中考数学统计专题卷(附答案)
统计中考数学试题及答案
统计中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是正多边形?A. 正方形B. 正五边形C. 正六边形D. 任意三角形答案:D2. 以下哪个函数是一次函数?A. \(y = x^2\)B. \(y = 2x + 3\)C. \(y = \frac{1}{x}\)D. \(y = x^3\)答案:B3. 计算下列哪个表达式的结果为正数?A. \(-3 + 2\)B. \(-5 \times -2\)C. \(-4 - 6\)D. \(\frac{1}{-2}\)答案:B4. 以下哪个选项表示的是样本而不是总体?A. 某班所有学生的身高B. 某班一个学生的身高C. 所有学生的身高D. 某校所有学生的身高答案:B5. 以下哪个选项是中位数的定义?A. 一组数据中最大的数B. 一组数据中最小的数C. 将一组数据从小到大排列后位于中间位置的数D. 一组数据的平均数答案:C6. 以下哪个选项是众数的定义?A. 一组数据中出现次数最多的数B. 一组数据中最小的数C. 一组数据中最大的数D. 一组数据的平均数答案:A7. 以下哪个选项是方差的定义?A. 一组数据中各数据与平均数的差的平方的平均数B. 一组数据中各数据与平均数的差的绝对值的平均数C. 一组数据中各数据与平均数的差的平方的最大值D. 一组数据中各数据与平均数的差的绝对值的最小值答案:A8. 以下哪个选项是标准差的定义?A. 一组数据中各数据与平均数的差的平方的平均数B. 一组数据中各数据与平均数的差的绝对值的平均数C. 方差的平方根D. 一组数据中各数据与平均数的差的绝对值的最小值答案:C9. 以下哪个选项是相关系数的定义?A. 描述两个变量之间线性关系的强度和方向的统计量B. 描述两个变量之间线性关系的强度但不描述方向的统计量C. 描述两个变量之间非线性关系的统计量D. 描述两个变量之间关系的统计量,但不区分线性或非线性答案:A10. 以下哪个选项是概率的定义?A. 事件发生的可能性B. 事件发生的必然性C. 事件不发生的可能性D. 事件不发生的必然性答案:A二、填空题(每题4分,共20分)11. 一个正三角形的内角和是______度。
中考数学总复习《统计》专项测试卷及答案
中考数学总复习《统计》专项测试卷及答案(测试时长:60分钟;总分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共8小题,共40分)1.下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量2.小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃3.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①4.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变5.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85 90 90 85方差50 42 50 42A.甲B.乙C.丙D.丁6.2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是()A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多7.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩x是()A.6环B.7环C.8环D.9环8.家务劳动是劳动教育的一个重要方面,教育部基础教育司发布通知要求家长引导孩子力所能及地做一些家务劳动.某校为了解七年级学生平均每周在家的劳动时间,随机抽取了部分七年级学生进行调查,根据调查结果,绘制了如下频数分布表:根据表中的信息,下列说法正确的是()A.本次调查的样本容量是50人B.本次调查七年级学生平均每周在家劳动时间的中位数落在二组C.本次调查七年级学生平均每周在家劳动时间的众数落在四组D.若七年级共有500名学生,估计平均每周在家劳动时间在四组的学生大约有100人二、填空题(本题共5小题,每空3分,共15分)9.A市安排若干名医护工作人员援助某地新冠疫情防控工作,人员结构统计如下表:则该批医护工作人员中“专业医生”占总人数的百分比为_________.A B C D四种活动方案,为了解学生对方案的意10.某校即将举行30周年校庆,拟定了,,,见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如下两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为______.11.在创建“平安校园”活动中,郴州市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7,7,8,6,8,9,则这组数据的众数是.12.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.13.(2022·湖南岳阳)聚焦“双减”政策落地,凸显寒假作业特色.某学校评选出的寒假优质特色作业共分为四类:A(节日文化篇),B(安全防疫篇),C(劳动实践篇),D(冬奥运动篇)下面是根据统计结果绘制的两幅不完整的统计图,则B类作业有______份.三、解答题(本题共4小题,共45分)14.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?15.某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间A B C D四个组别,并绘制了如下不完整的频数分布表和扇形统计图.的长短,将他们分为,,,频数分布表请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.16.为了解甲、乙两座城市所有快递公司2021年的收入情况,从这两座城市的快递公司中,各随机抽取了25家快递公司,获得了它们2021年的收入数据(单位:百万元),并对数据进行整理、分析,给出了以下信息:①抽取的甲城市的快递公司在2021年收入的频数分布直方图如下:(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16)②甲城市所有快递公司在2021年收入的平均数恰好等于10≤x<12这组数据的平均数,已根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)根据以上数据,你认为甲、乙两座城市的快递公司,哪座城市2021年的收入水平更高?请说明理由.(写出一条理由即可)(3)若甲、乙两座城市共有500家快递公司,快递公司的数量之比为2:3,请估计甲、乙两座城市的快递公司2021年的总收入.17.如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.7 58.1 55.2 54.3 55.8盒标质量24.4 24.0 13.0 20.0 21.7盒子质量34.3 34.1 42.2 34.3 34.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.参考答案:1.B2.B3.D4.C5.B6.C7.B8.B9.40%10.180011.812.1713.2014.(1)75;75;75 (2)30个(3)B加工厂15.(1)50;5;(2)B (3)600名16.(1)m=10.8,n=10.3(2)乙城市,因为甲城市2021年的收入的平均数大于乙城市(3)5460百万元×(45.4+48.1+45.1+44.6+45.5)=45.74 17.解:(1)这5枚古钱币,所标直径的平均数是:15(mm)这5枚古币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm其中2.3mm出现了2次,出现的次数最多∴这5枚古钱币的厚度的众数为2.3mm将这5枚古钱币的质量从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g∴这5枚古钱币的质量的中位数为21.7g.故答案为:45.74;2.3;21.7.(2)“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”的质量与实际质量差异较大=34.2(g)其余四个盒子的质量的平均数为34.3+34.1+34.3+34.1455.2﹣34.2=21.0(g).答:“鹿鹤同春”的实际质量约为21.0克.。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
中考数学专题训练:统计(附参考答案)
中考数学专题训练:统计(附参考答案)1.以下调查中,最适合用全面调查的是( )A.调查柳江流域水质情况B.了解全国中学生的心理健康状况C.了解全班学生的身高情况D.调查春节联欢晚会收视率2.乡村医生李医生在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后7天,李医生每天定时为张奶奶测量血压,测得数据如下表:..A.收缩压的中位数为139B.舒张压的众数为88C.收缩压的平均数为142D.舒张压的方差为8873.小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形统计图1及条形统计图2(柱的高度从高到低排列).条形图不小心被撕了两块,图2中“( )”内应填的颜色是( )图1 图2A.蓝B.粉C.黄D.红4.“科学用眼,保护视力”是青少年珍爱生命的具体表现.某校随机抽查了50名八年级学生的视力情况,得到的数据如表:A.4.9和4.8 B.4.9和4.9C.4.8和4.8 D.4.8和4.95.某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )图1 图2A.本次抽样调查的样本容量是5 000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2 400人7.长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差8.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变9.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁10.在某次射击训练过程中,小明打靶10次的成绩(环)如表所示,则小明射击成绩的众数和方差分别为( )C.10和1 D.9和111.五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是( )A.只有平均数B.只有中位数C.只有众数D.中位数和众数12.小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:A.13,15 B.14,15C.13,18 D.15,1513.某射击爱好者的10次射击成绩(单位:环)依次为:7,9,10,8,9,8,10,10,9,10,则下列结论正确的是( )A.众数是9 B.中位数是8.5C.平均数是9 D.方差是1.214.“俭以养德”是中华民族的优秀传统,某中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:关于这次调查,下列说法正确的是( ) A .总体为50名学生一周的零花钱数额 B .五组对应扇形的圆心角度数为36° C .在这次调查中,四组的频数为6D .若该校共有学生1 500人,则估计该校零花钱数额不超过20元的人数约为1 200人15.下列说法正确的是( )A .扇形统计图能够清楚地反映事物的变化趋势B .对某型号电子产品的使用寿命采用全面调查的方式C .有一种游戏的中奖概率是15,则做5次这样的游戏一定会有一次中奖D .甲、乙两组数据的平均数相等,它们的方差分别是s 甲2=0.2,s 乙2=0.03,则乙比甲稳定16.若一组数据x 1,x 2,x 3,…,x n 的方差为2,则数据x 1+3,x 2+3,x 3+3,…,x n +3的方差是( ) A .2 B .5 C .6D .1117.如表是小红参加一次“阳光体育”活动比赛的得分情况:评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为.18.为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分).已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值;(3)19.为激励青少年争做事业接班人,某市史馆组织了以“红心永系国”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A级为特等奖,B级为一等奖,C级为二等奖,D级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.根据相关信息,解答下列问题.(1)本次竞赛共有_______名选手获奖,扇形统计图中扇形C的圆心角度数是_________;(2)补全条形统计图;(3)若该史馆有一个入口,三个出口,请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.参考答案1.C 2.A 3.D 4.B 5.D 6.D 7.D 8.C 9.D 10.C11.D 12.D 13.C 14.B 15.D 16.A17.83分18.(1)(2)班学生中测试成绩为10分的有6人(2)a=8,b=9,c=8(3)(1)班成绩更均匀,理由略19.(1)200 108°(2)补全条形统计图略(3)13。
初中数据统计试题及答案
初中数据统计试题及答案一、选择题(每题3分,共30分)1. 在一组数据中,中位数是将数据从小到大排列后,位于中间位置的数。
如果数据个数是奇数,则中位数是中间的数;如果数据个数是偶数,则中位数是中间两个数的平均值。
下列哪个选项是正确的?A. 数据个数为奇数时,中位数是中间的数B. 数据个数为偶数时,中位数是中间两个数的平均值C. 只有当数据个数为偶数时,中位数才存在D. 只有当数据个数为奇数时,中位数才存在答案:A和B2. 平均数是一组数据的总和除以数据的个数。
下列哪个选项是正确的?A. 平均数反映了一组数据的平均水平B. 平均数是一组数据中最大的数C. 平均数是一组数据中最小的数D. 平均数是一组数据中所有数的乘积答案:A3. 方差是用来衡量一组数据的离散程度的统计量。
下列哪个选项是正确的?A. 方差越大,说明数据的离散程度越大B. 方差越小,说明数据的离散程度越小C. 方差越大,说明数据的集中程度越高D. 方差越小,说明数据的集中程度越高答案:A和B4. 标准差是方差的平方根,用来衡量一组数据的离散程度。
下列哪个选项是正确的?A. 标准差越大,说明数据的离散程度越大B. 标准差越小,说明数据的离散程度越小C. 标准差越大,说明数据的集中程度越高D. 标准差越小,说明数据的集中程度越高答案:A和B5. 频率是指每个数据出现的次数与总次数的比值。
下列哪个选项是正确的?A. 频率之和等于1B. 频率之和大于1C. 频率之和小于1D. 频率之和等于0答案:A6. 概率是指某个事件发生的可能性。
下列哪个选项是正确的?A. 概率的取值范围是0到1之间B. 概率的取值范围是负无穷到正无穷之间C. 概率的取值范围是0到正无穷之间D. 概率的取值范围是负无穷到1之间答案:A7. 一组数据的众数是指出现次数最多的数。
下列哪个选项是正确的?A. 一组数据可以有多个众数B. 一组数据只能有一个众数C. 一组数据没有众数D. 一组数据的众数一定是最大的数答案:A8. 一组数据的极差是指最大值和最小值的差。
初三数学统计试题答案及解析
初三数学统计试题答案及解析1.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,20【答案】B【解析】共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选B.【考点】1、中位数;2、众数2.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.【答案】(1)66(2)5.01(3)4960【解析】(1)总量是100%,用100%去减就可得到先求得每年增长的本数,然后再求出平均数为0.23本,用2013年的阅读量加上这个数字即可估算出2014年的人均阅读图书的数量×成年人数990=总阅读的数量试题解析:(1)m=100-15.6-15-2.4-1.0=66(2)(3)5.01×990≈4960【考点】1、扇形图;2、估算;3、统计表3.在某校八(1)班组织了无锡欢乐义工活动,就该班同学参与公益活动情况作了一次调查统计.如图是一同学通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有______名学生,其中经常参加公益活动的有_____名学生;(2)将频数分布直方图补充完整;(3)若该校八年级有600名学生,试估计该年级从不参加的人数.若我市八年级有21000名学生,能否由此估计出我市八年级学生从不参加的人数,为什么?(4)根据统计数据,你想对你的同学们说些什么?【答案】(1)50,10;(2)补图见解析;(3)不能由此估计出我市八年级学生从不参加的人数,因为此样本不具有代表性;(4)建议同学们多参加一些社会公益活动.【解析】:(1)用偶尔参加的人数除以所占的百分比计算即可求出学生人数,再用学生人数乘以经常参加的学生所占的百分比,计算即可得解;(2)再求出从不参加的人数,然后补全统计图即可;(3)用该校八年级学生总人数乘以从不参加的人数所占的百分比,计算即可得解;从样本不具有代表性解答;(4)从社会积极性考虑,建议多参加社会公益活动.试题解析:(1)该班人数:15÷30%=50,经常参加:50×(1-30%-50%)=10;(2)从不参加的有:50×50%=25人,经常参加的有10人,补全统计图如图所示;(3)∵八(1)班从不参加的人数所占的比例为50%,∴该年级从不参加的人数为:600×50%=300人;不能由此估计出我市八年级学生从不参加的人数,因为此样本不具有代表性;(4)建议同学们多参加一些社会公益活动.【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.4.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的极差就越大D.样本容量越大,对总体的估计就越准确.【答案】D【解析】∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越准确.故选:D.【考点】用样本估计总体.5.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【答案】B【解析】19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选B.【考点】1.统计量的选择;2.中位数的意义.6.下列为某校初三参加的“迎青奥”知识能力竞赛的25位同学的成绩:78,86,98,90,95, 88,94,80,89,77, 87,73,65,84,87,96,84,74,98,86, 83,67,88,68,85.(1)完成下表:(2)补全频数分布直方图;(3)若超过均分的将获奖,请计算本次竞赛获奖的比例.【答案】(1)①8,7,3,4;②4.(2)作图见解析;(3).【解析】(1)根据题目中的乘积即可直接确定;(2)根据(1)的结果即可作出条形统计图;(3)首先计算出平均分,然后计算处超过平均分的人数,即可求得本次竞赛获奖的比例.(1)①8,7,3,4;②4.(2)(3)计算平均分=84(分).∵超过平均分的有14人,∴本次竞赛获奖的比例为.【考点】1.频数(率)分布直方图;2.频数(率)分布表.7.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,跳绳个数如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是()A.126,126B.130,134C.126,130D.118,152【答案】C.【解析】众数是在一组数据中,出现次数最多的数据,这组数据中126出现2次,出现的次数最多,故这组数据的众数为126.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为118,126,126,134, 144, 152,∴中位数是按从小到大排列后第3,4个数的平均数,为:.故选C.【考点】1.众数;2.8.年月日是全国中小学安全教育日,为了让学生了解安全知识,增强安全意识,我校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A级:90分——100分;B级:75分——89分;C级:60分——74分;D级:60分以下).请结合图中提供的信息,解答下列问题:(1)扇形统计图中C级所在的扇形的圆心角度数是.(2)请把条形统计图补充完整;(3)若该校共有2000名学生,请你用此样本估计安全知识竞赛中A级和B级的学生共约有多少人?【答案】(1)36°;(2)补图见解析;(3)1700.【解析】(1)圆心角的度数=360°×该部分所占百分比;(2)先求出总人数,再减去A、B、D人数即可得到C人数;(3)全校学生数×安全知识竞赛中A级和B级的学生所占百分比.(1)C级的学生百分比为10÷100=10%;∴扇形统计图中C级所在的扇形的圆心角度数是360°×10%=36°;(2)抽样总人数为49÷49%=100人,C级的学生数为100-49-36-5=10人;(3)安全知识竞赛中A级和B级的学生数为2000×(49%+36%)=1700人.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图.9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5B.中位数是9C.众数是5D.平均数是9【答案】A.【解析】∵12-5=7,极差为7,故A错误;∵按大小顺序排列,9在最中间,故中位数是9,因此B正确;数据5出现次数最多,因此C正确;(12+5+9+5+14)÷5=9,平均数是9,故选项D正确.故选A.【考点】1.极差;2.中位数;3.众数;4.平均数.10.如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.【答案】5【解析】∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1-14%-36%-16%-24%)=5(人).11.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:= (9+4+7+4+6)=6,解:甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]s甲= (9+4+1+4+0)=3.6(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【答案】(1)4 6 (2)见解析(3)①乙 1.6,判断见解析②乙,理由见解析【解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,乙=30÷5=6,所以答案为:4,6;(2)如图所示:(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.12.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185,则由这组数据中得到的结论错误的是().A.中位数为170B.众数为168C.极差为35D.平均数为171【答案】D.【解析】把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185-150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选D.考点: 1.极差;2.算术平均数;3.中位数;4.众数.13.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:=,S2甲=0.025,S2乙=0.026,下列说法正确的是 ( )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定【答案】C.【解析】根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察数据可知甲队的方差小,故甲比乙短跑成绩稳定.∵S甲2<S乙2,∴甲比乙短跑成绩稳定.故选C.考点: 方差.14.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【答案】C。
初三中考数学复习 统计 专题训练题 含答案
2019 初三中考数学复习统计专题训练题1. 下列说法错误的是( C )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个2.为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是( D )A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人3.一组数据2,3,5,4,4的中位数和平均数分别是( B )A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.64.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( D ) A.折线图 B.条形图 C.直方图 D.扇形图5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( B )A.95 B.90 C.85 D.806.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1 000名学生,据此统计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( A )A.280 B.240 C.300 D.2607.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为( A )A.1 250条 B.1 750条 C.2 500条 D.5 000条8.为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( C )A.25元 B.28.5元 C.29元 D.34.5元9.如果一组数据a1,a2,…,a n的方差为2,那么一组新数据2a1,2a2,…,2a n 的方差是( C )A.2 B.4 C.8 D.1610.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( B )A.第一天 B.第二天 C.第三天 D.第四天11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是__丙__(填“甲”“乙”或“丙”).12.记录某足球队全年比赛结果的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了__30__场.13.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是__77.4__分.14.某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是__3_400__元,众数是__3_000__元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:用中位数或众数来描述更为恰当.理由:平均数受极端值的影响,只有3个人的工资达到了6 276元,用平均数来反映该公司全体员工月收入水平不恰当.15.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=__24__,b=__18__;(2)在扇形统计图中,“排球”所在的扇形的圆心角为__54__度;(3)全校有多少名学生选择参加乒乓球运动?解:36÷30%=120(人),全校总人数是120÷10%=1 200(人),则选择参加乒乓球运动的人数是1 200×30%=360(人).16.自2019年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(1)写出a,b的值;(2)已知该校有5 000名师生,且A品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.解:(1)a =0.9+0.3=1.2,b =1.2+0.2=1.4.(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5 000名师生一天使用共享单车的费用为5 000×1.1=5 500(元),因为5 500<5 800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.17.一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求:x 12+x 22+…+x 62;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[(x 12+x 22+…+x 62-2(x 1+x 2+…+x 6)+6]=16(x 12+x 22+…+x 62-2×6+6)=16(x 12+x 22+…+x 62)-1=53,∴x 12+x 22+…+x 62=16. (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.。
初三统计测试题及答案
初三统计测试题及答案在本次初三统计测试中,我们将通过一系列精心设计的题目来检验你对统计知识的掌握程度。
这些题目涵盖了数据收集、数据整理、图表分析以及概率计算等多个方面。
请仔细阅读题目,并在答题纸上给出你的答案。
1. 某校初三(1)班共有50名学生,其中男生30人,女生20人。
在一次数学测验中,全班的平均成绩为75分,男生的平均成绩为70分,女生的平均成绩为80分。
请问,男生和女生的总成绩分别是多少?2. 某工厂生产一批零件,合格率为95%。
如果工厂生产了1000个零件,那么不合格的零件大约有多少个?3. 某市对100户家庭进行了收入调查,调查结果显示,家庭月收入在3000元以下的有20户,3000-5000元的有30户,5000-7000元的有25户,7000-9000元的有15户,9000元以上的有10户。
请根据这些数据绘制一个扇形统计图,并计算每个收入区间的家庭所占的百分比。
4. 某班级有40名学生,其中20名学生喜欢篮球,15名学生喜欢足球,10名学生喜欢乒乓球,5名学生喜欢羽毛球。
如果随机抽取一名学生,他喜欢篮球的概率是多少?5. 某商场进行促销活动,每购买100元商品,即可获得一次抽奖机会。
奖品设置如下:一等奖1名,奖品为价值1000元的平板电脑;二等奖2名,奖品为价值500元的智能手表;三等奖5名,奖品为价值100元的购物券。
请问,抽中一等奖的概率是多少?6. 某校初三(2)班有50名学生,其中30名学生的身高在150-160厘米之间,15名学生的身高在160-170厘米之间,5名学生的身高超过170厘米。
如果随机抽取一名学生,他的身高在160-170厘米之间的概率是多少?7. 某市对100名初三学生进行了学习时间调查,调查结果显示,每天学习时间在4小时以下的有20人,4-6小时的有30人,6-8小时的有25人,8小时以上的有25人。
请根据这些数据绘制一个条形统计图,并计算每个学习时间区间的学生所占的百分比。
初三数学专题解析统计(含答案)
初三数学专题解析·统计22.为了更好地宣传“2010年上海世博会”,某中学举行了一次“迎世博知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图(如图5).请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩学生的人数约为多少名?22.(1)222323628120++++=,此样本抽取了120名学生的成绩. ……………………………………………(3分) (2)中位数落在80.5~90.5这个范围内.……………………………………………(3分)(3)3628900480120+⨯=(名) 所以该校获得优秀成绩学生的人数约480名.………………………………………(4分)21.某学校对应聘者甲、乙、丙进行面试,并从专 业知识、语言表达、仪表形象三方面给应聘者打分, 每一方面满分20分,最后的打分制成条形统计图 (如图六).根据图中提供的信息,完成下列问题: (1)在专业知识方面3人得分的中位数是______; 在语言表达方面3人得分的众数是___________;在仪表形象方面___________________最有优势. (2)如果专业知识、语言表达、仪表形象三个 方面的重要性之比为10∶7∶3,那么作为校长,应 该录用哪一位应聘者?为什么?图5 甲 乙 丙 甲 乙 丙 甲 乙 丙 专业知识 语言表达 仪表形象(图六)21.解:(1) 16; 15; 丙.………………………………………………………(3分)(2)甲:1(1410177123)14.7520⨯⨯+⨯+⨯=;…………………………………(1分) 乙:1(1810157113)15.920⨯⨯+⨯+⨯=;……………………………………(1分)丙:1(1610157143)15.3520⨯⨯+⨯+⨯=; …………………………………(1分)答:作为校长,我录用乙应聘者.……………………………………………………(2分) 因为,乙的加权平均分最高,说明乙的综合条件较好,更适合做教师,所以录用乙.(2分)22.某区为了了解九年级学生身体素质情况,从中随机抽取了部分学生进行测试,测试成绩的最高分为30分,最低分为23分,按成绩由低到高分成五组(每组数据可含最大值,不含最小值),绘制的频率分布直方图中缺少了28.5~30分的一组(如图4).已知27~28.5分一组的频率为0.31,且这组学生人数比25.5~27分的学生多了28人.根据图示及上述相关信息解答下列问题: (1) 从左至右前三组的频率依次为:___________________;(2) 在图4中补画28.5~30分一组的小矩形;(3) 测试时抽样人数为________;(4) 测试成绩的中位数落在___________组;(5) 如果全区共有3600名九年级学生,估计成绩大于27分的学生约有__________人. 22.(1)0.06,0.15,0.24; (2)小长形的高频率为0.24,高为0.16; (3)400; (4)27~28.5分; (5)1980.……………………………………(每题2分) 21.某学校为了了解该学校初一年级学生双休日上网的情况,随机调查了该学校初一年级的25名学生,得到了上周双休日上网时间的一组样本数据,其频数分布直方图如图所示: (1)请补全频数分布直方图;(2)这组样本数据的中位数是 小时,众数是 小时,平均数是 小时; (3)初一年级的小明同学上周双休日上网的时间为4小时,他认为自己上周双休日上网的时间比年级里一半以上的同学多,你认为小明的想法正确吗?请说明理由.)图421.(1)略;…………………………(2分)(2)3;4;3.36;…………………………(2分+2分+2分)(3)正确。
初三数学试卷统计题及答案
一、选择题(每题5分,共25分)1. 下列选项中,不是正比例函数的是()A. y = 2xB. y = 3x + 5C. y = 4x^2D. y = 5x - 2答案:C2. 已知函数y = kx + b(k≠0),若k>0,则函数图像()A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、三、四象限D. 经过第一、二、四象限答案:A3. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°答案:C4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:D5. 若a^2 + b^2 = 25,则(a + b)^2的值是()A. 25B. 50C. 100D. 125答案:D二、填空题(每题5分,共25分)6. 若x = 2是方程2x - 3 = 0的解,则方程的另一个解是______。
答案:x = 1.57. 在直角坐标系中,点A(-2,3)关于y轴的对称点是______。
答案:A(2,3)8. 已知三角形的三边长分别为3、4、5,则这个三角形是______三角形。
答案:直角三角形9. 若sinα = 0.5,则cosα的值是______。
答案:√3/2 或 0.86610. 下列式子中,能被3整除的是______。
答案:3x^2 + 2x + 1三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
解答:3x - 2x = 1 + 5x = 612. 已知函数y = -2x + 3,当x = 2时,求y的值。
解答:y = -2 2 + 3y = -4 + 3y = -113. 在△ABC中,∠A = 30°,∠B = 45°,求∠C的度数。
解答:∠C = 180° - ∠A - ∠B∠C = 180° - 30° - 45°∠C = 105°四、综合题(每题20分,共40分)14. 已知二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,-2),求该函数的解析式。
初三数学数据分析与统计练习题及答案20题
初三数学数据分析与统计练习题及答案20题题目一:某班级有40名学生,其中男生占总人数的45%。
问该班级男生的人数是多少?解答一:男生人数 = 总人数 ×男生所占比例= 40 × 45%= 40 × 0.45= 18人答案一:该班级男生的人数是18人。
题目二:某图书馆有300本书,其中15%的书是数学类书籍,10%的书是外语类书籍。
问数学类书籍和外语类书籍的总数各是多少本?解答二:数学类书籍的本数 = 总书本数 ×数学类书籍所占比例= 300 × 15%= 300 × 0.15= 45本外语类书籍的本数 = 总书本数 ×外语类书籍所占比例= 300 × 10%= 300 × 0.10= 30本答案二:数学类书籍总数为45本,外语类书籍总数为30本。
题目三:小明家的月收入为6000元,他的月支出占收入的40%。
问小明一个月的支出金额是多少?解答三:支出金额 = 月收入 ×支出所占比例= 6000 × 40%= 6000 × 0.40= 2400元答案三:小明一个月的支出金额为2400元。
题目四:某超市某天的销售额为1,200,000元,其中40%是食品类商品销售额,20%是日用品类商品销售额。
问食品类商品销售额和日用品类商品销售额分别是多少元?解答四:食品类商品销售额 = 总销售额 ×食品类商品销售额所占比例= 1,200,000 × 40%= 1,200,000 × 0.40= 480,000元日用品类商品销售额 = 总销售额 ×日用品类商品销售额所占比例= 1,200,000 × 20%= 1,200,000 × 0.20= 240,000元答案四:食品类商品销售额为480,000元,日用品类商品销售额为240,000元。
中考数学总复习《统计》专项测试卷带答案
中考数学总复习《统计》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是( )A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是( )视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况( )A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是( )A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为,n的值位于学生评委打分数据分组的第组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是,表中k(k为整数)的值为.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是( )A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;(2)求统计的这组学生每周参加科学教育的时间数据的平均数;(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________ (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________ 分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.参考答案A层·基础过关1.(2024·济宁微山县一模)下列调查中,适宜抽样调查的是(C)A.了解某班级学生的身高情况B.选拔出某校跑最快的学生参加全省比赛C.调查某批次汽车的抗撞击能力D.调查某校九年级一班学生课外体育锻炼时间2.(2024·赤峰中考)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16 000名初中学生中,视力不低于4.8的人数是(D)视力4.7以下4.74.84.94.9以上人数3941334047A.120B.200C.6 960D.9 6003.(2024·盐城中考)甲、乙两家公司2024~2023年的利润统计图如下,比较这两家公司的利润增长情况(A)A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢4.(2024·上海中考)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是(B)种类甲种类乙种类丙种类丁种类平均数2.32.32.83.1方差1.050.781.050.78A.甲种类B.乙种类C.丙种类D.丁种类5.(2024·德阳中考)为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是(C)A.平均数B.中位数C.众数D.方差6.(2024·福建中考)学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是90.(单位:分)7.(2024·德阳中考)某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为85.8分..8.(2024·北京中考)某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制).对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息.a.教师评委打分:86889091919191929298b.学生评委打分的频数分布直方图如图(数据分6组:第1组82≤x<85,第2组85≤x<88,第3组88≤x<91,第4组91≤x<94,第5组94≤x<97,第6组97≤x≤100).c.评委打分的平均数、中位数、众数如下:平均数中位数众数教师评委9191m学生评委90.8n93根据以上信息,回答下列问题:①m的值为91,n的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x则x<91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前.5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评委1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是甲,表中k(k为整数)的值为92.B层·能力提升9.(2024·宜宾中考)某校为了解九年级学生在校的锻炼情况,随机抽取10名学生,记录他们某一天在校的锻炼时间(单位:分钟):65,67,75,65,75,80,75,88,78,80.对这组数据判断正确的是(B)A.方差为0B.众数为75C.中位数为77.5D.平均数为7510.(2024·苏州中考)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择(C)A.甲、丁B.乙、戊C.丙、丁D.丙、戊11.(2024·天津中考)为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为_________,图①中m的值为_________,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为_________和_________;【解析】(1)a=3+7+17+15+8=50(人);=34%;m%=17503+7+17=27(人),中位数位于8 h这组;众数是8 h;答案:503488(2)求统计的这组学生每周参加科学教育的时间数据的平均数;【解析】(2)观察题中条形统计图∵6×3+7×7+17×8+15×9+8×1050=8.36(h)∴这组数据的平均数是8.36.(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9 h的人数为多少?【解析】(3)∵在所抽取的样本中,每周参加科学教育的时间是9 h的学生占30%∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9 h 的学生占30%,有500×30%=150(人)∴估计该校八年级学生每周参加科学教育的时间是9 h的人数为150.C层·素养挑战12.(2024·河南中考)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为_________分.【解析】(1)由题中折线图可得甲得分更稳定把乙的六次成绩按从小到大的顺序排序,第三次、第四次的成绩分别为28和30故中位数=28+30=29.2答案:甲29(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.【解析】(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(答案不唯一,合理即可)(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【解析】(3)甲的综合得分为26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为26×1+10×1.5+3×(-1)=38.因为38>36.5,所以乙队员表现更好.。
中考统计题专练(带答案可打印)
1.(10分)某市各中小学为落实教育部政策,全面开展课后延时服务.市教育局为了解该市中学延时服务的情况,随机抽查甲、乙两所中学各100名家长进行问卷调查.家长对延时服务的综合评分记为,将所得数据分为5组 “很满意”: 90≤x<100;“满意”: 80≤x<90;“比较满意”: 70≤x<80;“不太满意”: 60≤x<70;“不满意”: 0≤x<60,市教育局将数据进行分析后,得到如下部分信息:.甲、乙两所中学延时服务得分的平均数、中位数、众数如表:.甲中学“满意组”的分数从高到低排列,排在最后的10个数分别是: 83,83,83,83,82,81,81,81,80,80.请你根据以上信息,回答下列问题:(1)直接写出和的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)市教育局指出:延时服务综合得分在70分及以上才算合格,请你估计乙中学2300名家长中认为该校延时服务合格的人数.x (c d a m参考答案:1、(1)乙中学“比较满意”所占的百分比为:1-40%-7%-18%-10%=25%即a=25%,甲中学“满意组”的分数从高到低排列,排在最后的10个数分别是:83,83,83,83,82,81,81,81,80,80.∴将甲中学的满意度得分从高到低排列后,处在中间位置的两个数的平均数为828181.52+=,因此中位数是81.5,即81.5m=,答:15a=,81.5m=;(2)甲中学延时服务开展较好,理由如下:因为甲中学延时服务得分的平均数、中位数均比乙中学的高,所以甲中学的较好;(3)2300(17%18%)1725⨯--=(人).答:乙中学2300名家长中认为该校延时服务合格的人数为1725人.。
初三数学统计试题答案及解析
初三数学统计试题答案及解析1.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a= ,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?【答案】(1)10,36°.补全条形图见解析;(2)5天,6天;(3)800.【解析】(1)根据各部分所占的百分比等于1列式计算即可求出a:a=1﹣(40%+20%+25%+5%)=1﹣90%=10%.用360°乘以所占的百分比求出所对的圆心角的度数:360°×10%=36°.求出8天的人数,补全条形统计图即可.(2)众数是在一组数据中,出现次数最多的数据.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.试题解析:解:(1)10,36°.补全条形图如下:(2)∵参加社会实践活动5天的最多,∴众数是5天.∵600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,∴中位数是6天.(3)∵2000×(25%+10%+5%)=2000×40%=800.∴估计“活动时间不少于7天”的学生人数大约有800人.【考点】1.扇形统计图;2.条形统计图;3.频数、频率和总量的关系;4.中位数;5.众数;6.用样本估计总体.2.一组数据:,1,1,0,2,1.则这组数据的众数是()A.B.C.D.【答案】C.【解析】众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选C.【考点】众数.3.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是【答案】80.【解析】将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.试题解析:将这组数据从小到大排列,中间的数为80,所以中位数是80.【考点】中位数.4.在3月份,某县某一周七天的最高气温(单位:℃)分别为:12,9,10,6,11,12,17,则这组数据的极差是()A.6B.11C.12D.17【答案】B【解析】这组数据的极差=17﹣6=11.故选B.【考点】极差5.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为人.(注:横轴上每组数据包含最小值不包含最大值)【答案】150.【解析】根据直方图中各组的频率之和等于1,结合题意可得最后一组的频率,再由频率的计算公式可得总人数,即答案.试题解析:由题意可知:最后一组的频率=1-0.9=0.1,则由频率=频数÷总人数可得:总人数=15÷0.1=150人.【考点】频数(率)分布直方图.6.兰州市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.时间(小时)频数(人频(1)在图1中,a=,b=;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.【答案】(1)12 0.2(2)图形见解析(3)约有910名学生在1.5小时以内完成了家庭作业.【解析】(1)由每天完成家庭作业的时间对应的的频数和频率,如时间在1≤t<1.5的频数10和频率0.25,可求出抽查的总人数,再用总人数乘以每天完成家庭作业的时间在0.5≤t<1的频率,求出a,再用每天完成家庭作业的时间在1.5≤t<2的频数除以总人数,求出b即可;(2)由(1)中a的值,可直接补全统计图;(3)用每天完成家庭作业时间在1.5小时以内的频率之和乘以该校的总人数,即可得出答案.试题解析:(1)抽查的总的人数是:=40(人),a=40×0.3=12(人),b==0.2;故答案为:12,0.2;(2)根据(1)可得:每天完成家庭作业的时间在0.5≤t<1的人数是12,补图如下:(3)根据题意得:(0.1+0.3+0.25)×1400=910(名),答:约有910名学生在1.5小时以内完成了家庭作业.【考点】1、频数(率)分布表;2、频数(率)分布直方图;3、用样本估计总体7.某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:(1)这次被抽查的学生有60人;请补全条形统计图;(2)在统计图2中,“乒乓球”对应扇形的圆心角是144度;(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有48人.【答案】(1)60;(2)144;(3)48.【解析】(1)根据C类的人数是9,所占的比例是20%,据此即可求得总人数;(2)利用360°乘以对应的比例即可求解;(3)利用总人数480,乘以对应的比例即可.试题解析:(1)被抽查的学生数是:9÷15%=60(人),D项的人数是:60﹣21﹣24﹣9=6(人),;(2)“乒乓球”对应扇形的圆心角是:360°×=144°;(3)480×=48(人).【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.8.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3B.4C.5D.6【答案】B【解析】数据3,a,4,5的众数为4,即4的次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.9.下图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩是多少?【答案】175.5【解析】解:一班人数:200×22%=44,二班人数:200×27%=54,三班人数:200×26%=52,四班人数:200×25%=50,这些同学跳绳考试的平均成绩为:(180×44+170×54+175×52+178×50)÷200=175.5.答:这些同学的平均成绩为175.510.甲、乙两校参加如皋市教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图1中,“7分”所在扇形的圆心角等于_________;(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果教育局要组织8人的代表队参加省级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【答案】(1)144°;(2)图形见解析;(3)则甲校的平均分是: 8.3分,中位数是:7分,平均分相同,乙的中位数较大,因而乙校的成绩较好;(4)乙校的成绩好,应该从乙校挑选选手.【解析】(1)利用360度,减去其它组的圆心角即可求得;(2)根据乙校中10分的有5人,所占的圆心角是90度,即可求得总人数,然后总人数减去其它组的人数即可求得8分的人数;(3)利用总人数减去得7分,10分的人数即可求得得分是9分的人数,然后利用平均数公式以及中位数的定义即可求解;(4)根据(3)的结果即可作出判断.试题解析:(1)7分所在扇形的圆心角等于360﹣90﹣72﹣54=144°,故答案是:144°;(2)乙校的总人数是:5÷=20(人),则得到8分的人数是:20﹣8﹣4﹣5=3(人).;(3)甲校得到9分的人数是:20﹣11﹣8=1(人),则甲校的平均分是:(7×11+9×1+10×8)÷20=8.3(分),中位数是:7分,平均分相同,乙的中位数较大,因而乙校的成绩较好;(4)乙校的成绩好,应该从乙校挑选选手.【考点】1.条形统计图2.统计表3.扇形统计图4.中位数.11.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据个数分别为2、8、15、5,第四组的频数和频率分别是___________________.【答案】20 0.4【解析】由各小组频数之和为数据总数,所以第四组的频数是50-2-8-15-5=20,由频数=总数×频率,频率==0.4.12.图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察左下图,指出下列说法中错误的是A.数据75落在第2小组B.第4小组的频率为0.1C.心跳为每分钟75次的人数占该班体检人数的D.数据75一定是中位数【答案】D【解析】数据75在69.5—79.5,因此落在第2小组;初三(2)班同学的总人数=6+9+20+25=60,所以第4小组的频率为6÷60=0.1;心跳为每分钟75次的人数为5人,占该班体检人数的5÷60=,其他的数据不知道,所以无法求其中位数.13.小华初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,她通过采集数据后,绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把图(1)统计图补充完整;(3)如果小华所在年级共有600名学生,请你估计该年级报考普高的学生有多少人.【答案】(1)该班的总人数50人;(2)图形见解析;(3)该年级报考普高的学生有240人.【解析】(1)利用普高的频数和百分比可求出总数;(2)利用总数可求出职高的频数补全图象即可;(3)用样本估计总体即可.试题解析:(1)25÷50%=50(人);(2)职高频数为50﹣25﹣5=20,如图:(3)600×40%=240(人).【考点】1.条形统计图,2.用样本估计总体,3.扇形统计图.14.已知数据:,,,,,,则这组数据的极差是 .【答案】7.【解析】由题意可知,数据中最大的值为6,最小值为﹣1,所以极差为6﹣(﹣1)=7.故答案是7.【考点】极差.15.已知样本数据的方差为3,那么另一组数据、、、、的方差是____ ____.【答案】3【解析】方差的意义:方差反映的是一组数据的波动大小,方差越大,波动越大.数据与数据、、、、的波动大小一样,所以数据、、、、的方差是3.【考点】方差的意义16.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌则这组数据的中位数和众数分别是A.164和163 B.105和163 C.105和164 D.163和164【答案】A【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
初三数学统计试题答案及解析
初三数学统计试题答案及解析1.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).【答案】(1)填表见解析;(2)理由见解析;(3)变小.【解析】(1)根据众数、平均数和中位数的定义求解:甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.试题解析:解:(1)填表如下:平均数众数中位数方差(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)变小.【考点】1.方差;2.算术平均数;3.中位数;4.众数.2.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧的次数在40~45的频率是.【答案】0.62.【解析】解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45-3-5-6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.【考点】频数(率)分布直方图.3.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.【答案】(1)200,补图见解析;(2)144°;(3)2.【解析】(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.试题解析:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×200 =2(个),答:口袋中绿球有2个.考点:1.条形统计图;2.扇形统计图;3.模拟实验4.我市党的群众路线教育实践活动不断推进并初见成效.某县督导小组为了解群众对党员干部下基层、查民情、办实事的满意度(满意度分为四个等级:A.非常满意;B.满意;C.基本满意;D.不满意),在某社区随机抽样调查了若干户居民,并根据调查数据绘制成下面两个不完整的统计图.请你结合图中提供的信息解答下列问题.(1)这次被调查的居民共有户;(2)请将条形统计图补充完整.(3)若该社区有2000户居民,请你估计这个社区大约有多少户居民对党员干部的满意度是“非常满意”.根据统计结果,对党员干部今后的工作有何建议?【答案】(1)200;(2)补充条形统计图见解析;(3)500,建议见解析.【解析】(1)利用“非常满意”的人数除以它所占的百分比即可得这次被调查的居民户数:50÷25%=200(户).(2)这次被调查的居民总户数减去非常满意、基本满意、不满意的人数求得满意的人数,再补全条形统计图即可.(3)用该社区的居民总户数乘以“非常满意”人数占的百分比即可得这个社区对党员干部的满意度是“非常满意”的人数.建议答案不唯一.试题解析:(1)200.(2)∵满意的户数为200﹣50﹣20﹣10=120(户),∴补充条形统计图如下:(3)2000×25%=500(户),答:估计这个社区大约有500户居民对党员干部的满意度是“非常满意”.根据统计结果,看出本社区党员干部下基层、察民情、办实事情况不错,要继续保持.【考点】1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.用样本估计总体.5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10B.10,9C.8,9D.9,10【答案】D【解析】把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.【考点】1、众数;2、中位数6.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知( )A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲乙两人的成绩一样稳定D.无法确定谁的成绩更稳【答案】B.【解析】方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判断.由于S乙2=0.5<S甲2=1.2,则成绩较稳定的同学是乙.故选B.【考点】方差.7.我校数学兴趣小组为了解美利达自行车的销售情况,对我市美利达专卖店第一季度A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)。
中考数学一轮复习专题过关检测卷—统计(含答案解析)
中考数学一轮复习专题过关检测卷—统计(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查全市中学生每天的就寝时间,采用普查方式C.要调查你所在班级同学的视力情况,采用抽样调查方式D.环保部门调查京杭大运河某段水域的水质情况,采用抽样调查方式【答案】D【解答】解:A、要了解一批节能灯的使用寿命,适宜采用抽样调查,故本选项不符合题意;B、调查全市中学生每天的就寝时间,适宜采用抽样调查,故本选项不符合题意;C、要调查你所在班级同学的视力情况,适合普查,故本选项不符合题意;D、环保部门调查京杭大运河某段水域的水质情况,适宜采用抽样调查,故本选项符合题意.故选:D.2.南京市今年共约有65000名考生参加体育中考,为了了解这65000名考生的体育成绩,从中抽取了2000名考生的体育成绩进行统计分析,以下说法正确的是()A.该调查方式是普查B.每一名考生是个体C.抽取的2000名考生的体育成绩是总体的一个样本D.样本容量是2000名考生【答案】C【解答】解:A.该调查方式是抽样调查,故A不符合题意;B.每一名考生的体育成绩是个体,故B不符合题意;C.抽取的2000名考生的体育成绩是总体的一个样本,故C符合题意;D.样本容量是2000,故D不符合题意;故选:C.3.小东5分钟内共投篮60次,共进球15个,则小东进球的频率是()A.0.25B.60C.0.26D.15【答案】A【解答】解:∵小东5分钟内共投篮60次,共进球15个,∴小东进球的频率是:=0.25.故选:A.4.一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.7【答案】D【解答】解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.5.小雨同学参加了学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是()A.82分B.83分C.84分D.85分【答案】C【解答】解:根据题意得:80×50%+90×30%+85×20%=40+27+17=84(分).故选:C.6.下表记录了甲、乙、丙、丁四位选手各10次射击成绩的数据信息,请你根据表中数据选一人参加比赛,最合适的人选是()选手甲乙丙丁平均数(环)9.29.39.39.2方差(环2)0.0350.0150.0350.015A.甲B.乙C.丙D.丁【答案】B【解答】解:∵甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中乙的方差最小,∴乙的成绩最稳定,∴综合平均数和方差两个方面说明乙成绩既高又稳定,∴最合适的人选是乙.故选:B.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数分别是()A.5、6B.5、5C.6、5D.6、6【答案】A【解答】解:因为5出现的次数最多,所以众数是5,将这组数据按从小到大进行排序后,第9个数和第10个数的平均数即为中位数,所以中位数是,故选:A.8.某校举行健美操比赛,甲、乙两个班各选10名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是,则参赛学生身高比较整齐的班级是()A.甲班B.乙班C.同样整齐D.无法确定【答案】A【解答】解:∵=1.9,=2.4,∴<,∴参赛学生身高比较整齐的班级是甲班,故选:A.9.为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞出100条鱼,在每一条鱼身上做好记号后,把这些鱼放归鱼塘,过一段时间,再从鱼塘中打捞出100条鱼,发现其中10条鱼有记号,则该鱼塘中的总鱼数大约为()条.A.200B.800C.900D.1000【答案】D【解答】解:由题意可得:(条),故选:D.10.随着初中学业水平考试的临近,某校连续四个月开展了学科知识模拟测试,并将测试成绩整理,绘制了如图所示的统计图(四次参加模拟考试的学生人数不变),下列四个结论不正确的是()A.共有500名学生参加模拟测试B.从第1月到第4月,测试成绩“优秀”的学生人数在总人数中的占比逐渐增长C.第4月增长的“优秀”人数比第3月增长的“优秀”人数多D.第4月测试成绩“优秀”的学生人数达到100人【答案】D【解答】解:A、测试的学生人数为:10+250+150+90=500(名),故不符合题意;B、由折线统计图可知,从第1周到第4周,测试成绩“优秀”的学生人数在总人数中的占比逐周增长,故不符合题意;C、第4月增长的“优秀”人数为500×17%﹣500×13%=20(人),第3月增长的“优秀”人数500×13%﹣500×10%=15(人),故不符合题意;D、第4月测试成绩“优秀”的学生人数为:500×17%=85(人),故符合题意.故选:D.二、填空题(本题共6题,每小题2分,共12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学统计专题卷(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间 B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况 D.调查某篮球队员的身高2.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次 B.3.5次 C.4次 D.4.5次3.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选甲乙丙丁8.99.59.58.9s20.920.92 1.01 1.034.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时5.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分6.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分)60708090100人数4812115则该班学生成绩的众数和中位数分别是()A.70分,80分 B.80分,80分C.90分,80分 D.80分,90分7.在学校举办的“我的中国梦”演讲比赛中,十位评委给其中一位选手现场打出的分数如下:8.8,9.2,9.3,9.4,9.5,9.5,9.6,9.6,9.6,9.8.则这组数据的众数是()A.9.8 B.9.6 C.9.5 D.9.48.一组数据3,6,4,5,3,2,则这组数据的中位数和极差是()A.4.5,2 B.4,6 C.4,4 D.3.5,49.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是( )A.众数是82 B.中位数是82 C.极差是30 D.平均数是8210.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是().A.平均数 B.中位数 C.众数 D.方差11.小明调查了本班同学最喜欢的课外活动项目,并作出如图所示的扇形统计图,则从图中可以直接看出的信息是().A.全班总人数B.喜欢篮球活动的人数最多C.喜欢各种课外活动的具体人数D.喜欢各种课外活动的人数占本班总人数的百分比12.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:米)分别为 1.85,1.71,2.10,1.85,1.96,2.31.则这组数据的众数与极差分别是()A.1.85和0.21 B.2.10和0.46 C.1.85和0.60 D.2.31和0.60二、填空题13.一组数据1,2,a,4,5的平均数位a,那么这组数据的方差是.14.某中学八(1)班共40名同学开展了“我为灾区献爱心”捐款活动.小明将捐款情况进行了统计,并绘制成如下的条形统计图(1)填空:该班同学捐款数额的众数是元,中位数是元;(2)该班平均每人捐款多少元?15.将一批数据分成5组,列出分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是。
16.调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用______(填“普查”或“抽样调查”).17.某班英语老师布置了10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这35名学生答对题数组成的样本的中位数是________题,众数是________题.18.某班一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人.则本次测验的中位数是____.三、解答题19.下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的比赛项目票价(元/张)男篮1000足球800乒乓球x依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的八分之一,试求每张乒乓球门票的价20.某校号召全校组件课外兴趣小组,学生会统计了某学期2﹣6月新注册的兴趣小组的数量,并将结果绘制成如下两种不完整的统计图:(1)某学期2﹣6月新注册的兴趣小组一共有________个,请将折线图补充完整;(2)4月新注册的小组中,有2个是绘画小组,现从4月新注册的小组中随机抽取2个小组了解其开展活动的情况,请你求出所抽取的2个小组恰好都是绘画的概率.21.某单位欲招聘一名员工,现有三人竞聘该职位,他们的笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表一和图一.请将表一和图一中的空缺部分补充完整;竞聘的最后一个程序是由该单位的名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;.若每票计分,该单位将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.22.为响应“书香校园”号召,重庆一中在九年级学生中随机抽取某班学生对2016年全年阅读中外名著的情况进行调查,整理调查结果发现,每名学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的折线统计图和扇形统计图.(1)该班学生共有名,扇形统计图中阅读中外名著本数为7本所对应的扇形圆心角的度数是度,并补全折线统计图;(2)根据调查情况,班主任决定在阅读中外名著本数为5本和8本的学生中任选两名学生8本的概率.评卷人得分四、计算题女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图;(2)这个样本数据的中位数落在第小组,组距是;(3)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有550人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数.24.某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的两个统计图.请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)请补全条形统计图;(3)如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.25.某校开展阳光体育活动,要求每名学生从以下球类活动中选择一项参加体育锻炼:A﹣乒乓球;B﹣足球;C﹣篮球;D﹣羽毛球.学校王老师对八年级某班同学的活动选择情况进行调查统计,绘制了两幅不完整的统计图,如图所示.(1)请你求出该班学生的人数并补全条形统计图;(2)已知该校八年级学生共有500人,学校根据统计调查结果进行预估,按参加项目人数每10人购买一个训练用球的标准,为B,C两个项目统一购买训练用球.经了解,某商场销售的足球比篮球的单价少30元,此时学校共需花费2700元购买足球和篮球.求该商场销售的足球和篮球的单价.26.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?答案1.C2.C.3.B4.B5.D6.B.7.B.8.D9.D.10.B.11.D.12.C.13.2.14.(1)50,30;(2)该班平均每人捐款41元.15.0.1916.普查17. 9818.7.519.(1)3(2)12;(3)500元.20.(1)16;(2).21. (1)请将表一和图一中的空缺部分补充完整;90;补充后的图如下:(2).竞聘的最后一个程序是由该单位的名职工进行投票,三位竞聘者的得票情况如图二(没有弃权票,每名职工只能推荐一个),请计算每人的得票数;A: B:C:…………4分(3).若每票计分,该单位将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位竞聘者的最后成绩,并根据成绩判断谁能竞聘成功.A:(分) B:(分)C:(分)所以,能竞聘成功.………………………………6分22.解:(1)该班学生共有30÷60%=50名,扇形统计图7本所对应的圆心角的度数为360°×1550=108°补全如图:(2)分别用A,B表示阅读5本的学生,用C,D表示阅读8本的学生,画树状图得:∵共有12种等可能的结果,抽到的两名学生都阅读了8本有2种结果∴抽到的两名学生都阅读了8本的概率为:21= 126.23.解:(1)10÷20%=50,50﹣38=12(人).频数分布直方图如下,(2)中位数在第三小组,组距是20.故答案分别为三,20.(3)(12+5+4)÷50=42% 550×42%=231(人),答:该校九年级女生跳绳成绩优秀的人数为231人.24.(1)40÷40%=100人,这次调查中一共抽取了100人.故答案为:100.(2)100﹣40﹣20﹣10=30人.补全条形统计图如图所示:(3)10÷100=10%,1200×10%=120人.全校喜欢D 套餐的学生的人数大约为120人. 25.(1)该班学生的总人数是%2412=50(人), D 类的人数是:50×20%=10(人),D 类的人数是:50﹣8﹣12﹣10=20(人),补图如下:(2)设该商场销售的足球单价是x 元,则篮球的单价是(x+30)元,根据题意得:(500×508÷10)x+(500×5012÷10)(x+30)=2700,解得:x=117,则篮球的单价是117+30=147(元).答:该商场销售的足球单价是117元,篮球的单价是147元.26.(1)这次抽样调查的样本容量是4÷8%=50,B 组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C 组学生的频率是0.32;D 组的圆心角=1050×360°=72°;(3)样本中体重超过60kg 的学生是10+8=18人,该校初三年级体重超过60kg 的学生=1850×100%×1000=360(人).。