所以 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗=(−2,4), 故选A .【知识点】平面向量和与差的坐标运算8. 【答案】A【解析】 BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB⃗⃗⃗⃗⃗⃗=(0,1)−(1,1)=(−1,0), 故 a =−1,b =0, 所以 a +b =−1.【知识点】平面向量和与差的坐标运算9. 【答案】D【解析】直线在平面外,故直线与平面相交或直线与平面平行,直线 a 与平面 γ 平行时没有公共点,直线 a 与平面 γ 相交时有一个公共点,故选D . 【知识点】直线与平面的位置关系10. 【答案】A【解析】根据题图中纸板的形状及特殊面的阴影部分可以判断B ,C ,D 不正确,故选A . 【知识点】棱柱的结构特征二、填空题(共6题) 11. 【答案】 √【知识点】平面向量和与差的坐标运算12. 【答案】 (a +c)+(b +d)i ; (a −c)+(b −d)i【知识点】复数的加减运算13. 【答案】三【知识点】直观图14. 【答案】 √3【解析】因为向量 a ⃗ 与 b ⃗⃗ 的夹角为 120∘,∣a ⃗∣=1,∣∣b ⃗⃗∣∣=1,所以 a ⃗⋅b ⃗⃗=∣a ⃗∣∣∣b ⃗⃗∣∣cos120∘=−12,因此 ∣∣a ⃗−b ⃗⃗∣∣=√(a ⃗−b ⃗⃗)2=√∣a ⃗∣2+∣∣b ⃗⃗∣∣2−2a⃗⋅b ⃗⃗=√1+1+1=√3. 【知识点】平面向量的数量积与垂直15. 【答案】 λ=0 或 a ⃗=0⃗⃗【解析】若 λa ⃗=0⃗⃗,则 λ=0 或 a ⃗=0⃗⃗.【知识点】平面向量的数乘及其几何意义16. 【答案】 P ∈a ,P ∉α【知识点】平面的概念与基本性质三、解答题(共6题) 17. 【答案】(1) asinA+C 2=bsinA ,由正弦定理 sinAsinA+C 2=sinBsinA .因为 A ,B ,C 是 △ABC 的内角,sinA ≠0, 所以 sin A+C 2=sinB =sin (π−B )=sin (A +C ), 所以 sinA+C 2=2sinA+C 2cosA+C 2,因为 0<A +C <π, 所以 0<A+C 2<π2.所以 sinA+C 2≠0,cosA+C 2=12,A+C 2=π3,所以 A +C =2π3,B =π−(A +C )=π−2π3=π3(2) 由正弦定理得 asinA =bsinB =csinC =2sinA , 所以 c =2sinC sinA,由三角形内角和知 A +C =120∘, 所以 C =120∘−A , 所以 c =2sin (120∘−A )sinA=√3tanA+1,又 △ABC 为锐角三角形, 所以 120∘−A <90∘ 且 A <90∘, 即 30∘<A <90∘, 又 S △ABC =12acsinB =12ac ×√32=√32c =√32×(√3tanA +1),30∘<A <90∘,因为30∘<A<90∘,所以tanA>√33,得√3tanA <3,即1<√3tanA+1<4,所以S△ABC=√32×(√3tanA+1)∈(√32,2√3).【知识点】正弦定理18. 【答案】(1)在已知的直角梯形OBCD中,以OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画出相应的xʹ轴和yʹ轴,使∠xʹOʹyʹ=45∘,如图①②所示.(2)在xʹ轴上截取OʹBʹ=OB,在yʹ轴上截取OʹDʹ=12OD,过点Dʹ作xʹ轴的平行线l,在l上沿xʹ轴正方向取点Cʹ,使得DʹCʹ=DC.连接BʹCʹ,如图②所示.(3)所得四边形OʹBʹCʹDʹ就是直角梯形OBCD的直观图,如图③所示.【知识点】直观图19. 【答案】画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的xʹ轴与yʹ轴,两轴相交于点Oʹ,使∠xʹOʹyʹ=45∘.(3)在图②中的xʹ轴上取OʹBʹ=OB,OʹGʹ=OG,OʹCʹ=OC,OʹHʹ=OH,yʹ轴上取OʹEʹ=1 2OE,分别过Gʹ和Hʹ作yʹ轴的平行线,并在相应的平行线上取GʹAʹ=12GA,HʹDʹ=12HD.(4)连接AʹBʹ,AʹEʹ,EʹDʹ,DʹCʹ,并擦去辅助线GʹAʹ,HʹDʹ,xʹ轴与yʹ轴,便得到水平放置的正五边形ABCDE的直观图五边形AʹBʹCʹDʹEʹ(如图③).【知识点】直观图20. 【答案】(1) 点P∈直线AB.(2) 点C∉直线AB.(3) 点M∈平面AC.(4) 点A1∉平面AC.(5) 直线AB∩直线BC=点B.(6) 直线AB⊂平面AC.(7) 平面A1B∩平面AC=直线AB.【知识点】点、线、面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系21. 【答案】构成三棱锥,这6条线段作为棱有两种摆放方式.(1)2条长为a的线段放在同一个三角形中.如图所示,不妨设底面 BCD 是一个边长为 2 的正三角形.欲使体积达到最大,必有 BA ⊥底面BCD ,且 BA =2,AC =AD =a =2√2, 此时 V =13×√34×22×2=23√3.(2)2 条长为 a 的线段不在同一个三角形中,此时长为 a 的两条线段必处在三棱锥的对棱,不妨设 AD =BC =a ,BD =CD =AB =AC =2. 取 BC 中点 E ,连接 AE ,DE (见下图).则 AE ⊥BC,DE ⊥BC ⇒BC ⊥平面AED ,V =13S △AED ⋅BC , 在 △AED 中,AE =DE =√4−a 24,AD =a ,S △AED =12a √4−a 24−a 24=12a √4−a 22,所以 V =16a 2√4−a 22=16√a 2a 2(16−2a 2)⋅14,由均值不等式 a 2a 2(16−2a 2)≤(163)3,等号当且仅当 a 2=163时成立,即 a =43√3, 所以此时 V max =16√(163)3⋅14=1627√3.【知识点】棱锥的表面积与体积22. 【答案】(1) 由已知 a ⃗=2i ⃗+j ⃗,b ⃗⃗=mi ⃗+6j ⃗,且 a ⃗⋅b ⃗⃗=2m +6+(12+m )(i ⃗⋅j ⃗)=53m +2>0,得 m >−65;若 a ⃗ 和 b ⃗⃗ 同向,则存在正数 t ,使得 t (2i ⃗+j ⃗)=mi ⃗+6j ⃗, 由 i ⃗ 和 j ⃗ 不平行得,{2t =m t =6 得 m =12.故所求为 m >−65,m ≠12.(2) ①方程可变形为x−01=y−23,方向向量为 d⃗=(1,3), 设法向量为 n ⃗⃗=(a,b ),由 n ⃗⃗⋅d ⃗=0 得 a +3b +12(3a +b )=52a +72b =0, 令 a =−7,b =−5,n ⃗⃗=(−7,5);②取直线 l 上一点 B (0,2),则 BA⃗⃗⃗⃗⃗⃗=(2,−1),所求为 ∣∣BA ⃗⃗⃗⃗⃗⃗⋅n ⃗⃗∣∣∣n⃗⃗∣=∣√(⃗+5j ⃗)2=7√3926.【知识点】直线的点法向式方程(沪教版)、平面向量数量积的坐标运算。
【金版新学案】高一数学人教A版必修二练习:模块质量评估试题(含答案解析)
模块质量评估(本栏目内容,在学生用书中以独立形式分册装订)一、选择题 (本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1. (2015 景·德镇期末 ) 已知直线 x- 3y- 2= 0,则该直线的倾斜角为()A. 30°B. 60°C. 120 °D. 150 °分析:直线 x- 3y- 2= 0 的斜率 k=33,故倾斜角为 30°,选 A.答案:A2. (2015 濮·阳综合高中月考 )过点 A(4, a)和 B(5,b) 的直线与 y= x+m 平行,则 |AB|的值为()A. 6 B. 2C. 2D.不确立b- a=1,得 b-a= 1,分析:由 k AB=5- 4即 |AB|= 5- 4 2+ b- a 2= 2.应选 B.答案:B3. (2015 ·芦岛期末葫)在空间直角坐标系中已知点P(0,0,3)和点 C(- 1,2,0) ,则在 y 轴上到 P 和 C 的距离相等的点 M 坐标是 ()A. (0,1,0) B. 0,-1, 0 21C. 0,2, 0D. (0,2,0)分析:设 M(0,y,0),则 |MP |= |MC|,因此 y232=-12+21+2-y ,解得 y=2,应选 C.答案:C4.若直线 (1+ a)x+ y+1= 0 与圆 x2+ y2-2x= 0 相切,则 a 的值为 ()A.1或-1B.2 或-2C. 1D.- 1圆 x2+ y2-2x= 0 的圆心 (1,0),半径为1,依题意得|1+ a+ 0+ 1|分析:= 1,即 |a+ 2|1+ a 2+ 1=a+ 1 2+ 1,平方整理得 a=- 1,应选 D.答案: D5. (2015 中·山市杨仙逸中学检测)如图是某几何体的三视图,此中正视图是腰长为 2 的等腰三角形,俯视图是半径为 1 的半圆,则该几何体的体积是 ()431A. 3πB.2π33C. 3πD. 6π分析:由题意知,该几何体为沿轴截面切开的半个圆锥,圆锥的半径为 1 ,高为3,故所求体积为1×1× π× 12× 3=3π,选 D.2 36答案:D6. (2015 ·川一中期末银)在空间给出下边四个命题(此中 m, n 为不一样的两条直线,α,β为不一样的两个平面)①m⊥ α,n∥ α? m⊥n ②m∥ n,n∥ α? m∥ α ③m∥ n, n⊥β,m∥ α? α⊥ β ④ m∩ n =A, m∥ α, m∥ β,n∥ α, n∥ β? α∥β此中正确的命题个数有()A.1个B.2 个C.3 个D.4 个分析:②中m 也可能在平面α内,②错,①③④正确,应选 C.答案:C7.直线 l 将圆 x2+ y2- 2x- 4y=0均分,且与直线 x+2y= 0 垂直,则直线 l 的方程是 ()A. 2x- y=0B. 2x- y- 2= 0C. x+ 2y- 3=0D. x- 2y+ 3= 0分析:依题意知直线l 过圆心(1,2),斜率 k= 2,因此 l 的方程为 y- 2= 2(x-1),即2x- y= 0,应选 A.答案:A8. (2015 ·连六校联考大 )若点 A(-3,- 4), B(6,3)到直线 l : ax +y + 1= 0 的距离相等,则实数 a 的值为 ()71A. 9B .- 3C.7或1D .- 7或- 19 39 3分析:|-3a - 4+ 1||6a + 3+ 1|71 由2 = 22 ,解得 a =- 9或- 3,应选 D.2+ +1a 1 a答案:D9.点 P 在正方形 ABCD 所在平面外, PD ⊥平面 ABCD ,PD =AD ,则 PA 与 BD 所成角 的度数为()A . 30°C . 60°B . 45°D . 90°分析:利用正方体求解,以下图:PA 与 BD60°,故 PA 与所成的角,即为PA 与BD 所成角为 60°,选PQ 所成的角,由于△C.APQ 为等边三角形, 因此∠APQ =答案:C10.在四周体 A -BCD中,棱AB ,AC ,AD两两相互垂直,则极点A 在底面BCD上的投影H 为△ BCD的 ()A .垂心B .重心C .外心D .心里分析:由于 AB ⊥AC , AB ⊥AD , AC ∩ AD =A ,由于 AB ⊥平面 ACD ,因此 AB ⊥CD.由于 AH ⊥平面BCD ,因此 AH ⊥CD , AB ∩ AH =A ,因此 CD ⊥平面 ABH ,因此 CD ⊥BH .同理可证 CH ⊥BD ,DH ⊥BC ,则 H 是△BCD 的垂心.应选 A.答案:A11.圆 x2+ y2+ 2x+ 4y- 3=0 上到直线 x+ y+ 1=0 的距离为2的点共有 ()A.1个B.2 个C.3 个D.4 个分析:圆 x2+ y2+ 2x+4y- 3= 0 的圆心坐标是 (- 1,- 2),半径是22,圆心到直线x+ y+ 1= 0的距离为 2,∴过圆心平行于直线x+ y+ 1= 0 的直线与圆有两个交点,另一条与直线 x+ y+ 1= 0 的距离为2的平行线与圆相切,只有一个交点,共有 3 个交点,应选 C.答案:C12. (2014 德·州高一期末 )将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD= a,则三棱锥 D -ABC 的体积为 ()23a3A. 12aB.122 3a3C. 4 aD. 6分析:取 AC 的中点 O,如图,则 BO=DO=22 a,又 BD =a,因此 BO ⊥DO ,又 DO ⊥AC,因此 DO ⊥平面 ACB,V D -=1 △ABC3S ABC·DO=1×1× a2×2a=2a3.应选 A. 32212答案:A二、填空题 (本大题共 4 小题,每题 4 分,共 16 分.请把正确答案填在题中横线上 ) 13.以下列图所示, Rt△ A′B′ C′为水平搁置的△ ABC 的直观图,此中 A′C′⊥ B′ C′,B′ O′= O′ C′= 1,则△ ABC 的面积为 ________.分析:由直观图画法例则将△A′ B′ C′复原为△ABC,以下图,则有 BO= OC= 1, AO= 2△11× 2× 2 2=2 2.2.故 S ABC=BC·AO=22答案:2214.已知 A(0,8),B(- 4,0), C(m,- 4) 三点共线,则实数m 的值是 ________.8- 00+ 4分析:k AB== 2,k BC=0+ 4- 4- m∵k AB= k BC,∴m=- 6.答案:- 615.直线 y= 2x+ 3 被圆 x2+ y2- 6x- 8y= 0 所截得的弦长等于________.分析:先求弦心距,再求弦长.圆的方程可化为 (x- 3)2+ (y-4) 2= 25,故圆心为 (3,4),半径 r =5.又直线方程为2x- y+ 3=0,|2× 3- 4+ 3|5,因此圆心到直线的距离为d=4+1=因此弦长为 2r 2- d2= 2× 25- 5= 220= 4 5.答案:4516.已知正四棱锥 O- ABCD 的体积为32,底面边长为3,则以 O 为球心, OA 为半2径的球的表面积为________.分析:此题先求出正四棱锥的高h,而后求出侧棱的长,再运用球的表面积公式求解.V 四棱锥O-ABCD=1× 3×3h=32,得 h=32,32222AC 2186∴OA = h + 2 =4+4= 6.∴S 球= 4πOA2= 24π.答案:24π三、解答题 (本大题共 6 小题,共 74 分.解答时应写出必需的文字说明、证明过程或演算步骤 )17.(本小题满分12 分 )(2015 河·源市高二 (上 )期中 )轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为2,求球的体积.分析:以下图,作出轴截面,由于△ABC 是正三角形,1因此 CD =2AC= 2,因此 AC= 4, AD=23× 4= 23,由于 Rt△AOE∽Rt△ACD,OE CD因此AO=AC.设 OE=R,则 AO= 2 3- R,R1R=23因此=2,因此 3 .2 3-R因此 V球4342 3 3323π=πR =π·3=27. 33323π因此球的体积等于.2718. (本小题满分12 分 )(2015 福·建八县一中联考)已知直线 l : kx- y+ 1- 2k=0(k∈R).(1)证明:直线 l过定点;(2)若直线 l 交 x 轴正半轴于点A,交 y 轴正半轴于点 B, O 为坐标原点,且 |OA |= |OB|,求 k 的值.分析: (1)证明:法一:直线 l 的方程可化为y- 1=k( x-2),故不论 k 取何值,直线l 总过定点 (2,1) .法二:设直线过定点0,y0),(x则kx0-y0+1-2k=0 对随意k∈R恒建立,即 (x0- 2)k- y0+ 1= 0 恒建立,x0- 2= 0,因此-y0+ 1= 0解得 x0=2, y0= 1,故直线 l 总过定点 (2,1).(2)由于直线l 的方程为y= kx- 2k+ 1,1则直线 l 在 y 轴上的截距为1- 2k,在 x 轴上的截距为2-k,依题意 1- 2k= 2-1> 0,解得 k=- 1 或 k=1k2( 经查验,不合题意 )因此所求 k=- 1.19. (本小题满分 12分 )(2015 西·安一中期末 )已知正方体ABCD - A1B1C1D1, O 是底面ABCD 对角线的交点.求证: (1)C1O∥平面 AB1D 1;(2)A1C⊥平面 AB1D 1.证明:(1)连结 A1C1,设 A1C1∩ B1D1=O1,连结 AO1,由于 ABCD -A1B1C1D1是正方体,因此 A1ACC1是平行四边形,D1 B1∩ AB1= B1,因此 A1C1∥AC,且 A1C1=AC ,又 O1, O 分别是 A1C1, AC 的中点,因此 O1C1∥AO 且 O1C1= AO,因此 AOC1O1是平行四边形,因此 C1O∥AO1, AO1? 平面 AB1D 1,C1O?平面 AB1D 1,因此 C1O∥平面AB1D1,(2)由于 CC1⊥平面 A1B1C1D1,因此 CC 1⊥B1D 1,又由于 A1C1⊥B1D 1,因此 B1D 1⊥平面 A1C1C,即 A1C⊥B1D1,同理可证 A1C⊥AB1,又 D1B1∩ AB1=B1,因此 A1C⊥平面 AB1D 1.20. (本小题满分12 分 )求圆心在直线y=- 2x 上,而且经过点A(0,1) ,与直线x+ y=1相切的圆的标准方程.分析:由于圆心在直线y=- 2x 上,设圆心坐标为( a,- 2a),则圆的方程为(x- a)2+(y+ 2a)2= r2,圆经过点 A(0,1)且和直线x+y= 1 相切,2+ 2a+122a=r ,因此有|a- 2a- 1|= r ,212解得 a=-3,r=3,12222因此圆的方程为x+3+ y-3=9.21.(本小题满分13 分 )以下图,在四棱锥V- ABCD 中,底面 ABCD 是正方形,侧面VAD 是正三角形,平面VAD⊥底面 ABCD .(1)求证: AB⊥平面 VAD;(2)求平面 VAD 与平面 VDB 所成的二面角的大小.分析:(1) 证明:∵底面 ABCD 是正方形,∴AB⊥ AD .∵平面 VAD⊥底面 ABCD ,平面 VAD∩底面 ABCD = AD, AB⊥ AD, AB? 底面 ABCD ,∴AB⊥平面 VAD.(2)取 VD 的中点 E ,连结 AE , BE.∵△ VAD 是正三角形,∴ AE ⊥ VD , AE = 3AD.2∵ AB ⊥平面 VAD ,VD ? 平面 VAD ,∴ AB ⊥ VD .又 AB ∩ AE = A ,∴ VD ⊥平面 ABE.∵ BE? 底面 ABE ,∴ VD ⊥ BE.∴∠ ABE 就是平面 VAD 与平面 VDB 所成的二面角的平面角.在 Rt △BAE 中, tan ∠ BEA =BA= AD=2 3.AE332 AD∴平面 VAD 与平面 VDB 所成的二面角的正切值为233.22.(本小题满分 132 2上的动点,点 D 是 P分)如图,设 P 是圆 x + y = 25 在 x 轴上的投影, M 为 PD 上一点,且 |MD |= 4|PD |.5(1)当 P 在圆上运动时,求点 M 的轨迹 C 的方程;(2)求过点 (3,0) 且斜率为 4的直线被 C 所截线段的长度.5分析: (1)设 M 的坐标为 (x , y), P 的坐标为 (x p , y p )p = xx由已知得, y p =5y4252∵P 在圆上,∴ x + 4y= 25,即 C 的方程为 x 2 + y 2= 1.25 164 4(2)过点 (3,0)且斜率为 5的直线方程为 y = 5(x - 3),设直线与 C 的交点为 A(x 1, y 1) , B(x 2 ,y 2)4将直线方程 y = 5(x -3) 代入 C 的方程,得 x 2+ x - 3 2= 1 整理得 x 2- 3x - 8= 025253- 413+ 41∴x 1=,x 2=22∴线段 AB 的长度为|AB|=x1- x22+ y1- y22162=1+25x1- x24141=25× 41=5 .。
新人教版(2019A版)高中数学必修第二册综合测试卷(含答案解析)
新人教版(2019A 版)高中数学必修第二册综合测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.若复数z =2i3-i ,则z 的共轭复数z =( ) A.-15-35I B.-15+35I C.15+35I D.15-35i 答案:A2.某公司生产三种型号的轿车,其中型号Ⅰ的轿车的月产量为 1 200辆,型号Ⅱ的轿车的月产量为6 000辆,型号Ⅲ的轿车的月产量为2 000辆,现用分层抽样的方法抽取92辆车进行检验,则型号Ⅲ的轿车应抽取( )A.12辆B.36辆C.20辆D.60辆答案:C3.2010-2018年之间,受益于基础设施建设对光纤产品的需求,以及个人计算机及智能手机的下一代规格升级,电动汽车及物联网等新机遇,连接器行业发展较快.2010-2018年全球连接器营收情况如图所示,根据折线图,下列结论正确的个数为 ( )①每年的营收额逐年增长;②营收额增长最快的一年为2013-2014年;③2010-2018年的营收额增长率约为40%;④2014-2018年每年的营收额相对于2010-2014年每年的营收额,变化比较平稳.A.1B.2C.3D.4答案:C4.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506 318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为( )A.0.25B.0.3C.0.35D.0.4答案:B5.盒子中有若干个大小和质地完全相同的红球和黄球,从中任意取出2个球,都是红球的概率为328,都是黄球的概率为514,则从盒子中任意取出2个球,恰好是同一颜色的概率为( )A.1328B.57C.1528D.37 答案:A6.某校篮球运动员进行投篮练习,若他前一球投进,则后一球投进的概率为34;若他前一球投不进,则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A.34 B.58 C.116 D.916 答案:D7.已知数据x 1,x 2,x 3的中位数为k ,众数为m ,平均数为n ,方差为p ,下列说法中,错误的是( )A.数据2x 1,2x 2,2x 3的中位数为2kB.数据2x 1,2x 2,2x 3的众数为2mC.数据2x 1,2x 2,2x 3的平均数为2nD.数据2x 1,2x 2,2x 3的方差为2p答案:D8.一个圆柱的轴截面是正方形,如果这个圆柱的侧面积与一个球的表面积相等,那么圆柱的体积与球的体积之比为( )A.1∶3B.3∶1C.2∶3D.3∶2答案:D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,已知点O 为正六边形ABCDEF 的中心,下列结论中正确的是( )A.OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =0B.(OA ⃗⃗⃗⃗⃗ -AF ⃗⃗⃗⃗⃗ )·(EF ⃗⃗⃗⃗⃗ -DC ⃗⃗⃗⃗⃗ )=0C.(OA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ D.|OF ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=|FA ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ -CB⃗⃗⃗⃗⃗ | 答案:BC10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,一定符合该标志的是( )甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.A.甲地B.乙地C.丙地D.丁地答案:AD11.如图,在正方体ABCD -A 1B 1C 1D 1中,以下四个选项正确的是( )A.D1C∥平面A1ABB1B.A1D1与平面BCD1相交C.AD⊥平面D1DBD.平面BCD1⊥平面A1ABB1答案:AD12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c.若b=c cos A,A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是()A.AC=34B.AB=8C.CDBD =1 8D.△ABD的面积为3√74答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知a=(1,-1),b=(λ,1),若a与b的夹角为钝角,则实数λ的取值范围是(-∞,-1)∪(-1,1).14.从分别写有1,2,3,4,5的五张质地相同的卡片中,任取两张,这两.张卡片上的数字之差的绝对值等于1的概率为2515.(本题第一空2分,第二空3分)随机抽取100名学生,测得他们的身高(单位:cm),按照身高依次分成六组:[155,160),[160,165), [165,170),[170,175),[175,180),[180,185),并得到样本身高的频率分布直方图如图所示,则频率分布直方图中的x的值为0.06;若将身高区间[170,175),[175,180),[180,185)依次记为A,B,C三组,并用分层抽样的方法从这三组中抽取6人,则从A,B,C三组中依次抽取的人数为3,2,1.16.如图所示,已知六棱锥P-ABCDEF的底面是正六边形, PA⊥平面ABC,PA=2 AB.则下列命题中正确的有②④.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD 与平面ABC所成的角为45°.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)如图,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1B,AC的中点.(1)证明:EF∥平面A1C1D;(2)求三棱锥C-A1C1D的体积.(1)证明:如图,连接BD.因为四边形ABCD为正方形,所以BD交AC于点F,且F为BD的中点.因为E为A1B的中点,所以EF∥A1D.因为EF⊄平面A1C1D,A1D⊂平面A1C1D,所以EF∥平面A1C1D.(2)解:三棱锥C-A1C1D的体积V=V棱锥A1-CC1D =13S△CC1D·A1D1=13×12×2×2×2=43.18.(12分)从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出所有可能的结果组成的样本空间.(2)求取出的两件产品中,恰有一件次品的概率.解:(1)每次取出一个,取后不放回地连续取两次,其所有可能的结果有6个,即Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.(2)用A 表示事件“取出的两件产品中,恰好有一件次品”,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},所以P (A )=46=23. 19.(12分)某居民小区为了提高小区居民的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站.由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内读书者进行年龄调查, 随机抽取了一天中40名读书者进行调查,将他们的年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到的频率分布直方图如图所示.(1)估计在这40名读书者中年龄分布在区间[40,70)上的人数;(2)求这40名读书者年龄的平均数和中位数;(3)从年龄在区间[20,40)上的读书者中任选两名,求这两名读书者年龄在区间[30,40)上的人数恰为1的概率.解:(1)由频率分布直方图知,年龄在区间[40,70)上的频率为(0.020+0.030+0.025)×10=0.75.所以40名读书者中年龄分布在区间[40,70)上的人数为40×0.75=30.(2)40名读书者年龄的平均数为25×0.05+35×0.1+45×0.2+55×0.3+ 65×0.25+75×0.1=54.设40名读书者年龄的中位数为x,0.05+0.1+0.2+(x-50)×0.03=0.5,解得x=55,即40名读书者年龄的中位数为55岁.(3)年龄在区间[20,30)上的读书者有2人,分别记为a,b,年龄在区间[30,40)上的读书者有4人,分别记为A,B,C,D.从上述6人中选出2人,有如下样本点:(a,b),(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C),(b,D),(A,B), (A,C),(A,D),(B,C),(B,D),(C,D),共15个,记选取的两名读书者中恰好有1人年龄在区间[30,40)上为事件A,则事件A包含8个样本点:(a,A),(a,B),(a,C),(a,D),(b,A),(b,B),(b,C), (b,D),故P(A)=8.1520.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,设△ABC的面积为S,已知3c2=16S+3(b2-a2).(1)求tan B 的值;(2)若S =42,a =10,求b 的值.解:(1)因为3c 2=16S +3(b 2-a 2),所以3(c 2+a 2-b 2)=16S ,即3×2ac cos B =16×12ac sin B , 所以3cos B =4sin B ,即tan B =34. (2)由(1)可得sin B =35,cos B =45, 所以S =12ac sin B =12×10c ×35=3c =42, 所以c =14.由余弦定理可得,45=100+196-b 22×10×14,整理可得,b =6√2.21.(12分)已知向量a ,b 满足|a |=|b |=1,|xa +b |=√3|a -xb |(x >0,x ∈R).(1)求a ·b 关于x 的解析式f (x );(2)求向量a 与b 夹角的最大值;(3)若a 与b 平行,且方向相同,试求x 的值. 解:(1)由题意得|xa +b |2=3|a -xb |2,即x 2a 2+2xa ·b +b 2=3a 2-6xa ·b +3x 2b 2. 因为|a |=|b |=1,所以8xa ·b =2x 2+2, 所以a ·b =x 2+14x (x >0),即f (x )=14(x +1x ) (x >0). (2)设向量a 与b 夹角为θ,则cos θ=a ·b |a ||b |=f (x )=14[(√x -√x )2+2], 当√x =√x ,即x =1时,cos θ有最小值12.因为0≤θ≤π,所以θmax =π3. (3)因为a 与b 平行,且方向相同,|a |=|b |=1,所以a =b ,所以a ·b =14(x +1x )=1, 解得x =2±√3.22.(12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,AA 1⊥平面ABCD ,AC 与BD 交于点O ,∠BAD =60°,AB =2,AA 1=√6.(1)证明:平面A 1BD ⊥平面ACC 1A 1;(2)求二面角A -A 1C -B 的大小.(1)证明:由AA 1⊥平面ABCD ,得AA 1⊥BD ,AA 1⊥AC. 因为四边形ABCD 为菱形,所以AC ⊥BD.因为AC ∩AA 1=A ,所以BD ⊥平面ACC 1A 1.因为BD ⊂平面A 1BD ,所以平面A 1BD ⊥平面ACC 1A 1.(2)解:如图,过点O 作OE ⊥A 1C 于点E ,连接BE ,DE. 由(1)知BD ⊥平面ACC 1A 1,所以BD ⊥A 1C.因为OE ⊥A 1C ,OE ∩BD =O ,所以A 1C ⊥平面BDE ,所以A 1C ⊥BE. 因为OE ⊥A 1C ,BE ⊥A 1C ,所以∠OEB 为二面角A -A 1C -B 的平面角. 因为△ABD 为等边三角形且O 为BD 中点, 所以OB =12AB =1,OA =OC =√32AB =√3. 因为AA 1⊥AC ,所以A 1C =√AA 12+AC 2=3√2. 因为△A 1AC ∽△OEC ,所以OE AA 1=OC A 1C ,所以OE =OC ·AA 1A 1C =√3×√63√2=1. 在△OEB 中,OB ⊥OE ,所以tan ∠OEB =OBOE =1,即∠OEB =45°. 综上,二面角A -A 1C -B 的大小为45°.。
人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)
人教A版高中数学必修第二册第八章 立体几何初步全卷满分150分 考试用时120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )2.23.已知圆锥侧面展开图的圆心角为60°,底面圆的半径为8,4.5.6.如图,在直三棱柱ABC-A1B1C1中,点D,E分别在棱AA1,CC1上,AB=AC=AD=2A1D=CE=2C1E=2,点F满足BF=λBD(0<λ<1),若B1E∥平面ACF,则λ的值为( )A.23B.12C.13D.147.8.,,EF=12 D.642π每小题6分,共18分.在每小题给出的选项中部分选对的得部分分,有选错的得9.10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则下列四个命题中正确的是( )A.直线BC 与平面ABC 1D 1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C和BC1所成的角为π4D.二面角C-BC1-D的余弦值为-3311.如图1,在等腰梯形ABCD中,AB∥CD,EF⊥AB,CF=EF=2DF=2,AE=3,EB=4,将四边形AEFD沿EF进行折叠,使AD到达A'D'的位置,且平面A'D'FE⊥平面BCFE,连接A'B,D'C,如图2,则( )A.BE⊥A'D'B.平面A'EB∥平面D'FCC.多面体A'EBCD'F为三棱台D.直线A'D'与平面BCFE所成的角为π4三、填空题(本题共3小题,每小题5分,共15分)12.正四棱锥P-ABCD的底面边长为2,高为3,则点A到不经过点A的侧面的距离为 .13.在△ABC中,∠ACB=90°,AC=2,BC=5,P为AB上一点,沿CP将△ACP折起形成直二面角A'-CP-B,当A'B最短时,A'P= .BP14.农历五月初五是端午节,民间有吃粽子的习惯,一般情况下粽子的形状是四面体.如图1,已知底边和腰长分别为8 cm和12 cm的等腰三角形纸片,将它沿虚线(中位线)折起来,可以得到如图2所示粽子形状的四面体,若该四面体内包一蛋黄(近似于球),则蛋黄的半径的最大值为 cm(用最简根式表示);当该四面体的棱所在的直线是异面直线时,其所成的角中最小的角的余弦值为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(13分)现需要设计一个仓库,由上下两部分组成,如图所示,上部分是正四棱锥P-A1B1C1D1,下部分是正四棱柱ABCD-A1B1C1D1,正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,求仓库的容积(含上下两部分);(2)若上部分正四棱锥的侧棱长为6 m,当PO1为多少时,下部分正四棱柱的侧面积最大?最大面积是多少?16.(15分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,E为PD的中点,EA=12 PD,EF⊥AC,垂足为F,且AC=4AF.证明:(1)PB∥平面ACE;(2)PA⊥平面ABCD.17.(15分)如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.18.(17分)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出AP的PD 值;若不存在,请说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.,平面ABB1A1⊥平面BCC1B1,△ABC 19.(17分)如图,已知三棱台ABC-A1B1C1的体积为7312是以B为直角顶点的等腰直角三角形,且AB=2AA1=2A1B1=2BB1.(1)证明:BC⊥平面ABB1A1;(2)求点B到平面ACC1A1的距离;?若存在,求出CF的长;若不(3)在线段CC1上是否存在点F,使得二面角F-AB-C的大小为π6存在,请说明理由.答案全解全析1.D 对于A,长方体是四棱柱,底面不是长方形的直四棱柱不是长方体,A 错误;对于B,棱台侧棱的延长线必须相交于一点,B 错误;对于C,各侧面都是正方形,底面不是正方形(如菱形)的四棱柱不是正方体,C 错误;对于D,棱柱的侧棱相等,侧面都是平行四边形,D 正确. 2.3.母线长为l,则r=8,πrl=8×48π=384π.4.由扇环的圆心角为180°,又C=2π×10,所以SA=20,同理SB=40,则AB=SB-SA=20,圆台的高h=AB 2-(20-10)2=103,表面积S=π(10+20)×20+100π+400π=1 100π,体积V=13π×103×(102+10×20+202)=700033π.故选C.5.A 取BD 的中点E,连接ED 1,AE,易得PD 1∥BE 且PD 1=BE,所以四边形BED 1P 为平行四边形,所以PB ∥D 1E,故∠AD 1E(或其补角)为直线PB 与AD 1所成的角.设AB=AD=AA 1=2,因为∠ABD=45°,所以∠DAB=90°,因为E 为BD 的中点,所以AE=DE=22AB=2.易得AD 1=AD 2+D D 21=22,D 1E=DE 2+D D 21=6,因为A D 21=AE 2+D 1E 2,所以AE ⊥D 1E.故cos ∠AD 1E=D 1EAD 1=622=32,又0°<∠AD 1E<180°,所以∠AD 1E=30°.故选A.6.C 在BB 1上取一点G,使得B 1G=2BG,连接CG,AG,如图所示.∵CE=2C 1E=2,∴CC 1=BB 1=3,∴在直三棱柱ABC-A 1B 1C 1中,B 1G ∥CE,且B 1G=CE=2,∴四边形B 1GCE 为平行四边形,∴B 1E ∥CG,∵B 1E ⊄平面ACG,CG ⊂平面ACG,∴B 1E ∥平面ACG,若B 1E ∥平面ACF,则F 在平面ACG 内,又F 为BD 上一点,∴F 为BD 与AG 的交点.易知△BFG ∽△DFA,∴BF DF =BG DA =12,∴BF =13BD ,即λ的值为13.故选C.7.D 取AD 的中点M,AB 的中点N,连接PD,MD 1,MN,NB 1,B 1D 1,A 1C 1,AC.易知M,N,B1,D1四点共面,D1M⊥PD,D1M⊥CD,∵PD∩CD=D,PD,CD⊂平面PCD,∴D1M⊥平面2,AB∥MN,点O是MN的中点AE2-A N2=22,同理FM=2EN2-MN-EF22=7,当点O1在线段O2O的延长线(含点O)上时,视OO1为非负数;当点O1在线段O2O(不含点O)上时,视OO1为负数,即O2O1=O2O+OO1=7+OO1,所以(22)2+O O21=1+(7+O O1)2,解得OO1=0,因此刍甍的外接球球心在点O处,半径为OA=22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选A.9.AC 对于A,因为圆锥的底面半径为3,所以圆锥的底面周长为2π×3=6π,又因为圆锥的母线长为4,所以圆锥的侧面展开图的圆心角为6π4=3π2,故A选项正确.对于B,因为圆锥的底面半径为3,母线长为4,所以圆锥的高h=42-32=7,故圆锥的体积V=13×π×32×7=37π,故B选项不正确.对于C,设圆锥的两条母线的夹角为θ,则过这两条母线所作截面的面积为12×4×4×sin θ=8sinθ,易知过圆锥母线的截面中,轴截面三角形对应的θ最大,此时cos θ=42+42-622×4×4=-18,所以θ最大是钝角,所以当θ=π2时,截面的面积最大,为8sin π2=8,故C选项正确.对于D,易知圆锥的轴截面的面积为12×6×7=37,故D选项不正确.故选AC.10.AB 如图,取BC1的中点H,连接CH,易证CH⊥平面ABC1D1,所以∠C1BC是直线BC与平面ABC1D1所成的角,为π4,故A正确.点C到平面ABC1D1的距离即为CH的长,为22,故B正确.易证BC1∥AD1,所以异面直线D1C和BC1所成的角为∠AD1C(或其补角),连接AC,易知△ACD1为等边三角形,所以∠AD1C=π3,所以异面直线D1C和BC1所成的角为π3,故C错误.连接DH,易知BD=DC1,所以DH⊥BC1,又CH⊥BC1,所以∠CHD为二面角C-BC1-D的平面角,易求得DH=62,又CD=1,CH=22,所以由余弦定理的推论可得cos∠CHD=DH2+C H2-C D22DH·CH =33,故D错误.故选AB.11.ABD 对于A,因为平面A'D'FE⊥平面BCFE,平面A'D'FE∩平面BCFE=EF,BE⊂平面BCFE,BE⊥EF,所以BE⊥平面A'D'FE,又因为A'D'⊂平面A'D'FE,所以BE⊥A'D',故A正确.对于B,因为A'E ∥D'F,A'E ⊄平面D'FC,D'F ⊂平面D'FC,所以A'E ∥平面D'FC,因为BE ∥CF,BE ⊄平面D'FC,CF ⊂平面D'FC,所以BE ∥平面D'FC,又因为A'E∩BE=E,A'E,BE ⊂平面A'EB,所以平面A'EB ∥平面D'FC,故B 正确.对于C,因为D 'F A 'E =13,FC EB =24=12,则D 'F A 'E ≠FCEB ,所以多面体A'EBCD'F 不是三棱台,故C 错误.对于D,延长A'D',EF,相交于点G,A'D'FE∩平面BCFE=EF,A'E 为直线A'D'与平面GF+2,则32+12=10,到侧面PBC 的距离相等易知S △PDC =S △PBC =12×2×10=10,正四棱锥P-ABCD 的体积V=13S 四边形ABCD ·PO=13×2×2×3=4,设点A 到侧面PBC 的距离为d,则V=V A-PDC +V A-PBC =13S △PDC ·d+13S △PBC ·d=13d×210=4,解得d=3105.故答案为3105.13.答案 25解析 过点A 作AD ⊥CP 于点D,连接BD,设∠ACP=α0<α<则∠PCB=π2-α,所以A'D=2sin α,CD=2cos α,在△BCD 中,由余弦定理可得BD 2=CD 2+BC 2α=4cos 2α+25-10sin 2α,因为A'-CP-B 为直二面角,所以A'D ⊥平面BCP,所以A'D ⊥BD,则A'B 2=A'D 2+BD 2=4sin 2α+4cos 2α+25-10sin 2α=29-10sin 2α,当A'B 2最小时,A'B 最短,2α=π2,所以α=π4,此时CP 平分∠ACB,由角平分线定理可得AP BP =AC BC =25,即A 'P BP =25.14.答案 144;59解析 对题图1中各点进行标记,同时将题图2置于长方体中如下,其中A,B,C 三点重合.设EP=x cm,ER=y cm,SE=z cm,则x 2+y 2=36,x 2+z 2=36,y 2+z 2=16,解得x =27,y =z =22,∴四面体ADEF 的体积为13V 长方体=13xyz=1673(cm 3),四面体ADEF 的表面积S=4S △DEF =4×12×4×42=322(cm 2).当蛋黄与四面体各个面相切时,蛋黄的半径最大,设此时蛋黄(近似于球)的半径为r cm,则V 长方体=13Sr,∴r=3V 长方体S =167322=144.设SQ∩DF=O,取DQ 的中点M,连接OM,则OQ=3 cm,MQ=2 cm,在Rt △OMQ 中,sin ∠QOM=MQ OQ =23,∴cos ∠DOQ=cos(2∠QOM)=1-2sin 2∠QOM=1-49=59,∴∴则∴∵∴又则AE=OE,又AE=12PD,OE=12PB,所以PB=PD,连接OP,则PO ⊥BD,(9分)因为四边形ABCD 为菱形,所以AC ⊥BD,又PO∩AC=O,PO,AC ⊂平面PAC,所以BD ⊥平面PAC,又PA ⊂平面PAC,所以BD ⊥PA.(11分)因为AE=12PD,E 为PD 的中点,所以∠PAD=90°,即PA ⊥AD,(13分)又AD∩BD=D,AD,BD ⊂平面ABCD,所以PA ⊥平面ABCD.(15分)17.解析 (1)证明:∵AC 2+BC 2=AB 2,∴AC ⊥BC.又∵C 1C ⊥AC,C 1C∩BC=C,∴AC ⊥平面BCC 1B 1.(3分)∵BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(5分)(2)证明:设CB 1与C 1B 的交点为E,则E 是BC 1的中点,连接DE,∵D 是AB 的中点,∴DE ∥AC 1.(8分)∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(10分)(3)∵DE ∥AC 1,∴∠CED(或其补角)为AC 1与B 1C 所成的角.在Rt △AA 1C 1中,AC 1=AA 21+A 1C 21=5,∴ED=12AC 1=52,易得CD=12AB=52,CE=12CB 1=22,(13分)∴cos ∠CED=252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.(15分)18.解析 (1)假设存在满足条件的点P.如图,过点P 作PM ∥FD,交AF 于点M,连接ME,∵CE ∥FD,∴MP ∥EC,∴M,P,C,E 四点共面.(2分)∵CP∥平面ABEF,CP⊂平面CEMP,平面ABEF∩平面CEMP=ME,∴CP∥ME,∴四边形CEMP为平行四边形,(4分)∴MP=CE=4-BE=1,易得FD=6-3=3,由MP∥FD可得APAD =MPFD=13,∴APPD=12.(7分)此时AP=1.(8∴又故∴∴在∴∴设由在三棱台ABC-A1B1C1中,AB∥A1B1,∵AB=2AA1=2A1B1=2BB1,∴四边形ABB1A1为等腰梯形且∠ABB1=∠BAA1=60°,(1分)设AB=2x,则BB1=x.由余弦定理得A B21=AB2+B B21-2AB·BB1cos 60°=3x2,∴AB2=A B21+B B21,∴AB1⊥BB1,(2分)∵平面ABB 1A 1⊥平面BCC 1B 1,平面ABB 1A 1∩平面BCC 1B 1=BB 1,AB 1⊂平面ABB 1A 1,∴AB 1⊥平面BCC 1B 1,(3分)又BC ⊂平面BCC 1B 1,∴AB 1⊥BC.∵△ABC 是以B 为直角顶点的等腰直角三角形,∴BC ⊥AB,∵AB∩AB 1=A,AB,AB 1⊂平面ABB 1A 1,∴BC ⊥平面ABB 1A 1.(4分)(2)延长AA 1,BB 1,CC 1交于一点P,∵A 1B 1=12AB,∴S △ABC =4S △A 1B 1C 1,∴V P-ABC =8V P -A 1B 1C 1,∴V P-ABC =87V ABC -A 1B 1C 1=87×7312=233,(5分)∵BC ⊥平面ABB 1A 1即BC ⊥平面PAB,∴BC 的长即为点C 到平面PAB 的距离.(6分)由(1)知AB=BC=2x,∠PAB=∠PBA=60°,∴△PAB 为等边三角形,∴PA=PB=AB=2x,∴V P-ABC =13S △PAB ·BC=13×12×(2x)2×32·2x=233x 3=233,∴x=1,∴AB=BC=PA=PB=2,∴AC=PC=22,∴S △PAC =12×2×(22)2-12=7,(8分)设点B 到平面ACC 1A 1的距离为d,即点B 到平面PAC 的距离为d,∵V B-PAC =V P-ABC ,∴13S △PAC ·d=73d=233,解得d=2217.即点B 到平面ACC 1A 1的距离为2217.(10分)(3)假设存在满足条件的点F.∵BC ⊥平面PAB,BC ⊂平面ABC,∴平面ABC ⊥平面PAB,取AB 的中点N,连接PN,NC,则PN ⊥AB,∵平面ABC∩平面PAB=AB,PN ⊂平面PAB,∴PN ⊥平面ABC,(12分)作FE ∥PN,交CN 于点E,则FE ⊥平面ABC,作ED⊥AB于D,连接FD,则ED即为FD在平面ABC上的射影,∵FE⊥平面ABC,AB⊂平面ABC,∴AB⊥FE,∵∵V由设则∴∴。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。
高一数学人教a版必修2试题:3.2.2 直线的两点式方程 含解析
第三章 3.2 3.2.2一、选择题1.直线x2-y5=1在x 轴、y 轴上的截距分别为导学号 09024735( B )A .2,5B .2,-5C .-2,-5D .-2,5[解析] 将x2-y5=1化成直线截距式的标准形式为x2+y-5=1,故直线x2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M(1,-2)、N(m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是导学号 09024736( C )A .-2B .-7C .3D .1[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN 的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.如右图所示,直线l 的截距式方程是xa +yb =1,则有导学号 09024737( B )A .a>0,b>0B .a>0,b<0C .a<0,b>0D .a<0,b<0[解析] 很明显M(a,0)、N(0,b),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a>0,b<0.4.已知△ABC 三顶点A(1,2)、B(3,6)、C(5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为导学号 09024738( A )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x +y -8=0. 5.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b)在直线l 上,那么b 的值为导学号 09024739( D )A .2 014B .2 015C .2 016D .2 017[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.6.两直线xm -yn =1与xn -ym =1的图象可能是图中的哪一个导学号 09024740( B )[解析] 直线x m -yn=1化为y =nm x -n ,直线xn -ym=1化为y =mnx -m ,故两直线的斜率同号,故选B .7.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P(0,10a),则直线AB 的方程为导学号 09024741( C )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[解析] 依题意,a =2,P(0,5).设A(x 0,2x 0)、B(-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A(4,8)、B(-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C . 8.过P(4,-3)且在坐标轴上截距相等的直线有导学号 09024742( B ) A .1条B .2条C .3条D .4条[解析] 解法一:设直线方程为y +3=k(x -4)(k ≠0). 令y =0得x =3+4kk,令x =0得y =-4k -3.。
专题8.2 简单几何体的表面积与体积(A卷基础篇)高一数学必修第二册同步单元卷(新教材人教A版)
专题8.2 简单几何体的表面积与体积(A 卷基础篇)(浙江专用)参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2021·浙江绍兴市·高二期末)已知球O 的体积为36π,则该球的表面积为( )A .6πB .9πC .12πD .36π 【答案】D【解析】根据球的体积公式求出半径,即可求出表面积.【详解】设球的体积为R ,则由题可得34363R ππ=,解得3R =,则该球的表面积为24336ππ⨯=.故选:D.2.(2021·安徽滁州市·高二期末(理))一个圆柱的轴截面是一个面积为16的正方形,则该圆柱的体积是( ) A .64πB .32πC .16πD .8π 【答案】C【解析】根据题意,求得圆柱的底面直径和高,代入公式,即可求得答案.【详解】因为轴截面的面积为16,所以圆柱的底面直径和高均为4,所以圆柱的体积22416V ππ=⋅⨯=.故选:C3.(2021·河南洛阳市·高一期末)如图网格中是某几何体的三视图(网格中每个小正方形的边长为1),则该几何体的体积为( )A .2B .5C .4D .25【答案】A【解析】根据三视图还原几何体,计算体积即可.【详解】还原几何体如图,为四棱柱,底面积为11⨯,高为2故体积为:2故选:A4.(2021·浙江舟山市·高二期末)已知圆锥的正视图是边长为2的等边三角形,则它的表面积是( )A .2πB .3πC .4πD .5π【答案】B【解析】根据圆锥的正视图,求得圆锥的底面半径和母线长,结合侧面积和圆的面积公式,即可求解.【详解】设圆柱的底面半径为r ,母线长为l ,因为圆柱的正视图为边长为2的等边三角形,可得22,2r l ==,所以1r =,所以圆锥的表面积为221213S S S rl r πππππ=+=+=⨯⨯+⨯=侧底.故选:B.5.(2021·湖南省平江县第一中学高二月考)体积为8的正方体的顶点都在同一个球面上,则该球的表面积为()A.8πB.12πC.16πD.32 3π【答案】B【解析】根据正方体的体对角线长等于其外接球直径可求出外接球半径,再根据球的表面积公式即可求出.【详解】因为正方体的体积为8,即其棱长为2,体对角线长为3233,所以其外接球的表面积为24312ππ⨯=.故选:B.6.(2021·陕西咸阳市·高三一模(理))已知某圆锥的轴截面是边长为4的正三角形,则它的体积为().A 23B43C83D.3π【答案】C【解析】根据题意,求得圆锥的高和底面圆的半径,代入公式,即可求得答案. 【详解】如图所示:ABC 为边长为4的正三角形,所以AB=AC=BC =4,取BC 中点为O ,则224223AO -= 所以圆锥的体积21832333V ππ=⨯⨯⨯=. 故选:C7.(2021·全国高一课时练习)若一个球的直径为2,则此球的表面积为( )A .2πB .16πC .8πD .4π 【答案】D【解析】得出球的半径,直接由球的表面积公式即可得结果.【详解】因为球的直径为2,即球的半径为1,所以球的表面积为2414ππ⨯=,故选:D.8.(2020·长春市第二十九中学高二月考(理))圆锥的表面积为12π,母线长为4,则该圆锥的底面半径为( )A .2B .3C .1D 3 【答案】A【解析】设圆锥的底面半径为r ,根据圆锥的表面积为12π,母线长为4,由212S r rl πππ=+=求解.【详解】设圆锥的底面半径为r ,因为圆锥的表面积为12π,母线长为4,所以212S r rl πππ=+=,即 24120r r +-=,解得 2r或 6r =-(舍去)故选:A9.(2020·四川成都市·高三其他模拟(理))一个多面体的三视图如图所示,其正视图、侧视图都是全等的等腰直角三角形,俯视图为边长为2的正方形,则其体积为( )A .83B .43C .8D .4【答案】A【解析】 由三视图知:该几何体是一条侧棱垂直与底面,底面是边长为2的正方形,高为2的倒立的四棱锥,然后利用锥体体积公式求解.【详解】 如图所示:由三视图知:该几何体是一个倒立的四棱锥S ABCD -,其中SA ⊥底面ABCD ,底面为正方形, 所以四棱锥S ABCD -的底面积为4,高为2,所以四棱锥S ABCD -的体积为: 184233V =⨯⨯=,故选:A10.(2020·陕西高三月考(文))一个长方体的长,宽、高分别为5,3则该长方体的外接球的表面积为( )A .36πB .40πC .45πD .70π 【答案】B【解析】根据长方体的外接球半径为长方体的体对角线的一半,再结合球的表面积公式,求出结果.【详解】该长方体的外接球的半径R 为体对角线的一半,则R === 则该长方体的外接球的表面积为:2440R ππ=.故选:B. 第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2021·全国高一课时练习)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】根据圆柱侧面积公式直径求解.【详解】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.12.(2021·重庆北碚区·西南大学附中高二期末)一圆锥高为2,底面半径为1,则它的侧面积为___________.【解析】首先计算母线长,再根据侧面积公式计算结果.【详解】由条件可知圆锥的高2h =,和底面圆的半径1r =,则母线长l =,则圆锥的侧面积S rl π==.故答案为:5π13.(2021·陕西咸阳市·高一期末)张衡(78年~139年)是中国东汉时期杰出的天文学家、数学家、发明家、地理学家、文学家,他的数学著作有《算罔论》.张衡给立方体定名为质,给球体定名为浑.他研究过球的外切立方体体积和内接立方体体积,研究过球的体积,其中还定圆周率值为10的开平方,直到五百多年后,印度和阿拉伯的数学家才得出这个数值.现有棱长为610的正方体,利用张衡的结论可得该正方体的内切球的体积为______.【答案】3600【解析】 设正方体的棱长为a ,内切球的半径为r ,由a =2r ,求得半径,再代入球的体积公式求解. 【详解】设正方体的棱长为a ,内切球的半径为r , 则a =2r ,因为a =10所以310r =10π=所以球的体积为(334410310360033V r π===,故答案为:360014.(2021·浙江高二开学考试)将半径为4的半圆卷成一个圆锥,则圆锥底面半径为________,圆锥的体积为________.【答案】2,83π 【解析】根据侧面展开图列方程计算圆锥的底面半径,根据勾股定理计算圆锥的高,代入体积公式计算即可.【详解】显然圆锥的母线长为 4,l = 设圆锥的底面半径为r ,则24,r ππ= 即2r, 所以圆锥的高2223,h l r =-=圆锥的体积 2118342333V r h πππ=⋅⋅=⨯⨯=故答案为:215.(2020·台州市洪家中学高二月考)正方体1111ABCD A B C D -的棱长为1,则其表面积为___________;其内切球的体积为___________.【答案】66π 【解析】正方体的表面积为6个面的面积和;球内切与正方体,则球的直径与正方体的棱长相等,即可得到球的半径,利用公式求体积即可.【详解】易得:616S =⨯=,因为球内切于棱长为1的正方体,所以球的直径等于正方体的棱长, 所以球的半径为12, 所以该球的体积为341()326ππ⨯=, 故答案为:6;6π. 16.(2020·全国高一课时练习)(1)已知一圆台上底面的半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,则此圆台的体积为________.(2)圆台的上、下底面半径分别为10cm ,20cm ,它的侧面展开图扇环的圆心角为180°,则圆台的表面积为______2cm .(结果中保留π) 【答案】383π 1100π 【解析】(1)先利用圆台的轴截面求出圆台的高,再利用圆台的体积公式求解即可;(2)根据条件先求出侧面展开的扇环的半径,再根据圆台表面积公式求解即可.【详解】解析:(1)作出圆台的轴截面,如图,设圆台的高为h ,则2636h -=,所以2h =, 所以圆台的体积为()221382233233V π=+⨯+⨯=π. (2)如图所示,设圆台的上底面周长为lcm ,因为扇环的圆心角是180°,故210l SA ππ=⋅=⨯,所以20SA cm =.同理可得40SB cm =,所以20AB SB SA cm =-=,所以表面积()222(1020)2010201100mS c ππππ=+⨯+⨯+⨯=. 故圆台的表面积为21100cm π.答案:(1)383π(2)1100π. 17.(2011·全国高三专题练习)某地球仪上北纬030纬线的长度为12()cm π,该地球仪的半径是__________cm ,表面积是______________cm 2. 【答案】3 192π.【解析】先利用圆周长公式,求出小圆的半径,根据球的截面性质,可求出球的半径,进而求出球的表面积.【详解】设北纬030所在圆面的关系为r ,由题可得:212r ππ=解得6r =,设地球仪的半径为0643cos30R ==地球仪表面积为24192R ππ=.三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.(2021·海原县第一中学高一期末)如图是边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点,现在沿三角形GFH 所在平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体的几分之几?【答案】148. 【解析】 根据三棱锥和柱体的体积公式,即可求解.【详解】由题意,边长为1的正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点, 锯掉的三棱锥的体积11111113222248V =⨯⨯⨯⨯=. 正方体的体积1111V =⨯⨯=. 锯掉的这块的体积是原正方体的148. 故答案为:148. 19.(2021·安徽池州市·高二期末(文))已知圆台上、下底面的底面积分别为16π,81π,且母线长为13. (1)求圆台的高;(2)求圆台的侧面积.【答案】(1)12;(2)169π.【解析】(1)依题意利用勾股定理计算可得;(2)利用圆台的侧面积公式()12S r r l π=+计算可得;【详解】解:(1)依题意,圆台的上底面半径14r =,下底面半径29r =,故圆台的高()22139412h =--=;(2)圆台的侧面积413913169S πππ=⨯⨯+⨯⨯=.20.(2020·福建三明市·高二期中)如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.【答案】(1)256;(2)240.【解析】(1)按照公式求出长方体和四棱锥的体积,求和即可;(2)先找到四棱锥侧面的高,然后可求出四棱锥的侧面积,继而求长方体的表面积,求和即可.【详解】连接11A C ,11B D 交于点O ,取11B C 的中点E ,连接PO ,OE ,PE(1)883192V =⨯⨯=长方体11111883643P A B C D V -=⨯⨯⨯= ∴19264256V =+=总(2)∵3PO =,4OE =∴225PE PO OE =+=1485802S =⨯⨯⨯=四棱椎侧 48388160S =⨯⨯+⨯=长方体80160240S =+=总21.(2020·湖北高二月考)有一堆规格相同的铁制(铁的密度为37.8g /cm )六角螺帽共重6kg ,已知该种规格的螺帽底面是正六边形,边长是12mm ,内孔直径为10mm ,高为10mm ,(1)求一个六角螺帽的体积;(精确到30.001cm )(2)问这堆六角螺帽大约有多少个?(参考数据:3 1.73,2.9527.823,1.0837.88.45π==⨯≈⨯≈)【答案】(1)()32.952cm;(2)261个. 【解析】(1)利用六棱柱的体积减去圆柱的体积即得解;(2)计算61000(7.8 2.952)⨯÷⨯即得解.【详解】 (1)由题得22310(12)610 3.141042V ⎛⎫=⨯⨯-⨯⨯ ⎪⎝⎭ 3736.8785=-()()332951.82952mm 2.952cm =≈=(2)这堆螺帽的个数为:61000(7.8 2.952)261⨯÷⨯≈(个)答:每个螺帽的体积为32.952cm ,共有261个螺帽.22.(2020·全国高三专题练习)已知四棱台的上、下底面分别是边长为4和8的正方形,侧面是腰长为8的等腰梯形,求该四棱台的表面积.【答案】804815+【解析】首先求出四棱台上、下底面面积与侧面面积,然后求出表面积即可.【详解】如图,在四棱台1111ABCD A B C D -中,过1B 作1B F BC ⊥,垂足为F ,在1Rt B FB 中,1(84)22BF =⨯-=,18B B =, 故22182215B F =-= 所以111(84)21512152BB C C S =⨯+⨯=梯形 故四棱台的侧面积412154815S =⨯=侧, 所以四棱台的表面积48154488804815S =⨯+⨯=+表。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)
高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(52)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1. 在 △ABC 中,∠BAC =60∘,∠BAC 的平分线 AD 交 BC 边于点 D ,已知 AD =2√3,且λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ (λ∈R ),则 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ( )A . 1B . 32C . 3D . 3√322. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .若 3bcosC =c (1−3cosB ),则 c:a = ( ) A . 1:3 B . 4:3 C . 3:1 D . 3:23. 已知 △ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c 且 acosC +√32c =b ,若 a =1,√3c −2b =1,则角 B 为 A .π4B .π6C .π3D .π124. 已知向量 a =(2,x ),b ⃗ =(1,2),若 a ∥b ⃗ ,则实数 x 的值为 ( ) A .1B .2C .3D .45. 珠穆朗玛峰是印度洋板块和欧亚板块碰撞挤压形成的.这种挤压一直在进行,珠穆朗玛峰的高度也一直在变化.由于地势险峻,气候恶劣,通常采用人工攀登的方式为珠峰“量身高”.攀登者们肩负高精度测量仪器,采用了分段测量的方法,从山脚开始,直到到达山顶,再把所有的高度差累加,就会得到珠峰的高度.2020 年 5 月,中国珠峰高程测量登山队 8 名队员开始新一轮的珠峰测量工作.在测量过程中,已知竖立在 B 点处的测量觇标高 10 米,攀登者们在 A 处测得到觇标底点 B 和顶点 C 的仰角分别为 70∘,80∘,则 A ,B 的高度差约为 ( )A . 10 米B . 9.72 米C . 9.40 米D . 8.62 米6. 在 △ABC 中,A =120∘,AB =5,BC =7,则 sinB sinC= ( )A . 37B . 35C . 57D . 857. 若 O 为平行四边形 ABCD 的中心,AB ⃗⃗⃗⃗⃗ =2e 1⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3e 2⃗⃗⃗ ,则 32e 2⃗⃗⃗ −e 1⃗⃗⃗ 等于 ( )A . AO ⃗⃗⃗⃗⃗B . BO ⃗⃗⃗⃗⃗C . CO ⃗⃗⃗⃗⃗D . DO⃗⃗⃗⃗⃗⃗8. 在 △ABC 中,AB =2AC =6,BA⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 2,点 P 是 △ABC 所在平面内的一点,则当 PA ⃗⃗⃗⃗⃗ 2+PB ⃗⃗⃗⃗⃗ 2+PC ⃗⃗⃗⃗⃗ 2 取得最小值时,AP ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ = ( ) A . 35B . −9C . 7D . −259. 在 △ABC 中,点 D 满足 BD ⃗⃗⃗⃗⃗⃗ =34BC ⃗⃗⃗⃗⃗ ,当点 E 在线段 AD 上移动时,若 AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ (λ,μ∈R ),则 t =(λ−1)2+μ2 的最小值是 ( ) A .3√1010B .√824C . 910D .41810. 已知 a ,b ⃗ ,c 是三个不共线的向量,a 为给定向量,那么下列叙述中正确的是 ( )A .对任何非零实数 λ 及给定的向量 b ⃗ ,c ,均存在唯一的实数 μ,使得 a =λb ⃗ +μcB .对任何向量 b ⃗ 及给定的非零实数 λ,μ,均存在唯一的向量 c ,使得 a =λb ⃗ +μcC .若 ∣b ⃗ ∣=1,则对任何实数 λ,均存在单位向量 c 和实数 μ,使得 a =λb ⃗ +μcD .若 ∣b ⃗ ∣=1,则对任何实数 μ,均存在单位向量 c 和实数 λ,使得 a =λb ⃗ +μc二、填空题(共6题)11. 已知复数 a+i2−i 为纯虚数,那么实数 a = .12. 如图所示,三棱锥 P −ABC 外接球的半径为 1,且 PA 过球心,△PAB 围绕棱 PA 旋转 60∘后恰好与 △PAC 重合.若 PB =√3,则三棱锥 P −ABC 的体积为 .13. 思考辨析 判断正误频率分布直方图中所有小长方形面积之和为 1.14. 已知向量 a ,b ⃗ 满足 ∣a ∣=2,∣∣b ⃗ ∣∣=3,且已知向量 a,b ⃗ 的夹角为 60∘,(a −c )⋅(b ⃗ −c )=0,则 ∣c ∣ 的最小值是 .15. 已知向量 a =(1,2),b ⃗ =(2,−2),c =(1,λ).若 c ∥(2a +b ⃗ ),则 λ= .16. 在相距 2 km 的 A ,B 两点处测量目标点 C ,若 ∠CAB =75∘,∠CBA =60∘,则 A ,C 两点之间的距离为 .三、解答题(共6题)17. 如图,在五面体 ABCDEF 中,四边形 ABCD 是边长为 2 的正方形,EF ∥平面ABCD ,EF =1,FB =FC ,∠BFC =90∘,AE =√3,H 是 BC 的中点.(1) 求证:FH ∥平面BDE ; (2) 求证:AB ⊥平面BCF ; (3) 求五面体 ABCDEF 的体积.18. 对于任意实数 a ,b ,c ,d ,表达式 ad −bc 称为二阶行列式(determinant ),记作 ∣∣∣ab cd ∣∣∣. (1) 求下列行列式的值:① ∣∣∣1001∣∣∣; ② ∣∣∣1326∣∣∣; ③ ∣∣∣−2510−25∣∣∣;(2) 求证:向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣a b cd ∣∣∣=0.(3) 讨论关于 x ,y 的二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1a 2b 1b 2≠0) 有唯一解的条件,并求出解.(结果用二阶行列式的记号表示)19. 有些同学说:实轴上的点表示实数,虚轴上的点表示虚数,这句话对吗?20. 在 △ABC 中,a ,b ,c 分别是内角 A ,B ,C 的对边,且 A =π6,a =2.(1) 若 B =π4,求 b 的值;(2) 若 △ABC 的面积为 √3,求 △ABC 的周长.21. 已知函数 f (x )=12sin2x −√3cos 2x .(1) 求函数 y =f (x ) 的最小正周期.(2) 在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,若锐角 A 满足 f (A )=1−√32,C =π6,c =2,求 △ABC 的面积.22. 在直角 △ABC 中,A =π2,D 为 AC 边上的一点,BD =√3.(1) 若 BC =3,∠BDC =2π3,求 △BDC 的面积.(2) 若 C =π3,求 △BCD 周长 l 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】在 AC 上取点 E ,使 AE ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ , 连接 DE ,过 D 作 DF ∥AC ,交 AB 于 F ,因为 λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ (λ∈R ),所以 ED ∥AB ,所以四边形 AFDE 为平行四边形, 又 AD 平分 ∠BAC , 所以四边形 AFDE 为菱形. 因为 AD =2√3,∠BAC =60∘, 所以 AE =2,则 AC =6. 设 FB =x , 因为 DF ∥AC , 所以 DFAC =FBAB , 即 26=x 2+x ,解得 x =1, 即 FB =1, 所以 AB =3.所以 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣⋅cos30∘=3√32.【知识点】平面向量的数量积与垂直2. 【答案】C【解析】由 3bcosC =c (1−3cosB ) 及正弦定理可得 3sinBcosC =sinC (1−3cosB ),化简可得sinC=3sin(B+C).又A+B+C=π,所以sinC=3sinA,所以c:a=sinC:sinA=3:1.【知识点】正弦定理3. 【答案】B【解析】因为acosC+√32c=b,由正弦定理得sinAcosC+√32sinC=sinB=sin(B+C),整理得cosA=√32,所以A=π6,又因为a=1,√3c−2b=1,所以√3sinC−2sinB=sinA=12,即√3sin(5π6−B)−2sinB=12,整理得cos(B+π6)=12,所以B=π6.【知识点】正弦定理4. 【答案】D【解析】向量a=(2,x),b⃗=(1,2),a∥b⃗,可得x=4.【知识点】平面向量数乘的坐标运算5. 【答案】C【解析】根据题意画出如图的模型,则CB=10,∠OAB=70∘,∠OAC=80∘,所以∠CAB=10∘,∠ACB=10∘,所以AB=10,所以在Rt△AOB中,BO=10sin70∘≈9.4(米).【知识点】解三角形的实际应用问题6. 【答案】B【解析】由余弦定理得BC2=AB2+AC2−2⋅AB⋅AC⋅cosA,因此49=25+AC2+5AC,解得AC=3或AC=−8(舍去),因此由正弦定理得sinB sinC=AC AB=35.【知识点】正弦定理、余弦定理7. 【答案】B【解析】由 BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ 得 3e 2⃗⃗⃗ −2e 1⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ ,即 2(32e 2⃗⃗⃗ −e 1⃗⃗⃗ )=BD ⃗⃗⃗⃗⃗⃗ =2BO ⃗⃗⃗⃗⃗ .【知识点】平面向量的数乘及其几何意义8. 【答案】B【知识点】平面向量的数量积与垂直9. 【答案】C【解析】如图,设存在实数 m 使得 AE⃗⃗⃗⃗⃗ =mAD ⃗⃗⃗⃗⃗ (0≤m ≤1), 因为AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +34(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ , 所以 AE ⃗⃗⃗⃗⃗ =m (14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )=m 4AB⃗⃗⃗⃗⃗ +3m 4AC ⃗⃗⃗⃗⃗ , 所以 {λ=m 4,μ=3m 4,所以t =(λ−1)2+μ2=(m4−1)2+(3m 4)2=58m 2−m2+1=58(m −25)2+910,当 m =25 时,t 取得最小值,为 910.【知识点】平面向量的分解10. 【答案】B【解析】对于A,由平面向量基本定理可得,有且仅有一对实数λ,μ,使得a=λb⃗+μc成立.故条件中的“对任何非零实数λ”说法不正确.故A错误.对于B,由平面向量基本定理可得结论正确,故B正确.对于C,当λ=0时,a=μc,与题设a,b⃗,c是三个不共线的向量矛盾.故C错误.对于D,当μ=0时,a=λb⃗,与题设a,b⃗,c是三个不共线的向量矛盾.故D错误.【知识点】平面向量的分解二、填空题(共6题)11. 【答案】12【知识点】复数的乘除运算12. 【答案】√38【解析】如图所示,由题意,PA过球心,故取PA中点为O,O即为球心.连接BO,CO,有△PAC由△PAB绕PA轴60∘后重合,故PC=PB,过B作BH⊥PA于H点,同理过C作CH⊥PA于H点,由于r=1,PB=PC=√3,过O点作OG⊥PB于G点,OP=OB=1,故有OG=√(PB2)2−OP2=12⇒∠BPH=π6,即有BH=PB⋅sinπ6=√32,又且∠BHC=60∘,BH=CH,故S△BHC=12×√32×34=3√316,则有V P−ABC=V P−BHC+V A−BHC=13S△BHC(PH+AH)=13×3√316×2=√38,故三棱锥P−ABC的体积为√38.【知识点】棱锥的表面积与体积13. 【答案】 √【知识点】频率分布直方图14. 【答案】√19−√72【解析】如图所示,设 OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,OC ⃗⃗⃗⃗⃗ =c ,由题,得 ∠AOB =π3,∣∣OA ⃗⃗⃗⃗⃗ ∣∣=2,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=3,CA⃗⃗⃗⃗⃗ =a −c ,CB ⃗⃗⃗⃗⃗ =b ⃗ −c ,a ⋅b ⃗ =2×3×cos60∘=3, 又 (a −c )⋅(b ⃗ −c )=0,所以 CA⃗⃗⃗⃗⃗ ⊥CB ⃗⃗⃗⃗⃗ ,则点 C 在以 AB 为直径的圆上, 取 AB 的中点为 M ,则 OM ⃗⃗⃗⃗⃗⃗ =12(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ), 设以 AB 为直径的圆与线段 OM 的交点为 E ,则 ∣c ∣ 的最小值是 ∣∣OE ⃗⃗⃗⃗⃗ ∣∣, 因为∣∣OM ⃗⃗⃗⃗⃗⃗ ∣∣=√14(OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=12√OA ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ 2=12×√4+2×3+9=√192,又 AB =√OA 2+OB 2−2OA ⋅OB ⋅cos60∘=√4+9−2×2×3×12=√7, 所以 ∣c ∣ 的最小值是 ∣∣OE ⃗⃗⃗⃗⃗ ∣∣=OM −ME =OM −12AB =√19−√72.【知识点】平面向量的数量积与垂直、余弦定理15. 【答案】 12【解析】 2a +b⃗ =2(1,2)+(2,−2)=(4,2), 又因为 c ∥(2a +b ⃗ ), 所以 4×λ−2×1=0, 所以 λ=12.【知识点】平面向量数乘的坐标运算16. 【答案】√6km【知识点】正弦定理三、解答题(共6题)17. 【答案】(1) 连接AC,AC与BD相交于点O,则点O是AC的中点,连接OH,EO,因为H是BC的中点,AB=1.所以OH∥AB,OH=12因为EF∥平面ABCD,EF⊂平面ABFE,平面ABCD∩平面ABFE=AB,所以EF∥AB.因为EF=1,所以OH∥EF,OH=EF.所以四边形EOHF是平行四边形.所以EO∥FH,EO=FH.因为EO⊂平面BDE,FH⊄平面BDE,所以FH∥平面BDE.(2) 证法1:取AB的中点M,连接EM,则AM=MB=1,由(1)知,EF∥MB,且EF=MB,所以四边形EMBF是平行四边形.所以EM∥FB,EM=FB.在Rt△BFC中,FB2+FC2=BC2=4,又FB=FC,得FB=√2.所以EM=√2.在△AME中,AE=√3,AM=1,EM=√2,所以AM2+EM2=3=AE2.所以AM⊥EM.所以AM⊥FB,即AB⊥FB.因为四边形ABCD是正方形,所以AB⊥BC.因为FB∩BC=B,FB⊂平面BCF,BC⊂平面BCF,所以AB⊥平面BCF.证法2:在Rt△BFC中,H为BC的中点,BC=1.所以FH=12AC=√2,EO=FH=1,在△AEO中,AE=√3,AO=12所以AO2+EO2=AE2.所以AO⊥EO.因为 FH ∥EO , 所以 AO ⊥FH .因为 FH ⊥BC ,BC ⊂平面ABCD ,AO ⊂平面ABCD ,AO ∩BC =C , 所以 FH ⊥平面ABCD . 因为 AB ⊂平面ABCD , 所以 FH ⊥AB .因为四边形 ABCD 是正方形, 所以 AB ⊥BC .因为 BC ⊂平面BCF ,FH ⊂平面BCF ,BC ∩FH =H , 所以 AB ⊥平面BCF . (3) 连接 EC ,在 Rt △BFC 中,FH =12BC =1, 所以 EO =FH =1.由(2)知 AB ⊥平面BCF ,且 EF ∥AB , 所以 EF ⊥平面BCF .因为 FH ⊥平面ABCD ,EO ∥FH , 所以 EO ⊥平面ABCD .所以四棱锥 E −ABCD 的体积为 V 1=13⋅EO ⋅S 正方形ABCD =13×1×22=43.所以三棱锥 E −BCF 的体积为 V 2=13⋅EF ⋅S △BCF =13×1×12×(√2)2=13. 所以五面体 ABCDEF 的体积为 V =V 1+V 2=53.【知识点】棱锥的表面积与体积、直线与平面垂直关系的判定、直线与平面平行关系的判定18. 【答案】(1) ① ∣∣∣1001∣∣∣=1;② ∣∣∣1326∣∣∣=1×6−2×3=0;③ ∣∣∣−2510−25∣∣∣=(−2)×(−25)−5×10=0. (2) 若向量 p =(a,b ) 与向量 q =(c,d ) 共线,则 当 q ≠0⃗ 时,有 ad −bc =0,即 ∣∣∣a b c d ∣∣∣=0, 当 q =0⃗ 时,有 c =d =0,即 ∣∣∣a b c d ∣∣∣=ad −bc =0, 所以必要性得证. 反之,若 ∣∣∣a b cd ∣∣∣=0,即 ad −bc =0,当 c ,d 不全为 0 时,即 q ≠0⃗ 时, 不妨设 c ≠0,则 b =adc,所以 p =(a,ad c),因为 q =(c,d ),所以 p =ac q ,所以 p ∥q , 所以向量 p =(a,b ) 与向量 q =(c,d ) 共线,当 c =0 且 d =0 时,q =0⃗ , 所以向量 p =(a,b ) 与向量 q =0⃗ 共线, 充分性得证.综上,向量 p =(a,b ) 与向量 q =(c,d ) 共线的充要条件是 ∣∣∣ab c d ∣∣∣=0. (3) 用 b 2 和 b 1 分别乘上面两个方程的两端,然后两个方程相减,消去 y 得 (a 1b 2−a 2b 1)x =c 1b 2−c 2b 1, ⋯⋯① 同理,消去 x 得 (a 1b 2−a 2b 1)y =a 1c 2−a 2c 1, ⋯⋯② 所以,当 a 1b 2−a 2b 1≠0 时,即 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时, 由①②可得 x =c 1b 2−c 2b 1a 1b 2−a 2b 1=∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =a 1c 2−a 2c 1a1b 2−a 2b 1=∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣, 所以,当 ∣∣∣a 1b 1a 2b 2∣∣∣≠0 时,方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2 有唯一解且 x =∣∣∣c 1b 1c 2b 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣,y =∣∣∣a 1c 1a 2c 2∣∣∣∣∣∣a 1b 1a 2b 2∣∣∣. 【知识点】平面向量数乘的坐标运算、二阶行列式19. 【答案】不正确.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为 (0,0),它所确定的复数是 z =0+0i =0,表示的是实数.【知识点】复数的几何意义20. 【答案】(1) 2√2. (2) 4+2√3.【知识点】余弦定理、正弦定理21. 【答案】(1) f (x )=12sin2x −√32cos2x −√32=sin (2x −x3)−√32, T =π.(2) sin (2A −π3)=12,2A −π3=16π, A =π4,C =π6,B =712π, asinA =csinC , a =2√2,S =12acsinB =12×2√2×2×sin 712π=1+√3. 【知识点】Asin(ωx+ψ)形式函数的性质、正弦定理22. 【答案】(1) 由余弦定理得:BC 2=DB 2+DC 2−2DB ⋅DC ⋅cos2π3,即 DC 2+√3DC −6=0,解得 DC =√3,DC =−2√3(舍去).S △BDC =12BD ⋅DC ⋅sin∠BDC =12×√3×√3×sin 2π3=3√34.(2) 在 △BCD 中,C =π3,∠ABC =π6,BD =√3, 设 ∠DBC =α,所以BDsin π3=CD sinα=BC sin(2π3−α),故 CD =2sinα,BC =2sin (α+π3),所以 △BCD 的周长 l =BD +BC +CD =√3+2sinα+2sin (α+π3),即 l =√3+2√3sin (α+π6),因为 α∈(0,π6],所以 l ∈(2√3,3+√3].【知识点】余弦定理、Asin(ωx+ψ)形式函数的性质、正弦定理。
(人教版A版)高中数学必修第二册 第七章综合测试试卷02及答案
第七章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设1234i,23i z z =-+=-其中i 为虚数单位,则12z z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知i 为虚数单位,复数122i,2i z a z =+=-,且21z z =,则实数a 的值为( )A .1B .1-C .1或1-D .1±或03.复数:满足31i z z +=-(i 为虚数单位),则复数z 对应的点的轨迹是( )A .直线B .正方形C .圆D .射线4.已知复数(12i)(23i)z =++(i 是虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.若复数z 满足(12i)5z +=,i 为虚数单位,则z 的虚部为( )A 2i-B .2C .2-D .2i6.定义运算a b ad bc c d =-,则符合条件1142i iz z -=+(i 是虚数单位)的复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知复数2349i+i +i +i ++i 1+iz =L (i 是虚数单位),则复数z 在复平面内对应的点为( )A .11,22æöç÷èøB .(1,1)C .11,22æö-ç÷èøD .(1,1)-8.设z 是纯虚数,i 是虚数单位,若21iz +-是实数,则z =( )A .2i -B .1i 2-C .1i 2D .2i9.对于复数,,,a b c d ,若集合{,,,}S a b c d =具有性质“对任意,x y S Î,必有xy S Δ,则当,,,a b c d 同时满足①1a =:②21b =;③2c b =时,b c d ++=( )A .1B .1-C .0D .i10.已知i 是虚数单位,给出下列命题,其中正确的是( )A .满足i i z z -=+的复数z 对应的点的轨迹是圆B .若2,i 1m Î=-Z ,则123i i i i 0m m m m ++++++=C .复数i z a b =+(其中,a b ÎR )的虚部为iD .在复平面内,实轴上的点都表示实数,虚轴上的点都表示虚数二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ÎR g ”是“z 为实数”的充分不必要条件12.设()()2225322i,z t t t t t =+-+++ÎR ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知i 为虚数单位,若复数24(2)i()z a a a =-+-ÎR 是纯虚数,则1z +=________;z z =g ________.(本题第一空2分,第二空3分)14.如图所示,网格中的小正方形的边长是1,复平面内的点Z 对应复数z ,则复数12z i-(i 为虚数单位)的共轭复数的虚部是________.15.若34i z =-(i 为虚数单位),则z z=________.16.复数12,z z 分别对应复平面内的点12M M 、,且1212z z z z +=-,线段12M M 的中点M 对应的复数为43i +(i 为虚数单位),则2212z z +=________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知复数z 满足13z i z =+-,i 是虚数单位,化简22(1i)(34i)2z++.18.(本小题满分12分)(1)已知m ÎR ,i 是虚数单位,复数()()2245215i z m m m m =--+--是纯虚数,求m 的值;(2)已知复数z 满足方程(2)i 0z z +-=,i 是虚数单位,求z 及|2i |z +的值.19.(本小题满分12分)(1)已知2i 1-(i 是虚数单位)是关于x 的方程10mx n +-=的根,,m n ÎR ,求+m n 的值;(2)已知2i 1-(i 是虚数单位)是关于x 的方程210x mx n ++-=的一个根,,m n ÎR ,求+m n 的值.20.(本小题满分12分)已知复数()21223(25)i,10i 15z a z a a a =+-=+--+,其中a 为实数,i 为虚数单位.(1)若复数1z 在复平面内对应的点在第三象限,求a 的取值范围;(2)若12z z +是实数(2z 是2z 的共轭复数),求1z 的值.21.(本小题满分12分)欧拉公式cos sin ix e x i x =+(e 为自然对数的底数,i 为虚数单位,x ÎR )是由瑞士著名数学家欧拉提出的,它将指数函数的定义域扩大到复数,阐述了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式:(1)判断复数2i e 在复平面内对应的点位于第几象限,并说明理由;(2)若0ix e <,求cos x 的值.22.(本小题满分12分)若,42i,sin icos z z z w q q Î+=+=-C (q 为实数),i 为虚数单位.(1)求复数z ;(2)求z w -的取值范围.第七章综合测试答案解析一、1.【答案】B【解析】1234i,23i z z =-+=-Q ,1234i 23i 1i z z \+=-++-=-+,12z z \+在复平面内对应的点坐标为(1,1)-,位于第二象限,故选B .2.【答案】C【解析】因为复数12i z a =+,22i z =-,且12z z =,所以2441a +=+,解得1a =±,故选C .3.【答案】C【解析】设i(,)z x y x y =+ÎR ,则33i 1i i x y x y ++=+-,所以2222(31)9(1)x y x y ++=+-,即224430x y x y +++=.所以复数z 对应的点的轨迹为圆.故选C .4.【答案】B【解析】(12i)(23i)47i z =++=-+Q ,z \在复平面内对应的点的坐标为(4,7)-,位于第二象限,故选B .5.【答案】C 【解析】依题意得,512i 12iz ==-+,所以z 的虚部为2-,故选C .6.【答案】D【解析】依题意得,i 42i z z +=+,42i 3i 1iz +\==-+,对应的点的坐标为(3,1)-,位于第四象限,故选D .7.【答案】A 【解析】2349i i i i i i 1i 1i ==1i 1iz +++++--+++=++L L i (1i)i 11i 1i (1i)(1i)22-==+++-,所以复数z 在复平面呢对应的点的坐标为11,22æöç÷èø.8.【答案】A【解析】z Q 为纯虚数,\设i z b =(b ÎR 且0b ¹),则2i 2(i 2)(1i)21(2)i 1i 1i (1i)(1i)22z b b b b ++++-+===++---+,又21i z +-Q 为实数,1(2)02b \+=,即2b =-,2i z \=-.9.【答案】B【解析】由题意知1,i b c =-=±.当i c =时,满足性质“对任意,x y S Î,必有xy S Δ的d 为i -;同理,当i c =-时,i d =.综上可知,0c d +=,1b c d \++=-.10.【答案】B【解析】对于A ,满足i i z z -=+的复数:对应的点的轨迹是实轴,不是圆,A 错误;对于B ,若2,i 1m Î=-Z ,则123i i i i i (1i 1i)0m m m m n ++++++=+--=,B 正确;对于C ,复数i z a b =+(其中,a b ÎR )的虚部为b ,i 是虚数单位,C 错误;对于D ,在复平面内,实轴上的点都表示实数,虚轴上的点除原点外都表示虚数,D 错误.故选B .二、11.【答案】BC【解析】对于复数z ,若0z z +=,z 不一定为纯虚数,可以为0,反之,若z 为纯虚数,则0z z +=,\“0z z +=”是“z 为纯虚数”的必要不充分条件,A 错误,B 正确;“z z =”是“z 为实数”的充要条件,C 正确;若z z ×ÎR ,z 不一定为实数,也可以为虚数,反之,若z ÎR ,则z z ×ÎR .\“z z ×ÎR ”是“z 为实数”的必要不充分条件,D 错误.故选BC .12.【答案】CD【解析】对于A ,22549492532488t t t æö+-=+--ç÷èø>,2222(1)10t t t ++=++>,所以复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;对于B ,当222530,220,t t t t ì+-=ïí++¹ïî即3t =-或12t =时,z 为纯虚数,故B 错误;对于C ,因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;对于D ,由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确.故选CD .三、13.16【解析】Q 复数24(2)i()z a a a =-+-ÎR 是纯虚数,240,20,a a ì-=ï\í-¹ïî解得2a =-,4i z \=-,4i z =,114i z \+=-=,z z ×.14.【答案】1-【解析】由题图可知,点Z 的坐标为(2,1),2i z \=+,2i (2i)(12i)i 12i 12i (12i)(12i)z +++\===---+,其共轭复数为i -,\其共轭复数的虚数是1-.15.【答案】34i 55+【解析】依题意得,34i 55z z ==+.16.【答案】100【解析】设O 为坐标原点,由1212z z z z +=-知,以线段12,OM OM 为邻边的平行四边形是矩形,即12M OM Ð为直角,又M 是斜边12M M 的中点,5OM ==u u u r ,所以1210M M =u u u u u u r ,所以22222121212100z z OM OM M M +=+==u u u r u u u r u u u u u u r .四、17.【答案】解:设i(,)z a b a b =+ÎR ,则由13i z z =+-13i i 0a b -++=,10,30,a b +-=\-=ïî解得4,3,a b =-ìí=î43iz \=-+22(1i)(34i)2i(724i)247i (247i)(43i)34i 22(43i)43i (43i)(43i)z ++-++++\====+-+--+.18.【答案】(1)解:由复数z 是纯虚数,可得22450,2150,m m m m ì--=ïí--¹ïî即251,53,m k m m m ì==-ïí¹¹-ïî或且解得1m =-.(2)解:由题意可得,2i 2i(1i)1+i 1i (1i)(1i)z -===++-,从而1i z =-,所以2i (1i)z +=-+.19.【答案】(1)解:由已知得(2i 1)10m n -+-=,(1)2i 0n m m \--+=,10,20,n m m --=ì\í=î解得1,0,n m =ìí=î1m n \+=.(2)解:解法一:由已知得2(2i 1)(2i 1)10m n -+-+-=,(4)(24)i 0n m m \--+-=,40,240,n m m --=ì\í-=î解得6,2,n m =ìí=î8m n \+=.解法二:2i 1-Q 是实系数方程21=0x mx n ++-的根,\12i --也是此方程的根,因此,(12)(12),(12)(12)1,i i m i i n -++--=-ìí-+--=-î解得6,2,n m =ìí=î8m n \+=.20.【答案】(1)复数1z 在复平面内对应的点在第三象限,则20,1250.a a ìï-íï-î<解得1,5,2a a ìïíïî><即52a 1<<,故实数a 的取值范围是51,2æöç÷èø.(2)解:()22310i 5z a a =+-+Q ()22310i 5z a a \=--+()()22122332(25)i 10i (25)10i 1551z z a a a a a a a a éù\+=+-+--=++---ëû-++-.12z z +Q 是实数,()225100(15)a a a a \---=¹¹且.由()225100a a ---=得22150a a +-=,解得3a =或5a =-(舍).12(25)i 1i 1z a a \=+-=-+-,1z \=.21.【答案】(1)解:位于第二象限.理由如下:2i cos 2isin 2e =+在复平面内对应的点的坐标为(cos 2,sin 2),由于22pp <,因此cos2<0,sin 20>,\点(cos 2,sin 2)在第二象限,故复数2i e 在复平面内对应的点位于第二象限。
期末冲刺卷一 —2020-2021学年【新教材】人教A版(2019)高中数学必修第二册(含解析)
高高高高高高高高高高-高高高高高高高A高高2019高高高高高高高高高高高高高高高一、单选题1. 已知i 为虚数单位,纯虚数z 满足(z +a)i =1+i ,则实数a =( )A. −1B. 1C. 0D. 22. 如图,已知四边形ABCD 的直观图是一个边长为1的正方形,则原图形的周长为( )A. 2√2B. 6C. 8D. 4√2+23. 在△ABC 中,已知B =120°,AC =√19,AB =2,则BC =( )A. 1B. √2C. √5D. 34. 已知两个单位向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 的夹角为60°,向量m ⃗⃗⃗ =t e 1⃗⃗⃗ +2e 2⃗⃗⃗ (t <0),则( )A. |m ⃗⃗⃗ |t 的最大值为−√32 B. |m ⃗⃗⃗ |t 的最小值为−2 C. |m ⃗⃗⃗ |t 的最小值为−√32D. |m ⃗⃗⃗ |t的最大值为−2 5. 已知在正四棱柱ABCD −A 1B 1C 1D 1中,AA 1=√2AB ,M 是CC 1的中点,则( )A. 直线AM 与平面ABCD 所成角的正切值为√22B. 直线AM 与直线A 1B 1所成角的余弦值为√55C. AM ⊥A 1BD. 直线BM//平面AD 1C 16. 在△ABC 中,点D 在直线AC 上,且AD ⃗⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ ,点E 在直线BD 上,且BD ⃗⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗⃗ ,若AE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC⃗⃗⃗⃗⃗ ,则λ1+λ2=( ) A. 0B. 12C. 79D. 897. 三棱锥P −ABC 中,PA ⊥平面ABC ,∠BAC =π2,AP =3,BC =6,则三棱锥外接球的表面积为( )A. 57πB. 63πC. 45πD. 84π8. 在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A. 成绩在[70,80)分的考生人数最多B. 不及格的考生人数为1000人C. 考生竞赛成绩的平均分约为70.5分D. 考生竞赛成绩的中位数为75分9. 如图,三棱柱ABC −A 1B 1C 1中,AB =4,AC =3,BC =5,AA 1=6,D 为CC 1中点,E 为BB 1上一点,BB 1⃗⃗⃗⃗⃗⃗⃗ =3BE ⃗⃗⃗⃗⃗ ,∠A 1AC =60°,M 为平面AA 1C 1C 上一点,且BM//平面ADE ,则点M 的轨迹的长度为( )A. 1B. √2C. √3D. 210. 已知函数f(x)={|log 2x|,0<x <2sin(π4x),2≤x ≤10,若存在实数x 1,x 2,x 3,x 4,满足x 1<x 2<x 3<x 4,且f(x 1)=f(x 2)=f(x 3)=f(x 4),则(x 3−2)(x 4−2)x 1x 2的取值范围是( )A. (0,12)B. (0,16)C. (9,21)D. (15,25)二、多选题11. 如图,棱长为1的正方体ABCD −A 1B 1C 1D 1中,M 为线段AB 1上的动点(含端点),则下列结论正确的是( )A. 平面BCM ⊥平面A 1AB 1B. 三棱锥B −MB 1C 体积最大值为16C. 当M 为AB 1中点时,直线B 1D 与直线CM 所成的角的余弦值为√23D. 直线CM 与A 1D 所成的角不可能是π412. 已知i 为虚数单位,以下四个说法中正确的是( )A. i +i 2+i 3+i 4=0B. 3+i >1+iC. 若z =(1+2i)2,则复平面内z −对应的点位于第四象限D. 已知复数z 满足|z −1|=|z +1|,则z 在复平面内对应的点的轨迹为直线13. 已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且∠C =π3,c =2. ( )A. △ABC 面积的最大值为√3B. AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的最大值为2+4√33C. cosBcosA 的取值范围为(−2,+∞)D. bcosA +acosB =√214. 已知图1中的正三棱柱ABC −A 1B 1C 1的底面边长为2,体积为2√2,去掉其侧棱,再将上底面绕上下底面的中心所在直线逆时针旋转180°后,添上侧棱,得到图2所示的几何体,则下列说法正确的是( )A. A 2B 2//平面ABCB. AB 2=2√63C. 四边形ABA 2B 2为正方形D. 正三棱柱ABC −A 1B 1C 1与几何体ABCA 2B 2C 2的外接球的体积相等三、填空题15. 已知向量a ⃗ 、b ⃗ 为单位向量,a ⃗ ⋅b ⃗ =0,若c ⃗ =3a ⃗ +4b⃗ ,则c ⃗ 与b ⃗ 所成角的余弦值为______ . 16. 已知复数z 满足z =z+10i 3i,则z 的共轭复数z −的虚部______ .17. 《九章算术》把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有如图所示的“堑堵”ABC −A 1B 1C 1,其中AC ⊥BC ,AA 1=AC =1,当“阳马”四棱锥B −A 1ACC 1体积为13时,则“堑堵”即三棱柱ABC −A 1B 1C 1的外接球的体积为______ .18. 两个正实数a ,b 满足3a +b =1,则满足1a +3b ≥m 2−m 恒成立的m 取值范围为 .19. 某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2020年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为m ,13,n ,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m >n.则m +n =____. 四、解答题20. (1)计算(1+i1−i )2021+(2−3i)(1+4i);(2)设复数z 1=2+ai ,z 2=b −4i.(其中a ,b ∈R),若z 1z 2是纯虚数,且z 1+z 2在复平面内对应的点在直线x +y −1=0上,求|z 1z 2|.21. 已知|a ⃗ |=5,|b ⃗ |=4, (1)若a ⃗ 与b ⃗ 的夹角为θ=120°.①求a ⃗ ·b ⃗ ; ②求a ⃗ 在b ⃗ 上的投影向量. (2)若a ⃗ // b ⃗ ,求a ⃗ ·b⃗ .22. 在复平面内,O 是原点,OA ⃗⃗⃗⃗⃗ ,OB⃗⃗⃗⃗⃗⃗ 对应的复数分别为2+icosx ,(2+√3sinx)+i(2+cosx),i 是虚数单位设函数f(x)=OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ . (1)求函数f(x)的解析式;(2)若函数y =f(x)−m 在区间[0,π2]上有2个零点,求实数m 的取值范围.23. 在①m ⃗⃗⃗ =(a +b,c −a),n⃗ =(a −b,c),且m ⃗⃗⃗ ⊥n ⃗ ,②2a −c =2bcosC ,,这三个条件中任选一个补充在下面的问题中,并给出解答. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求角B ; (2)若b =4,求△ABC 周长的最大值.24. 已知四边形ABCD ,AB =AD =2,∠BAD =60°,∠BCD =30°.现将△ABD 沿BD边折起使得平面ABD ⊥平面BCD ,此时AD ⊥CD.点P 为线段AD 的中点. (1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值.25. 2020年初,世界各地相继爆发了“新冠肺炎”疫情,其最大特点是人传人,传播快,传播广,对人类生命形成巨大危害.而通过佩戴口罩可以防止外界的气体、飞沫进入口鼻呼吸道中,有效地降低病毒传染几率.若在某公共场合不戴口罩被感染的概率是12,戴口罩被感染的概率是110,现有在该公共场合活动的甲、乙、丙、丁、戊五人,每个人是否被感染相互独立. (1)若五人都不戴口罩,求其中恰有两人被感染的概率; (2)若五人中有3人戴口罩,求其中恰有两人被感染的概率;(3)分别计算戴口罩和不戴口罩五人全部感染“新冠肺炎”的概率,并得出你的结论.26. 如图,在多面体ABCDEF 中,平面ABCD ⊥平面CDEF ,四边形CDEF 是边长为2的正方形,四边形ABCD 是直角梯形,其中BC//AD ,BC ⊥CD ,且BC =CD =12AD .(1)证明:BE ⊥DF ;(2)求平面ABF 与平面CDEF 所成的锐二面角的余弦值.答案和解析一.单选题1.【答案】B【解析】解:设纯虚数z=bi,b∈R,则(z+a)i=1+i可化为bi2+ai=1+i,即(−b−1)+(a−1)i=0,所以a−1=0,解得a=1.故选:B.可设纯虚数z=bi,b∈R,代入方程利用复数相等求出a的值.本题考查了纯虚数的定义与复数相等的概念和应用问题,是基础题.2.【答案】C【解析】解:∵四边形ABCD的直观图是一个边长为1的正方形,∴原图形为平行四边形,一组对边长为1,另一组对边长为√(2√2)2+1=3,∴原图形的周长为2(1+3)=8.故选:C.根据四边形ABCD的直观图是一个边长为1的正方形,可得原图形为平行四边形,一组对边长为1,另一组对边长为√(2√2)2+1=3,即可求出原图形的周长.本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.3.【答案】D【解析】解:设角A,B,C所对的边分别为a,b,c,结合余弦定理,可得19=a2+4−2×a×2×cos120°,即a2+2a−15=0,解得a=3(a=−5舍去),所以BC=3.故选:D.设角A,B,C所对的边分别为a,b,c,利用余弦定理得到关于a的方程,解方程即可求得a的值,从而得到BC的长度.本题考查了余弦定理,考查了方程思想,属基础题.4.【答案】A【解析】解:因为t <0,所以|m|t=√(te 1+2e 2)2t=√t2+4te 1⋅e 2+4t=√t 2+2t+4t=−√t 2+2t+4t 2=−√(2t +12)2+34,当2t =−12,即t =−4时,|m|t取得最大值,且最大值为−√32.故选:A . 利用|m|t=√(te 1+2e 2)2t=√t 2+4te 1⋅e 2+4t=√t 2+2t+4t=−√t 2+2t+4t 2=−√(2t +12)2+34,即可求解.本题考查了平面向量的模运算,考查了函数思想,属于中档题.5.【答案】C【解析】解:不妨设AB =2,对于A ,直线AM 与平面ABCD 所成角的正切值为MC AC=√22√2=12≠√22,所以A 错;对于B ,取A 1A 中点N ,连接NC 1、ND 1,因为A 1B 1//C 1D 1,AM//NC 1, 所以直线AM 与直线A 1B 1所成角的余弦值为cos∠NC 1D 1=C 1D 1NC 1=√10≠√55,所以B 错;对于C ,取C 1D 1中点P ,连接MP 、CD 1,PM//CD 1,CD 1//A 1B ,所以PM//A 1B , 连接AP 、AD 1,AD 1=√12,AP =√13,AM =√10,PM =√3, 所以AP 2=PM 2+AM 2,所以PM ⊥AM ,所以AM ⊥A 1B ,所以C 对; 对于D ,因为BM ∩平面AD 1C 1=B ,所以BM//平面AD 1C 1不成立,所以D 错. 故选:C .A 求直线AM 与平面ABCD 所成角的正切值判断;B 求AM 与直线A 1B 1所成角的余弦值判断;C 用勾股定理逆定理判断;D 直线BM 与平面AD 1C 1相交于B .本题以命题真假判断为载体,考查了异面直线成角问题,考查了直线与平面成角问题,属于中档题.6.【答案】B【解析】解:由三角形法则得:AE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ,∵BE ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =32BD ⃗⃗⃗⃗⃗⃗ =32(CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ )=32(CD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=32[−13AC ⃗⃗⃗⃗⃗ +(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )]=AC ⃗⃗⃗⃗⃗ −32AB ⃗⃗⃗⃗⃗ , ∴AE⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −32AB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ , ∴λ1+λ2=1−12=12, 故选:B .根据三角形法则表示出AE ⃗⃗⃗⃗⃗ 与BE ⃗⃗⃗⃗⃗ ,将BE ⃗⃗⃗⃗⃗ 代入表示出AE ⃗⃗⃗⃗⃗ ,确定出λ1与λ2的值,即可求出所求式子的值.此题考查了平面向量的基本定理及其意义,熟练掌握平面向量的数量积运算法则是解本题的关键.7.【答案】C【解析】解:如图,∵PA ⊥平面ABC ,∠BAC =π2,∴AB 、AC 、AP 两两互相垂直,把三棱锥P −ABC 变形为长方体,则长方体的外接球即三棱锥P −ABC 的外接球, 长方体的对角线长为√PA 2+AB 2+AC 2=√PA 2+BC 2=√9+36=√45, ∴三棱锥外接球的表面积为4π×(√452)2=45π.故选:C .由题意可知,AB 、AC 、AP 两两互相垂直,把三棱锥P −ABC 变形为长方体,则长方体的外接球即三棱锥P −ABC 的外接球,求出长方体的对角线长,可得外接球的半径,代入球的表面积公式得答案.本题考查多面体外接球表面积的求法,训练了分割补形法,是中档题.8.【答案】D【解析】 【分析】本题考查频率分布直方图和平均数、中位数、众数的计算,属基础题. 逐项进行分析判断即可得到答案. 【解答】解:通过频率分布直方图可看到成绩在70分∼80分的人的比重最大,所以人数也最多,所以A 正确;不及格的人数为4000×0.025×10=1000人,所以B 正确;根据公式算出平均分为0.01×10×45+0.015×10×55+0.02×10×65+0.03×10×75+0.015×10×85+0.01×10×95=70.5,故C 正确; ∵(0.01+0.015+0.02)×10=0.45<0.5,故中位数在70∼80之间,设为x ,则0.45+x ·0.03=0.5,解得x =53,故中位数是71.67,故D 错误; 故选D .9.【答案】C【解析】解:由题意得BE =2,CD =3,在CD 上取点M 1,使M 1D =2,M 1C =1,则M 1D//BE 且M 1D =BE ,所以四边形BEDM 1是平行四边形,所以BM 1//DE . 在AC 上取点M 2,使M 2A =2,M 2C =1,则CM 1M 1D=CM 2M2A=12,所以M 1M 2//AD . 又BM 1∩M 1M 2=M 1,DE ∩AD =D ,所以平面BM 1M 2//平面ADE ,所以点M 的轨迹就是线段M 1M 2, 在△CM 1M 2中,CM 1=CM 2=1,∠M 1CM 2=120°,由余弦定理得M 1M 2=√BM 12+BM 22−2BM 1⋅BM 2cos120°=√3.M 1M 2=√3, 故选:C .在CD 上取点M 1,使M 1D =2,M 1C =1,则证明BM 1//DE.在AC 上取点M 2,使M 2A =2,M 2C =1,证明面BM 1M 2//平面ADE ,推出点M 的轨迹就是线段M 1M 2,然后求解即可.本题考查空间中点、线、面的位置关系、直线与平面平行、平面与平面平行的判定定理、余弦定理,考查空间想象能力,考查直观想象、逻辑推理核心素养.10.【答案】A【解析】 【分析】作出函数f(x)的图象,由图象及对称性可得,x 1x 2=1,x 3+x 4=12,即为x 4=12−x 3,2<x 3<4,代入所求式子,运用二次函数的值域,结合单调性可得所求范围. 本题考查分段函数的运用:求取值范围,考查正弦函数的对称性和应用,以及二次函数的单调性的运用,考查运算能力,属于中档题. 【解答】解:作出函数f(x)={|log 2x|,0<x <2sin(π4x),2≤x ≤10的图象,存在实数x 1,x 2,x 3,x 4,满足x 1<x 2<x 3<x 4, 且f(x 1)=f(x 2)=f(x 3)=f(x 4), 可得−log 2x 1=log 2x 2,即有x 1x 2=1,且x 3+x 4=2×6=12,即为x 4=12−x 3,2<x 3<4, 则(x 3−2)(x 4−2)x 1x 2=(x 3−2)(x 4−2)=(x 3−2)(10−x 3)=−(x 3−6)2+16,可得在(2,4)递增, 即所求范围为(0,12). 故选A . 二.多选题11.【答案】ABC【解析】解:在正方体ABCD −A 1B 1C 1D 1中, BC ⊥面A 1AM ,BC ⊂面BCM , ∴面BCM ⊥面A 1AM , 故选项A 正确;设M 到面BB 1C 的距离为h ,V B−MB 1C =V M−B 1BC =13×12×1×1×ℎ=16ℎ,当M 点运动到线段AB 1的端点A 时,h 最大,且距离为1. ∴三棱锥B −MB 1C 的体积最大值为16, 故选项B 正确;如图,将A 1B 1延长至E ,使A 1B 1=B 1E ,连ME ,CE ,易得B 1D//CE ,∴直线CM 与直线CE 所成角即为直线B 1D 与直线CM 所成的角,即∠MCE , 易得|MC|=√62,|CE|=√3,|ME|=√102,∴cos∠MCE =|MC|2+|CE|2−|ME|22|MC|⋅|CE|=√23, 故选项C 正确;∵A 1D//B 1C ,∴直线CM 与直线B 1C 所成角就是∠MCB 1,当M 从点B 1沿着线段B 1A 向A 点运动时,∠MCB 1逐渐变大, ∴∠MCB 1max =∠ACB 1=π3>π4,故在点A 和点B 1之间,必定存在一点使得∠MCB 1=π4, 故选项D 错误. 故选:ABC .A 选项中,直接由正方体的性质证明即可;B 选项中将求体积的最大值转化为求M 到面BB 1C 的距离的最大值即可;C ,D 选项可利用平行四边形的方法,将异面直线夹角转化为求相交直线夹角即可; 本题考查了空间中面面垂直的判定,三棱锥的体积,以及异面直线所成的角,属于中档题.12.【答案】AD【解析】解:对于A ,i +i 2+i 3+i 4=i −1−i +1=0,故A 正确; 对于B ,两个虚数不能进行大小比较,故B 错误;对于C ,z =(1+2i)2=1+4i −4=−3+4i ,z −=−3−4i , 则复平面内z −对应的点的坐标为(−3,−4),位于第三象限,故C 错误;对于D ,已知复数z 满足|z −1|=|z +1|,则z 在复平面内对应的点的轨迹是以(1,0)和(−1,0)为端点的线段的垂直平分线,故D 正确. 故选:AD .利用虚数单位i 的运算性质判断A ;根据两个虚数不能进行大小比较判断B ;利用复数代数形式的乘除运算化简z 进一步求得z −的坐标判断C ;由复数模的几何意义判断D . 本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,是基础题.13.【答案】AB【解析】解:对于A.因为∠C =π3,c =2,可得4=a 2+b 2−ab ≥2ab −ab =ab ,即ab 的最大值为4,可得△ABC 面积S =12absinC ≤12×4×√32=√3,即△ABC 面积的最大值为√3,当且仅当a =b =2时等号成立,可得A 正确; 对于B.设△ABC 的外接圆半径为R ,则2R =c sinC=4√33, 可得AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =bccosA =2bcosA =2×4√33sinBcosA =8√33sinBcosA ,因为B =2π3−A ,可得AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =8√33cosAsin(2π3−A)=8√33cosA(√32cosA +12sinA)=4cos 2A +4√33sinAcosA =2(1+cos2A)+2√33sin2A =2√33sin2A +2cos2A +2=4√33(12sin2A +√32cos2A)+2=4√33sin(2A +π3)+2.因为0<A <2π3,0<2A <4π3,所以π3<2A +π3<5π3,则当2A +π3=π2,即:A =π12时,AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 取得最大值为4√33+2,可得B 正确; 对于C .cosBcosA=cos(2π3−A)cosA=cos2π3sinA+sin 2π3cosA cosA=−12tanA +√32,而tan A 的取值范围为(0,+∞)∪(−∞,−√3),所以cosBcosA 的取值范围为(√3,+∞)∪(−∞,√32),故C 错误;D .若bcosA +acosB =√2,则可得b ⋅b 2+c 2−a 22bc+a ⋅a 2+c 2−b 22ac=√2,可得2c 2=2√2c ,解得c =√2, 由于c =2,故D 错误. 故选:AB .对于A.由已知利用余弦定理,基本不等式可求ab 的最大值,进而根据三角形的面积公式即可求解;对于B.由题意根据正弦定理,平面向量数量积的运算,三角函数恒等变换的应用可求AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√33sin(2A +π3)+2,进而根据正弦函数的性质即可求解;对于C.利用三角函数恒等变换的应用可得cosBcosA=−12tanA +√32,根据正切函数的性质即可求解;对于D.由已知利用余弦定理即可求解.本题主要考查了余弦定理,基本不等式,三角形的面积公式,正弦定理,平面向量数量积的运算,三角函数恒等变换的应用,正弦函数的性质,正切函数的性质等知识的综合应用,考查了转化思想和函数思想,属于中档题.14.【答案】ACD【解析】解:对于A :因旋转前后,A 1,B 1,C 1,A 2,B 2,C 2,共面,由棱柱的性质得知:平面A 2B 2C 2//平面ABC , 从而A 2B 2//平面ABC ,故A 正确;对于B :因棱柱体积V =S △ABC ⋅AA 1=√34×22⋅AA 1=2√2,解得AA 1=2√63, 设H 为B 2在平面ABC 上的射影, 如图所示:则:点H 在BO 的延长线上,且OH =OB =2√33,又B 2H =OO 2=AA 1=2√63, 从而AH =AO =BO ,所以AB 2=√B 2H 2+AH 2=2,故B 错误;对于C :因为A 2B 2//A 1B 1//AB ,且A 1B 1=A 2B 2=AB , 故四边形ABB 2A 2为平行四边形,由对称性可知:AA 2=BB 2,又AB 2=AB =2, 所以四边形ABA 2B 2为正方形,故C 正确;对于D :因旋转前后正三棱柱ABC −A 1B 1C 1与几何体ABCA 2B 2C 2的外接球都是是以OO 2为直径的球G 上,故球的体积相等,故D 正确. 故选:ACD .直接利用柱体的旋转前后的面面和线线的位置关系,柱体的体积公式,几何体和球的位置关系的应用判断A 、B 、C 、D 的结论.本题考查的知识要点:柱体的旋转前后的面面和线线的位置关系,柱体的体积公式,几何体和球的位置关系,主要考查学生的运算能力和数学思维能力,属于中档题. 三.填空题15.【答案】45【解析】解:向量a ⃗ 、b ⃗ 为单位向量,a ⃗ ⋅b ⃗ =0,若c ⃗ =3a ⃗ +4b ⃗ , 设c ⃗ 与b ⃗ 所成角为θ, 则cosθ=c⃗ ⋅b ⃗ |c ⃗ ||b ⃗ |=b ⃗ ⋅(3a ⃗ +4b⃗ )|3a ⃗ +4b⃗ ||b ⃗ |=√9+16×1=45. 故答案为:45.利用向量的数量积,转化求解向量的夹角的余弦函数值即可. 本题考查向量的数量积的求法与应用,是中档题.16.【答案】1【解析】解:z =z+10i 3i,化为:z =−10i 1−3i =−10i(1+3i)(1−3i)(1+3i)=3−i ,则z 的共轭复数z −=3+i 的虚部为1. 故答案为:1.利用复数的运算法则、虚部的定义即可得出.本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.17.【答案】√32π【解析】解:由已知可得,BC ⊥平面A 1ACC 1, 则V B−AA 1C 1C =13×1×1×BC =13, 解得BC =1.此时“塹堵”即三棱柱ABC −A 1B 1C 1的外接球的直径A 1B =√12+12+12=√3, ∴三棱柱ABC −A 1B 1C 1的外接球的体积为V =43π×(√32)3=√32π.故答案为:√32π.首先利用锥体的体积公式求出BC 长度,进一步求出球的直径,再由球的体积公式得答案.本题考查锥体的体积公式的应用,多面体外接球体积的求法,考查空间想象能力和思维能力,考查运算求解能力,是中档题.18.【答案】[−3,4]【解析】 【分析】由基本不等式和“1”的代换,可得1a +3b 的最小值,再由不等式恒成立思想可得m 2−m 小于等于最小值,解不等式可得所求范围.本题考查基本不等式的运用,以及不等式恒成立问题解法,考查运算能力,属于中档题. 【解答】解:由3a +b =1,a >0,b >0, 可得1a+3b=(3a +b)(1a+3b)=6+ba+9a b ≥6+2√b a⋅9a b=12,当且仅当a =16,b =12上式取得等号, 由题意可得m 2−m ≤1a +3b 恒成立, 即有m 2−m ≤12,解得−3≤m ≤4. 故答案为[−3,4].19.【答案】34【解析】 【分析】本题考查相互独立事件同时发生的概率以及对立事件的应用,难度一般.根据相互独立事件的概率乘法公式得到m ×13×n =124⇒m ×n =18,再利用对立事件的概率简化得到(1−m )×23×(1−n )=14⇒1−m −n +m ×n =38,进而求解即可. 【解答】解:由题知三个社团都能进入的概率为124, 即m ×13×n =124⇒m ×n =18, 又因为至少进入一个社团的概率为34, 即一个社团都没能进入的概率为1−34=14,即(1−m )×23×(1−n )=14⇒1−m −n +m ×n =38, 整理得m +n =34. 故答案为34. 四.解答题20.【答案】解:(1)∵1+i1−i =(1+i)2(1−i)(1+i)=2i 2=i ,i 4=1,∴(1+i1−i )2021=i 2021=(i 4)505⋅i =i , ∴(1+i 1−i)2021+(2−3i)(1+4i)=i +(2−3i +8i −12i 2)=14+6i …(4分) (2)z 1z 2=2+ai b −4i =(2+ai)(b +4i)b 2+16=(2b −4a)+(8+ab)i b 2+16因为z 1z 2是纯虚数,所以{2b −4a =08+ab ≠0,即b =2a ,又因为z 1+z 2=(2+b)+(a −4)i =(2+2a)+(a −4)i , 所以z 1+z 2在复平面内对应的点为(2+2a,a −4), 所以2+2a +a −4−1=0得a =1,b =2…(8分) 因为z 1z 2=(2+i)(2−4i)=8−6i , 所以|z 1z 2|=√82+(−6)2=10…(10分)【解析】(1)计算1+i1−i =(1+i)2(1−i)(1+i)=i ,根据i 4=1,可得(1+i1−i )2021,利用复数的运算法则即可得出. (2)z 1z 2=2+ai b−4i =(2+ai)(b+4i)b 2+16=(2b−4a)+(8+ab)ib 2+16,利用z 1z 2是纯虚数,可得{2b −4a =08+ab ≠0,即b =2a.根据z 1+z 2在复平面内对应的点在直线x +y −1=0上,即可得出a ,b ,进而得出|z 1z 2|.本题考查了复数的运算法则、纯虚数的定义、几何意义、模的计算公式,考查了推理能力与计算能力,属于基础题.21.【答案】解:(1)①a ⃗ ·b ⃗ =|a ⃗ ||b ⃗ |cos θ=5×4×cos 120°=−10.②a ⃗ 在b ⃗ 上的投影向量为|a ⃗ |·cos θb⃗ |b ⃗ |=5×(−12)×b⃗ 4=−58b ⃗ . (2)∵a ⃗ // b ⃗ ,∴a ⃗ 与b ⃗ 的夹角为θ=0°或θ=180°. 当θ=0°时,a ⃗ ·b ⃗ =|a ⃗ ||b ⃗ |cos 0°=20. 当θ=180°时,a ⃗ ·b ⃗ =|a ⃗ ||b⃗ |cos180°=−20.【解析】本题考查向量的夹角 、向量的数量积 、投影向量以及平面向量共线的充要条件,属于中档题.(1)①利用数量积的定义即可求解; ②利用投影向量定义即可求解;(2)a ⃗ // b ⃗ ,分a ⃗ 与b⃗ 的夹角为θ=0°或180°两种情况即可求解;22.【答案】解:(1)由题意可得,OA ⃗⃗⃗⃗⃗ =(2,cosx),OB ⃗⃗⃗⃗⃗⃗ =(2+√3sinx,2+cosx), 则AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(√3sinx,2),∴f(x)=OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2√3sinx +2cosx =4sin(x +π6);(2)∵f(x)在[0,π3]上递增,在[π3,π2]上递减,且函数y =f(x)−m 在区间[0,π2]上有2个零点,∴max{f(0),f(π2)}≤m <f(π3)=4, ∵max{f(0),f(π2)}=max{2,2√3}=2√3, ∴2√3≤m <4.即实数m 的取值范围是[2√3,4).【解析】(1)由已知求得AB ⃗⃗⃗⃗⃗ 的坐标,再由数量积的坐标运算及两角和的正弦求函数f(x)的解析式;(2)由f(x)在区间[0,π2]上的单调性可得最值,结合函数y =f(x)−m 在区间[0,π2]上有2个零点,即可求得实数m 的取值范围.本题考查平面向量数量积的坐标运算,考查y =Asin(ωx +φ)型函数的图象与性质,考查函数零点的判定及应用,是中档题.23.【答案】解:(1)选①,∵m⃗⃗⃗ =(a +b,c −a),n ⃗ =(a −b,c),且, ∴(a +b)(a −b)+c(c −a)=0,化简得,a 2+c 2−b 2=ac , 由余弦定理得cosB =a 2+c 2−b 22ac =ac 2ac =12,又因为0<B <π,∴B =π3.选②,根据正弦定理,由2a −c =2bcosC 得2sinA −sinC =2sinBcosC , 又因为sin A =sin (B +C)=sin Bcos C +sin Ccos B ,所以2sinCcosB =sinC , 又因为sin C ≠0,所以cosB =12,又因为B ∈(0,π),所以B =π3. 选③,由sin (B +π6)=cos B +12,得√32sin B +12cos B =cos B +12,即√32sin B −12cos B =12,所以cos (B +π3)=−12, 又因为B ∈(0,π),所以B +π3=2π3,因此B =π3. (2)由余弦定理b 2=a 2+c 2−2accosB ,得16=(a +c)2−3ac . 又∵a+c 2⩾√ac ,∴ac ⩽(a+c)24,当且仅当a =c 时等号成立,∴3ac =(a +c)2−16⩽3(a+c)24,解得,a +c ≤8,当且仅当a =c =4时,等号成立.∴a +b +c ≤8+4=12. ∴△ABC 的周长的最大值为12.【解析】本题考查了正弦定理,余弦定理及向量的数量积运算,两角和的正余弦公式,以及基本不等式的应用,考查了推理能力与计算能力,属于中档题. (1)选①,利用向量的数量积及余弦定理,可推出cos B =12,由此可求出角B 的大小;选②根据正弦定理及两角和的正弦公式求解即可;选③,利用两角和的正余弦公式可推出cos (B +π3)=−12,进而可得B 的大小;(2)由题意,利用余弦定理及基本不等式进行求解即可.24.【答案】(1)证明:因为AB =AD ,∠BAD =60°,所以△ABD 为等边三角形,因为P 为AD 的中点,所以BP ⊥AD , 取BD 的中点E ,连结AE ,则AE ⊥BD ,因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以AE ⊥平面BCD , 又CD ⊂平面BCD ,所以AE ⊥CD ,又因为CD ⊥AD ,AD ∩AE =A ,AE ,AD ⊂平面ABD ,所以CD ⊥平面ABD , 因为BP ⊂平面ABD ,所以CD ⊥BP , 又因为CD ∩AD =D ,CD ,AD ⊂平面ACD , 所以BP ⊥平面ACD ;(2)解:由(1)可知CD ⊥BD ,取BC 的中点F ,则EF ⊥DE ,即EA ,EF ,ED 两两垂直,以E 为坐标原点建立空间直角坐标系如图所示,则A(0,0,√3),B(0,−1,0),C(2√3,1,0),D(0,1,0),P(0,12,√32),M(√3,1,0),所以BP ⃗⃗⃗⃗⃗ =(0,32,√32),BC ⃗⃗⃗⃗⃗ =(2√3,2,0),设平面BPC 的法向量为n⃗ =(x,y,z), 则{n ⃗⋅BP ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,即{32y +√32z =02√3x +2y =0, 令x =1,则y =−√3,z =3,故n ⃗ =(1,−√3,3),又MP ⃗⃗⃗⃗⃗⃗ =(−√3,−12,√32),所以|cos <n ⃗ ,MP ⃗⃗⃗⃗⃗⃗ >|=|n ⃗⃗ ⋅MP⃗⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ ||MP⃗⃗⃗⃗⃗⃗⃗ |=√32√13=√3926, 故MP 与平面BPC 所成角的正弦值为√3926.【解析】(1)利用面面垂直的性质定理,可得AE ⊥平面BCD ,再利用线面垂直的判定定理可证明CD ⊥平面ABD ,从而得到CD ⊥BP ,再利用等边三角形的性质得到BP ⊥AD ,即可证明BP ⊥平面ACD ;(2)建立空间直角坐标系,然后求出所需点的坐标,利用待定系数法求出平面BPC 的法向量,求出直线MP 的方向向量,再由向量的夹角公式求解即可.本题考查了线面垂直的判定定理的应用和线面角的求解,涉及了面面垂直的性质定理的应用,在求解空间角的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.25.【答案】解:(1)五人都不戴口罩,恰有两人被感染的概率是P =C 52×(12)2×(1−12)3=516;(2)当被感染的两人都没有戴口罩时,概率为P 1=(12)2×(1−110)3=7294000; 当被感染的两人中,一人戴口罩,一人没有戴口罩时,概率为P 2=C 31×110×(1−110)2×C 21×12×(1−12)=2432000; 当被感染的两人都有戴口罩时,概率为P 3=C 32×(110)2×(1−110)×(1−12)2=274000, 所以五人中有3人戴口罩,其中恰有两人感染的概率是: P =P 1+P 2+P 3=7294000+2432000+274000=6212000.(3)不戴口罩时,五人全部感染的概率为(12)5=132=3.125%, 戴口罩时,五人全部感染的概率为(110)5=0.001%,通过计算可知,戴口罩时被感染的概率远远低于不戴口罩时感染的概率, 因此建议在公共场合一定要佩戴口罩.【解析】本题主要考查相互独立事件的概率计算公式,概率的实际应用. (1)根据相互独立事件的概率计算即可. (2)分三种情况讨论计算,最后概率相加即可.(3)分别计算五个人戴口罩和不戴口罩感染的概率,比较大小即可.26.【答案】(1)证明:连结CE ,DF ,因为四边形CDEF 是正方形,所以DF ⊥CE.…………………………(1分) 因为BC ⊥CD ,平面ABCD ⊥平面CDEF ,所以BC ⊥平面CDEF ,从而DF ⊥BC.………………………(3分) 又BC ∩CE =C ,BC ,CE ⊂平面BCE ,所以DF ⊥平面BCE ,BE ⊂平面BCE ,所以BE ⊥DF.…………………(5分)(2)解:如图所示,以DA ,DC ,DE 分别为x ,y ,z 轴建立空间直角坐标系D −xyz , 依题意知A(4,0,0),B(2,2,0),F(0,2,2),D(0,0,0).……………………(7分) 设平面ABF 的法向量为m ⃗⃗⃗ =(x 1,y 1,z 1),AB ⃗⃗⃗⃗⃗ =(−2,2,0),AF⃗⃗⃗⃗⃗ =(−4,2,2),{−2x 1+2y 1=0−4x 1+2y 1+2z 1=0,令y 1=1,则{x 1=1y 1=1z 1=1,所以m ⃗⃗⃗ =(1,1,1)……………………(10分)取平面CDEF 的法向量为n⃗ =(1,0,0),………………(11分) 设该二面角的平面角为θ,所以cosθ=|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=√3×1=√33.………………(12分)【解析】(1)连结CE ,DF ,说明DF ⊥CE.结合BC ⊥CD ,平面ABCD ⊥平面CDEF ,推出DF ⊥BC ,证明DF ⊥平面BCE ,即可推出BE ⊥DF .(2)以DA ,DC ,DE 分别为x ,y ,z 轴建立空间直角坐标系D −xyz ,求出平面ABF 的法向量,平面CDEF 的法向量利用空间向量的数量积求解二面角的余弦函数值. 本题考查直线与平面垂直的判断定理的应用,二面角的平面积的求法,考查空间想象能力,转化思想以及计算能力,是中档题.。
人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案
高中数学必修第2册第六章、第七章综合测试一、单选题(共8小题)1. 在△ABC中,角A,B,C所对边分别为a,b,c,则下列结论正确的是( )A. a2=b2+c2+2bc cos AB. a2=b2+c2+bc cos AC. a2=b2+c2-2bc cos AD. a2=b2+c2-bc cos A2. 如果将直角三角形的三边分别增加同样的长度,那么新三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 由增加的长度确定3. 已知复数z=-i,则复平面内对应的点Z的坐标为( )A. (0,-1)B. (-1,0)C. (0,0)D. (-1,-1)4. 设复数z1=,z2=6,则z1z2为( )A. 3iB. 3C. -3iD. 35. “复数z=(a∈R)在复平面内对应的点位于第三象限”是“a≥0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 若(1+i)=1-i,则z=( )A. 1-iB. 1+iC. -iD. i7. 在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于()A. B. C. D.8. 已知三个力F1=(-2,-1),F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F4,则F4等于( )A. (-1,-2)B. (1,-2)C. (-1,2)D. (1,2)二、多选题(共4小题)9. 如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中一定成立的是( )A. ||=||B. 与共线C. 与共线D. =10. 已知△ABC是边长为2a(a>0)的等边三角形,P为△ABC所在平面内一点,则·(+)的值可能是( )A. -2a2B. -a2C. -a2D. -a211. 下列各式中结果为零向量的是( )A. +++B. ++C. +++D. -+-12. △ABC的内角A,B,C所对的边分别为a,b,c,对于△ABC,有如下命题,其中正确的有( )A. sin(B+C)=sin AB. cos(B+C)=cos AC. 若a2+b2=c2,则△ABC为直角三角形D. 若a2+b2<c2,则△ABC为锐角三角形三、填空题(共4小题)13. 已知|a|=|b|=1,且a⊥b,若|a+b+m|≤1恒成立,则|m|的取值范围是________.14. 方程x2-2x+5的复数根为________.15. 设复数z=a+b i(a,b∈R),1≤|z|≤2,则|z+1|的取值范围是________.16. 小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若=(x1,y1),=(x2,y2),则S△OAB=|x1y2-x2y1|.试用上述成果解决问题:已知A(1,1),B(2,3),C(4,5),则S△ABC=______.四、解答题(共6小题)17. 如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AF⊥DE.18. 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,(a+b+c)(b+c-a)=3bc.(1)求A的大小;(2)若b+c=2a=2,试判断△ABC的形状.19. 在△ABC中,已知A=15°,B=45°,c=3+,解这个三角形.20. 如图所示,四边形ABCD是矩形,点A和B对应的复数分别为-1+2i,1+i,并且|BA|∶|DA|=1∶,求点C和点D分别对应的复数.21. 设复数z=(a2+a-2)+(a2-7a+6)i,其中a∈R,当a取何值时,(1)z∈R;(2)z 是纯虚数;(3)z是零.22. 如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)++;(2)+++.参考答案1. 【答案】C【解析】由余弦定理的结构特征易知选C.2. 【答案】A【解析】设直角三角形的三条边长分别为a,b,c,且a2+b2=c2,三条边均增加同样的长度m,三边长度变为a+m,b+m,c+m,此时最长边为c+m,设该边所对角为θ,则由余弦定理,得cosθ==.因为m2>0,a+b-c>0,所以cosθ>0,所以θ为锐角,其他各角必为锐角,故新三角形是锐角三角形.3. 【答案】A【解析】由z=-i可知,复平面内对应的点Z的坐标为(0,-1).4. 【答案】A【解析】z1z2=×6=3=3i.5. 【答案】A【解析】易得z==-a-3i,则z在复平面内对应的点位于第三象限⇔a>0.又a>0⇒a≥0,a≥0D⇒/a>0,所以“a>0”是“a≥0”的充分不必要条件,即“z在复平面内对应的点位于第三象限”是“a≥0”的充分不必要条件.6. 【答案】D【解析】由(1+i)=1-i,得===-i,故z=i.7. 【答案】A【解析】=-=8. 【答案】D【解析】为使物体平衡,则合力为零,即F4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).9. 【答案】ABD【解析】由向量相等及共线的概念,由∠EDB与∠HED不一定相等可知C选项不一定正确.10. 【答案】BCD【解析】建立如图所示的平面直角坐标系.设P(x,y),因为A(0,a),B(-a,0),C(a,0),则=(-x,a-y),=(-a-x,-y),=(a-x,-y).所以·(+)=(-x,a-y)·[(-a-x,-y)+(a-x,-y)]=(-x,a-y)·(-2x,-2y)=2x2+2y2-2ay=2x2+22-a2≥-a2,当且仅当x=0,y=a时取等.故选项B,C,D满足,故选BCD.11. 【答案】BD【解析】由向量加法的法则得A:+++=++=,故结果不为零向量;B:++=+=0,结果为零向量;C:+++=+=,结果不为零向量;D:-+-=+-(+)=-=0,结果为零向量.12. 【答案】AC【解析】依题意,在△ABC中,B+C=π-A,sin(B+C)=sin(π-A)=sin A,A正确;cos(B+C)=cos(π-A)=-cos A,B不正确;因为a2+b2=c2,则由余弦定理的推论得cos C==0,而0<C<π,即有C=,则△ABC为直角三角形,C正确;因为a2+b2<c2,则cos C=<0,而0<C<π,即有<C<π,则△ABC为钝角三角形,D不正确.13. 【答案】[-1,+1]【解析】建立平面直角坐标系(图略),设a=(1,0),b=(0,1),a+b=(1,1),m=(x,y),a+b+m=(x+1,y+1).由题意可知(x+1)2+(y+1)2≤1,|m|表示以点(-1,-1)为圆心,1为半径的圆面(包括边界)上的动点与原点连线段的长度,易知|m|的最大值为+1,最小值为-1.14. 【答案】1±2i【解析】由求根公式得x===1±2i.15. 【答案】[0,3]【解析】由复数的模及复数加减运算的几何意义可知,1≤|z|≤2表示如图所示的圆环,而|z+1|表示复数z的对应点A(a,b)与复数z1=-1的对应点B(-1,0)之间的距离,即圆环内的点到点B的距离d.由图易知当A与B重合时,d min=0,当点A与点C(2,0)重合时,d max=3,所以0≤|z+1|≤3.16. 【答案】1【解析】因为A(1,1),B(2,3),C(4,5),所以=(1,2),=(3,4),又当=(x1,y1),=(x2,y2)时,S△OAB=|x1y2-x2y1|,所以S△ABC=×|1×4-3×2|=1.17. 【答案】证明方法一设=a,=b,则|a|=|b|,a·b=0.又=+=-a+,=+=b+,所以·=·=-a2-a·b+=-|a|2+|b|2=0.故⊥,即AF⊥DE.方法二如图所示,建立平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),则=(2,1),=(1,-2).因为·=(2,1)·(1,-2)=2-2=0.所以⊥,即AF⊥DE.18. 【答案】解(1)∵(a+b+c)(b+c-a)=3bc,∴a2=b2+c2-bc,由余弦定理得a2=b2+c2-2bc cos A,∴cos A=.∵A∈(0,π),∴A=.(2)∵在△ABC中,a2=b2+c2-2bc cos A,且a=,∴()2=b2+c2-2bc·=b2+c2-bc.①又∵b+c=2,与①联立,解得bc=3,∴∴b=c=,又∵a=,∴△ABC为等边三角形.19. 【答案】解由三角形内角和定理,得C=180°-(A+B)=180°-(15°+45°)=120°.由正弦定理,得a=====,b======+.20. 【答案】解要求出点C对应的复数,即求出向量对应的复数,结合图形并注意到=+,可以先求向量对应的复数.向量可以看成向量的长度扩大为原来的倍,并绕点B按顺时针方向旋转90°后得到,又向量对应的复数为(-1+2i)-(1+i)=-2+i,故向量对应的复数为(-2+i)··[cos(-90°)+isin(-90°)]=+2i.于是点C对应的复数为(+2i)+(1+i)=(+1)+(2+1)i.同理可得点D对应的复数是(-1)+(2+2)i.21. 【答案】解(1)z∈R,只需a2-7a+6=0,所以a=1或a=6.(2)z是纯虚数,只需所以a=-2.(3)因为z=0,所以所以a=1.22. 【答案】解(1)++=++=++=+=;(2)+++=+++=++=+=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.设某项试验成功的概率是失败的概率的2倍,用随机变量X描述1次试验的成功次数,则P(X=0)等于( )A.0B.12C.13D.232.若∣a⃗∣=1,∣b⃗⃗∣=2,且(a⃗+b⃗⃗)⊥a⃗,则a⃗与b⃗⃗的夹角θ=( )A.π3B.−π3C.2π3D.2π3或−π33.已知i为虚数单位,若复数z满足z(1−i)=1+i,则z=( )A.i B.−12i C.1D.124.在复平面内,复数z1=3−i,z2=−1+2i对应的两点间的距离为( )A.2B.3C.4D.55.甲、乙两名同学在高考前的5次模拟考中的数学成绩如茎叶图所示,记甲、乙两人的平均成绩分别为x,y,下列说法正确的是( )A.x<y,且乙比甲的成绩稳定B.x>y,且乙比甲的成绩稳定C.x<y,且甲比乙的成绩稳定D.x>y,且甲比乙的成绩稳定6.复数z(1−i)=i(i为虚数单位),则z的共轭复数在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.设a⃗=(32,sinα),b⃗⃗=(cosα,13),且a⃗∥b⃗⃗,则锐角α为( )A.45∘B.30∘C.75∘D.60∘8.已知实数a∈[−3,3],则复数z=a+i2−i在复平面内对应的点位于第二象限的概率为( )A.512B.12C.712D.349. 下列叙述中,错误的一项为 ( ) A .棱柱中两个互相平行的平面一定是棱柱的底面 B .棱柱的各个侧面都是平行四边形 C .棱柱的两底面是全等的多边形 D .棱柱的面中,至少有两个面相互平行10. 在 △ABC 中,a =5,b =3,则 sinA:sinB 的值是 ( ) A . 53B . 35C . 37D . 57二、填空题(共6题) 11. 思考辨析 判断正误两条直线无公共点,则这两条直线平行.( )12. 已知非零向量 a ⃗,b ⃗⃗ 满足 ∣a ⃗∣=∣∣a ⃗−b ⃗⃗∣∣,则 (a ⃗−12b ⃗⃗)⋅b ⃗⃗= .13. 设两个非零向量 a ⃗ 与 b ⃗⃗ 不共线.若 ka ⃗+b ⃗⃗ 与 a ⃗+kb ⃗⃗ 共线,则 k = .14. 已知 (a −i )2=2i ,其中 i 是虚数单位,那么实数 a = .15. 若复数 z 满足 2z +z =3−2i ,其中 i 为虚数单位,则 z = .16. 已知 O 为 △ABC 内一点,OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=0⃗⃗,则 S△ABC S △AOC= .三、解答题(共6题)17. 一个盒子里装有完全相同的十个小球,分别标上 1,2,3,⋯,10 这 10 个数字,现随机地抽取两个小球,如果: (1)小球是不放回的; (2)小球是有放回的.分别求两个小球上的数字为相邻整数的概率.18. 正六边形 ABCDEF 中,O 是其中心,设 AB ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗,AF ⃗⃗⃗⃗⃗⃗=n ⃗⃗,用 m ⃗⃗⃗,n ⃗⃗ 表示 AD ⃗⃗⃗⃗⃗⃗,BD ⃗⃗⃗⃗⃗⃗⃗.19. 如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上,并记组成该“钉”的四条线段的公共点为 O ,钉尖为 A i (i =1,2,3,4).(1) 设OA1=a(a>0),当A1,A2,A3在同一水平面内时,求OA1与平面A1A2A3所成角的大小(结果用反三角函数值表示).(2) 若该“钉”的三个端尖所确定的三角形的面积为3√2cm2,要用某种线型材料复制100枚这种“钉”(损耗忽略不计),共需要该种材料多少米?⃗⃗⃗⃗⃗⃗对应的复数是1+2i,向量20.复平面内有A,B,C三点,点A对应的复数是2+i,向量BA⃗⃗⃗⃗⃗⃗对应的复数是3−i,求点C在复平面内的坐标.BC21.已知过球面上三点A,B,C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球面面积与球的体积.22.定义:对于两个非零向量p⃗和q⃗,如果存在不全为零的常数α,β,使αp⃗+βq⃗=0⃗⃗,那么称p⃗和q⃗是线性相关的,否则称p⃗和q⃗是线性无关的.已知a⃗=3i⃗−4j⃗,a⃗+b⃗⃗=4i⃗−3j⃗,试判断a⃗与b⃗⃗的线性关系(相关还是无关),并证明你的结论.答案一、选择题(共10题)1. 【答案】C【知识点】事件的关系与运算2. 【答案】C【解析】因为(a⃗+b⃗⃗)⊥a⃗,所以(a⃗+b⃗⃗)⋅a⃗=a⃗2+a⃗⋅b⃗⃗=1+2cosθ=0,解得cosθ=−12,又θ∈[0,π],所以θ=2π3.【知识点】平面向量的数量积与垂直3. 【答案】A【解析】由z(1−i)=1+i,得z=1+i1−i =(1+i)2(1−i)(1+i)=2i2=i.【知识点】复数的乘除运算4. 【答案】D【解析】在复平面内,复数z1=3−i,z2=−1+2i对应的两点的坐标分别为(3,−1),(−1,2),则两点间的距离为∣z2−z1∣=√(−1−3)2+[2−(−1)]2=5.【知识点】复数的加减运算、复数的几何意义5. 【答案】A【解析】由题,x=15×(101+102+105+114+138)=112,y=15×(108+118+117+124+123)=118,所以x<y,由茎叶图可知,乙的成绩更集中,故乙比甲的成绩稳定.【知识点】样本数据的数字特征6. 【答案】C【解析】因为z=i1−i =i(1+i)(1−i)(1+i)=−1+i2=−12+12i,所以z=−12−12i,对应点为(−12,−12),在第三象限.【知识点】复数的几何意义、复数的乘除运算7. 【答案】A【知识点】平面向量的数乘及其几何意义8. 【答案】A【解析】 z =a+i2−i =(a+i )(2+i )(2−i )(2+i )=2a+(a+2)i+i 24−i 2=2a−1+(a+2)i5,由于点位于第二象限, 所以 {2a −1<0,a +z >0,则 −2<a <12, P =∣∣12−(−2)∣∣∣3−(−3)∣=512.【知识点】复数的乘除运算、复数的几何意义9. 【答案】A【解析】在A 中,棱柱中两个互相平行的平面不一定是棱柱的底面, 例如正六棱柱的相对侧面互相平行,故A 错误;在B 中,由棱柱的定义知棱柱的各个侧面都是平行四边形,故B 正确; 在C 中,由棱柱的定义知棱柱的两底面是互相平行且全等的多边形,故C 正确; 在D 中,棱柱的定义是,有两个面互相平行,其余各面都是四边形, 相邻的公共边互相平行,有这些面围成的几何体是棱柱,由此得到D 正确. 【知识点】棱柱的结构特征10. 【答案】A【解析】根据正弦定理,得 sinAsinB =ab =53. 【知识点】正弦定理二、填空题(共6题) 11. 【答案】 ×【知识点】直线与直线的位置关系12. 【答案】 0【知识点】平面向量的数量积与垂直13. 【答案】 ±1【解析】因为 ka ⃗+b ⃗⃗ 与 a ⃗+kb⃗⃗ 共线,所以存在实数 λ,使 ka ⃗+b ⃗⃗=λ(a ⃗+kb ⃗⃗),即 (k −λ)a ⃗=(λk −1)b⃗⃗. 又 a ⃗,b ⃗⃗ 是两个不共线的非零向量,所以 k −λ=λk −1=0. 消去 λ,得 k 2−1=0,所以 k =±1. 【知识点】平面向量的数乘及其几何意义14. 【答案】 −1【解析】 a 2−2ai −1=a 2−1−2ai =2i ,a =−1. 【知识点】复数的乘除运算15. 【答案】 1−2i【解析】设 z =a +bi (a,b ∈R ), 则 z =a −bi , 因为 2z +z =3−2i ,所以 2a +2bi +a −bi =3−2i , 所以 3a =3,b =−2, 解得 a =1,b =−2, 所以 z =1−2i .【知识点】复数的加减运算16. 【答案】 3【解析】如图所示,取 BC 的中点 D ,AC 的中点 E ,连接 OD ,OE , 则OA ⃗⃗⃗⃗⃗⃗+2OB ⃗⃗⃗⃗⃗⃗+3OC ⃗⃗⃗⃗⃗⃗=(OA⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)+2(OB ⃗⃗⃗⃗⃗⃗+OC ⃗⃗⃗⃗⃗⃗)=2OE⃗⃗⃗⃗⃗⃗+4OD ⃗⃗⃗⃗⃗⃗⃗=0⃗⃗,所以 OE⃗⃗⃗⃗⃗⃗=−2OD ⃗⃗⃗⃗⃗⃗⃗, 所以 D ,O ,E 三点共线, 所以 DE ⃗⃗⃗⃗⃗⃗=32OE ⃗⃗⃗⃗⃗⃗, 又 DE 为 △ABC 的中位线,BA ⃗⃗⃗⃗⃗⃗=2DE ⃗⃗⃗⃗⃗⃗, 所以 BA⃗⃗⃗⃗⃗⃗=3OE ⃗⃗⃗⃗⃗⃗. 设在 △ABC 和 △AOC 中,AC 边上的高分别为 ℎ1,ℎ2,则 ℎ1=3ℎ2, 所以 S△ABC S △AOC=3.【知识点】平面向量的数乘及其几何意义三、解答题(共6题)17. 【答案】从十个小球中随机抽取两个小球,记事件 A 为“两个小球上的数字为相邻整数”,其所有可能的结果为 (1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(2,1),(3,2),(4,3),(5,4),(6,5),(7,6),(8,7),(9,8),(10,9),共 18 种.(1)如果小球是不放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 9 种可能,共有 90 种可能的结果, 因此,事件 A 的概率是 1890=15.(2)如果小球是有放回的,按抽取顺序记录结果 (x,y ),则 x 有 10 种可能,y 有 10 种可能,共有 100 种可能的结果, 因此,事件 A 的概率是 18100=950. 【知识点】古典概型18. 【答案】 AD ⃗⃗⃗⃗⃗⃗=2AO ⃗⃗⃗⃗⃗⃗=2(m ⃗⃗⃗+n ⃗⃗),BD ⃗⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=m ⃗⃗⃗+2n ⃗⃗.【知识点】平面向量的数乘及其几何意义19. 【答案】(1) 根据题意,可知组成该种钉的四条线段长必相等,且两两所成的角相等,A 1,A 2,A 3,A 4 两两连接后得到的四面体 A 1A 2A 3A 4 为正四面体,延长 A 4O 交平面 A 1A 2A 3 于 B ,则 A 4B ⊥平面A 1A 2A 3,连接 A 1B ,则 A 1B 是 OA 1 在平面 A 1A 2A 3 上的射影, 所以 ∠OA 1B 即为 OA 1 与平面 A 1A 2A 3 所成角. 设 A 1A 4=l , 则 A 1B =√33l . 在 Rt △A 4A 1B 中,A 1A 42=A 1B 2+A 4B 2,即 l 2=(√33l)2+(a +√a 2−(√33l)2)2,所以 l =2√63a , 故 A 1B =√33×2√63a =2√23a ,cos∠OA 1B =A 1B OA 1=2√23(其中 0<∠OA 1B <π2),所以 ∠OA 1B =arccos2√23, 故 OA 1 与平面 A 1A 2A 3 所成角的大小为 arccos 2√23.(2) 12A 1A 22⋅√32=3√2,根据(1)可得 A 1A 2=2√63a ,所以 a =√2724cm ,1100⋅100⋅(4a )=4a =2√2164m . 答:复制 100 枚这种“钉”,共需材料 2√2164米.【知识点】棱锥的结构特征、线面角20. 【答案】因为 AC⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗, 所以 AC⃗⃗⃗⃗⃗⃗ 对应的复数为 (3−i )−(1+2i )=2−3i , 设 C (x,y ),则 (x +yi )−(2+i )=2−3i ,所以 x +yi =(2+i )+(2−3i )=4−2i , 故 x =4,y =−2.所以点 C 在复平面内的坐标为 (4,−2). 【知识点】复数的加减运算、复数的几何意义21. 【答案】如图设球心为 O ,球的半径为 R ,作 OO 1⊥平面ABC 于点 O 1,则 OA =OB =OC =R ,且 O 1 是 △ABC 的外心,设 M 是 AB 的中点, 因为 AC =BC , 所以 O 1∈CM , 所以 O 1M ⊥AB , 设 O 1M =x ,则 O 1A =√22+x 2,O 1C =CM −O 1M =√62−22−x . 又 O 1A =O 1C ,所以 √22+x 2=√62−22−x ,解得 x =7√24. 所以 O 1A =O 1B =O 1C =9√24.在 Rt △OO 1A 中,O 1O =R 2,∠OO 1A =90∘,OA =R , 由勾股定理得 (R 2)2+(9√24)2=R 2,解得 R =3√62, 所以 S 球=4πR 2=54π,V 球=43πR 3=27√6π. 【知识点】球的表面积与体积22. 【答案】线性无关.对照定义,可求得 α=β=0.【知识点】平面向量的数乘及其几何意义。