6-1-3 还原问题(一).教师版
还原问题

第一讲还原问题(教师版)家庭作业走好第一步1、有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?2、小华的爷爷到农贸市场去卖冬瓜,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了再余下的一半又半个,恰好卖完。
小华的爷爷一共卖了几个冬瓜?解:[(0.5×2+0.5)×2+0.5]×2=7(个)答:小华的爷爷一共卖了7个冬瓜。
3、做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出的差是111,问正确答案是几?解:111+(7-1)-(70-10)=57答:正确的答案是57。
4、甲、乙、丙三人共有750元钱,如果乙向甲借30元,又借给丙50元,结果三人所持有的钱相等。
问甲、乙、丙三人原来各有多少钱?解:750÷3=250(元)甲:250+30=280(元)乙:250-30+50=270(元)丙:250-50=200(元)答:甲原来有280元,乙有270元,丙有200元。
5.将八个数从左到右排成一行,从第三个数开始,每个数都恰好等于前面两个数之和,如果第七个数和第八个数分别是81、131,那么第一个数是多少?解:第六个数:131-81=50第五个数:81-50=31第四个数:50-31=19第三个数:31-19=12第二个数:19-12=7第一个数:12-7=5答:第一个数是5。
6、猴子吃桃子,第一天吃了一半又一只,第二天吃了余下的一半又一只,第三天也吃了余下的一半又一只,第四天、第五天都分别吃了前一天余下的一半又一只,最后只剩下一只桃子。
问原来有多少只桃子?解:{[{[(1+1)×2+1] ×2+1}×2+1] ×2+1}×2=94(只)答:原来有94只桃子。
跨上新台阶7、有砖26块,兄弟二人争着挑,弟弟抢在前,刚刚摆好砖,哥哥赶到了,哥哥看弟弟挑的太多,就抢过一半,弟弟不肯,又从哥哥那儿抢走一半。
小学奥数教师版-6-1-17 盈亏问题(三)

6-1-7.盈亏问题(三)教学目标1.熟练掌握盈亏问题的本质.2.运用盈亏问题的解题方法解决一些生活实际问题.知识精讲盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换;2.关系互换.模块一、利用条件关系转换解盈亏问题——转化被分配物质【例1】王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【考点】盈亏问题【难度】3星【题型】解答【解析】因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个).桔子数为13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【答案】13个小朋友,苹果86个,桔子43个【巩固】学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【考点】盈亏问题【难度】3星【题型】解答【解析】因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).【答案】羽毛球拍180副,乒乓球拍90副【例2】有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个?【考点】盈亏问题【难度】4星【题型】解答【解析】容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到.原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨.如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了.将原题条件变为“1个苹果搭配2个梨,缺4个梨;1个苹果搭配5/3个梨,多1个梨”,此时盈亏总额为415+=(个)梨,两次分配数之差为25/31/3-=(个)梨.所以有苹果(41)(25/3)15+÷-=(个),有梨152426⨯-=(个).【答案】苹果15个,梨26个【巩固】有若干梨和苹果,如果1个梨和3个苹果分成一堆,则多2个梨,如果2个梨和5个苹果分成一堆,则少2个苹果,则梨有个,苹果有个。
2019秋二年级上册精英班讲义 第11讲-简单的还原问题(教师版)

32 8JY(2)第十一讲 简单的还原问题解答 姓名知识要点一个数,经过一系列的运算,可以得到一个新的数。
反过来,从最后得到的数,倒推回去,可以得出原来的数。
这种求原来数的问题,称为还原问题。
一、基础例题1、下面算式中○、△、□、☆各代表一个数,求出它们所代表的数。
(1)○-14=26 (2)10+☆=15 (3)8×△=56 (4)15÷□=3答案:(1)○=40 (2)☆=5 (3)△=7 (4)□=5 解析:(1)被减数=减数+差,○=14+26=40;(2)加数=和-一个加数,☆=15-10=5。
(3)因数=积÷另一个因数,△=56÷8=7; (4)除数=被除数÷商,□=15÷3=5。
2、请用流程图,表示□里的数的变化过程,在□里填上合适的数。
(□+25)÷4=8答案:7。
解析:根据题意画流程图: +25 ÷4用逆推的方法, +25 7÷4,算式是:8×4-25=7,所以□里填的数是:7。
253、爷爷今年的年龄减去 35 岁,除以 4,最后乘 10,恰好是 100 岁,那么, 爷爷今年多少岁?答案:75 岁。
解析:根据题意画流程图:-35×10算式是:100÷10×4+35=75,所以爷爷今年75 岁。
二、举一反三4、下面算式中○、△、◇、☆各代表一个数,求出它们所代表的数。
(1)○+15=34 (2)10-☆=8 (3)3×◇=24 (4)△÷9=58100100-35÷4×10+35 ×4 ÷10答案:(1)○=19(2)☆=2(3)◇=8(4)△=45。
解析:(1)加数=和-另一个加数,○=34-15=19;(2)减数=被减数-差,☆=10-8=2; (3)因数=积÷一个因数,◇=24÷3=8; (4)被除数=除数×商,△=9×5=45。
七年级道德与法治上册6-1走近老师知识点

6-1 走近老师
1.教师职业的特点
(1)教师是一个古老的职业。
教师作为教育工作者,是人类文明的主要传承者之一。
(2)在现代社会,教师已发展为一种专门职业。
教师是履行教育教学职责的专业人员,承担教书育人的使命。
(3)时代在发展,教师的工作理念和工作方式发生了很大变化,也对教师提出了更高的要求。
2.你心目中好老师的标准
今天的教师要努力成为有理想信念、有道德情操、有扎实学识、有仁爱之心的好教师。
二、风格不同的老师
3.要学会接纳不同风格的老师:
原因:由于年龄、学识、阅历、性格、情感与思维方式等差异,每位老师解决问题的方法和表达方式不同,由此呈现出不同的风格。
如何对待:
(1)承认老师的差异,接纳每位老师的不同,他们身上都有值得我们学习的地方。
(2) 无论什么风格的老师都应该受到尊重,尊重老师的不同,走进老师,深入了解老师,主动交往与老师交往。
具体做法:
(1)承认老师的差别,承认并接纳每位老师的不同。
(2)发现不同风格老师的优点,寻找接纳老师的理由。
(3)了解老师教育行为的初衷和用意,更好地理解老师。
(4)主动和老师交往,表达自己对老师的亲近感,拉近师生间的距离。
2014年暑假 三年级 精英班 第10讲 还原问题 教师版

第十讲 还原问题知识要点:同学们在玩迷宫游戏时,往往会发现,根据要求从里面往外找出路,经常会走入死路,如果反过来思考,从外面的出口往里走,却能很快走到里面的出发点。
在小学数学中,有些问题的解答,就像走迷宫一样,如果从已知条件向所求问题推想下去,有时会比较困难,但是如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解决的问题叫做还原问题。
一、基础应用:【例1】 一位旅行者看到牧羊人放牧着一群羊,问他:“你这群羊有多少只?”牧羊人回答:“把我的羊数减去6,除以4,再加上5,乘以3,正好是60。
请你算算,我有多少只羊?”【解析】 我们只知道最后的结果,但是我们不知道最开始的那个数是多少,我们可将这个数的四则运算的过程表示如下:[(□6)45]360-÷+⨯=,通过观察,我们可用反推的方法把方框中的数求出来。
□(6035)4666=÷-⨯+=。
【例2】 二(5)学生进行大扫除,一半学生去支持一年级,剩下学生的一半去打扫清洁区,最后还有8人留下打扫教室,二(5)班共有学生多少人?【解析】 方法1:对于这种涉及“一半“的字眼,我们通常通过画线段图来帮助理解。
依题意,我们可画出如下的线段图:通过上图,我们很容易的就可以求出二(5)班的学生人数为82232⨯⨯=(人)。
方法2:画方框法:8÷2÷2,还原可得:3216×2×28【例3】同学们玩扔沙袋游戏,三、四两个班级共有80只沙袋,如果四班先给三班6只,三班又给四班2只,这时两班沙袋数相等,两班原来各有沙袋多少只?【解析】三、四两班的沙袋拿来拿去,但是沙袋的总数80只是不变的,由最后两班沙袋数相等可知,现在每班有沙袋80240÷=(只)。
接着,我们分别从每班给出去的和收进来的沙袋来计算每班原有沙袋的只数。
小学奥数-还原问题(教师版)

还原问题还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。
解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。
列综合算式时,要特别注意运算顺序,为此要正确使用括号。
如小莉要把一个包装精美的盒子打开。
她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。
妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。
小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。
小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。
这是生活中常会遇到的“还原问题”。
在数学中,还原问题也很多。
【例1】★小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?【解析】从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
【小试牛刀】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?【解析】从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
还原问题与年龄问题教师版

还原问题与年龄问题1.甲、乙、丙3人各有糖若干,甲将自己的糖等分成2份,并给乙1份;接着乙将自己的糖等分成2份,并给丙1份;丙再将自己的糖等分成3份,并给甲1份;此时3人的糖一样多。
那么最初谁的糖最多?乙最多。
设最后三人各有“2”糖,倒推即可。
2.小明跟爷爷聊天。
爷爷对小明说:“当我的岁数是你爸现在的岁数时,你才5岁呢。
”小明对爷爷说:“我的岁数是你现在的岁数时,我爸都89岁了。
”问小明的爸爸今年多少岁?47岁。
以下均指现在的岁数:小明岁数-(爷爷岁数-爸爸岁数)=5,爸爸岁数+(爷爷岁数-小明岁数)=89,即爸爸岁数-5=爷爷岁数-小明岁数=89-爸爸岁数,所以爸爸岁数为:(89+5)÷2=47(岁)。
3.甲、乙、丙3人各有糖若干,甲向乙要来一些糖,使自己的糖数增加1倍;乙接着向丙要来一些糖,使自己剩下的糖数增加1倍;丙再向甲要来一些糖,使自己剩下的糖数也增加1倍。
现在甲的糖数是丙的3倍,乙的糖数是丙的2倍。
如果已知开始时丙有30粒糖,那么乙最初有多少粒糖?55。
设最后甲的糖数设为“6”;乙的糖数设为“4”;丙的糖数设为“2”,倒推出丙开始有“3”。
4.一些苹果,第一次吃掉了全部的一半多3个;第二次吃掉去了余下的一半少10个;然后又买来了一些苹果,使得剩余的苹果量增加了4倍;第三次吃掉了余下的一半多30个;最后还剩下一些苹果,不到30个,那么这些苹果原来有多少个?54.倒推,倒数第2步结果是5的倍数,最后剩下的苹果只可能是5,10,15,20,25个。
得到苹果数目为22,30,38,46,54,但前4个结果不满足第二步的条件,舍去。
5. 甲和乙有糖若干,甲的糖比乙少,每次糖多的人给糖少的人一些糖,使得糖少人的糖数增加1倍;经过2005次这样的操作以后,甲有10块糖,乙有8块糖,求两个人原来的糖数分别是多少?5;13。
从最后结果倒推一步有2种情况:甲14乙4和甲5乙13(不能继续,舍去)。
【教师版】小学奥数6-1-9 和倍问题(三).专项练习及答案解析

1. 学会分析题意并且熟练的利用线段图法能够分析和倍问题2. 掌握寻找和倍的方法解决问题.知识点说明: 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题. 解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是:和÷(倍数+1)=小数小数×倍数=大数 或 和一小数=大数如果要求两个数的差,要先求1份数:l 份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系。
【例 1】 某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍.如果评出一、二、三等奖各2人,那么每个一等奖的奖金是308元.如果评出1个一等奖,2个二等奖,3个三等奖,那么一等奖的奖金是多少元?【考点】和倍问题 【难度】5星 【题型】解答【解析】 我们把每个三等奖奖金看作1份,那么每个二等奖奖金是2份,每个一等奖奖金则是4份.当一、二、三等奖各评2人时,2个一等奖的奖金之和是(3082)⨯元,2个二等奖的奖金之和等于1个一等奖的奖金308元,2个三等奖的奖金等于1个二等奖奖金(3082)÷元.所以奖金总额是:308230830821078⨯++÷=元.当评1个一等奖,2个二等奖,3个三等奖时,1个一等奖奖金看做4份,2个二等奖奖金224⨯=(份),3个三等奖奖金的份数是133⨯=(份),总份数就是:44311++=(份).这样,可以求出1份数为10781198÷=元,一等奖奖金为:984392⨯=(元).【答案】392元【例 2】 有5堆苹果,较小的3堆平均有18个苹果,较大的2堆,苹果数之差为5个;又较大的3堆平均有苹果26个,较小的2堆苹果之差为7个;最大堆与最小堆平均例题精讲 知识点拨教学目标6-1-5.和倍问题有22个苹果,问:各堆各有多少个苹果?【考点】和倍问题 【难度】5星 【题型】解答【解析】 方法二:作图表示题目各个量之间的关系能让复杂的关系看起来简洁明了且不易混乱,用下图表示它们的关系:最大堆与最小堆平均22个,那么最大堆与最小堆一共有22244⨯=(个);较大的2堆,苹果数之差为5个,得知次大堆比最大堆少5个苹果;较小的2堆苹果之差为7个,说明次小堆比最小堆多7个苹果,因此,得知次小堆和次大堆之和为:445746-+=(个),这样最大堆、最小堆、次大堆、次小堆四堆苹果数量之和是:444690+=(个),较大的3堆苹果之和:26378⨯=(个),较小的3堆苹果之和:18354⨯=(个),较大的3堆苹果和较小的3堆苹果总和等于最大堆、次大堆、最小堆、次小堆以及2个中间堆的数量之和. 所以,中间堆的数量是:785490221()+-÷=(个),最大堆与次大堆的和是:782157-=(个),最大堆有苹果:575231()+÷=(个),次大堆有:573126-=(个),同理最小堆有苹果:5421(-7213)-÷=(个),次小堆有苹果:13720+=(个). 方法一:最大堆与最小堆共22244⨯=个苹果.较大的2堆与较小的2堆共4427590⨯+-=个苹果.所以中间的一堆有:(18326390)221⨯+⨯-÷=个苹果;较大的2堆有:2632157⨯-=个苹果;最大的一堆有:(575)231+÷=个苹果;次大的一堆有:573126-=个苹果;较小的2堆有:1832133⨯-=个苹果;次小的一堆有:(337)220+÷=个苹果;最小的一堆有:20713-=个苹果.【答案】最小的有13个,次小的有20个,中间的有21个,次大的有26,最大的有31【例 3】 食堂买来5只羊,每次取出两只合称一次重量,得到10种不同重量(单位:千克):47,50,51,52,53,54,55,57,58,59.问:这五只羊各重多少千克?【考点】和倍问题 【难度】5星 【题型】解答【解析】 可以设定羊的重量从轻到重分别为A ,B ,C ,D ,E .则47+=A B ,59+=D E .同时不难整体分析得到()475051525354555758594134++++=+++++++++÷=A B C D E 千克.则134475928=--=C 千克.不难有50+=A C ,58+=E C .则22=A 千克,30=E 千克,25=B 千克,29=D 千克.【答案】这五只羊重为:22,25,28,29,30【例 4】 某小学五年级和六年级参加创新杯数学邀请赛共有16人,其中:五年级的学生比六年级的学生多;六年级的男生比五年级的男生多;五年级的男生比五年级的女生多;六年级的女生至少有1人.那么六年级的男生有 人.【考点】和倍问题 【难度】4星 【题型】填空【关键词】2008年,湖北省,第六届,创新杯【解析】 因“五年级的学生比六年级的学生多”,故五年级学生至少有9人,而六年级学生至多有7人;因“五年级男生比五年级的女生多”,所以五年级男生至少有5人;因“六年级男生比五年级男生多”,所以六年级男生至少有6人,而六年级男生不能多于6人,否则再加上六年级的女生至少有1人,则六年级的学生人数就会多于7人,这不可能.因此,六年级的男生恰好有有6人.【关键词】6人【例 5】某校师生共为地震灾区捐款462000元,经统计发现,他们各自所捐的钱数,共有10种不同档次.最低档次共有10人,而每上升一个档次,捐款人数就减少1人;且从第二档次开始,以后各档次的捐款钱数,分别为最低档次的2倍、3倍、4倍……10倍,那么捐款最多的人捐款___ ____元.【考点】和倍问题【难度】4星【题型】填空【关键词】迎春杯,四年级,初试,9题【解析】本题是一道和倍问题,最高档次是1个人,恰好是最低档次10人合捐的10倍,则把最低档次10人看作"1"份,则共10×1+9×2+8×3+7×4+5×6+……++2×9+1×10=220份,462000÷220=2100元,则最高档次即捐款最多的人捐款为2100×10=21000元【答案】21000元【例 6】()、、、、A B C D E五人坐在一起聊天.小明想知道这五个人的年龄和.可五人都没有直接回答.E说:“、、、A B C D四个人的年龄和101岁”.D说:“、、A B D E四个人的年龄和115B C E三个人的年龄和105岁”.C说:“、、、岁”.B说:“、、A D E三个人的年龄和80岁”.A说:“、、A C D三个人的年龄和66岁”.请问:五人的年龄和是岁。
三年级春季第3讲-还原问题(教师版)

第三讲 还原问题还原问题1、 掌握用倒推法解单个变量的还原问题2、 了解用倒推法解多个变量的还原问题3、 培养学生“倒推”的思想.已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫逆推运算问题,解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推运算,在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反,二是运算方法和原来相反.例题1 【提高】【精英】小淘气进入一座高楼的电梯,他乘电梯上升3层,下降5层又上升7层,下降9层,这时他位于第23层,他是在第几层进入电梯的?【分析】 239753=27+-+-层.例题2【提高】小新在做一道加法题,由于粗心,将个位上的5看做9,把十位上的8看做3,结果所得的和是123,正确的答案是多少?【分析】 加数个位5看成9,和增加了95=4-,十位8看成3,和减少了8030=50-,答案是123504=169+-.【精英】小马虎做一道乘法题时,如果误将被乘数增加14,计算的积会增加98,如果将乘数增加14,积会增加42,问正确的结果应该是多少?【分析】 乘数为9814=7÷,被乘数为4214=3÷,正确的积为73=21⨯.例题3【提高】【精英】学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?【分析】 16696⨯=,96424÷=,24529+=,29326-=.例题4【提高】小马虎在计算有余数的除法时,把被除数171写成118,结果商比原来少3,余数比原来多1,这道题的除数和余数各是多少?【分析】 被除数少了17111853-=,余数增加了1,商减少了3,除数为(5313)18+÷=,1711899÷=.【精英】小马虎计算有余数的除法时候,把被除数137当做173,结果商比正确结果大了3,但余数恰好相同,正确的除法算式应该是多少?【分析】 被除数增加了17313736-=,商增加了3,除数为36312÷=,正确的除法算式为13712115÷=.例题5【提高】一根电缆剪了3次,每次都剪去剩下的一半多一米,最后剩下5米,这根电线原来多长?【分析】 (51)212+⨯=米,(121)226+⨯=米,(261)254+⨯=米.【精英】一群蚂蚁搬家,原存一堆食物,第一天运出总数的一半少12克,第二天运出剩下的一半少12克,结果窝里还剩下43克,问蚂蚁家原有多少克食物?【分析】 (4312)262-⨯=克,(6212)2100-⨯=克.例题6【提高】有甲、乙两堆棋子,其中甲多于乙,现在按照如下方法移动棋子:第一次从甲中拿出和乙一样多的棋子放到乙;第二次从乙中拿出和甲一样多的棋子放到甲;第三次又从甲中拿出和乙一样多的棋子放到乙.照此移法,移动三次后,甲、乙两堆棋子数恰好都是32个,问甲、乙两堆棋子原来各多少个?【分析】 根据题意列表如下:甲堆原来4420厘米,聪明的小朋友,你知道小虫长到5厘米需要多少小时吗?【分析】 列表倒推:例题7【提高】【精英】三棵树上停着36只鸟,如果从第一棵树上飞6只到第二棵树上去,再从第二棵树上飞4只到第三棵树上去,那么三棵树上小鸟的只数都相等,原来每棵树有多少只鸟?【分析】 最后三棵树上均有36312÷=只鸟,则原来第一棵树有12618+=只,第二棵树有124610+-=只,第三棵树有1248-=只.例题8【提高】【精英】甲乙丙三人共有192张邮票,从甲的邮票中取出乙那么多给乙后,再从乙的邮票中取出丙那么多给丙,最后从丙的邮票中取出甲那么多给甲,这时甲乙丙三人邮票一样多,问他们原来各有多少张?【分析】 最后三人均有192364÷=练习1迈迈做了一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数是多少.【分析】(101010)10101⨯+÷-=.练习2哪吒是个小马虎,他在做思思出的一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577,那么这道题的正确答案是多少?【分析】被减数增加了906030--=.-=,差增加30;减数减少了963-=,差增加3.答案是577330544练习3小马虎在计算除法时,应该用98去除一个数,错写成89去除,结果得到的商是43,余数是3,问:正确结果应该是多少?【分析】被除数为894333830÷=.⨯+=,正确结果为383098398练习4大伯对小明说:“我15年前的年龄和你6年后的年龄相同.7年前,我的年龄是你的8倍.”请计算今年他们各多少岁?【分析】年龄差不变,7年前小明为(156)(81)3+÷-=岁,今年小明为3710+=岁.练习5一群小神仙玩扔沙袋的游戏,他们分为甲、乙两个组,共有140只沙袋.如果甲组先给乙组5只,乙组又给甲组8只,这是两组沙袋相等.问两组原来各有多少沙袋?【分析】最后两组均有140270÷=练习6王,张,刘三位小朋友共有邮票150枚,现在他们交换邮票,王给刘12枚,刘给张18枚,张给王20枚,这样,三个人邮票数量相等.问他们原来各多少张邮票?【分析】最后三人均有150350÷=。
(精品)小学奥数6-1-4 还原问题(二).专项练习及答案解析

本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、单个变量的还原问题【例1】刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的1 5,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有例题精讲知识点拨教学目标6-1-2.还原问题(二)几升矿泉水?【考点】单个变量的还原问题【难度】4星【题型】解答【关键词】可逆思想方法【解析】最开始瓶子里有矿泉水:111110.511111323456⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷-⨯-⨯-⨯-⨯-=⎢⎥⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(升).【答案】3升【例2】李白提壶去买洒,遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
壶中原有()斗酒。
【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】可逆思想方法,走美杯,六年级【解析】设李白壶中原有x斗酒,则三次经过店和花之后变为02[2(21)1]10x⨯⨯---=870x-=78x=即壶中原有78斗酒.【答案】78斗【例3】有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】迎春杯,四年级,初赛,3题【解析】方法一:男生和女生放手分成18个组,说明有男生被计算18次,男生与男生放开手后分成的组数和男生数相同,但是因为是围成了一圈,所以刚刚计算人数会被算成了两次,所以按照逆推的原则,原来有男生30人,被计算302=60⨯(次),所以()60182=21-÷(次)分成了21组。
(2021年整理)6-3-1_工程问题.题库教师版

(完整)6-3-1_工程问题.题库教师版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)6-3-1_工程问题.题库教师版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)6-3-1_工程问题.题库教师版的全部内容。
工程问题教学目1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精模块一、工程问题基本题型【例 1】(难度等级※)一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的1,乙每天完成总量的281,两人合作每天能完成总量的111÷=天能够112+=,所以两人合作的话,需要1完成.【例 2】 (难度等级 ※)一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【解析】 将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【巩固】 (难度等级 ※)一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【解析】 将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【例 3】 (难度等级 ※※)甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【解析】 乙单独加工,每小时加工11181224-=甲调出后,剩下工作乙需做21184(12)58245-⨯÷=时所以乙每小时加工零件84420255÷=(个),则225小时加工2252605⨯=(个),所以乙一共加工零件420+60=480(个).【巩固】 (难度等级 ※※)一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成。
初中奥数-还原问题(教师版)

初中奥数-还原问题(教师版)引言初中奥数是培养学生数学思维能力和解决问题能力的重要途径。
还原问题是奥数中的一种常见类型,它要求学生根据给定的信息,还原出问题的原始状态或答案。
本文将介绍初中奥数中还原问题的基本概念和解题方法,旨在帮助教师更好地教授和指导学生。
还原问题的定义还原问题是一种从已知信息中还原出未知信息的数学问题。
在这类问题中,学生需要根据已知条件,思考和推理,找到隐藏的信息或规律,进而还原出未知的答案。
这种问题类型能够培养学生的逻辑思维和创造力,以及培养他们在面对复杂问题时的解决能力。
解题方法下面将介绍一些常见的解题方法,供教师参考和指导学生:1. 查找规律:学生可以通过观察已知条件之间的关系和规律,推测出未知部分的信息。
他们可以尝试使用表格、图形或模式来帮助整理和发现规律。
2. 推理推断:学生可以基于已知条件,进行逻辑推理和推断,从而得出未知信息。
他们需要运用数学思维和推理能力,分析问题的本质和可能的结果。
3. 反向思考:学生可以反向思考,从已知答案出发,找出符合这个答案的条件和限制。
通过将问题的已知条件和未知答案进行对比,学生能够还原出问题的原始状态。
解题示例以下是一个还原问题的示例:已知:在一个三位数中,个位数是百位数的平方,十位数是个位数的两倍,百位数是十位数的五倍。
求这个三位数。
解题过程:1. 设个位数为x,则百位数为x^2,十位数为2x。
2. 根据题意得到方程:x^2 = 2x * 5x。
3. 解方程得到:x = 10。
4. 还原出三位数:百位数为10^2 = 100,十位数为2 * 10 = 20,个位数为10。
5. 因此,这个三位数是120。
通过以上示例,学生可以了解到还原问题的解题思路和具体步骤。
结论还原问题是初中奥数中的重要问题类型,它能够培养学生的数学思维和解决问题的能力。
教师可以通过引导学生查找规律、推理推断和反向思考等方法,帮助学生有效解决还原问题。
相信通过合理的教学和练习,学生能够在奥数竞赛中取得优异成绩,并在数学学习中获得更多乐趣和挑战。
数学四年级 第3讲 还原问题与年龄问题(教师版+学生版,含详细解析)

第3讲 还原问题与年龄问题内容概述学会用逆推法求解还原问题,处理多个对象时可采用列表的形式,在年龄问题中,通常采用和差倍问题的分析方法,有时需注意任意两人的年龄差保持不变。
典型问题 兴趣篇1. 某数加上6,再乘以6, 再减去6,再除以6, 其结果等于6,则这个数是多少? 答案:这个数是1 倒推法解决此问题。
详解:+6 x6 -6 ÷662. 有一个人非常喜欢喝酒,他每经过一个酒店都要买酒喝. 这个人出门带了一个酒葫芦,看到一个酒店就把酒葫芦中的酒加一倍,然后喝下8两酒,这天他一共遇到3家酒店,在最后一家酒店喝完酒后,葫芦里的酒刚好喝完. 问:原来酒葫芦里有多少两酒? 答案:7两酒。
详解:每经过一个酒店,葫芦里酒的数量就先乘2,再减8,利用倒推法,我们反过来应该先加8,再除以2.那么到第3家酒店之前葫芦里应该有(0+8)÷2=4两酒,他在到第2家酒店之前候应该有(4+8)÷2=6两酒,所以他原来的酒葫芦应该有(6+8)÷2=7两酒。
(0+8)÷2=4(两) (4+8)÷2=6(两) (6+8)÷2=7(两)3. 某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元? 答案:原来这个人身上有43元,箱子里有85元。
详解:4. 三棵树上共有48只鸟. 后来,第一棵树上有一半的鸟飞到了第二棵树上;之后,第二棵树上又有与第三棵树同样数目的鸟飞到了第三棵树上;最后,第三棵树上又有10只鸟飞到了第一棵树上,此时三棵树上的鸟一样多. 问:一开始三棵树上各有几只鸟? 答案:第一棵树上有12,第二棵23,第三棵13 详解:5. 1997年张伯伯45岁,小方9岁,在哪一年张伯伯的年龄是小方年龄的4倍?答案:小方12岁那年。
小学数学知识点例题精讲《和倍问题(二)》教师版

1.学会分析题意并且熟练的利用线段图法能够分析和倍问题2.掌握寻找和倍的方法解决问题.知识点说明:和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题. 解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答.和倍问题的特点是已知两个数的和与大数是小数的几倍,要求两个数,一般是把较小数看作1倍数,大数就是几倍数,这样就可知总和相当于小数的几倍了,可求出小数,再求大数.和倍问题的数量关系式是: 和÷(倍数+1)=小数小数×倍数=大数 或 和一小数=大数如果要求两个数的差,要先求1份数:l 份数×(倍数-1)=两数差.解决和倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.【例 1】一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?【考点】和倍问题 【难度】2星 【题型】填空【解析】妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72(144=8)÷++(岁),妈妈的年龄是:8432⨯=(岁),爸爸和妈妈同岁为32岁.【答案】孩子的年龄为8岁,爸爸妈妈的年龄为32岁【例 2】三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条.黑猫钓上 条鱼.【考点】和倍问题 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第8题【解析】白猫钓到36÷(5+1)=6条,花猫和黑猫共钓30条花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条,那么就比黑猫钓到的2倍多3条,黑猫钓到(30-3)÷3=9条【答案】9【例 3】甲、乙、丙三人的年龄和为30岁,乙的年龄是甲、丙年龄和的一半.乙( )岁.【考点】和倍问题 【难度】3星 【题型】填空【关键词】走美杯,四年级,初赛【解析】由题意可知,甲丙的年龄和是乙的2倍,那么三人的年龄和就是乙的3倍,故乙的年龄为30310÷=岁.【答案】10岁例题精讲知识点拨教学目标6-1-5.和倍问题(二)【例 4】红、黄、蓝三个纸盒里共有彩票56张.其中红色纸盒里的彩票是黄色纸盒的2倍,蓝色纸盒里的彩票是红色纸盒的2倍,红、黄、蓝三个纸盒里各有多少张彩票?【考点】和倍问题【难度】2星【题型】解答【解析】以黄色纸盒的彩票数为1倍数,红纸盒是这样的2倍,蓝纸盒是红纸盒的2倍,也就是黄纸盒的4倍,一共就是(1+2+4)倍,这样就能建立起彩票总数与总倍数之间的对应关系,从而求出黄纸盒里有几张彩票.56÷(1+2+4)=8(张)……黄纸盒里的彩票数;8×2=16(张)……红纸盒里的彩票数;16×2=32(张)……蓝纸盒里的彩票数.【答案】黄纸盒里有8张,红纸盒里有16张,蓝纸盒里有32张.【例 5】在一道减法算式中,已知被减数、减数、差的和是240,而减数是差的5倍.求差是多少?【考点】和倍问题【难度】3星【题型】解答【解析】引导学生分析被减数、减数、差三者之间的关系,并认识它们之间的转化.我们先看下面一道简单的减法算式:15- 10 = 5被减数减数差被减数、减数、差这三个数有下面的关系:被减数=差+减数,如15=5+10这道题中,被减数、减数、差的和是15+5+10=30,÷=,就得被减数,也就是30是被减数的2倍,30215减数与差的和,这样题目就转化为:“已知减数与差的和是15,减数是差的2倍”,按照和倍问题的解题方法,就可求出差是:15(21)5÷+=.列式:减数与差的和是多少? 2402120÷=差是多少? 120(51)20÷+=【答案】20【例 6】被除数、除数、商3个数的和是212.已知商是2,被除数和除数各是多少?【考点】和倍问题【难度】3星【题型】解答【解析】由商是2,可得被除数与除数的和为:212-2=210;且被除数是除数的2倍.把除数看着1份,两数和对应的份数是3份,除数为:210÷(2+1)=70;被除数为:70×2=140.【答案】被除数140,除数70【例 7】两个正整数相除,商是7,余数是5,如果被除数、除数都扩大到原来的4倍,那么被除数、除数、商、余数的和等于1039.原来的被除数是 ,除数是.【考点】和倍问题【难度】3星【题型】填空【关键词】小机灵杯,数学竞赛,五年级,复赛【解析】被除数、除数都扩大到原来的4倍,它们的商还是7、余数为5420⨯=,所以被除数与除数的和为-÷+=,所以原--=,而此时被除数比除数的7倍大20,所以除数为(101220)(71)124 10392071012来的除数为124431⨯+=.÷=,被除数原来为3175222【答案】被除数222,除数31【例 8】学校买来篮球、足球、排球共49个,其中篮球的个数是足球的3倍.排球比足球多4个.问学校买来的篮球、足球、排球各多少个?【考点】和倍问题【难度】3星【题型】解答【解析】可引导学生,让他们自己画图来分析,强调和与对应的份数,教师辅导指正.从线段图上可以看出,把足球的个数看作1份数,篮球的个数是3份数,如果排球少买4个,也是l份数,这时三种球一共(494++),就可先求出足球的个数,再分别求篮球和排球的个-)个,总份数是(131数.如果排球减少4个,三种球一共多少个? 49445-=(个)足球多少个? 45(131)9÷++=(个)篮球多少个? 9327⨯=(个)排球多少个? 9+4=13(个)【答案】足球9个,篮球27个,排球13个.【巩固】一筐苹果、一筐梨、一筐香蕉共重112千克.已知苹果的重量是梨的3倍,香蕉的重量比梨少3千克.一筐苹果、一筐梨、一筐香蕉各重多少千克?【考点】和倍问题【难度】3星【题型】解答【解析】梨的重量是:(1123)(113)23+÷++=(千克)苹果的重量是:23369⨯=(千克)香蕉的重量是:23320-=(千克) 【答案】苹果69千克,梨23千克,香蕉20千克.【巩固】玩具厂生产红、黄、白气球共125个,其中红气球的个数是黄气球的3倍,白气球比黄气球少25个.问三种气球各生产了多少个?【考点】和倍问题【难度】3星【题型】解答【解析】黄气球:(12525)(311)30+÷++=(个);红气球:30390-=(个)⨯=(个);白气球:30255【答案】黄气球30个,红气球90个,白气球5个.【例 9】小红家养了一些鸡,黄鸡比黑鸡多13只,比白鸡少18只.白鸡的只数是黄鸡的2倍,白鸡、黄鸡、黑鸡一共有多少只?【考点】和倍问题【难度】3星【题型】解答【解析】⑴黄鸡多少只? 18(21)18÷-=(只) ⑵白鸡多少只? 18236⨯=(只)⑶黑鸡多少只? 18135-=(只)⑷白鸡、黄鸡、黑鸡共多少只? 1836559++=(只)【答案】59只【例 10】商店运来橘子、苹果、香蕉共53千克,橘子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,橘子重多少千克?【考点】和倍问题【难度】3星【题型】解答【解析】我们可以把苹果的重量看作1份,如下图:如果橘子重量增加3千克,正好是苹果重量的3倍,香蕉的重量减少2千克,正好是苹果重量的2倍,这时三种水果的总重量变为:53+3-2=54(千克),正好是苹果重量的(1+3+2)倍,苹果有 (53+3-2)÷(1+3+2) =54÷6=9(千克),橘子有9×3-3=24(千克) .【答案】24千克【巩固】果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?【考点】和倍问题【难度】3星【题型】解答【解析】下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就和梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍.梨树的棵数:(552+20-12)÷(1+1+2)=560÷4=140(棵),桃树的棵数:140×2+12=292(棵),苹果树的棵数: 140-20=120(棵),桃树、梨树、苹果树分别是292棵、140棵和120棵.【答案】桃树、梨树、苹果树分别是292棵、140棵和120棵【巩固】某养殖厂养鸡、鸭、鹅共1462只,鸡的只数比鸭的4倍多132只,鹅的只数比鸭的2倍少70只.这个养殖厂养的鸡、鸭、鹅各有多少只?【考点】差倍问题【难度】1星【题型】解答【解析】我们把鸭的只数看作1份,鸡的只数看作4份,鹅的只数看作2份,鸡、鸭、鹅的总只数就相当于鸭的:1 4 +27-+=(只).用总只数除+=(份).而鸡、鸭、鹅的总只数可以看作:1462132 701400以总份数,先求出鸭的只数,再求鸡和鹅的只数.鸭的只数:(146213270)(142)14007200-+÷++=÷=(只);鸡的只数:200 4 132800 132932⨯+=+=(只); 鹅的只数:20027040070330⨯-=-=(只).【答案】鸭200只,鸡932只,鹅330只【例 11】有100块糖,分给甲乙丙三位小朋友,甲比乙多分了3块,乙比丙多分了5块,三位小朋友各分得多少块糖?【考点】和倍问题【难度】3星【题型】解答【解析】此题从两个数量扩展到三个数量.已知甲比乙多分了3块,乙比丙多分了5块,从线段图上可以清楚地看出:甲比丙多分了3+5=8(块).如果甲少拿7块,乙少拿5块,那么糖的总数就要减少8+5=13(块),总共就是100-13=87(块).87块相当于丙所有的糖块数的3倍,由此可以算出甲乙丙三人各自糖块的数量.丙:[100-(3+5)-5]÷3=29(块);乙:29+5=34(块);甲:34+3=37(块).【答案】甲37块,乙34块,丙29块.【例 12】王奶奶家养了鸡、鸭、鹅共250只,其中鸭比鹅的2倍少10只,鸡比鸭的3倍多20只.王奶奶养了__________只鸡,_________只鸭,___________只鹅.【考点】和倍问题 【难度】3星 【题型】填空【关键词】希望杯,四年级,二试,第8题【解析】鹅比鸭的一半多5只,所以如果将多出少的去掉和补上一共有250-20-5=225,所以鸭有225÷(3+1+0.5)=50只,鸡有50÷2+5=30只,鹅有50×3+20=170只.【答案】鸡30只,鸭50只,鹅170只【例 13】甲、乙、丙三个小朋友共有73块巧克力,如果丙吃掉3块,那么乙和丙的巧克力就一样多;如果乙给甲2块巧克力,那么甲的巧克力就是乙的2倍,丙原有 块巧克力.【考点】和倍问题 【难度】3星 【题型】填空【关键词】IMC,国际数学邀请赛,新加坡,四年级,复赛【解析】方法一:由题意可知,丙比乙多3块,所以如果乙给甲两块巧克力,则丙比乙多5块,此时乙的巧克力数为(735)(112)17-÷++=(块),丙原有172322++=(块).方法二:如果丙吃掉3块,那么乙与并的糖就一样多,说明丙比乙多3块;如果乙给甲2块糖,那么甲的糖就是乙的糖的2倍,即甲的糖加2是乙的糖减2后的2倍,说明甲的糖是丙的糖的2倍少2226⨯+=块.所以,乙有(7336)(112)19-+÷++=块糖,丙193=22+(块)【答案】22块【例 14】甲、乙、丙3数之和是183,乙比丙的2倍少4,甲比丙的3倍多7,求甲、乙、丙三数各是多少?【考点】和倍问题 【难度】3星 【题型】解答【解析】我们把丙数看作一份,画出线段图如下:假如我们给乙数添上4凑成2份,甲数减去7凑成3份,则这时候三个数的总和为:183+4-7=180,和对应的份数为:1+2+3=6.所以,一份数即丙数为:180÷6=30;乙数为:30×2-4=56;甲数为:30×3+7=97.【答案】甲97,乙56,丙30【例 15】甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍,乙校学生人数减3、丙校学生人数加4都是相等的.问:甲、乙、丙各校学生人数是多少?【考点】和倍问题 【难度】3星 【题型】解答【关键词】华杯赛,初赛,第8题【解析】(1999-3+4)÷(1+2+2)=400, 400×2+3=803,400×2-4=796,甲、乙、丙三校的人数分别为400,803,796.【答案】甲、乙、丙三校的人数分别为400,803,796.【例 16】549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?【考点】和倍问题 【难度】3星 【题型】解答【解析】下图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,以丙数为一份量,再分别求出其他各数.丙数是:(549+2-2)÷(2+2+1+4)=549÷9=61,甲数是:61×2-2=120,乙数是:61×2+2=124丁数是:61×4=244,验算:120+124+61+244=549120+2=122 124-2=12261×2=122 244÷2=122【答案】甲120,乙124,丙61,丁224【例 17】四年级有甲、乙、丙、丁四个班.不算甲班,其余三个班的总人数是131人;不算丁班,其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人.问:这四个班共有多少人?【考点】和倍问题 【难度】4星 【题型】解答【解析】由题意,乙、丙、丁三个班总人数为131人,甲、乙、丙三个班总人数为134人,于是可以看出,甲班比丁班多3个人.又因为乙、丙两班的总人数比甲、丁两班的总人数少1人,也就是说乙、丙两班总人数是丁班的2倍还多2人.从而可以求出丁班的人数为:(1312)343-÷=(人).因此这四个班的总人数为13443177+=(人).【答案】177人【例 18】有几个同学想称一下体重,可是秤的秤砣不齐,只能称50千克以上的重量,他们只好每人都和其他人合称一次,共得到以下10个数据(单位:千克):75、78、79、80、81、82、83、84、86、88.问:⑴有几名同学?⑵他们的重量各是多少千克?【考点】和倍问题 【难度】4星 【题型】解答【解析】⑴首先2554210=⨯÷=C ,也就是说5个同学两两合称才恰好需要称10次,所以有5个同学.⑵设这5个同学的体重从小到大依次为A 、B 、C 、D 、E .则有75+=A B ,78+=A C ,88+=D E ,86+=C E ;()757879808182838486884204++++=+++++++++÷=A B C D E .则204758841=--=C 千克;784137=-=A 千克;864145=-=E 千克;753738--=B 千克;884543=-=D 千克.即他们的体重分别为37千克、38千克、41千克、43千克、45千克.【关键词】5名同学,体重分别为37千克、38千克、41千克、43千克、45千克【例 19】有红、黄、蓝、绿四种颜色的卡片,每种颜色的卡片各有3张.相同颜色的卡片上写相同的自然数,不同颜色的卡片上写不同的自然数.老师把这12张卡片发给6名同学,每人得到两张颜色不同的卡片.然后老师让学生分别求出各自两张卡片上两个自然数的和.六名同学交上来的答案分别为:92,125,133,147,158,191.老师看完6名同学的答案后说,只有一名同学的答案错了.问:四种颜色卡片上所写各数中最小数是多少?【考点】和倍问题 【难度】4星 【题型】解答【关键词】迎春杯,初赛【解析】根据题意可知,6名同学每人都得到给定的4个数中的某2个,而从4个数中选取2个不同的数共有246=C 种不同的方法.而6名同学所给的6个答案中只有1个错误,有5个是正确的,而且这5个正确的答案互不相同,所以这5名同学所拿到的两个数也互不相同.而总共只有6种不同情况,所以给出错误答案的那名同学所拿到的两个数与其他5名同学所拿到的两个数的情况也都不相同.那么本题相当于:有四个数a 、b 、c 、d (<<<a b c d ),每次从中取出两个数,计算它们的和,得到六个和:92,125,133,147,158,191,其中只有一个是错误的,求a 的值.由取法可知,得到的六个和可以两两匹配,即+a b 与+c d ,+a c 与+b d ,+a d 与+b c ,互相匹配的两个和的和是相等的,都等于+++a b c d .而题中的6个数中,92191125158283+=+=,可见283+++=a b c d ,那么六个和数中133和147都可能是错误的.如果147是错误的,那么133是正确的,另一个正确的和数为283133150-=,根据a 、b 、c 、d 的大小顺序,可得92+=a b ,191+=c d ,125+=a c ,158+=b d ,而+a d 与+b c 分别为133和150.再由15892250+++=+=a b b d 得2502+=-a d b ,所以+a d 是偶数,那么150+=a d ,得50=b ,进而得925042=-=a .即四种颜色卡片上所写各数中最小数是42.如果133是错误的,那么147是正确的,同样分析可知,此时四种颜色卡片上所写各数中最小数是35.【关键词】35。
还原问题一.教师

---还原问题(一).教师版————————————————————————————————作者:————————————————————————————————日期:6-1-2.还原问题(一)教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.例题精讲模块一、计算中的还原问题【例 1】一个数的四分之一减去5,结果等于5,则这个数等于_____。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】希望杯,五年级,二试,第3题【解析】 方法一:倒推计算知道,一个数的四分之一是10,所以这个数是104=40⨯。
方法二:令这个数为x ,则1554-=x ,所以40=x 。
【答案】40【例 2】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 分析时可以从最后的结果是10逐步倒着推。
四年级下册数学试题-竞赛思维训练:06还原问题(四年级竞赛)教师版

备课说明:①教学目标:熟练掌握各类型还原问题,会解典型复杂还原问题。
②教学重难点:列表法解复杂还原问题。
一个数量经过若干次变化成了另一个结果,我们从结果出发,根据每一次变化情况,一步一步地倒着想,把结果还原成开始状态,这类问题叫做还原问题,又叫逆运算问题。
对于简单的每一次变化不太复杂的还原问题,可以直接列式一步步倒着推算,对于变化复杂的,可借助列表和画图来帮助解决问题。
请在下列的方框里填上正确的数。
[(□-8)+10]÷7×4=56【答案】96【解答】968107456=+-⨯÷-8+10÷7×45688+898-1014×79688981456×4÷7+10-8有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?某数加上6,再乘以6,再减去6,再除以6,其结果等于6。
则这个数等于______.(新知杯2试真题) 【答案】221【解答】[]224463)104(=÷+⨯+166)666(=-÷+⨯甲、乙、丙三组共有图书90本,乙组向甲组借3本后,又送给丙组5本,结果三个组拥有相等数目的图书。
问:甲、乙、丙三个组原来各有多少本图书? 【答案】甲组33本,乙组32本,丙组25本【解答】尽管甲、乙、丙三个组之间将图书借来借去,但图书的总数90本没有变,由最后三个组拥有相同数目的图书知道,每个组都有图书90÷3=30(本)。
根据题目条件,就能求得三组原来各有多少本图书。
30390=÷ (本) 甲组原有33330=+ (本) 乙组原有325330=+- (本) 丙组原有25530=- (本)甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
(教师版)小学奥数6-1-4 还原问题(二).专项检测题及答案解析

本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题. 1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.一、还原问题 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.模块一、单个变量的还原问题【例 1】 刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.他第一口就喝了整瓶水的一半,第二口又喝了剩下的13,第三口则喝了剩下的14,第四口再喝剩下的例题精讲知识点拨教学目标6-1-2.还原问题(二)15,第五口喝了剩下的16.此时瓶子里还剩0.5升矿泉水,那么最开始瓶子里有几升矿泉水?【考点】单个变量的还原问题 【难度】4星 【题型】解答【关键词】可逆思想方法【解析】 最开始瓶子里有矿泉水:111110.511111323456⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷-⨯-⨯-⨯-⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(升).【答案】3升【例 2】 李白提壶去买洒,遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
壶中原有( )斗酒。
【考点】单个变量的还原问题 【难度】4星 【题型】填空【关键词】可逆思想方法,走美杯,六年级【解析】 设李白壶中原有x 斗酒,则三次经过店和花之后变为0 2[2(21)1]10x ⨯⨯---=870x -= 78x = 即壶中原有78斗酒. 【答案】78斗【例 3】 有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.【考点】单个变量的还原问题 【难度】4星 【题型】填空【关键词】迎春杯,四年级,初赛,3题【解析】 方法一:男生和女生放手分成18个组,说明有男生被计算18次,男生与男生放开手后分成的组数和男生数相同,但是因为是围成了一圈,所以刚刚计算人数会被算成了两次,所以按照逆推的原则,原来有男生30人,被计算302=60⨯(次),所以()60182=21-÷(次)分成了21组。
易错类型04 氧化还原反应(6大易错点)(教师版)

易错类型04 氧化还原反应
【易错点 01】不能正确辨析氧化还原反应有关概念 【易错点 02】不能正确判断物质氧化性或还原性强弱 【易错点 03】不能利用氧化还原反应规律判断反应能否进行 【易错点 04】不能利用氧化还原反应规律判断反应物的反应顺序 【易错点 05】不能正确书写陌生的氧化还原反应方程式 【易错点 06】不能利用守恒律进行氧化还原反应综合判断与计算 易错点 1 不能正确辨析氧化还原反应有关概念
与盐酸反应,生成 NaCl、 CS2 和 H2S ,D 正确;答案选 B。
突破 2 不能正确判断物质氧化性或还原性强弱
【例 3】已知工业上制备氧缺位铁酸盐ZnFe2Ox (3 < x < 4) 的部分流程如图,该方法可实现氮、硫氧化物
的废气利用,转化流程如图所示。
下列有关该转化过程的叙述错误的是
A.若 ZnFe2O4 与 H2 发生反应的物质的量之比为 2:1,则 x = 3.5
到的守恒有电荷守恒、电子守恒、原子守恒。而利用电子守恒思想求解氧化还原问题又是高考重要题型,
解答此类题目应首先找出氧化剂、还原剂及对应的还原产物和氧化产物;再确定一个原子或离子得失电子
数,列出等式关系,对于多步连续进行的氧化还原反应,只要中间各步反应过程中没有损耗,可直接找出
起始物和最终产物,删去中间产物,建立二者之间的电子守恒关系,快速求解。氧化还原反应计算得具体
的性质,则操作 1 的名称为蒸馏,故 B 正确;C.步骤 i 中煅烧绿矾生成 SO2 过程中,S、Fe 的化合价发生 变化,属于氧化还原反应,故 C 错误;D.王水是浓硝酸和浓盐酸按体积比=1:3 的混合物,会腐蚀铁容器,
步骤ⅱ不能在铁容器中进行,故 D 错误;故选 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-1-2.还原问题(一)教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.例题精讲模块一、计算中的还原问题【例 1】一个数的四分之一减去5,结果等于5,则这个数等于_____。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】希望杯,五年级,二试,第3题【解析】 方法一:倒推计算知道,一个数的四分之一是10,所以这个数是104=40⨯。
方法二:令这个数为x ,则1554-=x ,所以40=x 。
【答案】40【例 2】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 分析时可以从最后的结果是10逐步倒着推。
这个数没减去2时应该是多少?没除以2时应该是多少?没乘以3时应该是多少?没加上3时应该是多少?这样依次逆推,就可以推出某数。
如果没减去2,此数是:10212+=,如果没除以2,此数是:12224⨯=,如果没乘以3,此数是:2438÷=,如果没加上3,此数是:835-=,综合算式()1022335+⨯÷-=,原数是5.【答案】5【巩固】 (2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。
【考点】计算中的还原问题 【难度】1星 【题型】填空【关键词】可逆思想方法【解析】 将最终结果进行逆推,得: 666661()⨯+÷-=【答案】1【巩固】 一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 3672416244⨯-+=.【答案】244【巩固】 少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 25255250()+⨯=(个),即共采集了250个树种子.【答案】250【例 3】 学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 根据题意,一个数,经过加法、乘法、减法、除法的变化,得到结果10,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.1010100⨯=,10010110+=,1101011÷=,11101-=综合算式为:1010101010100101010110101011101()()⨯+÷-=+÷-=÷-=-=所以这个数为1.解这种还原问题的关键是从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号,这种逆向思维的方法是数学中常用的思维方法.【答案】1【巩固】 学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.16÷×64-5+3某数 综合算式为:16645396453245329326⨯÷+-=÷+-=+-=-=【答案】26【巩固】 一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分?【考点】计算中的还原问题 【难度】1星 【题型】解答【关键词】可逆思想方法【解析】 从最后一个条件“恰好是100分”向前推算.扩大2倍是100分,没有扩大2倍之前应是100250÷=(分),加上10后是50分,没有加上10前应是501040-=(分),缩小2倍是40分,那么没有缩小2倍前应是40280⨯=(分),减去6后是80分,没有减去6前应是80686+=(分).综合列式为:(100210)26402686÷-⨯+=⨯+=(分),所以,小刚这次竞赛得了86分.【答案】86【例 4】 牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋友们,你知道牛老师今年多少岁吗?【考点】计算中的还原问题 【难度】2星 【题型】解答【关键词】可逆思想方法【解析】 采用倒推法,我们可以从最后的结果“参加活动的总人数”即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少? 没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38830-=;没除以2时应是:30260⨯=;没减去16时应是:601676+=;没乘以2时应是:76238÷=,即[388216] 238()-⨯+÷=(岁).【答案】38岁【巩固】 小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4. 请你算一算,我今年几岁?”【考点】计算中的还原问题 【难度】2星 【题型】解答【关键词】可逆思想方法【解析】 分析时可以从最后的结果是4逐步倒着推。
这个数没除以5时应该是多少?没没加上6时应该是多少?没乘以7时应该是多少?没减去8时应该是多少?这样依次逆推,就可以推出某数。
如果没除以5,此数是:4520⨯=如果没加上6,此数是:20614-=如果没乘以7,此数是:1472÷=如果没减去8,此数是:2810+=综合算式:()4567810⨯-÷+=(岁)答:小康今年10岁。
【答案】10岁【巩固】 在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?【考点】计算中的还原问题 【难度】2星 【题型】解答【关键词】可逆思想方法【解析】 采用倒推法,(100106)41579÷+⨯+=(岁).【答案】79岁【巩固】 学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【考点】计算中的还原问题 【难度】2星 【题型】解答【关键词】可逆思想方法【解析】 这就是一个还原问题,可以用倒推法解决.从结果“2000”逐步倒着推,没乘10时是多少?没减去15时是多少?没除以5时是多少?没加75时是多少?这样依次倒推,就可以知道神仙的年龄了.⑴ “乘以10,恰好是2000”,不乘10时,应该是:200010200÷=⑵ “减去15”是200,不减15时,应该是:20015215+=⑶ “除以5”是215,不除以5,应该是:21551075⨯=⑷ 现在的年龄加上75是1075,如果不加75,这个数是:1075751000-=也就是神仙现在的年龄是1000岁.验算:按原题顺序进行列式计算,看最后是否等于2000,如果等于2000,则解题正确. 1000751075+=,10755215÷=,21515200-=,200102000⨯=.【答案】2000岁【例 5】 在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是 .【考点】计算中的还原问题 【难度】3星 【题型】填空【关键词】可逆思想方法,第七届,小数报【解析】 本题用倒推法解.最后结果是27,上一步的结果是54,再上一步的结果是108或51,原来输入的数是216,105,102.思路如下:21610810554271025148(24()不合意)不合意⎧⎧⎧⎪⎨⎪⎩⎪⎪⎨⎪⎧⎨⎪⎨⎪⎪⎩⎩⎪⎪⎩【答案】216或105或102,答案不唯一【例 6】 假设有一种计算器,它由A 、B 、C 、D 四种装置组成,将一个数输入一种装置后会自动输出另一个数。
各装置的运算程序如下: 装置A :将输入的数加上6之后输出;装置B :将输入的数除以2之后输出;装置C :将输入的数减去5之后输出;装置D :将输入的数乘以3之后输出。
这些装置可以连接,如在装置A 后连接装置B ,就记作:A →B 。
例如:输人1后,经过A →B ,输出3.5。
(1)若经过A →B →C →D ,输出120,则输入的数是多少?(2)若经过B →D →A →C ,输出13,则输入的数是多少?【考点】计算中的还原问题 【难度】3星 【题型】填空【关键词】希望杯,五年级,二试,第16题,可逆思想方法【解析】 方法一:逆向考虑。
(1)输入到D 的数为120÷3=40,输入到C 的数为40+5=45,输入到B 的数为45×2=90,所以输入到A 的数是90-6=84。
(2)输入到C 的数是13+5=18,输入到A 的数是18-6=12,输入到D 的数是12÷3=4,所以输入到B 的数是4×2=8。
方法二:(1)设输入的数是x ,则(653=1202x +⎛⎫-⨯ ⎪⎝⎭解得,x =84。