有效数字、数值修约及运算规程
实验室分析中有效数字与数值修约规则
实验室分析中有效数字与数值修约规则有效数字是药物分析中具有实际意义的测定数值。
它是由直接读取的准确数字和通过估读得到的可疑数字(最后一位)组成。
例如:3.2438中的“8”和0.130中的“0”。
有效数字的个数是有效位数,对于不同类型的测定数值其有效位数为:数值修约规则一般来说,分析工作者习惯采用“四舍五入''修约规则,不过在药物分析中逢五就进,必然会造成结果的系统偏高,误差偏大,为了避免这样的状况出现,尽量减少因修约而产生的误差,一般采用四舍六入五留双的修约规则:运算修约规则试验过程中数值记录1、称量实验“精密称定”是指称取重量应准确至所取重量的千分之一;“称定”是指称取重量应准确至所取重量的百分之一,按照“精密称定''项原则进行修约;“称重”,“称取”一般准确到规定重量下一位;取“约XX”时,指取用量不超过规定量的(100÷10)%;取“XX”时,参照修约规则。
2、量取试验以刻度为依据可读到最小刻度所在位并估读最小刻度之间。
图中“1”记录为35.OOcm,而不能记录35cm,图中“2"记录为35.40cm,图中“3”可记录为35.75cm。
量取5mL的液体应采用5-1OnIL的量筒;量取5.OmL的液体应采用5-10mL的刻度管;量取5.OOmL的液体应采用5-10mL的移液管。
容量瓶的定容应记录为定容至100.OOrnL o3、色谱实验■峰面积一般不做修约,按实际测定值进行记录,参与计算后按相关规定进行修约。
■拖尾因子、分离度可修约至小数点后两位,理论塔板数一般修约至正整数。
■保留时间不做修约。
■工作站自动生成数值也可不做修约。
■化合物含量应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。
并且至少保留一位有效数字。
■RSD按“只进不舍”进行修约。
■色谱条件数值不得修约。
■方法学验证项的数值应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。
有效数字的修约规则
有效数字及计算规则有效数字是指能够代表一定的物理量的数字,即所有实际能测得的确定数字再加上一位不定数字。
例如在分析天平上称得某物重0.5020g,其中小数点后的前三位是确定的数字,而小数点后面第四位是估读的,因此这最后一位是不定数字。
小数点前的0不是有效数字,只起到定位作用,而小数点后面的两个0都是有效数字,故0.5020有四位有效数字。
有效数字的记录及计算规则如下:1、记录测量数据只应该保留一位不定数字。
如一般滴定管可以准确读至小数点后第一位数字,而第二位小数是估计值。
因此只能保留至第二位小数。
2、“四舍六入五单双”法则:(1)所拟舍去的数字中,其最左边的第一个数字小于5时,则舍去。
例如拟将14.2423修约只保留一位小数时,其所舍去的数字中最左边的第一个数字是4,则结果成为14.2。
(2)所拟舍去的数字中,其最左边的第一个数字大于5时,则进一。
例如拟将6.4843修约只保留数一位小数时,其所舍去的数字中最左边的第一个数字是8则结果成为6.5。
(3)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字并非全部为0时,则进一。
例如拟将21.0501修约只保留数一位小数时,其所舍去的数字中最左边的第一个数字是5,5后面的数字还有01,则进1,则结果为21.1。
(4)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字全部为0时,保留的数字末位如果为奇数则进1,如为偶数则不进(0以偶数论)。
例如将下列数字修约只保留一位小数。
10.05因保留的数字末位为0,以偶数论不进,成为10.010.15因保留的数字末位为1,奇数进1,成为10.210.25因保留的数字末位为2,偶数不进,成为10.210.45因45保留的末位数字是4,偶数不进,成为10.4(5)所以舍去的数字并非单独的一个数字时,不得对该数字进行连续的修约。
例如:将45.4565修约为整数,不能采取将45.4565---45.456---45.46---45.5---46的方法修约;正确的修约应为45.4565---45。
药检有效数字和数值的修约及其运算规则
药检有效数字和数值的修约及其运算规则一目的:制定有效数字和数值的修约及其运算规则,规范有效数字和数值的修约及其运算。
二适用范围:适用于有效数字和数值的修约及其运算。
三责任者:品控部。
四正文:本规程系根据中国兽药典2005年版“凡例”和国家标准GB8170-87《数值修约规程》制许,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程序通常只能是上下差1单位。
1.2 有效数字的字位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……,n也可以是负数,如n= -1、10-1=0.1(十分位),n= -2、10-2=0.01(百分位),……,1.3 有效位数1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×102。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,为0.320三位有效位数,10.00为四位有效位数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和系数2等值的有效位数也可视为无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中的“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。
实验室数据数值修约规则
实验室数据数值修约规则引言概述:在实验室中,准确的数据是科学研究和实验分析的基础。
然而,由于测量仪器的精度限制以及实验误差的存在,实验数据常常会包含一定的误差。
为了保证数据的准确性和可靠性,需要对实验室数据进行修约。
本文将详细介绍实验室数据数值修约的规则和方法。
一、有效数字的确定:1.1 确定有效数字的位数:有效数字是指对测量结果有贡献的数字。
通常情况下,有效数字的位数应该与测量仪器的精度相一致。
例如,如果测量仪器的精度为0.01,那么测量结果的有效数字应该保留到小数点后两位。
1.2 零的处理:在确定有效数字时,需要注意对零的处理。
如果零是有效数字的一部分,那么它应该被保留;如果零不是有效数字的一部分,那么它应该被舍弃。
例如,测量结果为0.005,有效数字为两位,应该修约为0.01。
1.3 末位数字的处理:当末位数字为5时,根据四舍五入规则,如果末位数字前的数字为奇数,则末位数字舍去;如果末位数字前的数字为偶数,则末位数字进位。
例如,测量结果为3.145,有效数字为三位,应该修约为3.15。
二、数值修约的方法:2.1 四舍五入法:四舍五入法是最常用的修约方法。
根据四舍五入规则,当要舍弃的数字小于5时,舍去;当要舍弃的数字大于5时,进位。
例如,测量结果为2.345,有效数字为两位,应该修约为2.35。
2.2 截断法:截断法是指直接舍弃多余的数字。
根据有效数字的位数确定截断位置,将多余的数字直接舍去。
例如,测量结果为1.234,有效数字为两位,应该修约为1.23。
2.3 近似法:近似法是指根据修约规则进行适当的近似。
根据末位数字的值以及前一位数字的奇偶性,进行进位或舍去。
例如,测量结果为1.235,有效数字为两位,应该修约为1.24。
三、复杂情况的处理:3.1 加减运算:在进行加减运算时,应该保持运算结果的有效数字与最不准确的原始数据一致。
例如,对测量结果1.23和2.456进行加法运算,结果应该修约为3.69。
实验室数据数值修约规则
实验室数据数值修约规则一、背景介绍实验室数据的准确性对于科学研究和工程实践至关重要。
在实验室中,我们时常会遇到测量结果包含一定的误差,因此需要对数据进行修约,以提高数据的可靠性和精确性。
本文将介绍实验室数据数值修约的规则和方法。
二、实验室数据数值修约规则1. 精确度与有效数字在实验室中,数据的精确度是指测量结果与真实值之间的接近程度。
有效数字是指一个数中对于其精确度有贡献的数字,包括所有非零数字以及零之偶尔零后面的所有数字。
有效数字的位数越多,表示数据的精确度越高。
2. 修约规则(1)四舍五入法:当修约位数的后一位数字大于等于5时,修约位数保留不变;当修约位数的后一位数字小于5时,修约位数减去1。
例如,测量结果为12.3456,若要保留两位有效数字,则修约后为12.35;若要保留三位有效数字,则修约后为12.3。
(2)截断法:当修约位数的后一位数字大于等于5时,修约位数加1,然后舍去后面的所有数字;当修约位数的后一位数字小于5时,直接舍去后面的所有数字。
例如,测量结果为12.3456,若要保留两位有效数字,则修约后为12.34;若要保留三位有效数字,则修约后为12.345。
(3)特殊情况:- 当修约位数的后一位数字为5时,若后面还有非零数字,则按四舍五入法修约;若后面惟独零,则根据修约位数的奇偶性决定修约方法。
若修约位数为奇数,则按四舍五入法修约;若修约位数为偶数,则按截断法修约。
- 当修约位数的后一位数字为0时,若后面还有非零数字,则按截断法修约;若后面惟独零,则直接舍去后面的所有数字。
3. 修约示例(1)测量结果为18.456,要保留两位有效数字,则修约后为18.46。
(2)测量结果为0.003245,要保留三位有效数字,则修约后为0.00325。
(3)测量结果为27.500,要保留四位有效数字,则修约后为27.50。
三、总结实验室数据数值修约是提高数据精确度和可靠性的重要步骤。
通过遵循修约规则,可以对测量结果进行合理的修约,使得数据更加准确。
有效数字和数值的修约及其运算
有效数字和数值的修约及其运算本规程系根据中国药典2010年版凡例和国家标准GB 8170-2008《数值修约规则与极限数值的表示和判定》制订,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1.数值修约通过省略原数值的最后若干位数字,调整所保留的末位数字,使最后所得到的值最接近原数值的过程。
2.修约间隔确定修约保留位数的一种方法。
注:修约间隔的数值一经确定,修约值即为该数值的整数倍。
例1:如指定修约间隔为0.1,修约值应在0.1的整数倍中选取,相当于将数值修约到一位小数。
例2:如指定修约间隔为100,修约值应在100的整数倍中选取,相当于将数值修约到“百”数位。
2.3极限数值limiting values标准(或技术规范)中规定考核的以数量形式给出且符合该标准(或技术规范)要求的指标数值范围的界限值。
3数值修约规则3. 1确定修约间隔a)指定修约间隔为10-n(n为正整数),或指明将数值修约到n位小数;b)指定修约间隔为1,或指明将数值修约到“个”数位;c)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,或指明将数值修约到“十”、“百”、“千”……数位。
3. 2进舍规则3.2.1拟舍弃数字的最左一位数字小于5,则舍去,保留其余各位数字不变。
例:将12. 149 8修约到个数位,得12;将12. 149 8修约到一位小数,得12.l。
3.2.2拟舍弃数字的最左一位数字大于5,则进一,即保留数字的末位数字加1.例:将1 268修约到“百”数位,得13 × 102(特定场合可写为1 300)。
注:本标准示例中,“特定场合”系指修约间隔明确时。
3.2.3拟舍弃数字的最左一位数字是5,且其后有非0数字时进一,即保留数字的末位数字加1。
例:将10. 500 2修约到个数位,得1。
3.2.4拟舍弃数字的最左一位数字为5,且其后无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,即保留数字的末位数字加1;若所保留的末位数字为偶数((0,2,4,6,8),则舍去。
有效数字和数值的修约及运算标准操作规程
**********************有限公司质量管理标准操作规程有效数字和数值的修约及运算标准操作规程1. 目的:规范有效数字和数值的修约及运算标准操作,保证检验工作质量2. 引用标准:《药品生产质量管理规范》3. 适用范围:有效数字和数值的修约及运算4. 责任:质管部QA人员、质管部QC人员、质管部管理人员、注射剂车间、仓库。
5. 内容:5.1 有效数字的基本概念5.1.1 有效数字系指在检验工作中所能得到的有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数据,即为有效数字。
最后一位有效数字的欠准程度通常只能是上下差1单位。
5.1.2 有效数字的定位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
5.1.3 有效位数5.1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右得到的位数减去无效零(即仅为定位用的零)的个数。
5.1.3.2 在其他的十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数5.1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字,其有效位数可视为无限多位。
5.1.3.4 pH值等对数值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
5.1.3.5 有效数字的首位数字为8或9时,其有效位数可以多计一位。
5.2 数值修约及其进舍规则5.2.1 数值修约是指对拟修约数值中超出需要保留位数时的舍弃,根据舍弃数来保留最后一位数或最后几位数。
5.2.2 修约间隔是确定修约保留位数的一种方式,修约间隔的数值已经确定,修约值即为该数值的整数倍。
5.2.3 确定修约位数的表达方式5.2.3.1 指定位数(1)指定修约间隔为10-n(n为正整数),或指明将数值修约到小数点后n位。
(2)指定修约间隔为1,或指明将数值修约到个位数。
(3)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,将指明将数值修约到“十”“百”“千”……数位。
药检有效数字及数值的修约及其运算规则
药检有效数字和数值的修约及其运算规则一目的:制定有效数字和数值的修约及其运算规则,规范有效数字和数值的修约及其运算。
二适用范围:适用于有效数字和数值的修约及其运算。
三责任者:品控部。
四正文:本规程系根据中国兽药典2005年版“凡例”和国家标准GB8170-87《数值修约规程》制许,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程序通常只能是上下差1单位。
1.2 有效数字的字位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……,n也可以是负数,如n= -1、10-1=0.1(十分位),n= -2、10-2=0.01(百分位),……,1.3 有效位数1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×102。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,为0.320三位有效位数,10.00为四位有效位数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和系数2等值的有效位数也可视为无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中的“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。
有效数字和数值的修约及其运算1
有效数字的修约及其运算规则本规程系根据中国药典2015年版和国家标准GB 8170-2008《数值修约规则》制订,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
有效数字:是指在分析工作中实际能够测量到的数字。
其中包括所有的准确数字和最后一位可疑数字。
保留有效数字的位数,受到测量仪器的精度和分析方法的准确度限制。
因此,有效数字不仅反应数值的大小,还反应了测量结果的准确度。
1.数字的俢约:根据有效数字的要求把多余数字的处理过程称为数字的俢约。
2.修约间隔修约值的最小数值单位。
注:修约间隔的数值一经确定,修约值即为该数值的整数倍。
例1:如指定修约间隔为0.1,修约值应在0.1的整数倍中选取,相当于将数值修约到一位小数。
例2:如指定修约间隔为100,修约值应在10的整数倍中选取,相当于将数值修约到“百”数位。
3. 2有效数字俢约规则:按照国家标准GB8170-2008《数字俢约规则》,“采用四舍六入五留双”的规则。
3.2.1被俢约的数字小于4或等于4时,则该数字舍去。
3.2.2被俢约的数字大于6或等于6时,则进1。
3.2.3被俢约的数字等于5时,若5后数字不为零,则进1;若5后无数字或零,则看5前一位数字,前一位是奇数则进1,是偶数则舍去。
3.2.4拟舍弃数字的最左一位数字为5,且其后无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,即保留数字的末位数字加1;若所保留的末位数字为偶数((0,2,4,6,8),则舍去。
例如:将下列数据俢约为四位有效数字2.87435 2.8740.37426 0.37431.50250 1.5021.50150 1.5022.38351 2.3844.5245 4.5243.2.5负数修约时,先将它的绝对值按3.2.1~3.2.4的规定进行修约,然后在所得值前面加上负号。
例1:将下列数字修约到“十”数位:拟修约数值修约值-355 -36× 10(特定场合可写为-360)-325 -32 × 10(特定场合可写为-320)例2:将下列数字修约到三位小数,即修约间隔为10-3;拟修约数值修约值-0.036 5 -36 × 10-3(特定场合可写为-0. 036)3. 3不允许连续修约3.3.1拟修约数字应在确定修约间隔或指定修约数位后一次修约获得结果,不得多次按3. 2规则连续修约。
数值修约和运算规则
(二)修约规则
5)口诀四舍五入,逢五看前数,奇入偶不入。
6)负数修约,先以负值绝对值按上述修约后, 加上负号。
-15.456 绝对值15.456.修约间隔“0.1”、 15.5.加上负号;-15.5。
(三)其他规定
1.不允许连续修约:拟修的数字应在确定 修约间隔或指定修约数位后一次修约获得 结果,不得连续按上述要求修约。
(二)修约规则
1、确定修约间隔(确定有效位数), 0.0356修约到0.01得0.04 保留一位有效数字,0.04
2、进舍规则: 1)拟舍弃数字பைடு நூலகம்最后一位数字小于5,
则舍去。保留其余各位数字不变。 12.1498修约到“1”,12 ;修约到 0.1,得 12.1
(二)修约规则
2)拟舍弃数字的最后一位数字大于5.则 进一,保留数字的末位数加1。
1268修约到“ 100 ”位. 13×102也意味着有效数字为 2 位。 1300意味着有效数字为 4 位。
(二)修约规则
3)拟舍弃数字的最左一位数字是5,且 其后有非零数字也进一,保留数字 的末位数字加1.
10.5002.修约到“1”. 得 11
(二)修约规则
4)拟舍弃数字的最后一位数字是5,且其后 无数字或为0时,若所保留的数字为奇数(1、 3、5、7、9),则进一。即保留数字的末位 数字加1.若保留的末位数字为偶数(0、2、4、 6、8)则舍去。
(一)概念
2.有效数值:一个数从左边第一个不 是零的数字数起一直到最后一位数字 (包括零、科学计数法不计10的N次 方)称为有效数字。
0.0109
是三位
3.109×105
是四位
0.0230
是三位
(一)概念
药品有效数字、数字修约及运算法则管理规程
目的:用于规范本公司的有效数字判断、数值修约及运算法则管理。
范围:适用于公司质量检验过程中的有效数字、数值修约及运算法则的管理。
职责:质量管理部。
依据:《药品生产质量管理规范》(2010年修订)第二百二十三条、《中国药典》2015年版。
内容:1有效数字的定义:有效数字就是实际能测到的数字。
有效数字的位数和分析过程所用的分析方法、测量方法、测量仪器的准确度有关。
我们可以把有效数字这样表示:有效数字=所有的可靠数字+一位可疑数字表示的含义:如果一个结果表示有效数字的位数不同,说明用的称量仪器的准确度不同。
2、有效数字中“0”的双重意义:作为普通数字使用或作为定位的标志。
2.1例如:滴定管读数为20.30毫升,两个0都是测量出来的数,算作普通数字,都是有效数字,这数据有效数字位数是四位。
改用“升”为单位,数据表示为0.02030升,前面两个0起定位作用,不是有效数字, 此数据是四位有效数字。
3非连续型数值(如个数、分数、倍数、名义浓度或标示量)是没有欠准数字的,其有效位数可视为无限多位。
例如分子式“H2S04”中的“2”和“4”是个数,含量测定项下“每1ml的××××滴定液(0.1mol/L)”中的“0.1”为名义浓度,规格项下的“0.76g”或“l00ml:25mg”中的“0.76”、“100”和“25”为标示量,其有效位数均为无限多位。
即在计算中,其有效位数应根据其他数值的最少有效位数而定。
4有效数字记录4.1所有数显的测量仪表,实际记录以显示的来记录。
4.2非数显的测量仪表(钢尺、卷尺、温度计、压差表、温湿度表、量筒、移液管等),读数时如果需要,须进行估读一位。
4.3 最小刻度是5的(包括0.5,0.05等),估读位的数值为1、2、3、4、6、7、8、9,例如:仪表指针在0.5与1之间,此时应估计为0.7,而不是0.75.因为0.75中7已估读,不应再估读至其下一位.5 数值修约规则:四舍六入五考虑,五后非零则进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一,或只进不舍,不允许连续修约。
有效数字 数值修约及运算法则
原子吸收分光光度法(P70)
供试品要求制备2份样品溶液,各测定3次, 测定的相对标准偏差(RSD)应不大于3%
石墨炉法可适当放宽
谢谢大家!
注意事项
4. 在判定药品质量是否符合规定 之前,应将全部数据根据有效数 字和数值修约规则进行运算,将 计算结果修约到标准中所规定的 有效位数,而后进行判定。
注意事项
例如: 异戊巴比妥钠的干燥失重,规定不得过4.0%,今
取样1.0042g,干燥后减失重量0.0408 g,请判 定是否符合规定? 本例为3个数值相乘除,其中0.0408的有效位数最 少,为三位有效数字,以此为准(在运算过程中暂 时多保留一位)。 0.0408÷1.004×100.0 % = 4.064% 因药典规定的限度为不得过4.0%,故将计算结果 4.064%修约到千分位为4.1%,大于4.0%,应判 为不符合规定(不得大于4.0%)。
注意事项
将上述规定的限度改为“不得大于4%”, 而其原始数据不变,则
0.0408÷1.004×100.0 % =
4.064%
4%
未超过4%的限度,应判为符合规定(不 得大于 4%)。
在实验中要求:
1. 正确地记录分析数据 2. 正确地选取用量和选用适当的分析仪器 3. 正确地表示分析结果 定量分析(滴定和重量分析)一般要求四位有
数值修约及其进舍规则
数值修约 是指对拟修约数值中超出需要保留位数时的
舍弃,根据舍弃学来保留最后一位数或最后 几位数。
数值修约及其进舍规则
进舍规则口诀:
四舍六入五考虑,五后非零则进一, 五后全零看五前,五前偶舍奇进一, 不论数字多少位,都要一次修约成。
注意:按英、美、日药典方法 修约时,按四舍五入
有效数字、数值修约及运算法则管理规程
有效数字、数值修约及运算法则规程目的:建立有效数字和数值的修约及其运算管理规程,保证检验结果的准确性。
适用范围:适用于各种测量或计算而得的数值。
责任人:质量管理部主任、检验员内容:1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程度通常只能是上下差1单位。
1.2 有效数字的定位是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何位数,用10n来表示:n可以是正整数,也可以是负数。
1.3 有效位数1.3.1 在没有小数位且若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作3.50×104;若有三个无效零,则为两位有效位数,应写作3.5×104。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,0.0320 为三位有效位数、10.00为四位有效数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数、名义浓度或标示量)是没有欠准数字的,其有效位数可视为无限多位;常数π、e和系数21/2等数值的有效位数也可视为是无限多位。
例如分子式“H2S04”中的“2”和“4”是个数,含量测定项下“每1ml的××××滴定液(0.1mol/L)”中的“1”为个数,“0.1”为名义浓度,其有效位数均为无限多位;规格项下的“0.3g”或“1ml :25mg”中的“0.3”、“1”和“25”的有效位数也均为无限多位。
即在计算中,其有效位数应根据其他数值的最少有效位数而定。
有效数字和数值的修约及其运算标准操作规程
目的:规范检验中对数值的修约规定。
应用范围:适用于本公司药品检验中测量和计算。
编订依据:《中国药品检验标准操作规范》2010年版第520页。
内容:1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程度通常只能是上下差1单位。
1.2 有效数字的定位(数位)是指确定欠准数字的位置。
这个位置确定后,其后面的数字均无效数字。
欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……;n也可以是负数,如n=-1、10—1=0.1(十分位),n=-2、10—2=0.01(百分位),……。
1.3 有效位数1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×103或3.5×104。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例子如3.2、0.32、0.032和0.0032均为两位有效位数,0.320为三位有效位数、10.00四位有效位数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和系数√2等数值的有效位数也可视为是无限多位;含量测定项下“每1ml的XXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”、“1ml:25mg”中“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。
有效数字及数值修约
有效数字定义:通常把只保留最后一位不准确数字,而其余数字均为准确数字的这种数字称为有效数字。
也就是说,有效数字是实际上能测出的数字。
例如,我们用毫米尺测量一个物体的长度,读出物体的长度为32.31 cm,这个读数的前三位32.3 cm是直接从尺上读出,称为可靠数字,而最末一位0.0l cm则是从尺上最小刻度之间估计来的,称为存疑数字。
可靠数字和存疑数字合起来,称为有效数字,所以,32.31cm 一共有四位有效数字。
但是,如果用其他精确度高一些的仪器(如大型千分尺),还能够更准确地进行测量。
例如,测得的数值为32.3142 cm,这时有效数字增加到六位。
可见,有效数字的多少,表示了测量所能达到的准确程度,与一定的测量工具有关。
2.有效数字位对于一个有效数字,从左边的第一个非零数字算起,到最末一位数字为止,有几位数即为几位有效数字。
例如:7.4000 54609 5位有效数字33.15 0.07020 4位有效数字0.0276 2.56×10-4 3位有效数字49 0.00040 2位有效数字0.003 4×105 1位有效数字63000 200 有效数字位数不定“0”在有效数字中的作用(1)“0”在数字前,仅起定位作用,“0”本身不是有效数字,如0.0275中,数字2前面的两个0都不是有效数字,这个数的有效数字只有3位。
(2)“0”在数字中,是有效数字。
如2.0065中的两个0都是有效数字,2.0065有5位有效数字。
(3)“0”在小数的数字后,也是有效数字如6.5000中的3个0都是有效数字。
0.0030中数字3前面的3个0不是有效数字,3后面的0是有效数字。
所以,6.5000是5位有效数字。
0.0030是2位有效数字(4)以“0”结尾的正整数,有效数字的位数不定。
如54000,可能是2位,3位或4位甚至5位有效数字。
这种数应根据有效数字的情况改写为指数形式。
如为2位,则写成 5.4×104;如为3位,则写成5.40×104,等等。
有效数字的修约规则(分析化学有效数字的修约与运算规则)
分析化学有效数字的修约与运算规则无机及分析化学是我校化工、制药、应化、环境、海洋、食品、环工、生物、高分子及材料类等专业大一学生必修的重要基础课程之一.它是一门实践性很强的学科.在国民经济的许多部门如资源勘探、生产控制、产品检验、环境监测等方面应用非常广泛.在分析工作的理论研究和实验测定中,如何正确地运用有效数字对分析数据作正确记录、处理、计算及结果表示等具有十分重要的意义.1有效数字定义在科学实验中,需要记录很多测量数据,一般允许最后一位是估计的,虽不太准确,但不是随意的,它们全是有效的,所以称为有效数字.有效数字即指实际工作中能够测量到的数字,包括最后一位估计的不确定的数字[1-2].记录数据和计算结果时,究竟应该保留几位数字,应根据所用的测定方法和所用仪器的准确程度来决定,并且在记录数据和计算实验结果时,所保留的有效数字中,只允许最后一位是可疑的数字.有效数字保留几位是根据测量仪器的准确度来确定的,因此对于各种分析仪器的准确度应十分清楚,比如滴定分析中消耗滴定剂的体积由终读数减初读数得到:24.05-0.02=24.03(mL)为4位有效数字.又如台秤称量某称量瓶为20.8g,因为台秤只能准确地称到0.1g,所以该称量瓶质量可表示为20.8g,它的有效数字是3位.如果将该称量瓶在分析天平上称量,得到结果是20.8126g,由于分析天平能准确地称量到0.0001g,所以它的有效数字是6位. 100 mL容量瓶表示为100.0mL;250mL容量瓶表示为250.0mL;25 mL移液管表示为25.00mL.对于数字"0"来说,可以是有效数字,也可以不是有效数字.当用其表示与测量精度有关的数值大小时,为有效数据,而仅仅用来指示小数点位置时,则是非有效数字.在一个数中,确定数字"0"是否是有效数字的方法是,左边第一个非零数字之前的所有"0"都是非有效数字,仅仅作为标定小数点位置而已;而位于右边的最后一个非零数字之后的那些"0"都是有效数字.有效数字末尾的"0"表示可疑数字的位置,随意增减会人为地夸大测量的准确度或测量误差!不得在测量数据的末尾随意添加或删减数字.2有效数字的修约规则记录和表示计算结果时要按照确定了的有效数字将多余的数字予以修约.弃去多余的或无意义的数字一律按"四舍六入五考虑"原则取舍.其取舍方法是:凡末位有效数字的后面第一位数字(即尾数)大于等于"6"(指6、7、8或9)以及"5"后面还有任何非零数字时,则在末位有效数字上增加1.尾数小于等于"4"(指4、3、2、1或0)时,则舍去不计.尾数恰为"5"时("5"后没有数字或全为0时),这时要看"5"之前的数字即末位有效数字是奇数还是偶数而定,若为奇数,则在末位有效数字位上增加1;是偶数,则舍去不计.尾数为"5"("5"后面还有任何非零数字时),则在末位有效数字上增加1.不论舍去多少位,必须一次修完毕.例如,将下列测量数据修约为四位有效数字时:尾数≤4时舍:0.726535- - - - - - - 0.7265尾数≥6时入:12.1585- - - - - - - 12.16尾数=5时,若后面数为0或没数时,舍5成偶:15.51500- -15.52,415.45- -415.4若尾数5后面还有不为0的任何数全进:512.0500100- - - - -- - 512.13有效数字的运算规则实验中不仅要正确记录数据,而且还要进行数据的计算.由于任何测量都存在误差,只能是近似值,所以数据记录和计算结果反映了近似值的大小,这在某种程度上表明了误差.因此,数据处理运算也是重要环节.3.1加减运算结果的绝对误差应不小于各项中绝对误差最大的数(计算结果的小数点后面的位数与各数中小数点后面位数最少者一致)。
有效数字和数值的修约及其运算
目的:规范标准溶液(滴定液)管理规程范围:适用于公司检验用标准溶液职责:质量管理部对本规程实施负责内容:本规程系根据国家标准GB8170—87《数值修约规程》制订,适用于检验工作中除生物检定统计法以外的各种测量或计算而得的数值。
1.有效数字的基本概念1.1. 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
1.2. 有效数字的定位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何位数,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位);n也可以是负数,如n=-1、10-l=0.1(十分位),n=-2、10-2=0.01(百分位)。
1.3. 有效位数1.3.1. 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102或3.50×104;若有三个无效零,则为两位有效数,应写作35×103或3.5×104。
1.3.2. 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,0.320为三位有效位数、10.00为四位有效位数,12.490为五位有效位数。
1.3.3. 非连续型数值(如个数、分数、倍数、名义浓度或标示量)是没有欠准数字的,其有效位数可视为无限多位。
例如分子式“H2S04”中的“2”和“4”是个数;常数π、e和系数2等数值的有效位数也可视为是无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml”、“25mg”中的“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位。
有效数字的运算及修约规则
有效数字的运算及修约规则摘自《商品混凝土生产与应用技术》测试人员很疑惑。
既然有效数字表示一个数字的准确度,为什么检测规程在测定结果准确度时要表示准确度的小数位数,而不是保留几位有效数字?实际上,当规范精确到小数点后几位时,也是标明几位有效数字的,因为对于具体检测项目的检测结果,有效数字的位数是一定的。
所以有效数的理论在数字的准确性和有效数的运算上都是非常有用的。
(一)有效数字的运算及修约规则 2有效数字是指在检验工作中能得到的具有实际意义的数值,允许最后一位数字不准确。
这种由可靠数字和最后一个不确定数字组成的值就是有效数字。
有效数字(位数)的定位是指确定不准确数字的位置。
这个位置确定后,后面的数字都是无效数字。
例如,一支25ml的滴定管,其最小刻度为0.1ml,如果滴定管的体积介符于20.9ml到21.0ml之间,则需估计一位数字,读出20.97ml,这个7就是个欠准的数字,这个位置确定后,它有效位数就是4个,即使其后面还有数字也只是无效数字。
在没有小数位且以几个零结尾的数值中,有效位数是指从一个非零数字的最左边的数字到右边减去无效零(即仅用于定位的零)后得到的位数。
例如:35000,若有两个无效零,则为三位有效位数,应写作350×102或3.50×104;若有三个无效零,则为两位有效位数,应写作35×103或3.5×104。
在其他小数位数中,有效位是指从非零位的最左边一位向右边计数得到的位数,如3.2、0.32、0.032、0.0032为两位有效位;0.320是三个有效数字;10.00是四个有效数字;2.490是五个有效数字。
非连续型数值:(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位。
例如,h2so4中的2和4是个数。
常数л和系数等数值的有效位数可视为无限多位。
每1ml某滴定液(0.1mol/l)中的0.1为名义浓度,规格项下的0.3g或:“1ml:25mg”中的“0.3”、“1”、“25”均为标示量,其有效位数,为无限多位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 目的
为对实验过程中实际测量或计算而得的数值进行统一规范的处理,特制定本规程,保证数据计算合理、准确有效。
2 范围
适用于工作中除生物检定统计法以外的各种测量或计算而得的数值。
3 职责
实验员:负责按本操作规程在计算过程中对检验数据进行处理。
复核人、QA:负责按本规程对实验结果进行复核、计算。
各实验室主任:监督本操作规程的实施。
4 内容
4.1 有效数字的基本概念
4.1.1 有效数字系指在药检工作中所能得到有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程度通道只能是上下差1单位。
如:12.50 ml,前三位是准确的,最后一位是估计的,不甚准确,但它不是臆造的。
记录时应保留这一位,这四位都是有效数字。
4.1.2 有效位数
4.1.2.1 有效数字位数的确定原则
由于有效数字的位数反映了测定结果的精确度,它直接与测量的精密度有关。
因此,在科学实验和生产过程中正确记录有效数字,不能多写或少写,多写了不能正确反映测量精度,则该数据不真实,因而也就不可靠;少写损失测量精
度。
4.1.2.2 在没有小数位且以若干个零结尾的数值中,有效位数每当指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作
35×103。
4.1.2.3 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,0.0320为三位有效位数、10.00为四位有效位数,12.490为五位有效位数。
4.1.2.4 有效数字的首位数字为8或9时,其有效位数可以多计一位。
例如85%与115%,都可以看成是三位有效位数;99.0%与101.0%都可以看成是四位有效数字。
4.1.2.5 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和等数值的有效位数也可视为是无限多位。
4.1.2.6 PH值等对数值,其有效位数由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
例如:PH=11.26([H+]=
5.5×10-12mol/L),其有效位数只有两位。
4.2 数值修约及其进舍规则
4.2.1 数值修约的概念
是对拟修约数值根据保留位数的要求,将多余的数字进行舍弃,根据舍弃数来保留最后一位数或最后几位数,这一过程称为数值修约。
4.2.2 数值修约的意义
4.2.2.1 出于准确表达测量结果的需要
测量结果大都是通过间接测量得到的,间接测量的结果通常是通过计算得出的,其组成数字往往较多,但具体测量的精度是确定的,就是说合理表征测量结果的数字个数应是确定的,最终提供的测量结果应合理反映这一点,因此,通过对计算得出的和直接测量得到的数据的分析,得到合理的保留位数,将多余的数字进行取舍以得到合理反映测量精度的测量结果,即进行数值修约就非常必要。
4.2.2.2 在进行具体的数值计算前,对参加计算的数值进行修约,可简化计算,降低出错的机会。
如:4.78961×2.13×102.4387926=?
若不先进行数值修约就直接计算,繁琐且容易出错。
若在计算前先按数值修约规则进行修约,舍去多余参与计算的数值之中没有意义的数字,则计算会简单得多,也不易出错。
4.2.3 进舍规则
进舍规则口诀:
四舍六入五考虑,五后非零则进一,
五后全零看五前,五前偶舍奇进一,
不论数字多少位,都要一次修约成。
4.2.3.1 拟舍弃数字的最左一位数字小于5时,则舍去,即保留的各位数字不变。
例1 将12.1498修约到一位小数,得12.1。
例2 将12.1498修约成两位有效位数,得12。
4.2.3.2 拟舍弃数字的最左一位数字大于5,或者是5,而其后跟有并非全部为0的数字时,则进一。
即在保留的末位数字加1。
例1 将1268修约到百数位,得13×102。
例2 将1268修约到三位有效位数,得127×10。
例3 将10.502修约到个数位。
得11。
4.2.3.3 拟舍弃数字的最左一位数字为5,而右面无数字或皆为0时,若所保留的末位数为奇数(1,3,5,7,9)则进一,为偶数(2,4,6,8,0)则舍弃。
例将下列数字修约成两位有效位数
拟修约数值修约值
0.0325 0.032
32500 32×103
4.2.3.4 在相对标准偏差(RSD)中,采用“只进不舍”的原则,如0.163%、0.52%宜修约为0.17%、0.6%。
4.2.3.5 不许连续修约拟修约数字应在确定修约位数后一次修约获得结果,而不得多次按前面规则连续修约。
例修约15.4546,将数值修约到个位数。
正确做法为:15.4546→15;
不正确的做法为:15.4546→15.455→15.46→15.5→16.
4.2.4 运算规则
在计算分析结果时,每个测量数据的误差会传递到分析结果中去,而运算不能改变测量的准确度。
所以,应根据误差传递的规律进行有效数字的运算。
在进行数学运算时,对加减法和乘除法中有效数字的处理是不同的。
4.2.4.1 加减法加减法的计算是各数值绝对误差的传递,所以结果的绝对误差应与数据中绝对误差最大的数据相当(即小数点后位数最少的数据为准)。
4.2.4.2 乘除法乘除法的计算是各数值相对误差的传递,所以结果的相对误差应与数据中相对误差最大的数据相当,(即有效数字位数最少的数据为准,与小数点位置无关)。
4.2.4.3 在运算过程中,为减少舍入误差,其他数值的修约可以暂时多保留一位,等运算得到结果时,再根据有效位数弃去多余的数字。
例1:13.65+0.00823+1.633=?
本例是数值相加减,在三个数值中13.65的绝对误差最大,其最末一位数为百分位(小数点后二位),因此将其他各数均暂先保留至千分位,即把0.00823修约成0.008,1.633不变,进行运算:
13.65+0.008+1.633=15.291
最后对计算结果进行修约,15.291应只保留至百分位,而修约成15.29。
例2:14.131×0.07654÷0.78=?
本例是数值相乘除,在三个数值中,0.78的有效位数最少,仅为两位有效位数,因此各数值均应暂保留三位有效位数进行运算,最后结果再修约为两位有效位数。
14.131×0.07654÷0.78
=14.1×0.0765÷0.78
=1.08÷0.78
=1.38
=1.4
4.2.5 注意事项
4.2.
5.1 正确记录检测所得的数值
应根据取样量、量具的精度、检测方法的允许误差和标准中的限度规定,确定数字的有效位数,检测值必须与测量的准确度相符合,记录全部准确数字和一位欠准数字。
移液管是进过标定的,正确操作是要将移液管标定值带入计算,量筒若用来做“装量”等实验需要准确值的实验,也需要进行标定,带入标定值计算。
例1:取栀子苷对照品适量,精密称定为12.34 mg,置50 ml量瓶中加甲醇稀释至刻度,摇匀,再精密移取2 ml置20 ml量瓶中加甲醇稀释至刻度,计算栀子苷对照溶液的浓度?
由分析天平的精度,确定称量值为4位有效位数,故最终计算出的栀子苷对照溶液的浓度也为4位有效位数。
12.34/50*2/20=0.02468 mg/ml
注意:在含量方法学验证过程中所涉及的数据,其有效数字的位数都由所用天平的精度决定。
但最终报告中均体现为比参考标准限度多一位小数。
药典规定:药材栀子含栀子苷(C17H24O10)不得少于1.8%,实际含量计算过程中,测出某批次药材含栀子苷1.822%,在最终报告中,仍应由修约法则,体现含栀子苷为1.82%。
准确度实验中:称取此批栀子药材适量,精密称定为1.234 g,因此供试品中栀子苷量为:1.82%×1.234=0.02246 g。
例2:在防风含量测定项下,药典规定防风药材含升麻素苷和5-O-甲基维
斯阿米醇苷的总量不少于0.24%。
实际实验过程中,防风样品的称样量为0.2512 g,计算得出升麻素苷含量为0.12342…..%,5-O-甲基维斯阿米醇苷含量为0.20221….%。
因此由天平的精密度确定最终结果应为4位有效位数,即升麻素苷含量应为0.1234%,5-O-甲基维斯阿米醇苷含量应为0.2022%,最终总含量为:
0.1234%+0.2022%=0.2356%。
4.2.
5.2 正确掌握和运用规则
不论是何种办法进行计算,都必须执行进舍规则和运算规则,如用计算器进行计算,也应将计算结果经修约后再记录下来。
5 参考资料
《中国药品检验标准操作规程》(2010年版)
国家标准GB8170-87《数值修约规程》。