人教版数学七年级下册期末复习培优练习试题

合集下载

人教版七年级下数学期末模拟提优练试题含解析

人教版七年级下数学期末模拟提优练试题含解析

人教版七年级下数学期末模拟提优练试题含解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的立方根是()A.﹣2B.2C.±2D.42.(4分)下列各数中,介于6和7之间的数是()A.B.C.D.3.(4分)若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)4.(4分)不等式组的解集是()A.﹣5≤x<3B.﹣5<x≤3C.x≥﹣5D.x<35.(4分)下列问题中,应采用抽样调查的是()A.企业招聘,对应聘人员进行面试B.了解某班学生的身高情况C.调查春节联欢晚会的收视率D.了解某校七年级第二学期期末考试各班的数学科平均成绩6.(4分)已知a∥b,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B,直角顶点C分别落在直线a,b上,若∠1=15°,则∠2的度数是()A.15°B.22.5°C.30°D.45°7.(4分)如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C.D.8.(4分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.45°B.30°C.50°D.36°9.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40B.45C.51D.5610.(4分)关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:=.12.(4分)请写出一个比2大且比4小的无理数.13.(4分)已知|4x+3y﹣1|+(y﹣3)2=0,求x+y的值.14.(4分)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.15.(4分)如图,在平面直角坐标系中,若▱ABCD的顶点A,B,C的坐标分别是(2,3),(1,﹣1),(7,﹣1),则点D的坐标是.16.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第1007个三角数与第1009个三角数的差为.三、解答题(本大题共9小题,共86分)17.(8分)计算:18.(8分)解不等式2(2x+1)<14,并把它的解集在数轴上表示出来:19.(8分)解方程组:.20.(8分)如图:O为直线AB上一点,,OC是∠AOD的平分线.求:∠COD的度数.21.(8分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(10分)在图中描出A(﹣4,4),B(0,4),C(2,1),D(﹣2,1)四个点,线段AB、CD有什么位置关系?顺次连接A,B,C,D四点,求四边形ABCD的面积.23.(10分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24.(12分)某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?25.(14分)如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△P AB=2S△QBC,求出点P 的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【分析】根据(﹣2)3=﹣8,继而可得出﹣8的立方根.【解答】解:=﹣2,故选:A.【点评】此题考查了立方根的知识,属于基础题,比较简单,关键是知道(﹣2)3=﹣8.2.【分析】先估算出5<<6,6<7,7<<8,3<<4,根据以上范围得出选项即可.【解答】解:∵5<<6,6<7,7<<8,3<<4,∴在6和7之间的数是,故选:B.【点评】本题考查了估算无理数的大小的应用,解此题的关键是能估算出每个数的范围,是基础题目,难度不大.3.【分析】根据x轴上的点P到y轴的距离为3,可得点P的横坐标为±3,进而根据x轴上点的纵坐标为0可得具体坐标.【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.【点评】本题考查了点的坐标的相关知识;用到的知识点为:x轴上点的纵坐标为0.4.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥﹣5,故不等式组的解集为:﹣5≤x<3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.【解答】解:A、企业招聘,对应聘人员进行面试应采用全面调查;B、了解某班学生的身高情况应采用全面调查;C、调查春节联欢晚会的收视率应采用抽样调查;D、了解某校七年级第二学期期末考试各班的数学科平均成绩应采用全面调查;故选:C.【点评】本题考查的是算术平均数、抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a∥b,∴∠2=∠3=30°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.【点评】本题考查平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.【分析】设∠ADB=x,则∠BDC=2x,再由AD∥BC得出∠DBC=∠ADB=x,根据三角形内角和定理得出x的值,进而可得出结论.【解答】解:∵∠ADB:∠BDC=1:2,∴设∠ADB=x,则∠BDC=2x.∵AD∥BC,∴∠DBC=∠ADB=x,∵∠C=30°,∠C+∠DBC+∠BDC=180°,即30°+x+2x=180°,解得x=50°,∴∠DBC=50°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.9.【分析】先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.【解答】解:根据题意得:5≤<5+1,解得:46≤x<56,故选:C.【点评】此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.10.【分析】首先应用加减消元法,求出方程组的解是多少;然后根据方程组的解为整数,判断出满足这个条件的整数m的个数有多少即可.【解答】解:①﹣②,可得(2﹣m)x=﹣m,解得x=,把x=代入①,解得y=,∴原方程组的解是,∵方程组的解为整数,∴m﹣2=±1,±2或±4.(1)m﹣2=﹣1时,m=1,原方程组的解是,符合题意;(2)m﹣2=1时,m=3,原方程组的解是,符合题意;(3)m﹣2=﹣2时,m=0,原方程组的解是,符合题意;(4)m﹣2=2时,m=4,原方程组的解是,符合题意;(5)m﹣2=﹣4时,m=﹣2,原方程组的解是,不符合题意;(6)m﹣2=4时,m=6,原方程组的解是,不符合题意;∴满足这个条件的整数m的个数有4个:m=0,1,3,4.故选:C.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.二、填空题(本大题共6小题,每小题4分,共24分)11.【分析】易知=3,=2,即可计算【解答】解:=3﹣2=1故答案为1【点评】此题主要考查实数的运算,根据根式的性质即可计算.12.【分析】由于4<5<16,则<<,即可得到满足条件的无理数【解答】解:∵4<5<16,∴<<,即2<<4.故答案为:.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.13.【分析】首先由非负数的性质得出x、y的数值,进一步代入求得答案即可.【解答】解:根据题意得,解得.则原式=﹣2+3=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【分析】根据折叠的性质,得∠BFE=(180°﹣∠1),再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,若∠1=50°,得∠BFE=(180°﹣∠1)=65°.∵AD∥BC,∴∠AEF=115°.【点评】此题综合运用了折叠的性质和平行线的性质.15.【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(2,3),(1,﹣1),(7,﹣1),∴BC=6,顶点D的坐标为(8,3).故答案为:(8,3).【点评】此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.16.【分析】观察分析得到第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…,得到第n个三角形数为1+2+3+4+…+n,则第22个三角形数为1+2+3+4+…22,第24个三角形数为1+2+3+4+…+22+23+24,即可得到第24个三角形数与第22个三角形数的差.【解答】解:第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…所以第1007个三角形数为1+2+3+4+…1007,第1009个三角形数为1+2+3+4+…+1007+1008+1009,所以第1007个三角形数与第1009个三角形数的差等于1008+1009=2017.故答案为:2017.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共9小题,共86分)17.【分析】先化成最简二次根式,再根据二次根式的加减法则求出即可.【解答】解:原式==.【点评】本题考查了二次根式的加减,能灵活运用法则进行计算是解此题的关键.18.【分析】先去括号,再移项合并同类项,最后系数化1即可得到解集,最后画数轴表示解集.【解答】解:4x+2<14,4x<12,x<3.∴不等式的解集为x<3.【点评】本题主要考查了解一元一次不等式的方法以及在数轴上表示不等式解集的方法,属于基础题型.19.【分析】把第一个方程乘以4,然后利用加减消元法解方程组即可.【解答】解:,①×4得,8x﹣4y=20③,②+③得,11x=22,解得x=2,把x=2代入①得,4﹣y=5,解得y=﹣1,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.【分析】利用∠AOC=∠BOC及补角的性质就可求出∠COD的度数.【解答】解:∵∠AOC=∠BOC,∠AOC+∠BOC=180°,∴4∠AOC=180°,∠AOC=45°,∵OC平分∠AOD,∴∠COD=∠AOC=45°.【点评】此题主要考查了补角的性质及垂直的定义,要注意领会由直角得垂直这一要点.21.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.【分析】根据平面直角坐标系描出各点,再根据网格结构的特点观察图形即可得解;由图形可以判断四边形的形状为平行四边形,利用网格结构求出AB边的长度以及AB边上的高,然后根据面积公式列式计算即可得解.【解答】解:(1)如图,AB∥CD;(2)S=4×3=12,四边形ABCD的面积是12.【点评】本题考查了坐标与图形的性质,熟练掌握网格结构与平面直角坐标系准确描出A、B、C、D四个点是解题的关键.23.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.24.【分析】①根据题意,需分类讨论.因为160<240,所以不可能选择A类年票;然后计算出若只选择购买B类年票,若只选择购买C类年票,若不购买年票,进入该园林的次数,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票.②设一年中进入该园林x次时,购买A类年票比较合算,根据题意,可得不等式组.求得解集即可得解.【解答】(1)解:不可能选A年票.若选B年票,则(次),若选C年票,则(次),若不购买年票,则(次),所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次;(2)解:设超过x次时,购买A类年票比较合算,,解得x>30,因此,一年中进入该公园超过30次时,购买A类年票比较合算.【点评】此题主要考查了一元一次不等式组的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式组.25.【分析】(1)根据非负数的性质分别求出a、c,得到点B的坐标,根据坐标与图形性质判断AO和BC位置关系;(2)过B点作BE⊥AO于E,根据三角形的面积公式求出AP,得到点P的坐标;(3)分点Q在点C的上方、点Q在点C的下方两种情况,根据平行线的性质解答即可.【解答】解:(1)∵(a+8)2+=0,∴a+8=0,c+4=0,解得,a=﹣8,c=﹣4,则点B的坐标为(﹣4,﹣4),∵点B的坐标为(﹣4,﹣4),点C的坐标为(0,﹣4),∴BC∥AO,故答案为:(﹣4,﹣4),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△P AB=2S△QBC,则AP=2t,OQ=t,∴CQ=4﹣t,∵BE=4,BC=4,∴,,∵S△APB=2S△BCQ,∴4t=2(8﹣2t)解得,t=2,∴AP=2t=4,∴OP=OA﹣AP=4,∴点P的坐标为(﹣4,0);(3)∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ,即∠PQB=∠OPQ+30°;②当点Q在点C的下方时;过Q点作HJ∥AO如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°,即∠BQP+∠OPQ=150°,综上所述,∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.【点评】本题考查的是三角形的面积计算、坐标与图形性质、平行线的性质、三角形内角和定理,掌握非负数的性质、灵活运用分情况讨论思想是解题的关键.一、七年级数学易错题1.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 2【答案】B 【解析】【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a 的取值范围是﹣4≤a <﹣3. 【详解】解不等式x ﹣a >0,得:x >a , 解不等式3﹣2x >0,得:x <1.5, ∵不等式组的整数解有5个, ∴﹣4≤a <﹣3, 故选B .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a 的取值范围.2.已知关于x 的不等式组 ()()255133 22x x x t x +⎧->⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( )A .1992t << B .1992t ≤<C .1992t <≤D .1992t ≤≤【答案】C【解析】 【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可. 【详解】解:由(1)得x<-10, 由(2)x>3-2t,, 所以3-2t<x<-10,∵x 有5个整数解,即x=-11,-12,-13,-14,-15, ∴163215t -≤-<-∴1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错.3.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩【答案】A 【解析】 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .4.如果关于x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,设整数a 与整数b 的和为M ,则M 的值的个数为( ) A .3个 B .9个C .7个D .5个【答案】D 【解析】 【分析】先求出不等式组的解集,再得出关于a 、b 的不等式组,求出a 、b 的值,即可得出选项. 【详解】520730x a x b ->⎧⎨-≤⎩①②∵解不等式①得:x >25a , 解不等式②得:x≤37b , ∴不等式组的解集为2357a b x <≤, ∵x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,∴6≤25a <7,9≤37b<10, 解得:15≤a <17.5,21≤b <2313,∴a=15或16或17,b=21或22或23,∴M=a+b=36、37、38、39或40,共5种情况.故选D【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.5.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2【答案】C【解析】【分析】过P点作PD⊥x轴,垂足为D,根据A(,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a.【详解】过P点作PD⊥x轴,垂足为D,由A(,0)、B(0,1),得OA,OB=1.∵△ABC为等边三角形,由勾股定理,得AB2,∴S△ABC.又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP(1+a)×3(3)×a=由2S△ABP=S△ABC,得:,∴a.故选C.【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.6.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【答案】C【解析】【分析】【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角.平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.7.若于x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,且关于y 的分式方程3111y a y y---=--有非负整数解,则满足条件的所有整数a 的和为( ) A .12 B .14C .18D .24【答案】B 【解析】 【分析】根据已知x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩可解出x 的取值范围,且仅有5个整数解,可确定x可能取的值,即可求得a 的取值范围,再根据关于y 的分式方程3111y a y y---=--有非负整数解,可确定a 的取值范围,综合所有a 的取值范围得出a 最终可取的值,求和得答案. 【详解】解x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩得3284x x -≤-4x ≤2(5)2x a x -+<x >27a- ∵x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,即0、1、2、3、4∴2107a--≤< 29a <≤y 的分式方程3111y a y y---=-- 3)1y a y --=-(31y a y -+=- 22y a =-22a y -=已知关于y 的分式方程3111y a y y---=--有非负整数解 而212a y -=≠ ∴202a -≥且212a -≠ 所以2a ≥且4a ≠又∵ 22a y -=有非负整数解∴a 为偶数综上所述,满足条件的所有整数a 为6、8,它们的和为14 故选:B 【点睛】本题主要考点:不等式组和分式方程的求解,根据已知条件,再通过求解不等式组和分式方程确定a 的取值范围,分式方程中分母不能为0,可作为已知条件,综合所有a 的取值范围,确定最终a 的值8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >- B .2a <C .22a -<<D .2a ≤【答案】D 【解析】 【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取【详解】解:∵关于x 的不等式52x x a -≥+的最小正整数解是1x = ∴214a+≤ 2a ≤故选:D. 【点睛】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020【答案】C 【解析】 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n+1,n ), 则第2018次跳动至点的坐标是(1010,1009), 第2017次跳动至点A 2017的坐标是(-1009,1009). ∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019, 故选C .本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<【答案】B 【解析】 【分析】符号[]a 表示不大于a 的最大整数,即[]a 为小于等于a 的最大整数. 【详解】因为[]a 为小于等于a 的最大整数,所以[][]1a a a <+≤, 若[]a =-6,则a 的取值范围是65a -≤-<, 故选B . 【点睛】本题考查了对不等关系的理解,解题的关键是理解符号[]a 的本质是小于或等于a 的最大整数.12.如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线A 1A 2A 3A 4关于点A 4的中心对称图形,再做出新的折线关于与x 轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线一每秒1个单位的速度移动,设运动时间为t .当t =2020时,点P 的坐标为( )A .(1010B .(2020C .(2016,0)D .(1010 【答案】A 【解析】 【分析】把点P 从O 运动到A 8作为一个循环,寻找规律解决问题即可. 【详解】由题意OA 1=A 3A 4=A 4A 5=A 7A 8=2,A 1A 2=A 2A 3=A 5A 6=A 6A 7=1, ∴点P 从O 运动到A 8的路程=2+1+1+2+2+1+1+2=12, ∴t =12,把点P 从O 运动到A 8作为一个循环, ∵2020÷12=168余数为4,∴把点A 3向右平移168×3个单位,可得t =2020时,点P 的坐标,∵A 3(2,168×6=1008,1008+2=1010,∴t =2020时,点P 的坐标(1010, 故选:A . 【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.13.已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( ) A .23x ≤< B .23x <≤ C .21x -≤<- D .21x -<≤-【答案】D 【解析】 【分析】令1-x=y ,则13ay b ≤+<,根据题干可知:23y ≤<,从而得出x 的取值范围. 【详解】令1-x=y ,则13ay b ≤+< ∵13ax b ≤+<的解集为23x ≤< ∴13ay b ≤+<的解集为:23y ≤< ∴213x ≤-< 解得:21x -<≤-【点睛】本题考查解不等式,解题关键是通过换元法,将1-x 表示为y 的形式.14.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B .15.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( ) A .a <0 B .a <﹣1 C .a >1 D .a >﹣1【答案】B 【解析】 【分析】根据不等式的性质,两边同时除以a+1,a+1是正数还是负数不确定,所以要分两种情况,再根据解集为x <1,发现不等号的符号发生了变化,所以确定a+1<0,从而得到答案. 【详解】解:(a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <-1. 故选:B .此题主要考查了解不等式,当不等式两边除以同一个数时,这个数的正负性直接影响不等号.16.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)【答案】D【解析】【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.17.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.18.一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()a+A.1a+B.1C.21a+D.21±+a【答案】D【解析】【分析】根据平方根定义得原数为a2,故相邻的下一个自然数是a2+1,再求得平方根即可.。

人教版七年级下数学期末复习培优练习卷(二)可打印

人教版七年级下数学期末复习培优练习卷(二)可打印

培优练习卷(二)班级:___________ 姓名:___________1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2018,0)B.(2017,1)C.(2019,1)D.(2019,2)2.若关于x的不等式组<恰有3个整数解,则a的取值范围是()A.B.C.D.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角直角三角板的斜边与纸条一边重合,含45 角的三角板的一个顶点在纸条的另一边,则∠1的度数是()A.14°B.15°C.20°D.30°4.若我们规定表示大于的最小整数,例如,,则下列结论: ①;②的最小值是0;③的最大值是1;④存在实数,使成立.其中正确的是( ) A.(1)(4)B.(4)C.(2)(4)D.(3)(4)5.定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.6.如图,点E是的边AC的反向延长线上一点,于点D,于点G,.请问:AD平分吗?请说明理由.7.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.1、D2、A3、B4、D5、(1)-4;(2) 3≤x<4;(3) 满足条件的所有整数x的值为﹣3、﹣26、AD平分,理由见解析.(1)详见解析;(2)平行且相等;(3)详见解析;(4)4.7、(1)A(8,0),B(4,4),C(0.4);(2)t=;(3)(0,13),(0,-5)。

人教版数学七年级下册期末复习培优练习试题

人教版数学七年级下册期末复习培优练习试题

人教版数学七年级下册期末复习培优练习试题七年级下册期末培优练试题一、选择题1.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根答案:C2.若mx。

5m,两边同除以m后,变为x < 5,则m的取值范围是()A.m。

5B.m < 5C.m ≥ 5D.m ≤ 5答案:A3.估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间答案:B4.在平面直角坐标系中,点P(-3,2006)在第()象限.A.一B.二C.三D.四答案:D6.已知一个样本的最大值是178,最小值是155,对这组数据进行整理时,若取组距为2.3,则组数为()A.10B.11C.12D.13答案:B7.若有意义,则x能取的最小整数是()A.-1B.1C.2D.28答案:C8.点(-2,-3)向左平移3个单位后所得点的坐标为()A.(-2,0)B.(-2,-6)C.(-5,-3)D.(1,-3)答案:B9.方程2x-y=3和2x+y=9的公共解是()A.(1,5)B.(2,7)C.(3,9)D.(4,11)答案:A10.若关于x的不等式组的解集为x < 3,则k的取值范围为()A.k。

1B.k < 1C.k ≥ 1D.k ≤ 1答案:B11.如图,XXX,∠ABP=∠ABC,∠XXX∠XXX,已知∠FCD=60°,则∠P的度数为()A.60°B.80°C.90°D.100°答案:B12.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()答案:x。

-3二、填空题13.49的平方根是()。

答案:714.如果点P在第二象限内,点P到x轴的距离是4,到y 轴的距离是3,那么点P的坐标为()。

答案:(-3,4)15.已知x=4,y=-2与x=-2,y=-5都是方程y=kx+b的解,则k+b的值为()。

人教版七年级数学下册期末备考培优练习卷(5份)及答案

人教版七年级数学下册期末备考培优练习卷(5份)及答案

期末备考培优练习卷(二)一.选择题1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.2.空气是由多种气体混合而成的.为了简明扼要地介绍空气的组成情况.较好地描述数据,最适合使用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.直方图3.已知a<b,下列式子不成立的是()A.a+1<b+1 B.4a<4bC.﹣>﹣b D.如果c<0,那么<4.下列说法正确的是()A.平方根等于它本身的数是0,1B.算术平方根等于它本身的数是0,1C.倒数等于它本身的数只有1D.平方等于它本身的数只有05.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1 B.1 C.5 D.﹣56.为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A.B.C.D.7.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.68.下列语句是命题的是()(1)两点之间,线段最短;(2)如果x2>0,那么x>0吗?(3)如果两个角的和是90度,那么这两个角互余.(4)过直线外一点作已知直线的垂线;A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)9.一元一次不等式x+1>2的解在数轴上表示为()A.B.C.D.10.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.14 B.12 C.10 D.8二.填空题11.若点P(5+m,m﹣3)在第二、四象限角平分线上,则点P的坐标为.12.计算的结果是.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.不等式﹣的解集为.15.工厂质检人员为了检测其产品的质量,从同一批次共1000件产品中随机抽取50件进行检检测出次品1件,由此估计这一批产品中的次品件数是.16.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.17.若是关于x,y的二元一次方程,则m的值是.18.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为度.(用n来表示)19.若不等式组有解,则a的取值范围是.20.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,若已知点A(3,0),B(0,4),则点A99的坐标为.三.解答题21.计算:22.解方程组(1)(2)23.解一元一次不等式组:.24.如图,在△ABC中;(1)画△ABC向右平移4个单位,再向下平移3个单位得到的△A′B′C′;(2)写出平移后A′、B′、C′三点的坐标.(3)求三角形ABC的面积.25.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)补全条形图;(2)该班学生体育测试成绩的中位数落在等级内;(3)扇形统计图中C级所在的扇形圆心角的度数是;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?26.如图,∠AFD=∠1,AC∥DE.(1)试说明:DF∥BC;(2)若∠1=68°,DF平分∠ADE,求∠B的度数.27.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.28.已知,如图①,点D,E,F,G是△ABC三边上的点,且FG∥AC,(1)若∠EDC=∠FGC,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且MN∥AB,连结GM,若∠A=60°,∠C =55°,∠FGM=4∠MGC,求∠GMN的度数.(3)点M、N分别在射线AC、BC上,且MN∥AB,连结GM.若∠A=α,∠ACB=β,∠FGM=n∠MGC,直接写出∠GMN的度数(用含α,β,n的代数式表示)参考答案一.选择题1.C.2.C.3.D.4.B.5.A.6.A.7.B.8.C.9.A.10.B.二.填空题11.(4,﹣4).12.﹣.13.如果两个角是对顶角,那么这两个角相等.14.x≤﹣3.15.20.16.150°或30°.17.﹣2.18.n或180﹣n.19.a>2.20.(600,3).三.解答题21.解:=﹣3+2+1=22.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.23.解:,由①得:x<,由②得:x≤﹣1,则不等式组的解集为x≤﹣1.24.解:(1)如图所示,△A′B′C′即为所求;(2)由图可知,A′(3,1)、B′(5,﹣2)、C′(0,﹣4);(3)三角形ABC的面积为:5×5﹣3×5﹣2×3﹣2×5=.25.解:(1)样本容量=,C级人数:50﹣13﹣25﹣2=10(人),补全图形如下:(2)数据总数为50,所以中位数在B等级内.(3)C级所在圆心角=;(4)这次考试中A级和B级的学生共有:(人).26.解:(1)∵AC∥DE,∴∠C=∠1,∵∠AFD=∠1,∴∠C=∠AFD,∴DF∥BC.(2)∵∠1=68°,DF∥BC,∴∠EDF=∠1=68°,∵DF平分∠ADE,∴∠ADF=∠EDF=68°,∵DF∥BC,∴∠B=∠ADF=68°.27.解:(1)设1个甲种乒乓球的售价是x元,1个乙种乒乓球的售价是y元,依题意,得:,解得:.答:1个甲种乒乓球的售价是5元,1个乙种乒乓球的售价是7元.(2)设购买甲种乒乓球a个,费用为w元,则购买乙种乒乓球(200﹣a)个,依题意,得:w=5a+7(200﹣a)=﹣2a+1400.∵a≤3(200﹣a),∴a≤150.∵﹣2<0,∴w值随a值的增大而减小,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50.答:当购买甲种乒乓球150个,乙种乒乓球50个时最省钱.28.解:(1)DE∥BC,理由如下:∵FG∥AC,∴∠FGB=∠C,∵∠EDC+∠ADE=180°,∠FGC+∠FGB=180°,∠EDC=∠FGC,∴∠ADE=∠FGB,∴∠ADE=∠C,∴DE∥BC;(2)∵∠A=60°,∠C=55°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣55°=65°,∵FG∥AC,∴∠FGB=∠C=55°,∵∠FGM=4∠MGC,∴∠FGM+∠MGC+∠FGB=5∠MGC+55°=180°,∴∠MGN=25°,∵MN∥AB,∴∠MNC=∠B=65°,∠MNC=∠MGN+∠GMN,∴∠GMN=∠MNC﹣∠MGN=65°﹣25°=40°;(3)①如图②所示:∵∠A=α,∠ACB=β,∴∠B=180°﹣∠A﹣∠ACB=180°﹣α﹣β,∵FG∥AC,∴∠FGB=∠C=β,∵∠FGM=n∠MGC,∴∠FGM+∠MGC+∠FGB=(n+1)∠MGC+β=180°,∴∠MGN=,∵MN∥AB,∴∠MNC=∠B=180°﹣α﹣β,∠MNC=∠MGN+∠GMN,∴∠GMN=∠MNC﹣∠MGN=180°﹣α﹣β﹣=(180°﹣β)﹣α.②如图③所示:设∠MGN=x,则∠GMN=∠GMA+∠NMC=α+180°﹣nx,∵(n﹣1)x+β=180°,∴x=,∴∠GMN=α+180°﹣nx=α+180°﹣n=α+.期末备考培优练习卷(三)一.选择题(每小题3分,满分30分)1.下列各式中,是一元一次不等式的是()A.x2+3x>1 B.x﹣<0 C.D.≤52.下列调查中,适合普查(全面调查)方法的是()A.了解一批灯泡的使用寿命B.了解中央电视台《最强大脑》栏目的收视率C.了解全国中学生体重情况D.了解松桃全县居民是精准扶贫户的具体人数3.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠AOC=70°,则∠BOE的度数是()A.35°B.55°C.70°D.110°4.一元一次不等式x+1>2的解在数轴上表示为()A.B.C.D.5.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6+∠4=180°;其中能判断直线l1∥l2的有()A.②③④B.②③⑤C.②④⑤D.②④6.估算9﹣的值,下列结论正确的是()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)8.我们知道方程组的解是,现给出另一个方程组,它的解是()A.B.C.D.9.某校九年级(1)班体育委员对本班50名同学参加球类项目做了统计(每人选一种),绘制成如图所示统计图,则该班参加乒乓球和羽毛球项目的人数总和为()A.20人B.25人C.30人D.35人10.如图,直线AB,CD相交于点O,∠AOE=90°,∠DOF=90°,OB平分∠DOG,给出下列结论:①当∠AOF=60°时,∠DOE=60°;②OD为∠EOG的平分线;③与∠BOD相等的角有三个;④∠COG=∠AOB﹣2∠EOF.其中正确的结论为()A.①②④B.②③④C.①③④D.①②③④二.填空题(满分12分,每小题3分)11.实数,,﹣7,中,无理数有.12.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那…”的形式是.13.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为.14.如图,AB∥CD,直线EF与AB,CD分别交于点G,H,GM⊥GE,∠BGM=20°,HN 平分∠CHE,则∠NHD的度数为.三.解答题15.(5分)﹣|3﹣π|+.16.(5分)解方程组(1)(2)17.(5分)解一元一次不等式组:.18.(5分)如图,△ABC在直角坐标系中,(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′、B′、C′的坐标.(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果Q′坐标是(m,n),那么点Q的坐标是.19.(7分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.20.(7分)在平面直角坐标系中,已知点P(m﹣1,2m+4),试分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P横坐标比纵坐标大3;(3)点P在过A(﹣5,2)点,且与y轴平行的直线上.21.(7分)已知某正数的两个平方根分别是2m﹣3和5﹣m,n﹣1的算术平方根为2,求3+m+n﹣7的立方根.22.(7分)某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?23.已知,如图1,E为BC延长线上一点.(1)请你添加平行线证明:∠ACE=∠ABC+∠A.(2)如图2,若点D是线段AC上一点,且DF∥BC,作DG平分∠BDF交AB于G,DH平分∠GDC交BC于H,且∠BDC比∠ACB大20°,求∠GDH的度数.(3)如图3,已知E为BC延长线上一点,D是线段AC上一点,连接DE,若∠ABC的平分线与∠ADE的平分线相交于点P,请你判断∠P、∠A、∠E的数量关系并证明你的结论.24.(10分)为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D 四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A30 0.1B90 0.3C m0.4D60 n (1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.25.某商场购进一批LED灯泡与普通白炽灯泡,其进价与标价如下表.该商场购进LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡按标价打九折销售,销售完这批灯泡后可以获利3200元.(1)求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,并在不打折的情况下销售完.若销售完这两批灯泡的获利不超过总进货价的28%,则最多再次购进LED灯泡多少个?LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 30参考答案一.选择题1.C.2.D.3.B.4.A.5.D.6.B.7.D.8.D9.B.10.C.二.填空题11.12 “在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.13.7.14.125°.三.解答题15.解:原式=10﹣(π﹣3)﹣3=10﹣π+3﹣3=10﹣π.16.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.17.解:,由①得:x<,由②得:x≤﹣1,则不等式组的解集为x≤﹣1.18.解:(1)如图,△A′B′C′为所作,点A′的坐标为(1,2),点B′的坐标为(6,5)、C′的坐标为(3,6);(2)点Q的坐标是(m﹣2,n﹣3).故答案为(m﹣2,n﹣3).19.解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠EOD=∠BOD=×76°=38°,∵OF⊥OD,∴∠DOF=90°,∴∠FOE+∠EOD=90°,∴∠FOE=90°﹣∠EOD=90°﹣38°=52°.20.解:(1)由P(m﹣1,2m+4)在x轴上,得2m+4=0.解得m=﹣2,∴P(﹣3,0);(2)由P(m﹣1,2m+4)的横坐标比纵坐标大3,得(m﹣1)﹣(2m+4)=3,解得m=﹣8,∴P(﹣9,﹣12);(3)由P在过A(﹣5,2),且与y轴平行的直线上,得m﹣1=﹣5.解得m=﹣4,∴P(﹣5,﹣4).21.解:∵一正数的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得m=﹣2.∵n﹣1的算术平方根为2,∴n﹣1=4,解得n=5,∴3+m+n﹣7的立方根为﹣1.22.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.23.解:(1)过点C作CD∥AB,如图1,∴∠A=∠ACD,∠B=∠DCE,∴∠ACD+∠DCE=∠A+∠B,即∠ACE=∠A+∠B;(2)∵DF∥BC,∴∠BDF=∠CBD,∵DG平分∠BDF,∴∠BDG=∠BDF=∠CBD,∵∠BCD+∠BDC+∠CBD=180°,∠BDC比∠ACB大20°,∴∠BDC=100°﹣,∴∠CDG=∠BDC+∠BDG=100°﹣+∠CBD=100°,∵DH平分∠GDC,∴∠GDH==50°;(3)设BP与AC的交点为点F,如图2,∵BP平分∠ABC,∴∠ABP=∠CBP=∠ABC,∵∠ACE=∠A+∠ABC,∠ADE=∠DCE+∠E,∴∠ADE=∠A+∠ABC+∠E,∵DP平分∠ADE,∴∠FDP=∠ADE=,∵∠AFP=∠A+∠ABF=∠A+,∠AFP=∠P+∠FDP,∴∠A+=∠P+∴∠P=(∠A﹣∠E).24.解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.25.解:(1)设该商场购进LED灯泡x个,普通白炽灯泡y个.根据题意,得:,解得,答:该商场购进LED灯泡200个,普通白炽灯泡100个.(2)设再次购进LED灯泡m个.(60﹣45)m+(30﹣25)(120﹣m)+3200≤28%[45×200+25×100+45m+25(120﹣m)] 解得:m≤59,∵m取正整数,∴m的最大值为59则最多再次购进LED灯泡59个.期末备考培优练习卷(四)一.选择题(每题2分,满分20分)1.下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式2.若点P(a,b)在第二象限,则点Q(b,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法错误的是()A.﹣8的立方根是﹣2 B.|1﹣|=1﹣C.﹣的相反数是D.3的平方根是±4.下列实数中,无理数的个数是()①0.333;②;③;④π;⑤6.18118111811118……A.1个B.2个C.3个D.4个5.在实数3.14,﹣π,,﹣中,倒数最小的数是()A.B.C.﹣πD.3.146.若x>y,则下列式子中正确的是()A.x﹣2>y﹣2 B.x+2<y+2 C.﹣2x>﹣2y D.7.如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°8.已知甲、乙、丙、丁共有20本课外书,又知制作的甲、乙、丙、丁有课外书本数的扇形统计图的扇形面积之比为2:3:4:1,则丙的课外书的本数为()A.2本B.4本C.6本D.8本9.三元一次方程组的解是()A.B.C.D.10.在平面直角坐标系中,A(m,4),B(2,n),C(2,4﹣m),其中m+n=2,并且2≤2m+n≤5,则△ABC面积的最大值为()A.1 B.2 C.3 D.6二.填空题(满分18分,每小题3分)11.计算:.12.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.13.如图,下列推理:(1)若∠1=∠2,则AB∥CD;(2)若AB∥CD,则∠3=∠4;(3)若∠ABC+∠BCD=180°,则AD∥BC;(4)若∠1=∠2,则∠ADB=∠CBD.其中正确的个数是个.14.如图,在一块长为20m,为10m的长方形草地上,修建两条宽为2m的长方形小路,则这块草地的绿地面积(图中空白部分)为m215.如图是某班45个学生在一次数学测试中成绩的频数分布直方图(成绩为整数),图中从左到右的小长方形的高度比为1:3:5:4:2,则该次数学测试成绩在80.5到90.5之间的学生有个.16.秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有种.三.解答题17.(10分)解下列方程组:(1)(2).18.(6分)解一元一次不等式组:.19.(10分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.组别视力频数(人)A 4.0≤x<4.3 20B 4.3≤x<4.6 aC 4.6≤x<4.9 bD 4.9≤x<5.2 70E 5.2≤x<5.5 10请根据图表信息回答下列问题:(1)求抽样调查的人数;(2)a=,b=,m=;(3)补全频数分布直方图;(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?20.(4分)本题所述的直角三角形均指直角边不相等的直角三角形,画图时写出简要的画法,能从中理解你画图的过程.(1)判断下面的命题是真命题还是假命题,并画图说明.①任意一个三角形都可以分成两个直角三角形;②任意直角三角形都可以分成两个等腰三角形.(2)请画图说明:任意一个三角形均可分成一个直角三角形和两个等腰三角形.(3)请画图说明:任意一个直角三角形均可分成三个等腰三角形.21.(6分)如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),并说明△A1B1C1是△ABC通过怎样的变化得到的?22.(8分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.23.(8分)航空公司办理托运规定:当一种物品的重量不超过16千克时,需付基础费30元和保险费a元;为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.(1)当x≤16时,支付费用为元(用含a的代数式表示)当x>16时,支付费用为元(用含x和a、b的代数式表示)(2)甲、乙两人各托运一件物品,物品重量和支付费用如下表所示根据以上提供的信息确定a,b的值.(3)根据这个规定,若丙要托运一件超过16千克的物品,但支付的费用不想超过70元,那么丙托运的物品最多是多少千克?物品重量(千克)支付费用(元)18 3925 5324.(1)如图1,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG.(2)如图2,已知AB∥CD,∠AEF与∠CFE的平分线交于点G.猜想∠G的度数,并证明你的猜想.(3)如图3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度数.参考答案一.选择题1.解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.2.解:∵若点P(a,b)在第二象限,∴a<0,b>0,则1﹣a>0,∴点Q(b,1﹣a)所在象限应该是第一象限,故选:A.3.解:A、﹣8的立方根为﹣2,这个说法正确;B、|1﹣|=﹣1,这个说法错误;C.﹣的相反数是,这个说法正确;D、3的平方根是±,这个说法正确;故选:B.4.解:根据无理数的三种形式可得,③,④π,⑤6.18118111811118…是无理数,共3个,故选:C.5.解:在3.14,﹣π,,﹣中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:﹣π的倒数是﹣≈﹣0.3183,﹣的倒数是﹣≈﹣4472,所以﹣>﹣,故选:A.6.解:A、由x>y可得:x﹣2>y﹣2,正确;B、由x>y可得:x+2>y+2,错误;C、由x>y可得:﹣2x<﹣2y,错误;D、由x>y可得:>,错误;故选:A.7.解:∵∠EFB=65°,AD∥CB,∴∠DEF=65°,由折叠可得∠NEF=∠DEF=65°,∴∠AEN=180°﹣65°﹣65°=50°,故选:B.8.解:20×=8本,故选:D.9.解:,①+②+③得:2x=8,解得:x=4,把x=4代入③得:z=2,把x=4代入①得:y=3,则方程组的解为,故选:D.10.解:∵B(2,n),C(2,4﹣m),m+n=2,∴BC=4﹣m﹣n=2,∵m+n=2,并且2≤2m+n≤5,∴0≤m≤3,∴BC边上高的最大值是2,∴△ABC面积的最大值为2×2÷2=2.故选:B.二.填空题11.解:=﹣2+5=3故答案为:=3.12.解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.13.解:(1)若∠1=∠2,则AD∥BC,故(1)不对;(2)若AB∥CD,则∠3=∠4,故(2)正确;(3)若∠ABC+∠BCD=180°,则AB∥DC,故(3)不对;(4)若∠ABC=∠ADC,∠1=∠2,可推出∠3=∠4,则AB∥CD,故(4)正确.所以有2个正确.故答案为:2.14.解:由图象可得,这块草地的绿地面积为:(20﹣2)×(10﹣2)=144(m2).故答案为:144.15.解:45×=12人故答案为:1216.解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得:0≤x≤10,从0到10的偶数共有6个,所以x的取值共有6种可能.故答案为:6.三.解答题17.解:(1)①×2﹣②得:7x=70,解得:x=10,把x=10代入①得:y=10,则方程组的解为;(2)原方程组整理得:,①+②得:6x=48,解得:x=8,把x=8代入①得:y=8,则方程组的解为.18.解:,由①得:x<,由②得:x≤﹣1,则不等式组的解集为x≤﹣1.19.解:(1)抽样调查的人数是:20÷10%=200人;(2)a=200×20%=40,b=200﹣(20+40+70+10)=60,m%==30%,即m=30,故答案为40,60,30;(3)根据(2)求出a,b的值,补图如下(4)视力正常的人数占被统计人数的百分比是:35%+5%=40%;根据题意得:6000×40%=2400(人).答:该市今年八年级的学生视力正常的学生2400人.20.解:(1)①是真命题,如图1,在△ABC中,过C作CD⊥AB于D,则△ACD和△BCD是直角三角形,故任意一个三角形都可以分成两个直角三角形;②是真命题,如图2,在Rt△ABC中,∠C=90°,设CD是AB边上的中线,∴CD=AD=BD=AB,∴△ACD和△BCD是等腰三角形;(2)如图3,在△ABC中,过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,作△BDC的边BC上的中线DE交BC于E,则△ACD是直角三角形,△CDE和△BDE是等腰三角形;(3)如图4,在△ABC中,∠ACB=90°,作AB的垂直平分线交BC于E,连接AE,则AE=BE,∴△ABE为等腰三角形,取AE的中点D,连接CD,则AD=CD=DE=AE,∴△ACD和△CED为等腰三角形,故任意一个直角三角形均可分成三个等腰三角形.21.解:所画图形如下所示:根据平移的性质可知:△A1B1C1是△ABC向上平移1个单位,向右平移5个单位得到的.22.证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).23.解:(1)由题意知,当x≤16时,支付费用为(30+a)元;当x>16时,支付费用为[30+a+b(x﹣16)]故答案为:(30+a);[30+a+b(x﹣16)].(2)由题意得:,解得:,∴a的值为5,b的值为2.(3)设丙托运的物品是x千克,由题意得:30+5+2(x﹣16)≤70,解得:x≤33.5,∴丙托运的物品最多是33.5千克.24.证明:(1)如图1,过点G作GH∥AB,∴∠EGH=∠AEG.∵AB∥CD,∴GH∥CD.∴∠FGH=∠CFG.∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG;(2)如图2所示,猜想:∠G=90°;证明:由(1)中的结论得:∠EGF=∠AEG+∠CFG,∵EG、FG分别平分∠AEF和∠CEF,∴∠AEF=2∠AEG,∠CEF=2∠CFG,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2∠AEG+2∠CFG=180°,∴∠AEG+∠CFG=90°,∴∠G=90°;(3)解:如图3,∵EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∴∠AEG=∠GEH=∠HEF=,∠CFH=∠HFG=∠EFG=,由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,∴∠G=∠AEF+∠CFE=95°,∵AB∥CD,∴∠AEF+∠CFE=180°,∴(∠AEF+∠CFE)+CFE=95°,∴∠CFE=105°,∴∠AEF=75°,∴∠H=∠AEF+∠CFE=×75°+=85°.期末备考培优练习卷(五)一.选择题1.下列等式成立的是()A.=﹣6 B.=±7 C.+=D.=﹣52.第二象限内的点P(x,y),满足|x|=9,y2=4,则点P的坐标是()A.P(9,2)B.P(﹣3,2)C.P(﹣9,2)D.P(﹣2,9)3.下列调查中,必须采用普查方式的是()A.调查丹东市中小学生对“社会主义核心价值观”的了解情况B.调查我市七年级学生身高的现状C.考察人们保护海洋的意识D.检查发射长征五号遥三运载火箭的各零部件4.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2 B.x<2 C.x≥﹣2 D.x>25.如图,若∠1=∠2,则下列选项中可以判定AB∥CD的是()A.B.C.D.6.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4 B.4和5 C.5和6 D.6和77.△ABC三个顶点的坐标分别为A(2,1),B(4,3),C(0,2),将△ABC平移到了△A'B'C',其中A'(﹣1,3),则C'点的坐标为()A.(﹣3,6)B.(2,﹣1)C.(﹣3,4)D.(2,5)8.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.9.不等式组的整数解的个数是()A.2 B.3 C.4 D.510.下列四个命题:①过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,内错角相等;③一个正实数的算术平方根一定是正实数;④﹣2是4的平方根.其中真命题的个数为()A.1个B.2个C.3个D.4个11.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A.B.C.D.12.已知:如图,AB、CD、EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠BOG的度数是()A.35°B.30°C.25°D.20°二.填空题13.在实数3.1415927,,2﹣,,中,无理数的个数是个.14.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表,则他家通话时间不超过15min的频率为.通话时间x/min0<x≤5 5<x≤1010<x≤15 15<x≤20频数/通话次数20 16 9 515.如图,AB∥CD,∠B=120°,∠D=145°,则∠BED等于°.16.若(x﹣5)2+=0,则(y﹣x)2019=.17.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了道题.18.如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,若已知点A(3,0),B(0,4),则点A99的坐标为.三.解答题19.计算:20.解方程组(1)(2)21.解不等式组,并把它们的解在数轴上表示出来.22.如图,△ABC在直角坐标系中,(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′、B′、C′的坐标.(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果Q′坐标是(m,n),那么点Q的坐标是.23.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.24.爱护环境越来越受到社会各界的重视,为了让学生了解环保知识,某中学组织全校3000名学生参加了“环保知识竞赛”为了解本次竞赛成绩的分布情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,得到下列的频率分布表.分数段频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 a0.3290.5﹣100.5 12 b合计 1请根据以上的统计图、表解答下列问题:(1)a=,b=;(2)补全频数分布直方图;(3)成绩在90分以上(不含90分)为优秀,该校所有参赛学生中成绩优秀的约为多少人?25.如图,∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(点A、B、C不与点O重合),且AB∥ON,连接AC交射线OE于点D.(1)求∠ABO的度数;(2)当△ADB中有两个相等的角时,求∠OAC的度数.26.因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10只KN95口罩共需113元;3只医用一次性口罩和5只KN95口罩共需64元.问:(1)一只医用一次性口罩和一只KN95口罩的售价分别是多少元?(2)参照上次购买获得的需求情况后,校长给出了一条建议:医用一次性口罩的购买量不能多于KN95口罩数量的2倍,请你遵循校长建议给出最省钱的购买方案,并说明理由.参考答案一.选择题1.D.2.C.3.D.4.D.5.D.6.B.7.C.8.A.9.C.10.B.11.D.12.A.二.填空题13.214.0.9.15.95.16.﹣1.17.17.18.(600,3).三.解答题19.解:=﹣3+2+1=20.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.21.解:∵解不等式①得:x≥﹣2,解不等式②得:x<2,∴原不等式组的解为:﹣2≤x<2,在数轴上表示为:.22.解:(1)如图,△A′B′C′为所作,点A′的坐标为(1,2),点B′的坐标为(6,5)、C′的坐标为(3,6);(2)点Q的坐标是(m﹣2,n﹣3).故答案为(m﹣2,n﹣3).23.证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).24.解:(1)本次调查的人数为:4÷0.08=50,a=50×0.32=16,b=12÷50=0.24,故答案为:16,0.24;(2)由(1)知,a=16,补全的频数分布直方图如右图所示;(3)3000×=720(人),答:该校所有参赛学生中成绩优秀的约为720人.25.解:(1)∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°;(2)当∠BAD=∠ABD时,∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°;当∠BAD=∠BDA时,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°.26.解:(1)设一只医用一次性口罩的售价为x元,一只KN95口罩的售价为y元,依题意,得:,解得:.答:一只医用一次性口罩的售价为3元,一只KN95口罩的售价为11元.(2)设购买m只医用一次性口罩,则购买(1000﹣m)只KN95口罩,依题意,得:m≤2(1000﹣m),解得:m≤666.设学校再次购进1000只口罩的总费用为w元,则w=3m+11(1000﹣m)=﹣8m+11000.∵﹣8<0,∴w随m的增大而减小,又∵m是整数,∴m的最大值为666,∴当m=666时,w取得最小值,最小值为5672,此时1000﹣m=334.答:最省钱的购买方案是:购买666只医用一次性口罩,334只KN95口罩.。

人教版七年级数学下册期末测试题及复习资料详解共五套

人教版七年级数学下册期末测试题及复习资料详解共五套

李庄人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .1>0 D .1-m <2 2.下列各式中,正确的是( )16±4 B.±164 C 327- 3 2(4)- 4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在马路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为的方程组是( ) A. B. C. D.6.如图,在△中,∠500,∠800,平分∠,平分∠,则∠的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△沿方向平移了长度的一半得到的,若△的面积为20 cm 2,则四边形A 11的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案干脆填在答题卷的横线上. 11.49的平方根是,算术平方根是8的立方根是. 12.不等式59≤3(1)的解集是.13.假如点P(a,2)在第二象限,那么点Q(-3)在.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为C 1A 1ABB 1CD了使李庄人乘火车最便利(即间隔 最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠度.16.如图∥,∠100°平分∠,则∠.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种可以辅满地面的是.(将全部答案的序号都填上) 18.若│x 2-25则.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.解不等式组:,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, ∥ , 平分∠,你能确定∠B 及∠C 的数量关系吗?请说明理由。

人教版七年级数学下《压轴题培优》期末复习专题含答案

人教版七年级数学下《压轴题培优》期末复习专题含答案

人教版七年级数学期末复习专题 -- 压轴题培优1.已知 AM∥ CN,点 B 为平面内一点, AB⊥ BC于 B.( 1)如图 1,直接写出∠ A 和∠ C之间的数目关系;(2)如图 2,过点 B 作 BD⊥ AM于点 D,求证:∠ ABD=∠ C;(3)如图 3,在( 2)问的条件下,点 E、F 在 DM上,连结 BE、BF、 CF,BF均分∠ DBC,BE 均分∠ABD,若∠ FCB+∠ NCF=180°,∠ BFC=3∠DBE,求∠ EBC的度数 .2.如图,已知两条射线 OM∥ CN,动线段 AB的两个端点 A.B 分别在射线 OM、 CN上,且∠ C=∠OAB=108°,F在线段 CB上, OB均分∠ AOF, OE均分∠ COF.(1)请在图中找出与∠ AOC相等的角,并说明原因;(2)若平行挪动 AB,那么∠ OBC与∠ OFC的度数比能否跟着 AB地点的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行挪动 AB 的过程中,能否存在某种状况,使∠ OEC=2∠ OBA?若存在,恳求出∠ OBA度数;若不存在,说明原因 .3.已知 AB∥ CD,线段 EF分别与 AB、 CD订交于点 E、 F.(1)如图①,当∠ A=25° , ∠ APC=70°时,求∠ C的度数;(2)如图② , 当点 P在线段 EF上运动时(不包含 E、F两点) , ∠ A.∠ APC与∠ C之间有什么确立的相等关系?试证明你的结论.( 3)如图③,当点P在线段 FE的延伸线上运动时, ( 2)中的结论还建立吗?假如建立, 说明原因;假如不建立,尝试究它们之间新的相等关系并证明.4. 如图1, 在平面直角坐标系中,A(a,0 )是x 轴正半轴上一点,C 是第四象限一点,CB⊥y轴 ,交y 轴负半轴于2B( 0,b ) , 且 (a-3) +|b+4|=0,S四边形AOBC=16.(1)求 C点坐标;(2)如图 2, 设 D为线段 OB上一动点 , 当 AD⊥ AC时 , ∠ ODA的角均分线与∠ CAE的角均分线的反向延伸线交于点 P, 求∠ APD的度数.(3)如图 3, 当 D 点在线段 OB上运动时 , 作 DM⊥ AD交 BC于 M点 , ∠ BMD、∠ DAO的均分线交于 N 点 , 则 D 点在运动过程中 , ∠ N的大小能否变化?若不变 , 求出其值 , 若变化 , 说明原因.5.已知 BC∥ OA,∠ B=∠A=100° . 试回答以下问题:(1)如图 1 所示 , 求证: OB∥AC;(2)如图 2, 若点 E、 F在 BC上, 且知足∠ FOC=∠ AOC,而且 OE均分∠ BOF.试求∠ EOC的度数;(3)在( 2)的条件下,若平行挪动 AC,如图 3,那么∠ OCB:∠ OFB的值能否随之发生变化?若变化,试说明原因;若不变,求出这个比值。

人教版中学七7年级下册数学期末解答题培优卷(含答案)

人教版中学七7年级下册数学期末解答题培优卷(含答案)

人教版中学七7年级下册数学期末解答题培优卷(含答案)一、解答题1.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.2.(1)若一圆的面积与这个正方形的面积都是2π,设圆的周长为C圆,正方形的周长2cm为C正,则C圆______C正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm,李明同学想沿这块正方形边的方向裁出一块面积为212cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.3.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.4.如图,用两个边长为3.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?5.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二、解答题6.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.7.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.8.如图①,将一张长方形纸片沿EF对折,使AB落在''A B的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.9.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.10.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行三、解答题11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.13.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).14.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 15.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)四、解答题16.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.17.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.18.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 19.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .20.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.【参考答案】一、解答题1.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.2.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.3.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果;(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②解析:(12)①见解析;②见解析, 30.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.4.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是1062)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.5.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二、解答题6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK =∠HAP ,∠CPK =∠PCG ,∴∠APC =∠HAP +∠PCG ,∵PN 平分∠APC ,∴∠NPC =12∠HAP +12∠PCG ,∵∠PCE =180°﹣∠PCG ,CN 平分∠PCE ,∴∠PCN =90°﹣12∠PCG ,∵∠N +∠NPC +∠PCN =180°,∴∠N =180°﹣12∠HAP ﹣12∠PCG ﹣90°+12∠PCG =90°﹣12∠HAP ,即:∠N =90°﹣12∠HAP .【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 7.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.8.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.9.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC 平分∠BAM∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,又∵a ∥b ,∴CP ∥b ,∠1=∠BAM =60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.10.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.三、解答题11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM :∠BAN=3:2,即可得到∠BAN 的度数;(2)设A 灯转动t 秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC =2∠BCD【分析】(1)根据∠BAM +∠BAN =180°,∠BAM :∠BAN =3:2,即可得到∠BAN 的度数;(2)设A 灯转动t 秒,两灯的光束互相平行,分两种情况进行讨论:当0<t <90时,根据2t =1•(30+t ),可得 t =30;当90<t <150时,根据1•(30+t )+(2t -180)=180,可得t =110;(3)设灯A 射线转动时间为t 秒,根据∠BAC =2t -108°,∠BCD =126°-∠BCA =t -54°,即可得出∠BAC :∠BCD =2:1,据此可得∠BAC 和∠BCD 关系不会变化.【详解】解:(1)∵∠BAM +∠BAN =180°,∠BAM :∠BAN =3:2,∴∠BAN =180°×25=72°, 故答案为:72;(2)设A 灯转动t 秒,两灯的光束互相平行,①当0<t <90时,如图1,∵PQ ∥MN ,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.12.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.13.(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.14.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P 在GF 上时,过点P 作PN ∥OG ,∴NP ∥OG ∥EF ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∴∠OPQ =∠GOP +∠PQF ,∴∠OPQ =140°﹣∠POQ +∠PQF ;如图4,当点P 在线段GF 的延长线上时,过点P 作PN ∥OG ,∴NP ∥OG ∥EF ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴140°﹣∠POQ =∠OPQ +∠PQF .【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.15.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n-⋅-【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可;(3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠,1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.四、解答题16.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形。

(完整版)人教版初一下册数学期末压轴题试题培优试题

(完整版)人教版初一下册数学期末压轴题试题培优试题

一、解答题1.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时, ①若D 点的坐标为(﹣5,0),求点E 的坐标. ②求证:M 为BE 的中点. ③探究:若在点D 运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).2.已知AB ∥CD ,∠ABE 与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数;(3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系3.已知//AM CN ,点B 为平面内一点,AB BC 于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.4.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系; (3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 5.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 6.已知,//AE BD ,A D ∠=∠. (1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.7.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭8.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.9.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;10.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 11.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)12.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤.例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;π= ; (2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 13.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴).(3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.14.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.15.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.16.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围.17.在平面直角坐标系中,(,1)A a ,(,3)B b 满足()2120a b ++-=. (1)直接写出a 、b 的值:a = ;b = ;(2)如图1,若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)设线段AB 交y 轴于C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-出发,在x 轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为t 秒,问t 为何值时,有2ABEABFSS=?请求出t 的值.18.如图所示,在直角坐标系xoy 中,已知()6,0A ,()8,6B ,将线段OA 平移至CB ,连接OC 、AB 、CD 、BD ,且//OC AB ,点D 在x 轴上移动(不与点O 、A 重合).(1)直接写出点C 的坐标;(2)点D 在运动过程中,是否存在ODC △的面积是ABD △的面积的3倍,如果存在请求出点D 的坐标,如果不存在请说明理由;(3)点D 在运动过程中,请写出OCD ∠、ABD ∠、BDC ∠三者之间存在怎样的数量关系,并说明理由.19.历史上的数学巨人欧拉最先把关于x 的多项式用记号f(x)来表示.例如f(x)=x 2+3x -5,把x =某数时多项式的值用f(某数)来表示.例如x =-1时多项式x 2+3x -5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x 2-3x +1,分别求出g(-1)和g(-2);(2)已知h(x)=ax 3+2x 2-ax -6,当h(12)=a ,求a 的值;(3)已知f(x)=2+3kx a -6x bk --2(a ,b 为常数),当k 无论为何值,总有f(1)=0,求a ,b 的值.20.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.21.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.22.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.23.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s 和两位数t 的十位数字相同,若s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,求出满足题意的s .24.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h ++=,求C 点的坐标;(2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.25.某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元:新建4个地上停车位和2个地下停车位共需1.4万元, (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案? (3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额. 26.阅读材料:关于x ,y 的二元一次方程ax+by=c 有一组整数解00x x y y =⎧⎨=⎩,则方程ax+by=c 的全部整数解可表示为00x x bty y at =-⎧⎨=+⎩(t 为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为0069x y =⎧⎨=⎩,则全部整数解可表示为61997x ty t =-⎧⎨=+⎩(t 为整数).因为61909+70.t t ->⎧⎨>⎩,解得96719t -<<.因为t 为整数,所以t =0或-1.所以该方程的正整数解为69x y =⎧⎨=⎩和252x y =⎧⎨=⎩. (1)方程3x-5y=11的全部整数解表示为:253x ty t θ=+⎧⎨=+⎩(t 为整数),则θ= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解; (3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.27.在平面直角坐标系xOy 中,已知点M (a ,b ).如果存在点N (a ′,b ′),满足a ′=|a +b |,b ′=|a ﹣b |,则称点N 为点M 的“控变点”. (1)点A (﹣1,2)的“控变点”B 的坐标为 ;(2)已知点C (m ,﹣1)的“控变点”D 的坐标为(4,n ),求m ,n 的值;(3)长方形EFGH 的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P (x ,﹣2x )的“控变点”Q 在长方形EFGH 的内部,直接写出x 的取值范围.28.请阅读求绝对值不等式3x <和3x >的解的过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的数的绝对值小于3,所以3x <的解为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-或大于3的数的绝对值大于3,所以3x >的解为3x <-或3x >.(1)求绝对值不等式32x ->的解(2)已知绝对值不等式21x a -<的解为3b x <<,求2a b -的值(3)已知关于x ,y 的二元一次方程组234461x y m x y m -=-⎧⎨+=-+⎩的解满足2x y +≤,其中m 是负整数,求m 的值.29.阅读理解:定义:A ,B ,C 为数轴上三点,若点C 到点A 的距离是它到点B 的时距离的n (n 为大于1的常数)倍,则称点C 是(),A B 的n 倍点,且当C 是(),A B 的n 倍点或(),B A 的n 倍点时,我们也称C 是A 和B 两点的n 倍点.例如,在图1中,点C 是(),A B 的2倍点,但点C 不是(),B A 的2倍点.(1)特值尝试.①若2n =,图1中,点______是(),D C 的2倍点.(填A 或B )②若3n =,如图2,M ,N 为数轴上两个点,点M 表示的数是2-,点N 表示的数是4,数______表示的点是(),M N 的3倍点.(2)周密思考:图2中,一动点P 从N 出发,以每秒2个单位的速度沿数轴向左运动t 秒,若P 恰好是M 和N 两点的n 倍点,求所有符合条件的t 的值.(用含n 的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M 和N 两点的所有n 倍点P 均处于点N 的“可视距离”内,请直接写出n 的取值范围.(不必写出解答过程)30.在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由;(3)点P 是直线BD 上一个动点,连接PC 、PO ,当点P 在直线BD 上运动时,请直接写出∠OPC 与∠PCD 、∠POB 的数量关系【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①E (3,﹣2)②见解析;③12OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM【分析】(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.②证明△BOM ≌△EHM (AAS )可得结论.③是定值,证明△BOM ≌△EHM 可得结论.(2)根据点D 在点B 左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD ﹣OA =2(AM ﹣AO ),∴OD+OA =2AM .当点D 在点B 右侧时,过点E 作EH ⊥y 轴于点H∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.2.(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)由(2)的方法可得到2n ∠M +∠BED =360°.【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒, 360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒,260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒,130BFD BFH DFH ∴∠=∠+∠=︒, BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠, 65MBF MDF ∴∠+∠=︒,1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠, 3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠,66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠,6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒.【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.3.(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B , ∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC =∠ABD +∠ABC =2a +90,即:∠FBC =12∠DBC =a +45°又∵∠BFC +∠FBC +∠BCF =180°,即:3a +a +45°+∠BCF =180°∴∠BCF =135°-4a ,∴∠AFC =∠BCF =135°-4a ,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.4.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB ∥ET ,AB ∥CD ,∴ET ∥CD ∥AB ,∴∠B =∠BET ,∠TED =∠D ,∴∠BED =∠BET -∠DET =∠B -∠D .(3)如图,设∠ABE =∠EBM =x ,∠CDE =∠EDM =y ,∵AB ∥CD ,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n-. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.5.(1)49°,(2)44°,(3)∠OPQ =∠ORQ【分析】(1)根据∠OPA =∠QP B .可求出∠OPA 的度数;(2)由∠AOP =43°,∠BQP =49°可求出∠OPQ 的度数,转化为(1)来解决问题; (3)由(2)推理可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,从而∠OPQ =∠ORQ .【详解】解:(1)∵∠OPA =∠QPB ,∠OPQ =82°,∴∠OPA =(180°-∠OPQ )×12=(180°-82°)×12=49°,(2)作PC ∥m ,∵m ∥n ,∴m ∥PC ∥n ,∴∠AOP =∠OPC =43°,∠BQP =∠QPC =49°,∴∠OPQ =∠OPC +∠QPC =43°+49°=92°,∴∠OPA =(180°-∠OPQ )×12=(180°-92°)×1244°,(3)∠OPQ =∠ORQ .理由如下:由(2)可知:∠OPQ =∠AOP +∠BQP ,∠ORQ =∠DOR +∠RQC ,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP =∠DOR ,∠BQP =∠RQC ,∴∠OPQ =∠ORQ .【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.6.(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.7.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.8.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可;(2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解;(3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知:193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.9.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f⨯⨯⨯==;故答案为:2021;2021【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.10.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.11.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.12.(1)2,3 (2)①5722x ≤<②330,,42 (3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】 (1) 1.87<>=2;π=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.13.(1) C (5,﹣4);(2)90°;(3)见解析.【详解】分析:(1)利用非负数的和为零,各项分别为零,求出a ,b 即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a ﹣3)2+|b+4|=0,∴a ﹣3=0,b+4=0,∴a=3,b=﹣4,∴A (3,0),B (0,﹣4),∴OA=3,OB=4,∵S 四边形AOBC =16.∴0.5(OA+BC )×OB=16,∴0.5(3+BC )×4=16,∴BC=5,∵C 是第四象限一点,CB ⊥y 轴,∴C (5,﹣4);(2)如图,延长CA ,∵AF 是∠CAE 的角平分线,∴∠CAF=0.5∠CAE ,∵∠CAE=∠OAG ,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.14.(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.15.(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45°【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论. 【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3);(2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=12∠BMD,∠OAN=12∠OAD,∴∠ANM=∠BMN+∠OAN=12∠BMD+12∠OAD=12×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.16.(1)﹣3,2.5;(2)﹣4<m <﹣2或0<m <2;(3)1≤a <2.【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a 的不等式组,解不等式组即可求得答案.【详解】解:(1)设点P 表示的数是x ,则11x -≤≤,若点Q 表示的数是﹣3,由2PQ =可得()32x --=,解得:x =﹣1或﹣5,所以﹣3是连动数;若点Q 表示的数是0,由2PQ =可得02x -=,解得:x =2或﹣2,所以0不是连动数; 若点Q 表示的数是2.5,由2PQ =可得 2.52x -=,解得:x =﹣0.5或4.5,所以2.5是连动数;所以﹣3,0,2.5是连动数的是﹣3,2.5,故答案为:﹣3,2.5;(2)解关于x 的方程2x ﹣m =x +1得:x =m +1,∵关于x 的方程2x ﹣m =x +1的解满足是连动数,∴112112m m ---<⎧⎨-->⎩或112112m m +-<⎧⎨++>⎩, 解得:﹣4<m <﹣2或0<m <2;故答案为:﹣4<m <﹣2或0<m <2;(3)()112123x x a +⎧>-⎪⎨⎪+-≤⎩①②, 解不等式①,得x >﹣3,解不等式②,得x ≤1+a ,∵不等式组()112123x x a +⎧>-⎪⎨⎪+-≤⎩的解集中恰好有4个解是连动整数, ∴四个连动整数解为﹣2,﹣1,1,2,∴2≤1+a <3,解得:1≤a <2,∴a 的取值范围是1≤a <2.【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键.17.(1)1-,2;(2)233n =或13-;(3)225t =或2。

人教版七年级数学下册 期末试卷(培优篇)(Word版 含解析)

人教版七年级数学下册 期末试卷(培优篇)(Word版 含解析)

人教版七年级数学下册 期末试卷(培优篇)(Word 版 含解析)一、选择题1.如图,直线a ,b 被直线c 所截,则下列符合题意的结论是( )A .13∠=∠B .14∠=∠C .24∠∠=D .34180∠+∠=︒ 2.下列现象中是平移的是( ) A .翻开书中的每一页纸张 B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动3.平面直角坐标系中,点M (1,﹣5)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒6.有下列说法:(1)-6是36的一个平方根;(2)16的平方根是4;(3)3322--=;(4)364是无理数;(5)当0a ≠时,一定有a 是正数,其中正确的说法有( ) A .1个 B .2个 C .3个 D .4个7.如图,将一张长方形纸片折叠,若250∠=︒,则1∠的度数是( )A .80°B .70°C .60°D .50°8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0)二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图1是长方形纸带,19DEF ∠=︒,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的CFE ∠的度数是_________度.14.22的小数部分我们不可能2的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是21225x y +,其中x 是整数,且01y <<,写出x ﹣y 的相反数_____.15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|2−3|+38+23;(2)已知(x –2)2=16,求x 的值.18.求满足下列各式x 的值(1)2x 2﹣8=0;(2)12(x ﹣1)3=﹣4.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( )23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 .(3)三角形ABC 的面积是 .21.23490a b a -+-=(1)求实数,a b 的值;(2b 的整数部分为x ,小数部分为y①求2x y +的值;②已知103kx m =+,其中k 是一个整数,且01m <<,求k m -的值.二十二、解答题22.有一块正方形钢板,面积为16平方米.(1)求正方形钢板的边长.(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为3:2,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数2 1.414≈3 1.732≈).二十三、解答题23.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.24.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、选择题1.A解析:A【分析】利用对顶角、同位角、同旁内角定义解答即可.【详解】解:A、∠1与∠3是对顶角,故原题说法正确,符合题意;B、由条件不能得出∠1=∠4,故原题说法错误,不符合题意;C、∠2与∠4是同位角,只有a//b时,∠2=∠4,故原题说法错误,不符合题意;D、∠3与∠4是同旁内角,只有a//b时,∠3+∠4=180°故原题说法错误,不符合题意;故选:A.【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∥a,如图所示.∵PE∥a,a∥b,∴PE∥a∥b,∴∠AMP=∠MPE,∠BNP=∠NPE,∴∠2=∠MPE+∠NPE=∠AMP+∠BNP.∵∠1+∠AMP=180°,∠3+∠BNP=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.6.B【分析】根据平方根与立方根的定义与性质逐个判断即可.【详解】-是36的一个平方根,则此说法正确;(1)6(2)16的平方根是4±,则此说法错误;(3)33328(2)2--=--=--=,则此说法正确;(4)3644=,4是有理数,则此说法错误;(5)当0a<时,a无意义,则此说法错误;综上,正确的说法有2个,故选:B.【点睛】本题考查了平方根与立方根,熟练掌握平方根与立方根的定义与性质是解题关键.7.A【分析】先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案.【详解】解:如图,由折叠性质知∠4=∠2=50°,∴∠3=180°-∠4-∠2=80°,∵AB∥CD,∴∠1=∠3=80°,故选:A .【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P 的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,可得移动4次图象完成一个循环,∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE 、CF 分别为∠ABC 与∠ACB 的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE 、CF 分别为∠ABC 与∠ACB 的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB ,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC 中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115° 12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°, ∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.123【分析】由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG .【详解】解:∵AD//解析:123【分析】由题意根据折叠的性质可得∠DEF =∠EFB =19°,图2中根据平行线的性质可得∠GFC =142°,图3中根据角的和差关系可得∠CFE =∠GFC -∠EFG .【详解】解:∵AD //BC ,∴∠DEF =∠EFB =19°,在图2中,∠GFC =180°-∠FGD =180°-2∠EFG =142°,在图3中,∠CFE =∠GFC -∠EFG =123°.故答案为:123.【点睛】本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.【分析】根据题意得方法,估算的大小,求出的值,进而求出x ﹣y 的值,再通过相反数的定义,即可得到答案.【详解】∴的整数部分是2由题意可得的整数部分即,则小数部分则∴x﹣y的相反6【分析】2的值,进而求出x﹣y的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴2由题意可得2的整数部分即4x=,则小数部分2y=则42)6x y-=-=∴x﹣y66.【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分.15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3解析:2或2 -3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23 -,当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=4;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=+=+x-=,(2)()22161262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18.(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x2﹣8=0,,,解得或者;(2)(x ﹣1)3=﹣4,,,解得.【解析:(1)2x =或者2x =-;(2)1x =-【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x 2﹣8=0,228x =,24x =,解得2x =或者2x =-;(2)12(x ﹣1)3=﹣4,3(1)8x -=-, 12x -=-,解得1x =-.【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE ∥AB (同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC =∠ABC =90°(垂直的定义).∴DE ∥AB (同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A (两直线平行,同位角相等).又∵∠A =∠3(已知),∴∠1=∠2(等量代换).∴DE 平分∠CDB (角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=,故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.21.(1);;(2)①;②【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的值,可得的整数部分和小数部分,①将x 和y 的值代入解析:(1)7a =;21b =;(2)①4;【分析】(1)根据分式的值为0,分子为0且分母不能为02490a -=和70a +≠,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的整数部分和小数部分,①将x 和y 的值代入2x y +即可求值;②估算10k 是一个整数,且01m <<,可得k 和m 的值,由此可得k m -的值.【详解】解:(1)∵0=,∴2490a -=且70a +≠, ∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125, ∴45<的整数部分为44,①244)4x y +=+=;②∵12<<, ∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<, ∴2,10242k m ==⨯=∴2(2k m -=-=【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.二十二、解答题22.(1)4米 (2)见解析(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x 值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为3x 米、2x 米,由其面积可得x 值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,∴4=米;(2)设长方形的长宽分别为3x 米、2x 米,则3212x x •=,22x =,x34x =,24x =<,∴长方形长是4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒, 128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下: 如图3,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.24.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF , 同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F ,∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠,∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。

2020年春人教版七年级下学期数学期末复习培优练习卷(含答案)

2020年春人教版七年级下学期数学期末复习培优练习卷(含答案)

七年级下学期数学期末培优练习卷一.选择题(每题2分,满分24分)1.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或1 2.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.在平面直角坐标系中,点P(4,﹣3)到x轴的距离()A.4 B.3 C.5 D.﹣3 4.有一个数值转换器,原理如下图所示,当输入x为64时,输出的y是()A.8 B.C.D.5.下列调查中,最适合采用抽样调查的是()A.在“新冠状肺炎”疫情期间,对出入某小区的人员进行体温检测B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况6.如图所示的四个图形中,∠1和∠2不是同位角的是()A.B.C.D.7.用代入法解方程组时,代入正确的是()A.x﹣2﹣x=4 B.x﹣2﹣2x=4 C.x﹣2+2x=4 D.x﹣2+x=48.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.已知x=2,y=1是方程x﹣ay=3的解,那么a的值是()A.1 B.2 C.﹣1 D.﹣210.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)11.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤1 B.a<﹣1 C.﹣2<a≤﹣1 D.﹣2≤a<﹣1 12.某校为了了解学生在校午餐所需的时间,抽量了20名学生在校午餐所需时间,获得如下的数据(单位:分):10、12、15、10、16、18、19、18、20、18、18、20、28、22、30、20、15、16、21、16.若将这些数据以4分为组距进行分组,则组数是()A.4组B.5组C.6组D.7组二.填空题(满分18分,每小题3分)13.若x表示的整数部分,y表示的小数部分,则的值为.14.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式为.15.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.16.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.17.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在25~30次的频率是18.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如3⊗4=2×3﹣4=2.若x⊗y=2,且y⊗x=4,则x+y的值为.三.解答题19.(10分)计算:﹣12020+﹣|1﹣|+﹣20.(8分)如图,已知∠EFC+∠BDC=180°,∠DEF=∠B,(1)判断EF与AB的位置关系,并说明理由;(2)判断DE与BC的位置关系,并说明理由.21.(8分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.22.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生;(2)请将条形统计图补充完整;(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.23.(10分)已知在平面直角坐标系中,O为坐标原点,点A的坐标为(1,a),点B的坐标为(b,1),点C的坐标为(c,0),其中a、b满足(a+b﹣8)2+|a﹣b+2|=0.(1)求A、B两点的坐标;(2)当△ABC的面积为6时,求点C的坐标;(3)当4≤S≤10时,求点C的横坐标c的取值范围.△ABC24.(12分)某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一.选择题1. D.2. C.3. B.4. B.5. D.6. C.7. C.8. A.9. C.10. C.11. D.12. C.二.填空题13.414. 15(x+6)>20x.15.(2,5).16..17. 0.4.18. 6.三.解答题19.解:原式=﹣1+5﹣(﹣1)﹣2﹣3=﹣1+5﹣+1﹣2﹣3=﹣.20.解:如图所示:(1)EF∥AB,其原因如下,∵∠EFC+∠EFD=180°,∠EFC+∠BDC=180°,∴∠BDC=∠EFD,∴EF∥AB;(2)DE∥BC,其原因如下,∵EF∥AB,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠ADE=∠B,∴DE∥BC.21.解:(1)设1辆A型车载满脐橙一次可运送x吨,1辆B型车载满脐橙一次可运送y 吨,依题意,得:,解得:.答:1辆A型车载满脐橙一次可运送3吨,1辆B型车载满脐橙一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.22.解:(1)这次调查一共抽取学生18÷15%=120(人),故答案为:120;(2)“较强”的人数为120×45%=54(人),补全条形图如图所示:(3)安全意识为“淡薄”的学生占被调查学生总数的百分比=×100%=10%;安全意识为“很强”的学生所在扇形的圆心角的度数=×360°=108°.23.解:(1)∵(a+b﹣8)2+|a﹣b+2|=0.∴,解得,∴A(1,3),B(5,1);(2)①如图1中,当点C在直线AB的下方时,作AE⊥x轴于E,BF⊥x轴于F.设C(c,0).∵S△ABC =S四边形AEFB﹣S△AEC﹣S△BCF=×(1+3)×4﹣×3×(c﹣1)﹣×1×(5﹣c)=7﹣c,∴7﹣c=6解得c=1.②如图2中,当点C在直线AB的上方时,作AE⊥x轴于E,BF⊥x轴于F.设C(c,0).∵S△ABC =S△AEC﹣S四边形AEFB﹣S△BCF=×3×(c﹣1)﹣×(1+3)×4﹣×1×(c﹣5)=c﹣7,∴c﹣7=6,解得c=13,∴满足条件的点C坐标为(1,0)或(13,0).=7﹣c,(3)由(2)可知,当点C在直线AB下方时,S△ABC∴4≤7﹣c≤10,∴﹣3≤c≤3,当点C在直线AB是上方时,S=c﹣7,△ABC∴4≤c﹣7≤10,∴11≤c≤17,综上所述,满足条件的c的取值范围为﹣3≤c≤3或11≤c≤17.24.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,列方程得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元.(2)设购买了a个篮球,则购买了(96﹣a)个足球.列不等式得:80a+50(96﹣a)≤5720,解得a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.。

人教版七年级数学下册期末备考培优练习卷含解析

人教版七年级数学下册期末备考培优练习卷含解析

人教版七年级数学下册期末备考培优练习卷含解析一.选择题(每小题3分,共30分)1.(3分)9的平方根是()A.±3B.﹣3C.3D.2.(3分)在平面直角坐标系中,点(5,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)下列调查中,适合采用全面调查(普查)方式的是()A.了解一批节能灯泡的使用寿命B.了解某班同学“跳绳”的成绩C.了解全国每天丢弃的塑料袋的数量D.了解上海卫视“今晚80后”栏目的收视率4.(3分)设n为正整数,且n﹣1<<n,则n的值为()A.9B.8C.7D.65.(3分)已知实数x,y满足,则y的值是()A.2B.﹣2C.0D.36.(3分)下列不等式中一定成立的是()A.5a>4a B.﹣a>﹣2a C.a+2<a+3D.<7.(3分)若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()A.B.C.D.8.(3分)下列命题中正确的是()A.在同一平面内,过一点有且只有一条直线和已知直线垂直B.互补的两个角是邻补角C.与同一条直线平行的两条直线相交或平行D.两直线平行,同旁内角相等9.(3分)已知点P位于x轴上方,距离x轴4个单位长度,位于y轴右侧,距y轴3个单位长度,则点P坐标是()A.(﹣3,4)B.(﹣4,3)C.(3,4)D.(4,3)10.(3分)如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD的有()A.1个B.2个C.3个D.4个二.填空题(每小题4分,共计24分)11.(4分)要使有意义,则x的取值范围是.12.(4分)已知是方程ax+3y=9的解,则a的值为.13.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC =30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为°.14.(4分)有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6.第5组的频率是0.1,则第6组的频数是.15.(4分)宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有种.16.(4分)如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第10次相遇地点的坐标是.三.解答题(每小题6分,共计18分)17.(6分)计算:|﹣2|++|1﹣|﹣18.(6分)解不等式组:,并把不等式组的解集在数轴上表示出来.19.(6分)解方程组四.解答题(每小题7分,共计21分)20.(7分)如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P (a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.21.(7分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.组别正确字数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(7分)某校计划购买一批排球和足球,已知购买2个排球和1个足球共需321元,购买3个排球和2个足球共需540元.(1)求每个排球和足球的售价;(2)若学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买足球多少个?五.解答题(每小题9分,共计27分)23.(9分)如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:∠E+∠F=90°.24.(9分)如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC;(2)若∠DAE和∠DCE的角平分线相交于点F.如图2,若∠BAE=80°,求∠F的度数;(3)如图3,∠DCE的角平分线的平分线交AE于点G,连接AC,若∠BAC=∠DAE,∠AGC=3∠CAE,则∠CAE的度数为(直接写出结果).25.(9分)如图,在平面直角坐标系中有一点A(4,﹣1),将点A向左平移5个单位再向上平移5个单位得到点B,直线l过点A、B,交x轴于点C,交y轴于点D,P是直线上的一个动点,通过研究发现直线l上所有点的横坐标x与纵坐标y都是二元一次方程x+y =3的解.①直接写出点B,C,D的坐标;B,C,D;②求S△AOB;③当S△OBP:S△OP A=1:2时,求点P的坐标.参考答案与试题解析一.选择题(每小题3分,共30分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(5,﹣3)所在的象限是第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.【分析】利用普查和抽样调查的特点即可作出判断.【解答】解:A、了解一批节能灯泡的使用寿命,破坏性强,适合采用抽样调查,故此选项错误;B、了解某班同学“跳绳”的成绩,人数较少,适合采用全面调查,故此选项正确;C、了解全国每天丢弃的塑料袋的数量,人数众多,适合采用抽样调查,故此选项错误;D、了解上海卫视“今晚80后”栏目的收视率,人数众多,适合采用抽样调查,故此选项错误.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【分析】直接得出8<<9,即可得出n的值.【解答】解:∵8<<9,且n﹣1<<n,∴n=9.故选:A.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.5.【分析】根据非负性即可求出x与y的值.【解答】解:由题意可知:x+2=0,3x+y+8=0,∴x=﹣2,y=﹣2,故选:B.【点评】本题考查绝对值与二次根式,解题的关键是熟练运用绝对值与二次根式的性质,本题属于基础题型.6.【分析】根据不等式的性质即可得到结论.【解答】解:A、当a=0,5a=4a,故错误;B、当a=0,﹣a=﹣2a,故错误;C、a+2<a+3,正确;D、当a<0时,>,故错误.故选:C.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.7.【分析】本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.【解答】解:不等式组的解集为﹣1≤x≤3在数轴表示﹣1和3以及两者之间的部分:故选:D.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.本题还可根据不等式解集可知x的夹在两个数之间的,由此可排除ABC,选D.8.【分析】利用邻补角定理、两直线位置关系及平行线的性质分别判断后即可确定正确的选项.【解答】解:A、在同一平面内,过一点有且只有一条直线和已知直线垂直,正确,符合题意;B、互补的两个角不一定是邻补角,故原命题错误,不符合题意;C、与同一条直线平行的两条直线平行,故原命题错误,不符合题意;D、两直线平行,同旁内角互补,故原命题错误,不符合题意;故选:A.【点评】考查了命题与定理的知识,解题的关键是了解邻补角定理、两直线位置关系及平行线的性质,难度不大.9.【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选:C.【点评】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.10.【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【解答】解:依据∠1=∠2,能判定AB∥CD;依据∠BAD+∠ADC=180°,能判定AB∥CD;依据∠ABC=∠ADC,不能判定AB∥CD;依据∠3=∠4,不能判定AB∥CD;故选:B.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二.填空题(每小题4分,共计24分)11.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.【点评】本题考查了二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数.12.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:把代入方程得:2a﹣3=9,解得:a=6,故答案为:6【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故答案为:50【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.14.【分析】首先根据频率=求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有40个数据,共分成6组,第5组的频率是0.1,∴第5组的频数为40×0.1=4;又∵第1~4组的频数分别为10,5,7,6,∴第6组的频数为40﹣(10+5+7+6+4)=8.故答案为:8.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.15.【分析】首先设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意可得方程组:,解此方程组可得y+2z=6,又由x,y,z是非负整数,即可求得答案.【解答】解:设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意得:,解得:y+2z=6,y=6﹣2z,∵x,y,z是正整数,当z=1时,y=4,x=2;当z=2时,y=2,x=3;当z=3时,y=0,x=4;(不符合题意,舍去)∴租房方案有2种.故答案为:2.【点评】此题考查了三元一次不定方程组的应用.此题难度较大,解题的关键是理解题意,根据题意列方程组,然后根据x,y,z是整数求解,注意分类讨论思想的应用.16.【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵10÷3=3…1,∴两个物体运动后的第10次相遇地点的是BC边相遇,且甲与物体乙行的路程和为12×1=12,物体甲行的路程为12×=4,物体乙行的路程为12×=8,此时相遇点的坐标为:(﹣1,1),故答案是:(﹣1,1).【点评】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.三.解答题(每小题6分,共计18分)17.【分析】直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2+4+﹣1﹣3=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】分别求出每一个不等式的解集,根据口诀:“大小小大中间找”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式>x﹣1,得:x<4,∴不等式组的解集为:﹣1≤x<4,将不等式解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四.解答题(每小题7分,共计21分)20.【分析】(1)根据点P、P1的坐标确定出平移规律,再求出C1的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△AOA1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)∵点P(a,b)的对应点为P1(a+6,b﹣2),∴平移规律为向右6个单位,向下2个单位,∴C(﹣2,0)的对应点C1的坐标为(4,﹣2);(2)△A1B1C1如图所示;(3)△AOA1的面积=6×3﹣×3×3﹣×3×1﹣×6×2,=18﹣﹣﹣6,=18﹣12,=6.【点评】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.22.【分析】(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意列出方程组,求出方程组的解即可;(2)设篮球购买a个,则足球购买(50﹣a)个,根据题意列出不等式,求出不等式的解集即可确定出最多购买的足球.【解答】解:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得:,解得:,则每个篮球和每个足球的售价分别为101元,119元;(2)设足球购买a个,则篮球购买(50﹣a)个,根据题意得:119a+101(50﹣a)≤5500,整理得:18a≤450,解得:a≤25,则最多可购买25个足球.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的等量关系及不等关系是解本题的关键.五.解答题(每小题9分,共计27分)23.【分析】(1)求出∠ADF=∠BCF,根据平行线的判定得出即可;(2)根据角平分线的定义得出∠ABC=2∠ABE,求出∠ABE=∠E,根据平行线的判定得出即可;(3)根据平行线的性质得出∠DAB+∠ABC=180°,根据角平分线的定义得出∠ABE=ABC,∠BAF=∠BAD,求出∠ABE+∠BAF=90°,根据三角形的内角和定理得出即可.【解答】解:(1)AD∥BC,理由是:∵∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,∴∠ADF=∠BCF,∴AD∥BC;(2)AB∥EF,理由是:∵BE平分∠ABC,∴∠ABC=2∠ABE,∵∠ABC=2∠E,∴∠ABE=∠E,∴AB∥EF;(3)∵AD∥BC,∴∠DAB+∠ABC=180°,∵BE平分∠ABC,AF平分∠BAD,∴∠ABE=ABC,∠BAF=∠BAD,∴∠ABE+∠BAF=90°,∴∠AOB=180°﹣90°=90°=∠EOF,∴∠E+∠F=180°﹣∠EOF=90°.【点评】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和定理等知识点,能灵活运用定理进行推理是解此题的关键.24.【分析】(1)根据平行线的性质得:∠B=∠DCE,由于∠B=∠D,得∠D=∠DCE,根据平行线的判定,可得结论;(2)设∠DAF=∠EAF=α,∠DCF=∠ECF=β,根据平行线的性质列等式可得结论;(3)设∠CAG=x,∠DCG=z,∠BAC=y,△AHD中,x+2y+2z=180°①,△ACG中,x+3x+y+z=180°,变形后相减可得结论.【解答】(1)证明:∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)解:如图2,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,∵AD∥BC,∴∠D=∠DCE=2β,∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=80°,∴80+2α+2β=180,整理得:α+β=50°,∵∠DHF=∠DAH+∠D=∠DCF+∠F,即:α+2β=∠F+β,∴∠F=α+β=50°;(3)解:如图3,设∠CAE=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=3∠CAE=3x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD中,x+2y+2z=180°①,△ACG中,x+3x+y+z=180°,∴4x+y+z=180°,∴8x+2y+2z=360°②,②﹣①得:7x=180°,∴x=,即∠CAE=;故答案为:.【点评】本题是四边形综合题目,考查了平行线的判定与性质、三角形内角和定理以及三角形的外角性质等知识;本题综合性强,熟练掌握平行线的判定与性质以及三角形内角和定理是解题的关键.25.【分析】(1)由平移的性质可求点B坐标,由题意可得直线l的解析式,即可求点C,点D坐标;(2)由三角形面积公式可求解;(3)分两种情况讨论,由三角形的面积公式可求解.【解答】解:(1)∵点A(4,﹣1),将点A向左平移5个单位再向上平移5个单位得到点B,∴点B(﹣1,4)∵直线l上所有点的横坐标x与纵坐标y都是二元一次方程x+y=3的解.∴直线l的解析式为:y=﹣x+3,∴当x=0时,y=3,当y=0时,x=3,∴点C(3,0),点D(0,3)故答案为:(﹣1,4),(3,0),(0,3)(2)如图1,连接AO,BO,∵S△AOB=S△BOC+S△AOC,∴S△AOB=×3×4+×3×1=,(3)设点P(a,﹣a+3)如图2,当点P在线段AB上时,∵S△OBP:S△OP A=1:2,且S△AOB=∴S△OP A=5,∵S△OP A=S△OPC+S△OCA,∴5=×3×(3﹣a)+,∴a=,∴点P(,),当点P在点B的左侧时,∵S △OBP :S △OP A =1:2,且S △AOB =,∴S △OP A =15,∵S △OP A =S △OPC +S △OCA ,∴15=×3×(3﹣a )+,∴a =﹣6,∴点P (﹣6,9) 【点评】本题是几何变换综合题,考查了平移的性质,一次函数的性质,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.一、七年级数学易错题1.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)【答案】D【解析】【分析】 先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.2.已知关于x 的不等式组 ()()25513322x x x t x +⎧->⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .1992t <<B .1992t ≤<C .1992t <≤ D .1992t ≤≤ 【答案】C 【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10,∵x 有5个整数解,即x=-11,-12,-13,-14,-15,∴163215t -≤-<- ∴1992t <≤故答案为C . 【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错.3.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°【答案】B【解析】 因为AB ∥DF ,所以∠D+∠DEB=180°,因为∠DEB 与∠AEC 是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B .4.如果关于x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,设整数a 与整数b 的和为M ,则M 的值的个数为( )A .3个B .9个C .7个D .5个【答案】D【解析】【分析】先求出不等式组的解集,再得出关于a 、b 的不等式组,求出a 、b 的值,即可得出选项.【详解】 520730x a x b ->⎧⎨-≤⎩①② ∵解不等式①得:x >25a , 解不等式②得:x≤37b , ∴不等式组的解集为2357a b x <≤, ∵x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9, ∴6≤25a <7,9≤37b <10, 解得:15≤a <17.5,21≤b <2313, ∴a=15或16或17,b=21或22或23,∴M=a+b=36、37、38、39或40,共5种情况.故选D【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a 、b 的值,难度适中.5.如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A.B.C.D.2【答案】C【解析】【分析】过P点作PD⊥x轴,垂足为D,根据A(,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a.【详解】过P点作PD⊥x轴,垂足为D,由A(,0)、B(0,1),得OA,OB=1.∵△ABC为等边三角形,由勾股定理,得AB2,∴S△ABC.又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP(1+a)×3(3)×a=由2S△ABP=S△ABC,得:,∴a.故选C.【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.6.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4 C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A 的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a ,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD交⊙D于P′,此时AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=6,∴a的最大值为6.故选D.【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a,求出点P到点A的最大距离即可解决问题,属于中考常考题型.7.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动一个单位,那么第2018秒时,点所在位置的坐标是( ).A.(6,44) B.(38,44) C.(44,38) D.(44,6)【答案】D【解析】【分析】根据质点移动的各点坐标和时间的关系,找出规律即可解答.【详解】根据题意可得点在(1,1)用了2秒,到点(2,2)处用了6秒,到点(3,3)处用了12秒,则在(n,n)用了n(n+1)秒,所以在第1980秒是移动到点(44,44),再根据坐标为奇数时逆时针,偶数时时顺时钟,所以可得1980秒时是顺时钟,2018-1980=38,故44-38=6,所以可得2018秒时,移动到点(44,6),故选D.【点睛】本题主要考查点的坐标的变化规律,得出运动变化的规律,进而得到1980秒时点的坐标.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A (3a ,2b )在y 轴的左边, ∴点A 的横坐标小于0,即3a <0, ∴点A 到y 轴的距离是-3a ; 故答案为C . 【点睛】本题主要考查点的坐标的几何意义,到x 轴的距离就是纵坐标的绝对值,到y 轴的距离就是横坐标的绝对值.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】 ∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.关于x 的不等式组0723x m x +<⎧⎨-≤⎩恰好有5个整数解,则m 的取值范围是( )A .76m -<-≤B .76m --≤≤C .76m -<-≤D .76m -<<-【答案】A 【解析】 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有5个,即可得到m 的范围. 【详解】解:0723x m x +<⎧⎨-⎩①②…,由①解得:x m <-, 由②解得:2x ≥,故不等式组的解集为2x m <-…,由不等式组的整数解有5个,得到整数解为2,3,4,5,6, ∴,67m <-≤,则m 的范围为.76m -<-≤ 故选:A . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.11.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( ) A .m >-54B .m <-54C .m >54D .m <54【答案】A【解析】 【详解】解:去括号得,3mx +3m +1=3m −mx −5x , 移项得,3mx +mx +5x =3m −3m −1,合并同类项得,(4m+5)x=−1,系数化为1,得145xm-=+,∵方程3m(x+1)+1=m(3−x)−5x的解是负数,∴10 45m-<+,∴4m+5>0,解得5.4 m>-故选A.【点睛】先解方程,再根据解为负数,求得m的取值范围即可.12.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为45︒【答案】D【解析】【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B选项正确;所以,第四小组人数为50410166410-----=人,故A选项正确;第五小组对应的圆心角度数为636043.250︒⨯=︒,故D选项错误;用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C选项正确;故选:D.【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n.则△OA6A2020的面积是()A.5052m B.504.52m C.505.52m D.10102m【答案】A【解析】【分析】由题意结合图形可得OA4n=2n,由2020÷4=505,推出OA2020=2020÷2=1010,A6到x轴距离为1,由此即可解决问题.【详解】解:由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2020÷2=1010,A6到x轴距离为1,则△OA6A2020的面积是12×1010×1=505(m2).故答案为A.【点睛】本题主要考查点的坐标的变化规律,发现图形得出下标为4的倍数时对应长度即为下标的一。

人教版数学七年级下册期末综合复习培优卷(含答案)

人教版数学七年级下册期末综合复习培优卷(含答案)

人教版数学七年级下册期末综合复习培优卷(含答案)1.下列各数中,-√3,0.xxxxxxxx3……,-π,√5,无理数的个数有()。

2.若x<y,则下列式子错误的是()。

3.下列调查方式,你认为最合适的是()。

4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()。

5.下列命题错误的是()。

6.若点M(2m-1,m+3)在第二象限,则m取值范围是()。

7.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()。

8.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%。

现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()。

9.如图,下列推理及所证明的理由都正确的是()。

10.将正偶数按表1排成5列,根据上面的排列规律,2018应在()。

1.从-√3、0.xx xxxxxx3……、-π、√5中,无理数的个数有()。

2.若x<y,则下列式子错误的是()。

3.在以下调查方式中,最适合了解深圳市居民日平均用水量的是()。

4.如图所示,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()。

5.下列命题中错误的是()。

6.点M(2m-1,m+3)在第二象限,m的取值范围是()。

7.某商品的进价为80元,出售时标价为120元,商店准备打折出售,但要保证利润率不低于5%,则至多可打()折。

8.某山区有一种土特产品,加工后的单价比加工前提高20%,但重量会减少10%。

现有该种土特产品300千克,全部加工后可以比不加工多卖240元。

设加工前单价是x元/kg,加工后的单价是y元/kg,由题意可列出关于x,y的方程组()。

9.如图所示,以下推理及其证明正确的是()。

人教版七7年级下册数学期末解答题培优试卷(含答案)

人教版七7年级下册数学期末解答题培优试卷(含答案)

人教版七7年级下册数学期末解答题培优试卷(含答案)一、解答题1.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.2.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.3.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H .(1)当点H 在线段EG 上时,如图1①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.7.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)8.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.9.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.10.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.三、解答题11.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 12.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.13.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.14.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD(1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).15.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE 使60BOC EOD ∠=∠=.(1)如图①,若OD 平分BOC ∠,求AOE ∠的度数;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把BOC ∠分成两个角.①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接用含n 的代数式表示AOE ∠.四、解答题16.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则PFD ∠=_____.(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.17.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .18.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.(图1) (图2)19.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.20.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、解答题1.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,10;(2)101-;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.2.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.3.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm;(2)不能剪出长宽之比为5:4,且面积为2360cm的大长方形,理由详见解析(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.8.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.9.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.12.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ ∥MN ,则PQ ∥EI ∥MN ,∴∠α=∠DEI ,∠IEA =∠BAC ,∴∠DEA =∠α+∠BAC ,∴α= DEA -∠BAC =60°-45°=15°,∵E 、C 、A 三点共线,∴∠β=180°-∠DFE =180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.13.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.14.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.15.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得,最 解析:(1)90AOE ∠=︒;(2)①80AOE ∠=︒;②60(120)1n AOE n -+∠=︒. 【分析】(1)依据角平分线的定义可求得30COD ∠=︒,再依据角的和差依次可求得EOC ∠和∠BOE ,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论;②根据角相等和角的和差可得∠EOC=∠BOD ,再根据比例关系可得BOD ∠,最后依据角的和差和邻补角的性质可求得结论.【详解】解:(1)∵OD 平分BOC ∠,60BOC EOD ∠=∠=︒, ∴1302COD BOC ∠=∠=︒, ∴30EOC EOD COD ∠=∠-∠=︒,∴90BOE EOC BOC ∠=∠+∠=︒,∴18090AOE BOE ∠=︒-∠=︒;(2)①∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:2COD BOD ∠∠=, ∴260403BOD ∠=︒⨯=︒, ∴40EOC BOD ∠=∠=︒,∴100BOE EOC BOC ∠=∠+∠=︒,∴18080AOE BOE ∠=︒-∠=︒;②∵BOC EOD ∠=∠,∴∠EOC+∠COD=∠BOD+∠COD ,∴∠EOC=∠BOD ,∵60BOC ∠=︒,:1:COD BOD n ∠∠=, ∴6060()11n n BOD n n ∠=︒⨯=︒++, ∴60()1n EOC BOD n ∠=∠=︒+, ∴60(60)1BOE EOC BOC n n ∠=∠+∠+=︒+, ∴18060(120)1AOE BO n E n ∠=︒-∠=-︒+. 【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.四、解答题16.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.【分析】(1)根据题意,当点P 与点E 、F 在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出GEP EGP ∠=∠=60°,计算∠PFD 即可;(2)根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时;②当点P 在AB 上方时;③当点P 在CD 下方时,分别求出∠AEP 、∠EPF 、∠CFP 之间的关系即可.【详解】(1)当点P 与点E 、F 在一直线上时,作图如下,∠=∠,∵AB∥CD,∠FHP=60°,GEP EGP∠=∠=∠FHP=60°,∴GEP EGP∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF =∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.17.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册期末培优练习试题
一.选择题
1.下列说法正确的是()
A.是0.5的一个平方根
B.正数有两个平方根,且这两个平方根之和等于0
C.72的平方根是7
D.负数有一个平方根
2.若mx>5m,两边同除以m后,变为x<5,则m的取值范围是()A.m>0 B.m<0 C.m≥0 D.m≤0
3.估计+1的值在()
A.2 到3 之间B.3 到4 之间C.4 到5 之间D.5 到6 之间4.在平面直角坐标系中,点P(﹣3,2006)在第()象限.
A.一B.二C.三D.四
5.如果二元一次方程组的解满足方程3x﹣5y﹣38=0,那么a的值是()A.3 B.2 C.7 D.6
6.已知一个样本的最大值是178,最小值是155,对这组数据进行整理时,若取组距为2.3,则组数为()
A.10 B.11 C.12 D.13
7.若有意义,则x能取的最小整数是()
A.﹣1 B.0 C.1 D.2
8.点(﹣2,﹣3)向左平移3个单位后所得点的坐标为()
A.(﹣2,0)B.(﹣2,﹣6)C.(﹣5,﹣3)D.(1,﹣3)
9.方程2x﹣y=3和2x+y=9的公共解是()
A.B.C.D.
10.若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤1
11.如图,AB∥EF,∠ABP=∠ABC,∠EFP=∠EFC,已知∠FCD=60°,则∠P的度数为()
A.60°B.80°C.90°D.100°
12.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()
A.B.
C.D.
二.填空题
13.的平方根是.
14.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.
15.已知x=4,y=﹣2与x=﹣2,y=﹣5都是方程y=kx+b的解,则k+b的值为.16.三元一次方程组的解是.
17.如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;
④∠D+∠ABD=180°.其中能判断AB∥CD的有.(填写所有满足条件的序号)
18.一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED =50°,那么∠BFA的大小为.
三.解答题
19.解方程组:.
20.解不等式组,并把它的解集在数轴上表示出来.
21.今年政府积极推进创建“全国文明城市”工作,市创文办公室为了调查中学生对“社会主义核心价值观”内容的了解程度(程度分为:“A.非常了解”,“B.比较了解”,“C.了解较少”,“D.不知道”),对我市某中学的学生进行随机抽样调查,根据调查结果绘制了两幅不完整的统计图,请根据图中信息解答下列问题:
(1)本次抽样调查了多少名学生;
(2)补全条形统计图和扇形统计图;
(3)求扇形统计图中“C.了解较少”所在的扇形圆心角的度数;
(4)若该中学共有2600名学生,请你计算这所中学的所有学生中,对“社会主义核心价值观”内容的了解程度为“非常了解”和“比较了解”的学生共有多少名?
22.某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
(1)购买一个足球,一个篮球各需多少元?
(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
23.如图1,BC ⊥AF 于点C ,∠A +∠1=90°.
(1)求证:AB ∥DE ;
(2)如图2,点P 从点A 出发,沿线段AF 运动到点F 停止,连接PB ,PE .则∠ABP ,∠DEP ,∠BPE 三个角之间具有怎样的数量关系(不考虑点P 与点A ,D ,C 重合的情况)?并说明理由.
24.如图.已知在平面直角坐标系中.点A (0,m ),点B (n ,0),D (2m ,n ),且m 、n 满足(m ﹣2)2+=0,将线段AB 向左平移,使点B 与点O 重合,点C 与点A 对应.
(1)求点C 、D 的坐标;
(2)连接CD ,动点P 从点O 出发,以每秒1个单位的速度,沿射线OB 方向运动,设点P 运动时间为t 秒,是否存在某一时刻,使S △PCD =4S △AOB ,若存在,请求出t 值,并写出P 点坐标;若不存在,请说明理由.
参考答案
一.选择题
1. B.2. B.3. B.4. B.5. B.6. B.7. B.8. C.9. D.10. C.11. B.
12. C.
二.填空题
13.±2.
14.(﹣3,4).
15.﹣3.5
16.
17.①③④.
18. 140°.
三.解答题
19.解:,
①+②×3得:10x=50,
解得:x=5,
把x=5代入②得:y=3,
则方程组的解为.
20.解:,
由①得:x≥﹣1,
由②得:x<2,
∴不等式组的解集为﹣1≤x<2,
将不等式组的解集表示在数轴上如下:
21.解:(1)36÷30%=120(名),
即本次抽样调查了120名学生;
(2)B有120×45%=54(名),C占,D占,
补全条形统计图和扇形统计图如右图所示;
(3)C所在的扇形圆心角的度数为360×20%=72°;
(4)2600×(45%+30%)=1950(名),
答:对“社会主义核心价值观”内容的了解程度为“非常了解”和“比较了解”的学生共有1950名学生.
22.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,列方程得:

解得:

答:购买一个足球需要50元,购买一个篮球需要80元.
(2)设购买了a个篮球,则购买了(96﹣a)个足球.列不等式得:
80a+50(96﹣a)≤5720,
解得a≤30.
∵a为正整数,
∴a最多可以购买30个篮球.
∴这所学校最多可以购买30个篮球.
23.解:(1)如图1,∵BC⊥AF于点C,
∴∠A+∠B=90°,
又∵∠A+∠1=90°,
∴∠B=∠1,
∴AB∥DE.
(2)如图2,当点P在A,D之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;
如图所示,当点P在C,D之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;
如图所示,当点P在C,F之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.
24.解:(1)∵(m﹣2)2+=0,
∴m﹣2=0,n﹣4=0,
解得m=2,n=4,
∴A(0,2),B(4,0),D(4,4),
∵将线段AB向左平移,使点B与点O重合,点C与点A对应,
∴点C的坐标为(﹣4,2);
(2)依题意有:
[4﹣(﹣4)+t﹣(﹣4)]×4÷2﹣[4﹣(﹣4)]×(4﹣2)÷2﹣[t﹣(﹣4)]×2÷2=4×(4×2÷2),
解得t=4,
则P点坐标为(4,0).。

相关文档
最新文档