第四章几何图形初步直线、射线、线段

合集下载

七年级数学上册《第四章-几何图形初步》直线射线线段(三)练习题

七年级数学上册《第四章-几何图形初步》直线射线线段(三)练习题

直线、射线、线段(三)一、选择题1.如图,从A到B有3条路径,最短的路径是③,理由是( )A.因为③是直的 B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短2.如图,在线段AP上取三点B、C、D,则图中共有线段 ( )A.10条 B.8条 C.6条 D.4条3.如图所示,在线段BC上取三点D、E、F,在线段BC外取一点A,连接AB、AD、AE、AF、AC,则图中共有线段 ( )A.8条 B.10条 C.12条 D.15条4.如图所示,下列关系与图中不符合的是 ( )A.AB –CB=A D - BC B.AC+ CD=AB –BD C. AB - CD =AC +BD D. AD-AC= CB-DB第5题图第6题图5.如图,点C在AB上,下列表达式①AC =AB;②AB =2BC;③AC= BC;④AC+ BC =AB中,能表示C是AB中点的有 ( )A.1个 B.2个 C.3个 D.4个6.如图所示,E是AB的中点,F是AE的中点,若BF =6cm,则EF的长度是 ( )A.2cm B.3cm C.4cm D.lcm7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象是 ( )A.①② B.①③ C.②④ D.③④8.已知线段AB= 10cm,PA+ PB= 20cm,下列说法正确的是 ( )A.点P不能在直线AB上 B.点P只能在直线AB上C.点P只能在线段AB的延长线上 D.点P不能在线段AB上二、填空题9.如图,线段AB_____AC +BC,理由是_______两点之间,线段最短____________.10.如图,AC=_______+BC,BD -________=BC.11. 如图,用线段a、b表示线段AD的长,则线段AD=____________12.有四个点(其中任三点不在同一直线上),则连结任意两点,可得____条线段.13.在一条线段上添上一个点,则图中有______条线段,若添上2个点,图中有______ 条线段;添上________个点,能使线段AB上共有15条线段.第9题图第10题图第11题图N的距离是________.15.延长线段AB到C,使BC = 12AB,若AB =8cm,则AC=______第16题图第17题图第19题图16.如图,C、D、E为线段AB上的点,且AC= CD= DE=EB,那么图中有______个点是线段的中点。

《直线射线线段》优秀ppt课件

《直线射线线段》优秀ppt课件

知识点三:线段 7.如图,下列说法正确的是( C )
A.射线AB B.延长线段AB C.延长线段BA D.反向延长线段BA 8.如图,点C,D在直线AB上.
(1)图中射线CD与射线_C__B_表示同一条射线; (2)图中共有__1__条直线,__8__条射线,__6__条线段.
9.已知不在同一条直线上的三点A,B,C,请按下列要求画图. (1)作直线AB; (2)作射线AC; (3)作线段BC. 解:图略
13.同一平面内的三条直线两两相交最多有m个交点,最少有n个交点,则m -n的值为( C ) A.0 B.1 C.2 D.3
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
14.如图,完成下列填空: (1)直线a经过点__A__、点__C__,但不经过点_B___、点__D__; (2)点B在直线__b__上,在直线__a__外; (3)点A既在直线_a___上,又在直线__b__上.
D.2个
3.下列关于直线的说法:①直线是直的,向两端无限伸展;②直线 的长是可以量出来的;③直线有粗细之分;④直线只能向一个方向伸 展.其中正确的有( A ) A.1句 B.2句 C.3句 D.4句
知识点二:射线 4.关于射线的说法正确的是( B ) A.射线是直线的一半 B.射线是直线的一部分,只能向一个方向伸展 C.射线没有端点 D.射线比直线短
《直线、射线、线段》优秀实用课件 (PPT优 秀课件 )
(1)5条直线相交,最多有_1_0__个交点,平面最多被分成_1_6__块; (2)n条直线相交,最多有n_(__n_2-__1_)_个交点,平面最多被分成_n_(__n_2+__1)__+__1_块; (3)一张圆饼切10刀(不许重叠),最多可得到多少块饼? 解:将圆饼切 10 刀,即 n=10,则10×2 11+1=56,所以最多可得到 56 块饼

七年级上册数学第四章几何图形初步知识框架

七年级上册数学第四章几何图形初步知识框架

七年级上册数学第四章几何图形初步知识框架、知识点及中考真题一、知识框架二、具体知识点(一)、几何图形1.平面图形:三角形、四边形、圆等.立体图形,棱柱、棱锥、圆柱、圆锥、球等.2. 立体图形的平面展开图:三视图3. 点、线、面、体:点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. 点动成线,线动成面,面动成体.(二)、直线、射线、线段1、三者的基本区别直线:无端点,表示为直线a或者直线AB 等,不能延长;射线:一个端点,表示为射线AB,能反向延长AB;线段:两个端点,表示为线段AB,能延长线段AB或反向延长线段BA. 2、直线的性质:经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点,叫做线段的中点.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做两点的距离.8、点与直线的位置关系:(1)点在直线上 (2)点在直线外.(三)角1、角的定义:由公共端点的两条射线所组成的图形叫做角.2、角的度量单位及换算:度、分、秒.'601=o "'601=3、角的表示法:常表示成',,,1AOB ∠∠∠∠βα等.4、角的分类锐角、直角、钝角、平角、周角5、角的比较方法: (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值.7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向 (2)北(南)偏东(西)方向 (3)东(西)北(南)方向三、中考真题(2017广东)已知o A 70=∠,则A ∠的补角为( )A .o 110 B. o 70 C. o 30 D. o 20。

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

直线公理
经过两点有一条直线,并且只有一条直线。 (两点确定一条直线。)
直线、线段、射线的表示
用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
l
直线l
a
线段a
l
射线l
1、如何比较两个人的身高? 我身高1.53米, 比你高3厘米。
目测法
我身高1.5米。
(1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.
解:(1)
a b
O c
A (2) C
B
D
针对训练
1、判断:
(1)射线是直线的一部分。 (2)线段是射线的一部分。 (3)画一条射线,使它的长度为3cm。 (4)线段AB和线段BA是同一条线段。 (5)射线OP和射线PO是同一条射线。 (6)如图,画一条线段ab。
解:(1) E
F
C
(2)
A
l
二 射线、线段
类比学习
问题1 类比直线的表示方法,想一想射线该如何表示?
O
A
d
1. 射线用它的端点和射线上的另一点来表示 ( 表示端 点的字母必须写在前面 ) 或用一个小写字母表示 记作: 射线 OA ( 或射线d )
思考: 射线 OA 与射线 AO 有区别吗
问题2 类比直线的表示方法,想一想线段该如何表示?
a
b
(√) (√ )
(× )
(√ )
(× ) (× )
2、用适当语句表述图中点与直线的关系

c

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2 直线、射线、线段1.直线(1)概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的概念,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实际事物进行描述.(2)特点:直线向两方无限延伸,不可度量,没有粗细;并且同一平面内的两条相交直线只有一个交点.(3)直线的基本性质:经过两点有一条直线,并且只有一条直线.即“两点确定一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c或直线l等.另一个是用直线上两个点的大写字母表示,如:直线AB或直线BA.如图:表示为直线l或直线AB(点的字母位置可以交换).(5)直线与点的位置关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例1-1】下面几种表示直线的写法中,错误的是().A.直线a B.直线MaC.直线MN D.直线MO解析:直线的表示法有两种,一种是用一个小写字母表示,另一种是用直线上两个点的大写字母表示,所以直线Ma这种表示法不正确,故选B.答案:B【例1-2】如图,下列说法错误的是().A.点A在直线m上B.点A在直线l上C.点B在直线l上D.直线m不经过B点解析:点与直线有两种位置关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以C错误.答案:C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,其中O是射线的端点.(2)表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c或射线l等,另一个是用射线上两个点的大写字母表示,其中前面的字母表示的点必须是端点.如图:表示为射线l或射线OA.注意:表示射线端点的字母一定要写在前面.(3)特点:射线只有1个端点,向一方无限延伸,因此不可度量.【例2-1】如图,若射线AB上有一点C,下列与射线AB是同一条射线的是().A.射线BA B.射线ACC.射线BC D.射线CB解析:端点相同,在同一条直线上,且方向一致,就是同一条射线,所以B正确.答案:B3.线段(1)定义:直线上两点和它们之间的部分,叫做线段.它是直线的一部分.(2)特点:有两个端点,不能向两方无限延伸,因此它有长度,有大小.(3)表示法:同直线一样,线段也有两种表示法,一种是用一个小写字母表示,如线段a,b,c.另一种是用线段两个端点的大写字母表示.如图:可以表示为:线段AB或线段BA,或线段a.(4)线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,线段最短.”意义:选取最短路线的原则和依据.(5)两点间的距离:连接两点的线段的长度,叫做这两点间的距离.破疑点线段的表示表示线段的两端点的字母可以交换,如线段AB也是线段BA,但端点字母不同线段就不一样.【例3】如图有几条直线?几条射线?几条线段?并写出.分析:直线主要看有几条线向两方无限延伸,图中只有一条;射线主要看端点,再看延伸方向,3个端点,所以有6条,线段主要是看端点,3个端点,所以有3条.解:有一条直线AB(或AC,AD,AE,BE,BD,CD,…);射线有6条:CA,CB,DA,DB,EA,EB.线段有3条:CD,CE,DE.4.线段的画法(1)画一条线段等于已知线段画法:①测量法:用刻度尺先量出已知线段的长度,画一条等于这个长度的线段;②尺规法:如图:画一条射线AB,在这条射线上截取(用圆规)AC=a.(2)画线段的和差测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的长度.如:已知线段a,b(a>b),画线段AB=a-b,就是计算出a-b的长度,画出线段AB等于a-b 的长度即可.尺规法:如图,已知线段a,b,画一条线段,使它等于2b-a.画法:如图,①画一条射线AB,在这条射线上连续截取(用圆规)AC=2b,②再以A为一个端点,截取AD=a,那么DC=2b-a.【例4】如图,已知线段a,b,c,画一条线段,使它等于a+b-c(用尺规法).画法:如图,①画射线(直线也可)AB,在射线AB上分别截取AC=a,CD=b.②以D为一个端点在AD上截取DE=c,线段AE即为所求.5.线段的比较(1)测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.(2)叠合法:把两条线段的一端对齐,放在一起进行比较.如图:①若C 点落在线段AB 内,那么AB >AC ;②若C 点落在线段AB 的一个端点上,那么AB =AC ;③若C 点落在线段AB 外(准确的说是AB 的延长线上),那么AB <AC .谈重点 线段的比较 用叠合法比较两条线段的大小,一端一定要对齐,看另一个端点的落点,测量法要注意单位的统一.【例5】 已知:如图,完成下列填空:(1)图中的线段有________、________、________、________、________、________共六条.(2)AB =________+________+________;AD =________+________;CB =_______+__________.(3)AC =AB -__________;CD =AD -__________=BC -__________;(4)AB =__________+__________.解析:根据图形和线段间的和差关系填空,注意(4)题有两种可能.答案:(1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB 或AC CB6.线段中点、线段等分点(1)定义:点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点.(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点….(3)等量关系:在上图中:AM =BM =12AB ;2AM =2BM =AB . 【例6】 如图,点C 是线段AB 的中点.(1)若AB =6 cm ,则AC =__________cm.(2)若AC =6 cm ,则AB =__________cm.解析:若AB =6 cm ,那么AC =12AB =3(cm). 若AC =6 cm ,那么AB =2AC =2×6=12(cm).答案:3 127.关于延长线的认识延长线是重要的,也是应用较多的几何术语,是初学者最易错,最不好理解的地方,下面介绍几种关于延长线的术语:如图(1)延长线段AB ,就是由A 往B 的方向延长,并且延长线一般在作图中都用虚线表示;如图(2)叫做反向延长线段AB ,就是由B 向A 的方向延长;如图(3)延长AB 到C ,就是到C 不再延长;如图(4)延长AB 到C ,使AB =BC ;如图(5)点C 在AB 的延长线上等.几种常见的错误,延长射线AB 或延长直线AB ,都是错误的,图(6)中只能反向延长射线AB .【例7-1】 若AC =12AB ,那么点C 与AB 的位置关系为( ). A .点C 在AB 上 B .点C 在AB 外C .点C 在AB 延长线上D .无法确定答案:D【例7-2】 画线段AB =5 cm ,延长AB 至C ,使AC =2AB ,反向延长AB 至E ,使AE =13CE ,再计算: (1)线段AC 的长;(2)线段AE ,BE 的长.分析:按要求画图.由画图过程可知:AC =2AB ,且C 在AB 的延长线上,所以AB =BC =12AC ,E 在AB 的反向延长线上,且AE =13CE ,所以AB =BC =AE =5 c m.解:如图:(1)因为AC =2AB ,所以BC =AB =5 cm ,所以AC =AB +BC =5+5=10 (cm).(2)因为AE =13CE ,所以AE =AB =BC =5 cm , 所以BE =AB +AE =5+5=10 (cm).8.线段的计数公式及应用一条直线上有n 个点,如何不重复不遗漏地数出该直线上分布着多少条线段呢?以下图为例:为避免重复,我们一般可以按以下方法来数线段的条数:即A →AB ,AC ,AD ,B →BC ,BD ,C →CD ,线段总数为3+2+1=6,若是更多的点,由以A 为顶点的线段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因此当有n 个点时,以A 为顶点的线段就有(n -1)条,同样以B 为顶点的线段也有(n -1)条,因此n 个顶点共有n (n -1)条线段;但由A 到B 得到的线段AB 和由B 到A 得到的线段BA 是同一条,而每条线段的数法都是如此,这样对于每一条线段都数了2次,所以除以2就是所得线段的实际条数,即当一条直线上有n 个点时,线段的总条数就等于12n (n -1). 【例8-1】 从秦皇岛开往A 市的特快列车,途中要停靠两个站点,如果任意两站之间的票价都不相同,那么有多少种不同的票价?有多少种车票?分析:这个问题相当于一条直线上有4个点,求这条直线上有多少条线段.因为任意两站之间的票价都不相同,因此有多少条线段就有多少种票价,根据公式我们很快可以得出有6种不同的票价,因为任意两站往返的车票不一样,所以,从秦皇岛到达目的地有12种车票.解:当n =4时,有n (n -1)2=4×(4-1)2=6(种)不同的票价.车票有6×2=12(种).答:有6种不同的票价,有12种车票.【例8-2】 在1,2,3,…,100这100个不同的自然数中任选两个求和,则不同的结果有多少种?分析:本题初看似乎和线段条数的计数规律无关,但事实上,若把每个数都看成直线上的点,而把这两个数求和得到的结果看成是1条线段,则其中的道理就和直线上线段的计数规律是完全一致的,因而解法一样,直接代入公式计算即可求出结果.解:不同的结果共有:12n (n -1)=12×100×(100-1)=4 950(种). 答:共有4 950种不同的结果. 9.与线段有关的计算和线段有关的计算主要分为以下三种情况:(1)线段的和差及有关计算,一般比较简单,根据线段间的和差由已知线段求未知线段.(2)有关线段中点和几等分点的计算,是本节的重点,其中以中点运用最多,这也是用数学推理的方式进行运算的开始.(3)综合性的运算,既有线段的和差,也有线段的中点,综合运用和差倍分关系求未知线段.解技巧 线段的计算 有关线段的计算都是由已知,经过和差或中点进行转化,求未知的过程,因此要结合图形,分析各段关系,找出它们的联系,通过加减倍分的运算解决.【例9-1】 如图,线段AB =8 cm ,点C 是AB 的中点,点D 在CB 上且DB =1.5 cm ,求线段CD 的长度.分析:根据中点关系求出CB ,再根据CD =CB -DB 求出CD .解:CB =12AB =12×8=4(cm),CD =CB -DB =4-1.5=2.5(cm). 答:线段CD 的长度为2.5 cm.【例9-2】 如图所示,线段AB =4,点O 是线段AB 上一点,C ,D 分别是线段OA ,OB 的中点,求线段CD 的长.解:由于C ,D 分别是线段OA ,OB 的中点,所以OC =12OA ,OD =12OB ,所以CD =12(OA +OB )=12AB =12×4=2. 答:线段CD 的长为2.10.直线相交时的交点数两条直线相交有1个交点,三条直线两两相交最多有3个交点,那么n 条直线两两相交最多有多少个交点?下面以5条直线两两相交最多有多少个交点为例研究:如图,当有5条直线时,每条直线上有4个交点,共计有(5-1)×5个交点,但图中交点A ,既在直线e 上也在直线a 上,因而多算了一次,其他交点也是如此,因而实际交点数是(5-1)×5÷2=10个,同样的道理,当有n 条直线时,在没有共同交点的情况下,每条直线上有(n -1)个交点,共有n 条直线,交点总数就是n (n -1)个,但由于每一个点都数了两次,所以交点总数是12n (n -1)个. 【例10-1】 三条直线a ,b ,c 两两相交,有__________个交点( ).A .1B .2C .3D .1或3解析:三条直线a ,b ,c 两两相交的情形有两种,如图.答案:D【例10-2】 同一平面内的12条直线两两相交,(1)最多可以有多少个交点?(2)是否存在最多交点个数为10的情况?分析:(1)将n =12代入12n (n -1)中求出交点个数.(2)交点个数为10,也就是12n (n -1)=10,即n (n -1)=20,没有两个相邻整数的积是20,所以不存在最多交点个数是10的情况.解:(1)12条直线两两相交,最多可以有:12n (n -1)=12×12×(12-1)=66(个)交点. (2)不存在最多交点个数为10的情况.11.最短路线选择“两点之间,线段最短”是线段的一条重要性质,运用这个性质,可以解决一些最短路线选择问题.这类问题一般分两类:一类是选择路线,选择从A 到B 的最短路线,连接AB 所得到的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,根据“两点之间,线段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段上的任一点都符合要求.但这类问题往往还有附加条件,如:这点还要在某条公路上,某条河上等,所以要满足所有条件.解技巧 求最短路线 对于第一类问题,只要将A ,B 放到同一个平面上,连接AB 即可得到所需线路.对于第二类问题,连接AB ,它们的交点一般就是所求的点.【例11】 如图(1),一只壁虎要从圆柱体A 点沿着表面尽可能快的爬到B 点,因为B 点处有它要吃的一只蚊子,则它怎样爬行路线最短?分析:要想求最短路线,必须将AB 放置到一个平面上,根据“两点之间,线段最短”,连接AB ,所得路线就是所求路线,因此将圆柱体的侧面展开如图(2)所示,连接AB ,则AB 是壁虎爬行的最短路线.解:在圆柱上,标出A ,B 两点,将圆柱的侧面展开(如图(2)),连接AB ,再将圆柱复原,会得到围绕圆柱的一条弧线,这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时,通常把立体图形展开成平面图形,转化为平面图形中的两点间的距离问题,再用平面内“两点之间,线段最短”求解.。

最新人教版七年级上册数学第四章几何图形初步 直线、射线、线段 第2课时 线段长短的比较与运算

最新人教版七年级上册数学第四章几何图形初步 直线、射线、线段  第2课时 线段长短的比较与运算

易错点:因考虑问题不全面而漏解 12.已知点A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A, C两点间的距离是( D ) A.8 cm B.9 cm C.10 cm D.8 cm或10 cm
13.(北京中考)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为( A)
知识点2:线段的和、差、倍、分 3.如图,下列关系式中与图形不符合的是( B )
A.AD-CD=AC B.AC+CD=BD C.AC-BC=AB D.AB+BD=AD 4.如图,AB=CD,则AC与BD的大小关系是(C )
A.AC>BD B.AC<BD C.AC=BD D.不能确定
5.如果点 B 在线段 AC 上,那么下列表达式中:①AB=12 AC,②AB=BC, ③AC=2AB,④AB+BC=AC,能表示 B 是线段 AC 的中点的有( C ) A.1 个 B.2 个 C.3 个 D.4 个
解:如图
,沿线段AB爬行,根据:两点之间,线段最短
19.(1)如图①,已知点C在线段AB上,线段AC=6 cm,BC=4 cm,M,N分 别是AC,BC的中点,求线段MN的长;
(2)如图①,已知点C在线段AB上,线段AB=10 cm,M,N分别是AC,BC的 中点,求线段MN的长;
(3)如图①,已知点C在线段AB上,线段AB=a cm,M,N分别是AC,BC的中 点,求线段MN的长;
(4)如图②,已知点C在线段AB的延长线上,线段AB=a cm,M,N分别是AC, BC的中点,求线段MN的长.
解:(1)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC=3 cm,CN =12 BC=2 cm.所以 MN=MC+CN=3+2=5(cm) (2)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC+CN=12 AC+12 BC=12 (AC+BC)=12 AB=12 ×10=5(cm) (3)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC+CN=12 AC+12 BC=12 (AC+BC)=12 AB=12 ×a=12 a(cm) (4)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC-CN=12 AC-12 BC=12 (AC-BC)=12 AB=12 ×a=12 a(cm)

部编版数学七年级上册24-第四章直线、射线、线段

部编版数学七年级上册24-第四章直线、射线、线段

当BN=
1 3
BC时,有MN=13
BC-
1 2
AB=4-3=1;
图4-2-14
②如图4-2-15所示,
2
21
当BN= 3 BC时,有MN=3 BC-2 AB=8-3=5.
综上所述,MN的长为7或11或1或5.
图4-2-15
点拨 在求解没有图形的几何题时,应根据题意画出图形,同时注意图形的多样 性,以免漏解.
知识点二 射线
定义
表示方法
图形示例
射线
直线上一点和它一 (1)用表示射线的
旁的部分叫做射 端点和射线上另一 射线OA或射线l 线,这一点叫做射 点的大写字母表示
线的端点
(2)用一个小写字
母表示
特征
①有一个端点; ②有方向; ③无长短
例2 图4-2-2中有几条射线?其中可表示的是哪几条?
图4-2-2
知识点三 线段 8.如图4-2-5所示,线段AB=DE,点C为线段AE的中点,下列式子不正确的是 ( )
A.BC=CD B.CD= 1 AE-AB
2
C.CD=AD-CE D.CD=DE
图4-2-5
答案 D 因为点C为线段AE的中点,且线段AB=DE,所以BC=CD,故A选项正确,不
符合题意;CD=CE-DE= 1 AE-DE= 1 AE-AB,故B选项正确,不符合题意;CD=AD-AC=
5.如图4-2-3:
(1)试验观察: 如果经过两点画直线,那么:
图4-2-3
第1个图形最多可以画
条直线;第2个图形最多可以画
条直线;
第3个图形最多可以画
条直线;
(2)探索归纳:
如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么经过两点最多可

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版
特征 性质 比较线段 的大小
重要提示
内容
(1)连接AB,就是要画出以A、B为端点的线段, 不要向任何一方延伸; (2)画一条线段等于已知线段a,可以用圆规在 射线AC上截取AB=a,也可以先量出线段a的 长度,再画一条等于这个长度的线段
图例
有两个端点,不可延伸,可度量
两点之间,线段最短
(1)度量法:用刻度尺量出两条线段的长度,再比较两者的大小; (2)叠合法:把要比较的两条线段移到同一条直线上,使它们的一个端点重合,另一个端点落在 重合的端点的同一侧,进行比较
(1)两点间的距离:连接两点间的线段的长度,叫做这两点间的距离; (2)线段的中点一定在线段上; (3)“线段”是一个几何图形,而“线段的长度”是一个正数,二者是有区别的,不要混淆
.
例3 如图4-2-3,点A,B,C,D是直线l上的四个点,则图中共有几条线段?
图4-2-3 解析 解法一:(端点确定法) 以点A为左端点的线段有3条:线段AB,线段AC,线段AD;以点B为左端点 的线段有2条:线段BC和线段BD;以点C为左端点的线段有1条:线段CD. 因此共有3+2+1=6(条)线段. 说明:用端点确定法确定线段条数时,直线上的任意一点只能作为左端 点(或右端点),否则线段会重复. 解法二:(画线确定法) 先从左边第一个点(A)开始向右依次画弧线,共有3条,再从第二个点(B) 开始向右依次画弧线,共有2条,再从第三个点(C)开始向右画弧线,共有1 条,最后一点不再考虑.故题图中共有3.+2+1=6(条)线段.
图4-2-5 (2)将射线反向延伸就可得到直线;将线段向一方延伸就可得到射线;将 线段向两方延伸就可得到直线.
.
2.三者的区别如下表:
直线

《直线、射线、线段》PPT课件

《直线、射线、线段》PPT课件

做A、B两点的距离
A
B
连接两点间的线段的长度,叫做这两点的距离.
想一想 绿地里本没有路,为什么大家都喜欢走捷径呢?
两点之间,线段最短.
想一想 公园里设计了曲折迂回的桥,这样做对游人观赏湖面 风光有什么影响?
两点之间,线段最短. 曲折迂回的桥增加了游人在桥上行走的路程, 便于游人欣赏风光.
典型例题
第四章 几何图形初步
4.2 直线、射线、线段
第2课时
学习目标

1. 会用尺规作图画一条线段等于已知线段,会比较两条线段的长短.
线

2. 理解线段等分点的意义.
线
3. 体会文字语言、符号语言和图形语言的相互转化.
线
4. 培养学生对几何图形的兴趣,提高学习几何的积极性.

情境引入 做手工时,在没有刻度尺的条件下,若想从较长的木棍上截 下一段,使其等于短木棒,我们常采用以下办法.
A
C
O DB
解:因为 C,D 分别是线段 OA,OB 的中点,
所以 OC=1 AO,OD= 1 BO.
所以
2
1
CD=OC+OD= 2
2 (OA+OB)=
1 2AB=
1 2
×
4=2.
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
刻度尺: AB<AC
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
探究
线段和射线都是直线的一部分,类比直线的表示方法, 线段和射线又如何表示呢?
图形
a
A
B
表示方法
线段a 线段AB 线段BA
l
O
A

-4.2.1 直线、射线、线段

-4.2.1  直线、射线、线段

知2-讲
①象国旗的旗杆、绷紧的琴弦都可以近似地看作线段. ②将线段向一个方向无限延长就形成了射线. ③将线段向两个方向无限延长就形成了直线.
想一想:线段、射线、直线之间有何异同?
第十七页,编辑于星期五:十七点 二十分。
线段、射线、直线的区别与联系.
知2-讲
类型 线段 射线 直线
端点数
可否延伸
可否度量
2个 1个
无端点
不能延伸
可度量
向一个方向无限
延伸
不可度量
向两个方向无限 延伸
不可度量
第十八页,编辑于星期五:十七点 二十分。
知2-讲
例4 如图所示,A,B,C是同一直线上的三点,
下列说法正确的是( C)
A.射线AB与射线BA是同一条射线
B.射线AB与射线BC是同一条射线
C.射线AB与射线AC是同一条射线 D.射线BA与射线BC是同一条射线
C.只有一个错误
D.只有一个正确
知2-练
第二十四页,编辑于星期五:十七点 二十分。
3 下列说法正确的是( C ) A.射线可以延长
B.射线的长度可以是5 m C.射线可以反向延长
D.射线不可以反向延长
知2-练
第二十五页,编辑于星期五:十七点 二十分。
知2-练
4 将线段AB延长至C,再将线段AB反向延长至
第十九页,编辑于星期五:十七点 二十分。
知2-讲
导引:一条射线可用表示它的端点和射线上另一点
的两个大写字母来表示,表示端点的字母必
须写在前面,所以只有端点相同,并且延伸 方向也相同的射线才是同一条射线.选项A, B中的两条射线端点不同,所以A,B不正确; 选项D中射线BA与射线BC的延伸方向不同,

人教版七年级上册数学第4章 几何图形初步 直线、射线、线段

人教版七年级上册数学第4章 几何图形初步 直线、射线、线段
线段;线段BA(或线段AB).
13.观察下列图形(无三直线共点)找出规律,并解答问题.
(1)5条直线相交(无三直线共点),有______个交点,平面被分 成______块; 10 16
n(n-1) (2)n条直线相交(无三直线共点),有______2______个交点,
平面被分成____n_(_n_2+__1_)+__1______块;
A
9.如图,建筑工人在砌墙时,经常在两个墙角的位置分 别插一根木桩,然后拉一条直的参照线,其运用到的 数学原理是____________________. 两点确定一条直线
10.(1)三条直线a,b,c两两相交,有 ( D )交点. A.1B.2C.3D.1或3
【点拨】三条直线两两相 交,可以分两种情况,如 图①,则只有1个交点;如 图②,则有3个交点.
R版七年级上
第四章几何图形初步
4.2 直线、射线、线段 第1课时 直线、射线、线段
提示:点击 进入习题
1C
2D
3C
4C
5C
答案显示
6B
7C
8A
提示:点击 进入习题
9 见习题
10 见习题
11 见习题 12 见习题
答案显示
13 见习题
14 见习题
1.下列几何语言描述中,正确的是( C ) A.直线mn与直线ab相交于点D B.点A在直线M上 C.点A在直线AB上 D.延长直线AB
(2)假如A,B,C,D,E五个人聚会,每两个人握手一次, 共握手多少次?
解:共握手10次.
【点拨】上述结论可以推广“一条直线上有 n 个点,则 线段条数为n(n2-1)”.这个结论有广泛的应用,比如本 题中的(2)(3)题和将在后面学习的确定角的个数等.

七年级数学第四章几何图形初步4.2直线射线线段第3课时线段的性质及其应用导学案

七年级数学第四章几何图形初步4.2直线射线线段第3课时线段的性质及其应用导学案

4.2 直线、射线、线段第3课时线段的性质及其应用一、导学1.导入课题上节课我们学习了线段的大小比较和线段的和、差、倍、分,本课我们继续探讨线段的有关性质.我们来看下面生活中的情景:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用有关数学知识来说明这个问题。

今天,我们一起来学习有关线段的基本事实——两点之间,线段最短。

2。

三维目标:(1)知识与技能知道两点之间的距离和线段中点的含义。

(2)过程与方法利用丰富的活动情景,让学生体验到两点之间线段最短的性质,并能初步应用。

(3)情感态度初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.4。

自学指导:(1)自学范围:教材第128页“思考”至第129页的内容。

(2)自学时间:5分钟。

(3)自学要求:认真阅读课本,联系生活实际理解领会相应结论.(4)自学参考提纲:①两点的所有连线中,线段最短,简写成:两点之间,线段最短.②用“>"“<”或“=”填空:如图,在△ABC中,AB+AC>BC,AB+BC>AC,BC+AC>AB。

你能说明其中的道理吗?两点之间,线段最短.③你能举例说明“两点之间,线段最短"的实际应用吗?与同学们交流一下。

道路尽可能需要修直一点。

④什么叫两点间的距离?“连接两点间的线段,叫做这两点间的距离”这一说法是否正确?为什么?连接两点间的线段的长度,叫做这两点的距离.不正确,漏掉了线段的“长度”,线段不是距离.二、自学同学们可结合自学指导进行学习.三、助学1。

师助生:(1)明了学情:教师巡视课堂,了解学生的自学情况.(2)差异指导:根据学情进行针对性指导。

2。

生助生:小组同学间相互交流研讨、互助解疑难.四、强化1.两点之间,线段最短。

2。

两点间的距离的意义,注意“数”与“形”的区别.3。

练习:教材第130页第8题.五、评价1.学生的自我评价:让学生交流学习目标的达成情况及学习的感受等。

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

人教版七年级数学上册:第四章4.2《直线、射线、线段》例题与讲解

4.2直线、射线、线段1.直线(1)观点:直线是最简单、最基本的几何图形之一,是一个不作定义的原始的观点,直线常用“一根拉得很紧的细线”,“一张纸的折痕”等实质事物进行描绘.(2)特色:直线向双方无穷延长,不行胸怀,没有粗细;而且同一平面内的两条订交直线只有一个交点.(3)直线的基天性质:经过两点有一条直线,而且只有一条直线.即“两点确立一条直线”.(4)直线的两种表示法:一是用一个小写字母表示:如直线a,b,c 或直线是用直线上两个点的大写字母表示,如:直线 AB 或直线 BA.如图:表示为直线l 的字母地点能够互换).l 等.另一个或直线 AB(点(5)直线与点的地点关系:一是点在直线上,也叫做直线经过这点;另一种是点在直线外,也叫做直线不经过这个点.【例 1- 1】下边几种表示直线的写法中,错误的选项是(A .直线 a B.直线 MaC.直线 MN D.直线 MO分析:直线的表示法有两种,一种是用一个小写字母表示,大写字母表示,所以直线Ma 这种表示法不正确,应选 B.答案: B ).另一种是用直线上两个点的【例 1- 2】如图,以下说法错误的选项是().A .点C.点A 在直线B 在直线m 上l 上B.点 A 在直线 l 上D.直线 m 不经过 B 点分析:点与直线有两种地点关系,一是点在直线上,也称作直线过这点,另一种是点在直线外.所以 C 错误.答案: C2.射线(1)定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.如图就是一条射线,此中 O 是射线的端点.(2)表示法:同直线相同,射线也有两种表示方法,一种是用一个小写字母表示:如射线a,b,c 或射线 l 等,另一个是用射线上两个点的大写字母表示,此中前方的字母表示的点一定是端点.如图:表示为射线l 或射线 OA .(3)特色:射线只有 1 个端点,向一方无穷延长,所以不行胸怀.【例 2- 1】如图,若射线AB 上有一点C,以下与射线AB 是同一条射线的是() .A .射线BAB .射线ACC.射线BC D .射线CB分析:端点相同,在同一条直上,且方向一致,就是同一条射,所以 B 正确.答案: B3.段(1)定:直上两点和它之的部分,叫做段.它是直的一部分.(2)特色:有两个端点,不可以向双方无穷延长,所以它有度,有大小.(3)表示法:同直一,段也有两种表示法,一种是用一个小写字母表示,如段a,b, c.另一种是用段两个端点的大写字母表示.如:能够表示:段AB 或段 BA,或段 a.(4)段的基天性:两点的全部中,段最短,的成:“两点之,段最短.”意:取最短路的原和依照.(5)两点的距离:接两点的段的度,叫做两点的距离.破疑点段的表示表示段的两头点的字母能够交,如段 AB 也是段 BA,但端点字母不同段就不一.【例 3】如有几条直?几条射?几条段?并写出.剖析:直主要看有几条向双方无穷延长,中只有一条;射主要看端点,再看延长方向, 3 个端点,所以有 6 条,段主假如看端点, 3 个端点,所以有 3 条.解:有一条直AB(或 AC,AD,AE,BE,BD ,CD,⋯ );射有 6 条: CA,CB ,DA,DB ,EA,EB .段有 3 条: CD , CE, DE .4.段的画法(1)画一条段等于已知段画法:① 量法:用刻度尺先量出已知段的度,画一条等于个度的段;②尺法:如:画一条射AB,在条射上截取(用 )AC= a.(2)画段的和差量法:量出每一条段的度,求出它的和差,画一条段等于算果的度.如:已知段 a,b(a> b),画段 AB= a-b,就是算出 a- b 的度,画出段 AB 等于 a- b 的度即可.尺法:如,已知段a, b,画一条段,使它等于画法:如,①画一条射AB ,在条射上截取②再以 A 一个端点,截取AD= a,那么 DC=2 b- a.2b- a.(用)AC=2b ,【例4】如,已知段a, b,c,画一条段,使它等于a+b- c(用尺法).画法:如,①画射(直也可 )AB,在射AB 上分截取AC= a, CD= b.②以 D 一个端点在AD 上截取 DE= c,段 AE 即所求.5.段的比(1)量法:就是用刻度尺量出两条段的度,再比它的大小.(2)叠合法:把两条段的一端,放在一同行比.如:①若 C 点落在段AB 内,那么AB> AC;②若 C 点落在段AB 的一个端点上,那么AB= AC;③若 C 点落在段AB 外 (正确的是AB 的延上 ),那么 AB< AC.要点段的比用叠合法比两条段的大小,一端必定要,看另一个端点的落点,量法要注意位的一.【例 5】已知:如,达成以下填空:(1)中的段有 ________ 、 ________、 ________、 ________、 ________ 、 ________共六条.(2)AB= ________+ ________+________ ;AD= ________+ ________; CB= _______+__________.(3)AC= AB-__________ ; CD = AD-__________ = BC- __________ ;(4)AB=__________ + __________.注意 (4)有两种可能.分析:依据形和段的和差关系填空,答案: (1)AC AD AB CD CB DB(2)AC CD DB AC CD CD DB(3)CB AC DB(4)AD DB或AC CB6.段中点、段平分点(1)定:点 M 把段 AB 分红相等的两条段AM 与 MB ,点 M 叫做段 AB 的中点.(2)拓展:把一条段分红相等的三条段的点叫做条段的三平分点⋯.(3)等量关系:在上中:1AM= BM=2AB; 2AM =2BM = AB.【例 6】如,点 C 是段 AB 的中点.(1)若 AB= 6 cm, AC= __________cm.(2)若 AC= 6 cm, AB= __________cm.1分析:若 AB =6 cm,那么 AC=2AB = 3(cm).若 AC= 6 cm,那么 AB= 2AC= 2×6= 12(cm).答案: 3 127.对于延的延是重要的,也是用多的几何,是初学者最易,最不好理解的地方,下边介几种对于延的:如 (1)延段AB,就是由 A 往 B 的方向延,而且延一般在作中都用虚表示;如 (2) 叫做反向延段AB,就是由 B 向 A 的方向延;如(3) 延 AB 到 C,就是到 C 不再延;如(4)延 AB 到 C,使 AB= BC;如 (5)点 C 在 AB 的延上等.几种常有的错误,延长射线AB 或延长直线 AB ,都是错误的,图 (6) 中只好反向延长射线 AB.【例 7- 1】 若 AC =1AB ,那么点 C 与 AB 的地点关系为 ( ).2A .点 C 在 AB 上 B .点C 在 AB 外 C .点 C 在 AB 延长线上D .没法确立 答案: D【例 7- 2】 画线段 AB = 5 cm ,延长 AB 至 C ,使 AC =2AB ,反向延长 AB 至 E ,使 AE=1CE ,再计算:3(1)线段 AC 的长; (2) 线段 AE , BE 的长.剖析: 按要求绘图.由绘图过程可知:AC = 2AB ,且 C 在 AB 的延长线上,所以 AB = BC = 1AC ,E 在 ABAE =1CE ,所以 AB = BC =AE =5 c m. 2的反向延长线上,且3解: 如图: (1) 因为 AC = 2AB ,所以 BC = AB = 5 cm ,所以 AC =AB +BC =5+ 5= 10 (cm) .1(2)因为 AE = 3CE ,所以 AE = AB = BC = 5 cm ,8.线段的计数公式及应用一条直线上有 n 个点,如何不重复不遗漏地数出该直线上散布着多少条线段呢?以以下图为例:为防止重复,我们一般能够按以下方法来数线段的条数:即 A → AB ,AC ,AD ,B → BC , BD ,C → CD ,线段总数为 3+ 2+ 1=6,假如更多的点,由以 A 为极点的线段的条数能够看 出,每个点除了自己之外,和其余任何一个点都能构成一条线段,所以当有 n 个点时,以 A 为极点的线段就有 (n - 1)条,相同以 B 为极点的线段也有 (n - 1)条,所以 n 个极点共有 n(n- 1) 条线段;但由 A 到 B 获得的线段 AB 和由 B 到 A 获得的线段 BA 是同一条,而每条线段的数法都是这样,这样对于每一条线段都数了2 次,所以除以 2 就是所得线段的实质条数,即当一条直线上有 n 个点时,线段的总条数就等于 12n(n - 1).【例 8- 1】 从秦皇岛开往 A 市的特快列车,途中要停靠两个站点,假如随意两站之间 的票价都不相同,那么有多少种不同的票价?有多少种车票? 剖析:这个问题相当于一条直线上有 4 个点,求这条直线上有多少条线段. 因为随意两 站之间的票价都不相同, 所以有多少条线段就有多少种票价, 依据公式我们很快能够得出有 6 种不同的票价,因为随意两站来回的车票不相同,所以,从秦皇岛抵达目的地有 12 种车票.解: 当 n = 4 时,有 n(n - 1)= 4× (4-1)=6(种 )不同的票价.22票有 6× 2= 12(种) . 答: 有 6 种不同的票价,有 12 种 票. 【例 8- 2】 在 1,2,3,⋯, 100 100 个不同的自然数中任 两个乞降, 不同的 果有多 少种?剖析:本 初看仿佛和 段条数的 数 律没关, 但事 上, 若把每个数都当作直 上 的点,而把 两个数乞降获得的 果当作是1 条 段, 此中的道理就和直 上 段的 数 律是完整一致的,因此解法一 ,直接代入公式 算即可求出 果.解: 不同的 果共有: 1n(n - 1)=1× 100× (100- 1)= 4 950(种 ).2 2答: 共有 4 950 种不同的 果. 9.与 段相关的 算和 段相关的 算主要分 以下三种状况:(1) 段的和差及相关 算,一般比 ,依据 段 的和差由已知 段求未知 段.(2) 相关 段中点和几平分点的 算,是本 的要点,此中以中点运用最多, 也是用数学推理的方式 行运算的开始.(3) 合性的运算,既有 段的和差,也有 段的中点, 合运用和差倍分关系求未知段.解技巧 段的 算 相关 段的 算都是由已知, 和差或中点 行 化, 求未知的 程,所以要 合 形,剖析各段关系,找出它 的 系,通 加减倍分的运算解决.【例 9- 1】 如 , 段 AB = 8 cm ,点 C 是 AB 的中点,点 D 在 CB 上且 DB = 1.5 cm ,求 段 CD 的 度.剖析: 依据中点关系求出CB ,再依据 CD = CB - DB 求出 CD.1 1,CD = CB - DB = 4- 1.5= 2.5(cm) .解: CB = AB = ×8= 4(cm)2 2答: 段 CD 的 度 2.5 cm.【例 9- 2】 如 所示, 段 AB = 4,点 O 是 段 AB 上一点, C ,D 分 是 段 OA ,OB 的中点,求 段 CD 的 .解: 因为 C , D 分 是 段 OA ,OB 的中点,1 1111× 4=2. 所以 OC = OA ,OD =2OB ,所以 CD = (OA + OB)=AB = 222 2答: 段 CD 的 2.10. 直 订交 的交点数两条直 订交有1 个交点, 三条直 两两订交最多有 3 个交点,那么 n 条直 两两订交最多有多少个交点?下边以 5 条直 两两订交最多有多少个交点 例研究:如 ,当有 5 条直 ,每条直 上有 4 个交点,共 有 (5- 1)× 5 个交点,但 中交点 A ,既在直 e 上也在直 a 上,因此多算了一次,其余交点也是这样,因此 交点数是(5 - 1)× 5÷2= 10 个,同 的道理,当有 n 条直 ,在没有共同交点的状况下,每条直 上有 (n - 1)个交点,共有 n 条直 ,交点 数就是 n(n - 1)个,但因为每一个点都数了两次,所以交点总数是12n(n - 1)个.【例 10- 1】 三条直线 a , b , c 两两订交,有 __________个交点 ().A . 1B .2C . 3D .1或 3 分析: 三条直线 a ,b , c 两两订交的情况有两种,如图.答案: D【例 10- 2】 同一平面内的 12 条直线两两订交, (1)最多能够有多少个交点? (2)能否存在最多交点个数为 10 的状况?剖析: (1)将 n = 12 代入 1n(n - 1)中求出交点个数. (2)交点个数为 10,也就是1n(n - 1)22=10,即 n(n - 1)= 20,没有两个相邻整数的积是 20,所以不存在最多交点个数是 10 的情况.解: (1)1 2 条直线两两订交,最多能够有:1n(n - 1)= 1×12× (12- 1)=66(个) 交点.2 2 (2)不存在最多交点个数为 10 的状况. 11.最短路线选择“两点之间, 线段最短”是线段的一条重要性质,运用这个性质, 能够解决一些最短路线选择问题.这种问题一般分两类: 一类是选择路线, 选择从 A 到 B 的最短路线, 连结 AB 所获得的线段就是;另一类是选择一个点,使这个点到A ,B 的距离之和最小,依据“两点之间,线 段最短”这条线段上的任一点到A 到B 的距离之和都等于这条线段的长度,所以这条线段 上的任一点都切合要求.但这种问题常常还有附带条件,如:这点还要在 某条公路上,某 条河上等,所以要知足全部条件. 解技巧 求最短路线 对于第一类问题,只需将A ,B 放到同一个平面上,连结 AB 即 可获得所需线路.对于第二类问题,连结 AB ,它们的交点一般就是所求的点.【例 11】 如图 (1) ,一只壁虎要从圆柱体 A 点沿着表面尽可能快的爬到 B 点,因为 B点处有它要吃的一只蚊子,则它如何爬行路线最短?剖析:要 想求最短路线, 一定将 AB 搁置到一个平面上, 依据 “ 两点之间, 线段最短 ” ,连结 AB ,所得路线就是所求路线,所以将圆柱体的侧面睁开如图 (2)所示,连结 AB ,则 AB 是壁虎爬行的最短路线.解:在圆柱上, 标出 A ,B 两点, 将圆柱的侧面睁开 (如图 (2)),连结 AB ,再将圆柱还原, 会获得环绕圆柱的一条弧线, 这条线就是所求最短路线.析规律 立体图形中的最短路线 在立体图形中研究两点之间最短路径问题时, 往常把立体图形睁开成平面图形, 转变为平面图形中的两点间的距离问题, 再用平面内 “ 两点之间,线段最短 ”求解.。

《直线、射线、线段》几何图形初步

《直线、射线、线段》几何图形初步
在现实生活中,射线也有很多应用,如手电筒发出的光线可以看作是一条射线, 用于照明和指示方向。
CHAPTER 03
线段
线段的性质
不可度量
线段是几何图形中最基本 的图形之一,其长度无法 度量。
两点确定
线段是由两个端点确定的 ,且两点之间只存在一条 线段。
端点属性
线段有两个端点,且端点 处只能有一个端点。
线段
线段是两点之间的连接线,具有固定长度。在平面几何中,线段被广泛 应用于各种形状和图形的构建中,如正方形、矩形、三角形等。
在立体几何中的应用
直线
在立体几何中,直线是连接两点之间的最短路径,也是构建三维空 间的重要元素。直线的方向、位置和长度是立体几何中的重要概念 。
射线
在立体几何中,射线通常用于表示从一点出发的光线或某种方向性 ,可以用来构建和解决与方向和角度相关的问题。
射线的长度是无限的 ,无法测量。
射线只有一个端点, 可以向一侧无限延伸 ,不能反向延伸。
射线的表示方法
在几何图形中,通常用一条带 有箭头的直线表示射线。
箭头的方向表示射线的方向, 箭头的长度表示射线的长度。
射线的端点通常用字母或符号 表示。
ቤተ መጻሕፍቲ ባይዱ
射线的应用
射线在几何学中有着重要的应用,如在证明平行线、垂直线等几何定理时常常用 到射线的性质。
长度问题
总结词
相等长度、不等长度、长度之和、长度之差
详细描述
在几何图形中,长度是一个重要的属性。这涉及到相等长度、不等长度、长度之和和长度之差等问题。例如,在 等边三角形中,三条边的长度相等;而在矩形中,两条相邻的边长度不等。此外,通过加法和减法可以计算出不 同线段的长度之和和长度之差。

《直线、射线、线段》是新人教版七年级上册第四章《图形认识初步》

《直线、射线、线段》是新人教版七年级上册第四章《图形认识初步》

创设情境引入新课【投影】上海南浦大桥、王义夫射击、列车轨道等图片。

1、工人砌墙时,如何拉参照线?木工师傅锯木板时,怎样弹墨线?2、现实生活中美妙的图案,都是由一些基本的图形组成的,今天就要学习有关这方面的知识。

观看投影中的图片同桌之间互相交流积极思考、议论并回答问题。

创设问题情境,引导学生积极思考,激发学生对几何的学习兴趣。

合作交流解读探究1、两点确定一条直线【想一想】要在墙上固定一根木条,使他它不能转动,至少需要几个钉子?【想一想】如图,经过一点O画直线,能画出几条?经过A、B两点呢?经过探究我们得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简称为:两点确定一条直线。

“经过两点有一条直线,并且只有一条直线”,可以说明生活中的哪些现象?(多媒体演示砌墙、植树、挂窗帘、射击中运用到“两点确定一条直线”的实例)2、直线的表示方法【想一想】我们怎样用英文字母来表示一条直线呢?根据学生的回答,教师小结。

(1).用一个小写英文字母来表示,如:直线l.(2).用两个大写英文字母来表示,如:直线AB(或直线BA)3、直线与点的位置关系怎样呢?(强调几何语言的表述)4、两条直线有一个公共点时,称这两条直线相交。

这个公共点叫做交点。

(强调对“两条直线相交”及“交点”的理解)观察、画线并交流学生在教师的引导下理解其含义。

小组交流对直线的认识(延伸趋势、端点个数)小组交流、默读、记忆。

观察、交流、举例。

看课本P128页最后一段内容. (图4.2-3)看课本P129页的图4.2-4并交流.看课本P129页的图4.2-5并交流.让学生自己归纳性质,在小组交流中完善表述。

利用生活中的现象和实例,使学生体会到研究几何图形的意义。

在得出关于直线的基本事实后,再给出直线的表示方法,有助于学生的理解。

让学生学会用几何语言表述点和直线、直线和直线的位置关系。

举一反三思维拓展线段和射线1、线段、射线的表示方法和直线一样也有两种,用两个大写英文字母来表示,如:线段AB(或线段BA)用一个小写英文字母来表示,如:线段l、射线b.但表示射线端点的字母必须写在前面,不能互换。

《直线、射线、线段》课标要求

《直线、射线、线段》课标要求

《直线、射线、线段》课标要求人教版七年级上册第四章“几何图形初步”第2节“直线、射线、线段”主要介绍了直线、射线、线段的概念和性质、表示、画法等内容.《义务教育数学课程标准(2011年版)》对这一节内容提出了如下教学要求:1.会比较线段的长短,理解线段的和、差,以及线段中点的意义.2.掌握基本事实:两点确定一条直线.3.掌握基本事实:两点之间线段最短.4.理解两点间距离的意义,能度量两点间的距离.5.能用尺规《直线、射线、线段》课标解读安徽省无为县刘渡中心学校丁浩勇一、课标要求人教版七年级上册第四章“几何图形初步”第2节“直线、射线、线段”主要介绍了直线、射线、线段的概念和性质、表示、画法等内容.《义务教育数学课程标准(2011年版)》对这一节内容提出了如下教学要求:1.会比较线段的长短,理解线段的和、差,以及线段中点的意义.2.掌握基本事实:两点确定一条直线.3.掌握基本事实:两点之间线段最短.4.理解两点间距离的意义,能度量两点间的距离.5.能用尺规作一条线段等于已知线段.二、课标解读1.直线、射线和线段是一些重要而基本的几何图形,有关直线、射线和线段的概念、性质、表示方法、画法、大小比较等知识,都是重要的几何基础知识,是学习后续图形与几何知识,以及其他数学知识的必备的知识基础.在小学阶段,学生对于直线、射线、线段等图形与几何内容已经有了初步的、感性的了解,但小学时的认识比较粗浅,有必要在初中阶段全面、深入地学习,逐步提高到理性认识的水平.2.本节关于直线的基本事实:经过两点有一条直线,并且只有一条直线.它在实际生活中有着广泛的应用.线段与射线是与直线密切相关的两个基本概念,它们的表示、画法、比较,以及线段的和与差等内容是以后学习几何与图形知识的基础.在图形与几何内容教学中,图形的画法是一个重要内容,因此在教学中应该引起重视.3.线段的基本事实“两点的所有连线中,线段最短”是一个重要的性质,在解决许多问题尤其是解决有关线路长短之类的几何不等式问题中有关广泛的应用.教学中要让学生通过思考、探究、比较得到以上的基本事实,并举例说明其应用.4.“作一条线段等于已知线段”是最常用、最基本的尺规作图问题,由于免去了度量,准确度更高些.在以后的几何学习和工程绘图中,经常应用.另外它可以帮助学生理解“尺规作图”的定义,为以后学习其它尺规作图打下基础.作一条线段等于已知线段.《直线、射线、线段》教材分析安徽省无为县刘渡中心学校丁浩勇本节课学习的是直线、射线、线段的概念、性质、表示方法及画法,这些内容是几何学习的重要基础,也是后续图形学习不可或缺的前提条件.直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的几何图形的表示法、几何语言等,也是今后系统学习几何所必需的知识,因此本节课的学习起着奠基的作用.直线、射线、线段的概念学生在前面两个学段已经学习过,因此教科书并没有从它们的概念开始介绍,而是直接通过思考和画图开门见山地学习直线的基本事实,学生通过动手亲自尝试,得到“两点确定一条直线”这个基本事实.这个基本事实又被称为“直线公理”,非常好地刻画了直线这种最基本的几何图形.接着,教科书介绍了关于直线的基本事实的实际应用,直线的符号表示,以及相交直线的概念.线段和射线是与直线密切相关的两个基本概念,教科书引导学生类比直线学习线段与射线的画法和符号表示,以及直线、线段与射线之间的联系与区别.本节课是实际意义上的几何起始课.学生在前一节的学习中对几何图形的认识更多的停留在形象化的“感性认识”,而中学学段的几何学习更重视严谨的“逻辑论证”.所以从本节课“图形与几何”的教学中应注意督促学生亲自动手落笔画图,而不能仅仅停留在教师的示范上.教学中,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法.本节课的教学重点是直线的基本事实和直线、射线、线段的表示方法.本节课的教学难点是直线、射线、线段的表示方法及三种数学语言“文字语言、符号语言、图形语言”之间的转换.《直线、射线、线段》重难点突破安徽省无为县刘渡中心学校丁浩勇1.直线的基本事实突破建议:直线的基本事实:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.这个基本事实又被称为“直线公理”.这个基本事实是对直线的一个重要刻画,对这个基本事实的表述方法,学生不太熟悉,要使学生清楚“确定”包含两层意思:一层意思是经过两点有一条直线(“有”──存在性),另一层意思是经过两点只有一条直线(“只有”──唯一性).教学中,学生通过动手实践自主探索得出直线的基本事实,理解“确定”的含义中的存在性与唯一性,并能举出一些实例,说明这一事实在生产生活中的应用.为进一步理解此基本事实,也可以与经过两点的曲线有无数条的事实作比较,在比较中加深对基本事实的认识.例1 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是( ).A.线段有两个端点B.两条直线相交,只有一个交点C.直线是向两边无限延伸的 D.两点确定一条直线解析:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是“两点确定一条直线”.故本题选择D.2.直线、射线、线段的联系与区别突破建议:直线、射线、线段是相近的概念,学生容易混淆,要在复习前面知识的基础上,说明射线和线段是直线的一部分,指出它们的联系;再从端点个数和延伸情况等方面来分析它们的区别.图形表示方法延伸性端点个数有无长度作法直线直线AB(或直线BA)直线向两端无限延伸个无过点A、B作直线AB射线射线OA射线向一端无限延伸1个无以A为端点作射线AB线段线段AB(或线段BA)线段不可延伸2个有连接点A、B教学直线、射线、线段的画法时,要让学生掌握:在画线段时,不要向任何一边延伸;画射线时,要向一旁延伸;画直线时,要向两边延伸.例2.观察下边的图形,下列说法中正确的个数是( ).(1)直线BA和直线AB是同一条直线;(2)射线AC和射线AD是同一条射线;(3)线段BD和DB是两条不同的线段;A.0个 B.1个 C.2个 D.3个解析:本题考查直线、射线、线段的表示.(1)直线没有端点,所以“直线BA和直线AB是同一条直线”正确;(2)射线AC和射线AD都是以A为端点,同一方向的射线,所以“射线AC和射线AD是同一条射线”正确;(3)线段BD和DB是一条线段的不同表示方法,所以此种说法错误;因此共有2个正确.故选C.例3 如图,对于直线AB、线段CD、射线EF,其中能相交的是( ).解析:本题考查直线、射线、线段的特征.判断能否相交,取决于各种“线”的特征.因为直线向两方无限延伸;射线和线段是直线的一部分,射线向一方无限延伸,线段不延伸.据此可判断选项B中直线AB和射线EF能相交.答案选B.3.图形与语句间的转换突破建议:图形与语句间的转换是学习几何知识的基本能力.要做到:能按给出的语句画出图形、能用适当的语句表述已给图形.本课时除了要掌握直线、射线、线段的表示外,还需要掌握点和直线的位置关系以及两条直线相交的表示等.图形表示点与直线的位置关系点O在直线上(直线经过点O)点P在直线外(直线不经过点P)两直线相交直线和相交于点O例4如图所示,用恰当的语句描述图形.解析:本题考查将图形语言转换为符号语言.图(1):点A、B、C三点在同一条直线上,或点A在直线BC上,或点B在直线AC上,或点C在直线AB上;图(2):直线AB、CD、EF交于点O.例5 如图所示,平面上有三点A、B、C.①按下列语句画出图形;a.画直线AB;b.画射线AC;c.连接BC;②指出图中有几条线段;③指出图中有几条射线,并写出其中能用字母表示的射线.解析:本题综合考查语句与图形之间的转换.①如图所示:②图中有3条线段,分别为线段AB、AC、BC;③图中有6条射线,能用字母表示的射线有:射线AB、BA、AC.《直线、射线、线段》同步试题安徽省巢湖市春晖学校李仁久一、选择题1.如果你想将一根细木条固定在墙上,至少需要钉几个钉子( ).A.一个 B.两个 C.三个D.无数个考查目的:考查直线的基本性质.答案:B.解析:两点确定一条直线,故固定一根细木条至少需要两个钉子.2.下列说法中,正确的是().A.射线AB和射线BA是同一条射线 B.延长射线MN到CC.点A和直线的位置关系有两种D.两两相交的三直线有3个交点考查目的:考查直线、射线和线段的表示及对几何语言的理解能力.答案:C.解析:射线的表示方法是第一个字母表示是端点,第二个字母表示延伸方向,不可以颠倒,所以A选项错误;射线MN就是从M向N方向延长的,不可以说延长射线MN,所以B选项错误;两两相交的三直线交点有两种情况,可能是1个交点,也可能是3个交点,所以D选项错误;点A和直线的位置关系只能是在直线上或在直线外这两种,选项C正确.3.下列图形中,线段、直线、射线能够相交的是().考查目的:考查直线、射线和线段的基本性质.答案:A.解析:根据直线能够向两个方无限延伸,射线只能向一方无限延伸,线段不能延伸进行判断.A 图中对应的是两条直线,且不平行,所以能够相交.二、填空题4.在植树造林活动中,为了使所栽小树整齐成行,小颖建议大家先确定两个树坑的位置,然后就能确定同一行树坑的位置了,这里用到的数学知识是“________________”.考查目的:考查直线的基本性质.答案:两点确定一条直线.解析:根据直线的基本性质,两点确定一条直线,故同一行树坑的位置,应该在先前两个树坑确定的那条直线上.5.如图,图中可以用字母表示的直线有________条,射线有_______条,线段有________条.考查目的:考查直线、射线和线段的概念及表示方法.答案:1,6,6.解析:有1条直线,即直线AC;有6条射线,即射线AC,射线BA,射线BC(或射线BD),射线CA,射线CD,射线DA;有6条线段,即线段AB,线段AC,线段AD,线段BC,线段BD,线段CD.6.下面关于两条直线相交的语句,说法正确的是__________.(填写序号即可)①直线,直线相交于点M;②直线,直线相交于点;③直线AB,直线CD相交于点;④直线AB,直线CD相交于点M.考查目的:考查两条直线及其相交关系的表示方法.答案:④.解析:直线表示一般用一个小写字母或直线上的两个大写字母表示,点用一个大写字母表示.所以以上说法,只有说法④符合要求.三、解答题7.下图有四个点A,B,C,D,按照下列语句画图:(1)画出直线CD;射线AB;(2)画出射线BC,连接DB;(3)画出线段CA;(4)画出线段AD并反向延长AD.考查目的:考查直线、射线、线段的区别,文字语言、图形语言的表示等.答案:如图所示:解析:(1)根据直线和射线的定义直接画出即可;(2)根据射线的定义直接画出,按题目要求直接连接两点即可;(3)按题目要求直接连接C、A两点即可;(4)按题目要求直接连接A、D两点,然后延长DA即可,实际画出的就是射线DA.8.平面上有四个点,过其中每两点画出一条直线,可以画多少条直线,画图说明.考查目的:考查直线的基本性质,以及分类讨论思想.答案:1条,或4条,或6条,图形如下:解析:平面上四点的位置关系由三种情况,再根据这三种情况思考、画图即可.平面上的四个点可能在同一条直线上,这时可以画一条直线;平面上的四个点若有其中三点在同一条直线上,这时可以画四条直线;若平面上的四个点任意三点均不在同一条直线上,则可以画六条直线.。

人教版数学七年级上册第四章几何图形初步(教案)

人教版数学七年级上册第四章几何图形初步(教案)
2.培养学生的抽象思维能力,通过对线段、射线、直线、角、三角形、四边形等多边形的研究,形成对几何图形特征的概括和推理能力。
3.培养学生的逻辑思维和推理能力,能够运用所学几何知识进行严密的论证和解决问题。
4.培养学生的创新意识和实践能力,通过平面图形的密铺等实际应用,激发学生将几何知识应用于现实生活的兴趣,提高解决实际问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线、直线等基本概念。线段是有两个端点的有限长度的部分,射线是一个端点出发无限延伸的部分,直线则是无端点无限延伸的部分。它们是构成各种几何图形的基础,也是我们研究几何学的重要起点。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们教室的黑板边缘可以看作是一条直线,而黑板擦则可以看作是一个线段。这些实际例子能帮助我们更好地理解几何图形的概念。
-多边形的内角和与外角和定理:理解并掌握多边形内角和与外角和的计算方法,能够应用于实际计算。
-举例:三角形的内角和为180度,外角和为360度;四边形的内角和为360度,外角和为360度。
2.教学难点
-线段、射线、直线的区分与应用:学生容易混淆线段、射线、直线的概念,需通过实例讲解和练习加强理解。
-举例:线段AB与射线AB的区别在于射线无限延伸,而线段有限定长度。
3.重点难点解析:在讲授过程中,我会特别强调线段、射线、直线的区别和多边形的内角和与外角和的计算。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与几何图形相关的实际问题,如三角形和四边形的性质和应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量角的度数,或用几何图形拼图来理解平面图形的密铺。

202年初中数学七年级上册第四单元几何图形初步认识03 图形的认识(3)直线、射线、线段

202年初中数学七年级上册第四单元几何图形初步认识03 图形的认识(3)直线、射线、线段

4.2 直线、射线、线段一、有关概念:(1) 经过两点有一条直线,并且只有一条直线。

简单说成:两点确定一直线我们经常用一条直线上的两点来表示这条直线。

直线AB 或直线L(2) 当两条不同的直线有一个公共同点时,我们就称为两条直线相交,这个公共点叫做它们的交点。

点P 在直线AB 外,(直线AB 不经过点P) 直线a 和b 相交于点O 点O 在直线AB 上,(直线AB 经过点0) (3) 线段和射线线段AB 或线段a 射线0A 或射线L(3)在数学中,我们常限事实上用无刻度的直尺和圆规作图,这就是尺规作图。

①作一条线段等于已知线段 ②比较两条线段的大小(4)点M 把线段AB 分成线段AB 与MB ,点M 叫做线段AB 的中点。

如果AM=MB 即点M 是线段AB 的中点(5)两点的所有连中,线段最短。

简单说:两点之间,线段最短。

(6)连接两点间的线段的长度,叫做这两点的距离。

BLa boPBoaL概念题1、直线的公理把一根木条用一颗铁钉能固定,使它不能转动吗?。

如果要固定它,你认为至少需要颗铁钉。

经过一点O画直线,能画出条?经过两点A、B能画条。

2、直线的表示方法:直线可有种表示方法,他们分别是:;。

请分别画图说明:3、一个点与一条直线的位置关系:一个点与一条直线会有种位置关系。

他们分别是:,也可以说是;,也可以说是。

请分别画图说明:4、两条不同的直线相交:当两条不同的直线时,称这两条直线相交;是交点。

请分别画图说明:5、射线和线段的表示方法射线和线段都是直线的。

类似于直线的表示方法,射线可有种表示方法,他们分别是:;。

请分别画图说明:线段可有种表示方法,他们分别是:;。

请分别画图说明:6、两点间的距离连接两点间的,叫做这两点的。

(4)4.2 直线、射线、线段(第一课时)认识直线射线线段1.按下列语句画出图形(1)直线EF 经过点C ; (2)点A 在直线d 外(3)经过点O 的三条线段a 、b 、c ; (4)线段AB 、CD 相交于点B 。

初中数学七年级《比较线段的大小》优秀教学设计

初中数学七年级《比较线段的大小》优秀教学设计

第四章几何图形初步4.2 直线、射线、线段:比较线段的大小一、教材分析:本节课是人教版七年级上册第四章《几何图形初步》——《 4.2直线、射线、线段》第2课时,学生在初步认识了直线、射线和线段的定义、几何表示方法和直线的基本性质的基础上进一步学习线段的相关知识点,是今后学习几何知识的基础,因此本节课都起着不容忽视的作用。

二、学情分析:本节课的授课对象是七年级学生,他们的思维已经开始具备符号性和逻辑性,但还是不能完全离开具体事物的支持。

七年级学生活泼好动,充满好奇心,模仿能力较强,具备了一定的学习能力,同时他们爱发表意见,希望得到老师和同学的关注。

在教学中应借助生活中的例子,通过具体问题的指引,让学生进行动手操作等,引发学生的兴趣,充分体现学生学习的主体性,以使最终能完成教学目标。

学生此前虽初步认识了线段、射线与直线,但他们对正确使用几何语言表示线段中点,掌握形与数量关系,利用线段的和、差关系求线段的长短,存在困难,因此需要教师的引导。

三、教学三维目标:(一)知识与技能:1.通过现实情境感受线段大小的比较,掌握比较线段大小的方法(借助直尺、圆规等工具比较两条线段的长短)2.通过动手操作,会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段3.理解和掌握线段的和、差,并利用线段的和、差求线段的长度4.理解线段中点、三等分点、四等分点的定义,并掌握相关的形与数量关系(二)过程与方法:通过对知识的建构,初步培养学生观察、类比、归纳以及几何语言和文字语言互相转化的能力,培养学生抽象概括的能力。

(三)情感态度与价值观:在图形的基础上发展数学语言,体会研究几何的意义四、教学重点:1.线段长短比较2.会用尺规作图画一条线段等于已知线段,并能画出不同要求的线段,掌握线段的和、差3.线段中点的形与数量关系五、教学难点:1.会用尺规作图画出不同要求的线段2.利用线段的和、差求线段的长度3.线段中点的表示方法及运用六、教学方法与手段:以启发式教学为主的教法以及自主探究、合作学习的学法。

七年数学上册第4章几何图形初步42直线射线线段第1课时直线射线线段目标一直线及其性质习题课件

七年数学上册第4章几何图形初步42直线射线线段第1课时直线射线线段目标一直线及其性质习题课件

7 平面内四条直线最少有a个交点,最多有b个交点,则
a+b的值为( A )
A.6
B.4
C.2
ห้องสมุดไป่ตู้
D.0
8 (1)三条直线a,b,c两两相交,有( D )个交点.
A.1
B.2
C.3
D.1或3
【点拨】
三条直线两两相交,
可以分两种情况,如图①,
则只有1个交点;如图②, 则有3个交点.
(2)过平面内四个点中的每两个点画直线,可以画 _1_或__4_或__6__条.
【点拨】 过平面内四个点中的每两个点画直线分三种情
况,一是四点共线,二是三点共线,三是不共线, 分别可以画1条、4条和6条直线.本题易因考虑问题 不全面而导致漏解.
9 【教材P130习题T12拓展】观察下列图形(无三直线共点), 找出规律,并解答问题.
(1)5条直线相交(无三直线共点),有___1_0__个交点,平面
②如图②,经过平面上不在同一直线上的四个点,最 多可以画____6____条直线;
③如图③,经过平面上不在同一直线上的五个点,最 多可以画___1_0____条直线.
(2)探索归纳: 如果平面上有n(n≥3)个点,且没有3个n(点n在-同1)一条直线 上,那么经过这些点最多可以画________2________条直 线(用含n的代数式表示).
2 下列图示中,直线表示方法正确的有( D )
A.①②③④ C.②④
B.①② D.①④
3 关于下图叙述错误的是( D ) A.直线l经过点A B.点P在直线l外 C.直线l与直线AB表示同一条直线 D.直线BA与直线AB不是同一条直线
4 下列语句规范的是( B ) A.直线a,b相交于点n B.直线AB,CD相交于点M C.直线ab,cd相交于点M D.直线A,B相交于点M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0个0个
不不可可 度度量量
射线
·
A
B· l
1.射线AB 2.射线l
向一端 无限延 伸
1个1个
不不可可 度度量量
1.线段AB
线段

a
B·2(.线或段线a段BA)
不可延 伸
2个2个
可可度度 量量
六、合作交流,再获新知
问题10 如图,经过刨平的木板上的两个点,能弹出一条 笔直的墨线,此操作的依据是( D ).
的关系.
l

·A

a A
b
B
C
c
五、即时练习,巩固新知
(2)按下列语句画出图形: ①直线EF经过点C; ②点A在直线 l 外; ③直线AB与直线CD相交于点A.


F
·

·A
l


D· A·
·
C

六、合作交流,再获新知
问题7 射线和线段都是直线的一部分,类比直 线的表示方法,你认为应怎样恰当地表示射线和线段 呢?请你举出一些生活中能看成射线、线段的实例.
·O

B·
二、动手操作 探究新知
基本事实: 经过两点有一条直线,并且只有一条直线. 简单说成:两点确定一条直线.
三、生活实例 应用新知
问题3 你还能举出一些实际生活中应用“两点确 定一条直线”的实例吗?
四、归纳完善,丰富新知
问题4 结合直线自身的特点,请同学们想一想, 我们该怎样表示一条直线呢?这样表示有什么道理?
问题13 通过本节课的学习,你知道了什么? 学会了什么?领悟了什么?
作业:教科书 习题4.2 第1、2、3、4题.
l
●P

O
b

O a
四、归纳完善,丰富新知
归纳:
(1)点与直线的位置关系: 点O在直线l上(直线O经过点l); 点P在直线l外(直线l不经过点P).
(2)当两条不同的直线a与b有一个公共点O时,我 们称这两条直线相交,这个公共点叫做它们的交点.
l
·P

b
O a
五、即时练习,巩固新知
问题6 (1)用恰当的语句描述图中点与直线,直线与直线
No Image
(4)三条直线两两相交时,一定有三个交点.
A.1个 B.2个 C.3个 D.4个
六、合作交流,再获新知
问题12 按下列语句画出图形: ①点A在线段MN上;③经过O点的三条线段a,b,c;
MA N
ab Oc
②射线AB不经过点P;④线段AB、CD相交于点B.
P ●
A
B
A C
D B
七、课堂小结,布置作业
No Image
A.线段有两个端点; B.两条直线相交,只有一个交点; C.直线是向两边无限延伸的; D.两点确定一条直线.
六、合作交流,再获新知
问题11
ห้องสมุดไป่ตู้
观察图形,下列说法中正确的个数是( B ).
(1)直线BA和直线AB是同一条直线; (2)射线AC和射线AD是同一条射线; (3)线段BD和DB是两条不同的线段;
直线有两种表示方法:
(1)可以用一个小写字母表示
直线:
直线l.
l

A
(2)因为两点确定一条直线,
所以也可以用直线上的两点表

B
示直线:
直线AB.
四、归纳完善,丰富新知
问题5 当点与直线、直线与直线同时在一个图形 中出现的时候,我们应怎样描述它们之间的关系呢? 如图,试着描述图中点与直线、直线与直线的关系.
第四章 几何图形初步 直线、射线、线段
安徽省无为县刘渡中心学校 丁浩勇
一、以旧悟新,探求新知
问题1 我们在小学,已经学习过直线、射线和 线段,请同学们回忆一下它们的形状,并分别画出一 条直线、射线和线段.
二、动手操作 探究新知
问题2 如图,经过一点O画直线,能画几条?经 过两点A、B呢?动手试一试.
问题8 (1)已知线段AB,你能由线段AB得到直线AB和 射线AB吗? (2)能否用几何语言简要描述一下直线、射线、 线段?
六、合作交流,再获新知
问题9 填写表格,归纳直线、射线、线段的联系与 区别.
名称 图形
表示
延伸 端点 度量
直线

1.直线AB
B· l
(或直线BA) 2.直线l
向两端 无限延 伸
相关文档
最新文档