有理数知识点及经典题型

合集下载

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题

一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

[基础练习] 1☆把下列各数填在相应额大括号内: 1,-,-789,25,0,-20,,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, , 1, 03下列语句中正确的是( )A数轴上的点只能表示整数 B数轴上的点只能表示分数C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) ,三、【相反数】的概念像2和-2、-5和5、和这样,只有 不同的两个数叫做互为相反数。

0的相反数是 。

一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质: 1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。

初一有理数的重点题型

初一有理数的重点题型

初一有理数的重点题型(实用版)目录一、有理数的概念与分类二、有理数的运算1.加法2.减法3.乘法4.除法三、有理数的性质与规律1.有理数的符号规律2.有理数的绝对值3.有理数的倒数四、有理数的应用题1.算术题2.代数题3.几何题正文一、有理数的概念与分类有理数是指可以表示为两个整数之比的数,其中分母不为零。

有理数可以分为正有理数、负有理数和零,根据它们的符号和绝对值的大小可以进一步细分。

二、有理数的运算1.加法:两个有理数相加,将它们的分子相加,分母保持不变。

如果相加后的结果可以约分,需要将结果约分为最简有理数。

2.减法:两个有理数相减,将它们的分子相减,分母保持不变。

如果相减后的结果可以约分,需要将结果约分为最简有理数。

3.乘法:两个有理数相乘,将它们的分子相乘,分母相乘。

如果乘积后的结果可以约分,需要将结果约分为最简有理数。

4.除法:两个有理数相除,将被除数的分子除以除数的分子,分母保持不变。

如果除法后的结果可以约分,需要将结果约分为最简有理数。

三、有理数的性质与规律1.有理数的符号规律:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

2.有理数的绝对值:有理数的绝对值是它到零点的距离,无论正负,绝对值都是非负数。

3.有理数的倒数:一个有理数的倒数是它的分子和分母交换位置后得到的新有理数,注意零没有倒数。

四、有理数的应用题1.算术题:涉及有理数的加减乘除等基本运算,需要熟练掌握有理数的运算法则。

2.代数题:涉及有理数的符号规律、绝对值、倒数等性质,需要灵活运用有理数的性质解决问题。

3.几何题:涉及有理数与几何图形的关系,如计算线段长度、角度等,需要将几何问题转化为有理数问题,再运用有理数的知识求解。

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。

第1章:《有理数》知识点及考点典例

第1章:《有理数》知识点及考点典例

第一章:《有理数》知识点及考点典例第1讲:有理数的相关概念一、重点知识回顾1、具有______________的量(正数、负数)2、_________和__________统称有理数。

3、有理数按符号分类可分为___________、____________和_____________。

4、“四非”:非负数指____________,非正数指___________,非负整数指______________,非正整数指____________。

5、数轴的定义:规定_____________________________________。

(三要素)6、_________________两个数叫做互为相反数。

若a、b互为相反数(b≠0),则_________________。

7、倒数的定义是__________________。

若a、b互为倒数,则ab= ________________。

8、绝对值的定义是:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

(|a|≥0)绝对值的几何意义是_____________________________。

绝对值的代数意义是_____________________________。

9、两个有理数的比较_____________________________。

10、科学计数法:把一个大于10的数表示成_________________的形式。

(1≤a <10)11、近似数:一个数四舍五入到哪一位就说这个数精确到那一位。

二、典型例题剖析例1:下列说法正确的是()(A)小数3.14不是分数(B)正整数和负整数统称整数。

(C)有理数可用数轴上的点来表示,且越靠近正方向表示的数就越大。

(D)数轴上的点与有理数一一对应。

例2:在-2,6,-2.5,π,-1,0,-3.7,0.1010010001…中,2负数有______________,分数有__________________,非正整数有__________,非负有理数有____________.例3:下列说法正确的是()(A )若两个有理数的绝对值相等,则这两个有理数也相等。

专题01 有理数(原卷版)

专题01 有理数(原卷版)

专题01有理数【题型汇总】【知识要点】知识点一有理数基础概念有理数正数:大于0的数叫做正数。

根据需要,有时在正数前面加上正号“+”,但是正数前面的正号“+”,一般省略不写。

负数:正数前面加上符号“-”的数叫负数。

负数前面的负号“-”不能省略。

【易错点】1)0既不是正数,也不是负数,也可以说0是正数和负数的分界线。

2)-a可能是正数、负数或0。

(①当a是正数时,-a是负数;②当a是负数时,-a是正数;③当a=0时,-a=0,0不分正负。

)3)正数和负数表示具有相反意义的量。

若用正数表示某种意义的量,则负数就表示与其相反的量,反之亦然。

常见的表示相反意义的量(举例):上升与下降,增长与减小等。

【如何判断一组词是否具有相反意义的量】解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.热考题型一理解正数与负数【解题思路】1)大于0的数叫做正数。

小于0的数叫做负数。

2)正数和负数表示具有相反意义的量。

若用正数表示某种意义的量,则负数就表示与其相反的量,反之亦然。

典例1.(2022·云南·中考真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .-10℃D .-20℃变式1-1.(2022·四川·巴中市教育科学研究所中考真题)下列各数是负数的是()A .(−1)2B .|−3|C .−(−5)D .3−8变式1-2.(2022·江苏镇江·中考真题)“五月天山雪,无花只有寒”,反映出地形对气温的影响.大致海拔每升高100米,气温约下降0.6°C .有一座海拔为2350米的山,在这座山上海拔为350米的地方测得气温是6°C ,则此时山顶的气温约为_________°C .有理数的分类:【易错点】1)有限小数和无限循环小数可以转化为分数,因此有限小数和无限循环小数是有理数。

有理数知识点及典型例题

有理数知识点及典型例题

第1章:有理数知识点及典型例题(一)数的分类(强化记忆)⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数负整数负有理数负实数负分数负无理数 ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (按符号分) (按定义分、按性质分)注意点:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数 (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(3)0即不是正数,也不是负数。

0是正数与负数的分界;0不仅表示没有,还表示某种量的基准。

如0不能理解为没有温度。

(4)初中范围内 数是指实数 正数是指正实数 负数是指负实数(5)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数误认为凡带正号的数就是正数,误认为凡带负号的数就是负数例-a 不一定是负数,+a 也不一定是正数;(6)π不是有理数,而是无理数;(7)非负整数应理解成“非负的整数”,不能理解成“‘非'负整数”,即正整数与零。

{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数例1、把下列各数填在相应的集合里5,-2,4.6,,0,-2.25,1,+0.34,+13,-3.1416,整数集合{ 5,-2,0,+13,…}非负整数集合{5,0,+13,… }负分数集合{,-2.25, -3.1416,…}正有理数集合{5, 4.6,1,+0.34,+13,}例2:一种商品的标准价格是200元,但是随着季节的变化商品的价格可浮动±10%,(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

有理数的概念知识点归纳及练习题

有理数的概念知识点归纳及练习题

有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量;掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小;掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义;重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义;运用数轴理解绝对值的几何意义;有理数比较大小的方法的掌握;二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数;用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;知识点二:正数和负数的概念要点诠释:1 像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大;2 像-3、-1.5、、-584等在正数前面加“-”读作负号的数,叫做负数;负数比0小;3 零既不是正数也不是负数,零是正数和负数的分界;注意:1为了强调,正数前面有时也可以加上“+”读作正号,例如:3、1.5、也可以写作+3、+1.5、+ ;2对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数;例如:-a一定是负数吗答案是不一定;因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了此时-a是正数;知识点三:有理数的有关概念要点诠释:1、有理数:整数和分数统称为有理数;注:1有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数;但是本节中的分数不包括分母是1的分数;2因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数;3“0”即不是正数,也不是负数,但“0”是整数;2、整数包括正整数、零、负整数;例如:1、2、3、0、-1、-2、-3等等;3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等;知识点四:有理数的分类要点诠释:1、按整数、分数的关系分类:2、按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数也叫做自然数,负整数和0统称为非正整数;如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a 0表明a是非负数;a 0表明a是非正数;知识点五:数轴的概念要点诠释:规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:1数轴是一条直线,可以向两端无限延伸;2数轴有三要素——原点、正方向、单位长度,三者缺一不可;3原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的通常取向右为正方向;知识点六:数轴的画法要点诠释:1、画一条直线一般画成水平的直线;2、在直线上选取一点为原点,并用这点表示零在原点下面标上“0”;3、确定正方向一般规定向右为正,用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……注:1原点的位置、单位长度的大小可根据实际情况适当选取;2确定单位长度时,根据实际情况,有时也可以每隔两个或更多的单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;知识点七:数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示出来,反过来,不能说数轴上所有的点都表示有理数;要点诠释:正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示;知识点八:利用数轴比较有理数的大小要点诠释:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0;负数都小于0;正数大于一切负数;知识点九:相反数的概念1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数;2、相反数的代数定义:只有符号不同的两个数除了符号不同以外完全相同,我们说其中一个是另一个的相反数,0的相反数是0;要点诠释:1“只”字是说仅仅是符号不同,其它部分完全相同;2相反数是数,不是量;3相反数是成对出现的;知识点十:相反数的表示方法要点诠释:一般地,数a的相反数是-a;这里a表示任意的一个数,可以是正数、负数、或者0;知识点十一:多重符号的化简把多重符号化成单一符号,如果是正号,则可以省略不写,实际上,多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,如-{---4}=4 ;若“-”个数为奇数个时,化简结果为负,如-{+--4}=-4 ;要点诠释:1、在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+-5=-5;2、在一个数的前面添上一个“-”号,就成为原数的相反数;如--3就是-3的相反数,因此,--3=3;知识点十二:绝对值的概念要点诠释:1、绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“ ”2、绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;即知识点十三:两个负数大小的比较要点诠释:因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小;比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;三、根据“两个负数,绝对值大的反而小”做出正确的判断;知识点十四:有理数大小的比较法则要点诠释:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小;三、规律方法指导有理数与小学所学的数,主要区别在于负数;有理数可以用数轴上的点来表示,任何一个有理数都能在数轴上找到表示它的位置,而是唯一确定的点;数轴上的点可以表示三类数;在数轴上表示零的点称做原点,以这个点为界,正有理数正整数、正分数用原点右边的点来表示;负有理数负整数、负分数用原点左边的点来表示,这就说明,数轴是有方向的;由于数轴规定了方向,因而在数轴上排列着的数就是有顺序的;从左到右一个数比一个数大;即数轴上表示的数,右边的总比左边的大;在数轴上,原点左、右两边距离原点等远的点所表示的有理数,它们只有符号不同,这样的一对数称为互为相反数;如果数轴上的点只考虑它到原点的距离,而不考虑它的正、负方向的数,则表示这个有理数的绝对值;经典例题透析类型一:有理数分类的问题例1:请把下列各数填入它所属于的集合的大括号里;1, 0.0708, -700, -3.88, 0,3.14159265, , .正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …}负分数集合:{ …}分数集合:{ …}思路点拨:这种关于有理数的分类问题,关键是要掌握各种数的概念;小学时所学的自然数就是正整数和零,进入中学,出现了负整数,而整数的范围就扩大到了正整数、零和负整数;有限小数和无限循环小数都可以写成分数的形式,因此,它们都是分数;解析:正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265, ;负分数:-3.88, ;分数:0.0708,3.14159265, ,-3.88,总结升华:有理数包括整数和分数,分数包含有限小数和无限循环小数,但须注意的是,不是所有的小数都是分数,比如π等;所以,我们也不能说小学学过的所有数都是有理数,还有一部分数不是有理数,那么这部分数我们将在今后学习研究;举一反三:变式1在数-100, 70.8, -7, π, -3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是______________;变式2下列四种说法,正确的是 .A所有的正数都是整数B不是正数的数一定是负数C正有理数包括整数和分数 D0不是最小的有理数类型二:正负数的概念例2:若把向北走7km记为-7km,则+10km表示的含义是A.向北走10kmB.向西走10kmC.向东走10kmD.向南走10km思路点拨:“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km.答案:D总结升华:在一对具有相反意义的量中,若先规定一个为正,则另一个就用负表示;若先规定一个为负,则另一个就用正表示;举一反三:变式1如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ . 2若购进50本书,用-50本表示,则盈利30元如何表示类型三:与数轴相关的问题例3: 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.思路点拨:到原点的距离等于5.5 的点既可以在原点左边,也可以在原点右边,因此这样的点有两个;解析:5.5或-5.5总结升华:与数轴相关的问题还有数轴的画法以及借助数轴来比较有理数的大小;例4:如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为 _________.思路点拨:数轴上的点表示的数右边的比左边的大;因此,被污染的部分的数大于-1.3,小于2.6,再考虑这一范围内的整数即可;解析:-1,0,1,2总结升华:利用数轴解决问题是数形结合数学思想的的一个重要应用,要能由“形”看出“量”的一些关系;举一反三:变式1实数在数轴上表示如图所示,则下列结论错误的是A. B. C. D.变式2一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是______.变式3数轴上点A对应的数为-3,那么与A相距1个长度的点B所对应的数是_________.类型四:与相反数相关的问题例5:1 的相反数是_________,-3与_________互为相反数2 的相反数是________, 的相反数是________,的相反数是________.30的相反数是_________.4已知那么的相反数是________.已知 ,则a的相反数是________.思路点拨:1代数意义:只有符号不同的两个数互为相反数,特别地,O的相反数是0.相反数必须成对出现,不能单独存在.例如+5和-5互为相反数,或者说+5是-5的相反数,-5是+5的相反数,而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数.2几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.3求任意一个数的相反数,只要在这个数的前面添上“一”号即可.一般地,数a的相反数是-a;这里以a表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意-a 不一定是负数.注意:当a>O时,-a<0正数的相反数是负数;当a=O时,-a=O0的相反数是0;当a<0时, a>O 负数的相反数是正数.4互为相反数的两个数的和为零,即若a与b互为相反数,则a+b=0,反之,若a+b=O,则a与b 互为相反数.5多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号.解析:1 ,3; 2m,--m+1,-m+1; 3 0 4 -9, 9总结升华:求相反数时,要紧紧抓住“只有符号不同”这一条件,即“符号不同而数字相同”的两个数;举一反三:变式11 一个数的相反数的倒数是-4,这个数是__________.2 如果与-3互为相反数,那么等于A. 3B. -3C.D.类型五:与绝对值相关的问题例6:的绝对值是________.思路点拨:1取绝对值也是一种运算,这个运算符号是“ ”,求一个数的绝对值,就是根据性质去掉绝对值符号.2绝对值具有非负性,取绝对值的结果总是正数或0.3任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5,符号是负号,绝对值是5.解析:总结升华:绝对值符号具有括号的功能,根据绝对值的意义去掉绝对值符号即可举一反三:变式1已知∣x∣=4,∣y∣=6,求代数式∣x+y∣的值.有理数的概念课后练习一、选择题:1.若一个数的绝对值大于零,这个数一定是A正数 B任意有理数 C非零数 D负数2.在有理数中,下面说法正确的是A有最小的数 B有最大的数C没有最小的数,也没有最大的数 D以上答案都不对3.下面四句话中错误的是A负分数一定是负有理数 B分数中除正分数就是负分数Ca的相反数是-a D有理数中除了正数就是负数4.下列说法正确的是A带有“-”的数是负数 B任何数的绝对值都是正C任何负数都小于它的相反数D一个数的相反数一定是负数5.一个数的绝对值一定是A正数B负数C非正数D非负数6.有理数a,b,c在数轴上的位置如图,下列结论错误的是Ac<b<a Ba-b>0Cb<0,c<0 Dc>b7、下列说法中,正确的是A、一个数不是正数就是负数;B、正有理数和负有理数组成全体有理数;C、零是最小的有理数;D、零既不是正数,也不是负数,但零是整数8、下列说法中,正确的是A、非负有理数就是正有理数;B、零表示没有,不是有理数;C、正整数和负整数统称为整数;D、整数和分数统称为有理数9、下面两个数互为相反数的是A、12和0.2 B、13和-0.333 C、-2.75和324 D、9和--910、一个数的绝对值大于它本身,那么这个数是A、正有理数B、负有理数C、零D、不可能11、a是一个有理数,那么-aA、负数;B、正数;C、零;D、以上都可能;12、已知数轴上表示-2和-101的两个点分别为A,B,那么A,B两点间的距离等于A99 B100 C102 D10313、数轴上原点及左边的点表示的数是A、负数;B、正数;C、非负数;D、非正数;14、“互为相反数”是指A、一个正数,一个负数;B、一个数前面添加上“-”号所得的数;C、数轴上原点两旁的两个点所表示的两个数;D、只有符号不同的两个数,且0的相反数是0;15、如果a+b=0,那么一定有A、a=0且b=0 ;B、a=0或b=0 ;C、a、b异号;D、a、b互为相反数;16、以下四个推理中,正确的是A、如果|a|=|b|,那么a=b;B、如果|a|=b, 那么a=b;C、如果a=-b,那么|a|=|b|;D、如果|a|=b,那么a=-b;二.填空题:1.-2.5的相反数是______________,绝对值是______________;2.最小的正整数是____________,最大的负整数是____________,绝对值最小的数是____________;3.在有理数-3,0, , ,3.1416,--7, , 中,属于负数集的是________,属于正分数集的是______________,属于整数集的是______________4.|-7|=______________, | |=π;5.化简---2002= ____________,--3.14=____________, __________;6.a的相反数是-11,那么______________;若3是x的相反数,那么x=______________, 3×-x=__________;7.相反数大于-4的正整数是__________,绝对值不大于2的整数是__________8.一个数的绝对值与它的相反数相等,这个数为__________,一个数的相反数大于它的本身, 这个数为__________;9.若两个数的绝对值相等,这两个数可能是__________;10.若一个数的相反数不小于零,那么这个数为__________;10.若|-m|=--0.3,那么m=__________;11.在数轴上点B表示数-3,那么与B点相距4个单位长度的点表示的数是__________;12、仪表的指针顺时针方向旋转90°记作-90°,那么逆时针旋转180°应记作 .13、说明下面一段话的意义:汽车先前进+50米,再前进-30米,即 ;14、数轴上表示互为相反数的两个点之间的距离是6,则这两个数为__________15、简化下列各数的符号:1--5= 3---4=16、L市在冬季的某一天最高温度为4℃,最低温度为-1℃,这天温差是℃.17、如果|x|=3.5,那么x= ;如果|-x|=|-2 1|,那么x= 18、数轴上离开原点2个单位长度的点表示的数是____________19、绝对值最小的有理数是________;绝对值等于3的数是______;绝对值等于本身的数是_______;绝对值等于相反数的数是___________数;20、绝对值不大于3的非负整数有21、观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2006个数是 ;三.解答题:1.把下列各数填在相应的大括号内:10,-0.082,-30 1/2,3.14,-2,0,-98,-3 1/2 –21/8,1,3/5整数集合: { }分数集合: { }正分数集合:{ }负分数集合:{ }非负数集合:{ }非正数集合:{ }2.把下列各数表示在数轴上,并比较他们5的大小;-3 , 1/2,0.,3,. -2.53、1写出绝对值大于3而小于8的所有有理数;4、计算:1|-15|-|-6| 2|0.24|+|-5.06|5已知|a|=3,|b|=2,求|a+b|的值;6、比较大小:114-15-;22(3--113-;3+-4.21 (4)3 --7.求下列各数的相反数和绝对值1102 20 314-43248.一个病人每天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压9、出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,这天下午他的行车里程单位:千米如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+61将最后一名乘客送到目的地时,小李距下午出车时的出发点多远2若汽车耗油量为3升/千米,这天下午小李共耗油多少升。

有理数 知识点+经典例题

有理数 知识点+经典例题

有理数考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:(1)0既不是正数也不是负数,它是正负数的分界点(2)对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米记作 ,原地不动课记作例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—15分,—4分,0分,4分,15分。

这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、 、 、 …… 2)、—1、21、—3、41、—5、61、—7、81、 、 、 ……易错点:1)误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2)对于“0”的含义理解不准确 例:下列说法错误的是( )A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔 考点2、有理数 1、有理数的分类按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 按性质符号分:有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数0 注意:1、有理数只包括整数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数例1、把下列各数填在相应的集合内: π,41-错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10 整数集合:{ …} 分数集合:{ …} 非负数集合:{ …} 例2、下列说法正确的是( )A 有理数分为正数和负数B 有理数-a 一定表示负数C 正整数、正分数、负整数、负分数统称为有理数D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线 数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

七年级有理数知识点及典型例题

七年级有理数知识点及典型例题

1.1 有理数【知识点清单】〔一〕学习温故小学里学过的数可分为三类: 、 和 ,它们都是由于实际需要而产生的。

〔二〕正数 1、正数:大于0的数叫做正数。

如:2,0.6,37,,…… ※正数都比0要 。

2、正数的表示方法:在正数前面加上一个“+〞,读作“正〞号。

如:3+,1110+, 1.9+,……其中“+〞号可以省略。

〔三〕负数1、负数:在正数前面加上一个“-〞号,这样的数叫做负数。

如:2-,0.6-,37-,……※负数都比0要 。

2、负数的表示方法:一个负数前的“-〞号不可以省略。

3、0既不是正数也不是负数。

4、正数和负数的意义在同一个问题中,分别用正数与负数表示的量具有的意义。

如:如果80m 表示向东走80m ,那么-60m 表示:。

〔四〕有理数1、有理数的概念:整数和分数统称为有理数。

【经典例题:】例 1:把以下各数分别填在题后相应的集合中:25-,0,1-,,2,5-,87,52.29-,+28,27-,8,-311,-3.5,102.3,-35,1〔1〕整数集合: { ……} 〔2〕负整数集合:{ ……} 〔3〕负分数集合:{ ……} 〔4〕自然数集合:{ ……} 〔5〕非负数集合:{ ……}例 2:在下面每个集合中任意写出3个符合条件的数:例 3:以下选项中均为负数的是〔 〕A .2-, 1.9-,0B .0.3,5-, 3.3-C .19-,1-,0.6- D .6-,…… …正数集 负数集 整数集例 4:以下说法中正确的选项是〔〕A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数例 5:以下说法正确的个数是〔〕。

①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的就是负的;④一个分数不是正的就是负的。

A.1 B.2 C.3 D.4例 6:把以下各数填在相应的集合中:1.2 数轴【学习目标】一、认识数轴1、数轴的三要素: , , 。

有理数知识点及相关题

有理数知识点及相关题

有理数:定义:凡能写成q p(p 、q 为整数,q≠0) 形式的数,都是有理数(整数可看成分母是1的分数)。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数。

分类:按定义分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数按符号分:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数例题:一、选择题1、在数0,2,-3,-1.2中,属于负整数的是( )A . 0B . 2C . -3D . -1.2答案:C解析:在这些数0,2,-3,-1.2中,属于负数的有-3,-1.2,则属于负整数的是-3。

2、最小的正有理数是( )A .0B .1C .-1D .不存在答案:D解析:正有理数没有最小也没有最大,故选D 。

3、下列四种说法:①0是整数;①0是自然数;①0是偶数;①0是非负数。

其中正确的有() A .2个 B .0个 C . 4个 D . 1个答案:C解析:①①①①都正确。

4、如果m 是一个有理数,那么-m 是( )。

A .正数B .0C .负数D .以上三种情况都有可能答案:D解析:当m>0时,-m< 0;当m = 0时,-m = 0;当m<0时,-m> 0,所以三种情况都有可能。

5、下列说法中,正确的是( )。

A .0是最小的整数B .最大的负整数是-1C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数答案:B解析:选项A ,负整数比0小,没有最小的整数,错误;选项B ,正确;选项C ,有理数包括正有理数,0和负有理数,错误;选项D ,一个有理数的平方是非负数,错误。

6、下列说法中不正确的是( )。

A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界答案:C解析:-2000既是负数,是整数,也是有理数 。

有理数的运算知识点汇总及练习

有理数的运算知识点汇总及练习

有理数的运算知识点汇总及练习有理数的运算知识点汇总:一、有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3.一个数与相加,仍得这个数.有理数加法运算律:1.加法的交换律:a+b=b+a;2.加法的结合律:(a+b)+c=a+(b+c).在运用运算律时,可以灵活运用以下规律:1)互为相反数的两个数先相加——“相反数结合法”;2)符号相同的两个数先相加——“同号结合法”;3)分母相同的数先相加——“同分母结合法”;4)几个数相加得到整数,先相加——“凑整法”;5)整数与整数、小数与小数相加——“同形结合法”。

有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).二、有理数的乘除法有理数乘法法则:1.两数相乘,同号得正,异号得负,并把绝对值相乘;2.任何数同0相乘,都得0;3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;4.几个数相乘,如果其中有因数为0,则积等于0.有理数乘法的运算律:1)乘法的交换律:ab=ba;2)乘法的结合律:(ab)c=a(bc);3)乘法的分配律:a(b+c)=ab+ac。

有理数除法法则:1.除以一个不等于0的数,等于乘以这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

三、有理数的加减乘除混合运算乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

有理数加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行。

知识点3:有理数乘方乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

乘方中,相同的因式叫做底数,相同因式的个数叫做指数。

记作an,在an中,a叫做底数,n叫做指数。

乘方的性质:1)负数的奇次幂是负数,负数的偶次幂的正数。

2)正数的任何次幂都是正数,0的任何正整数次幂都是0.练10:混合运算中的简便运算技巧1.计算:15\div\frac{5}{1}-\frac{51\times(-1/2)}{\frac{7}{-7} -\frac{8}{-27}}$$化XXX:15\times\frac{1}{5}-\frac{51}{2}\div\frac{7}{-7+8/27}$$继续化简得:3- \frac{51}{2}\div\frac{7\times27-8}{27}$$最终结果为:frac{249}{22}$$2.某个家庭为了估计自己家6月份的用电量,对月初的一周每天电表的读数进行了记录,上周日电表的读数是115度.以后每日的读数如下表(表中单位:度),请你估计6月份大约用多少度电.星期。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型有理数知识点及经典题型正数和负数1.正数和负数的概念负数表示比0小的数,正数表示比0大的数。

如果a表示正数,那么-a就是负数;如果a表示负数,那么-a就是正数。

注意,带正号的数不一定是正数,带负号的数也不一定是负数。

2.具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有相反意义的量。

比如,零上8℃可以表示为+8℃,零下8℃可以表示为-8℃。

3.0表示的意义0可以表示“没有”,也是正数和负数的分界线,既不是正数,也不是负数。

有理数1.有理数的概念正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

只有能化成分数的数才是有理数。

有限小数和无限循环小数都可以化成分数,也是有理数。

但π是无限不循环小数,不能写成分数形式,因此不是有理数。

2.有理数的分类按有理数的意义分类,有正整数、负整数、正分数、负分数。

按正负来分,有非负整数、非正整数、非负有理数、非正有理数。

其中,非负整数也称为自然数。

数轴1.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。

2.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数用原点右边的点表示,负有理数用原点左边的点表示,0用原点表示。

但数轴上的点不都表示有理数,有理数与数轴上的点不是一一对应关系。

3.利用数轴表示两数大小可以通过数轴上两数所对应的点的位置关系来判断它们的大小。

如果两数所对应的点在数轴上的同一侧,离原点越远的数越大;如果它们所对应的点在数轴上的异侧,正数大于负数,距离原点越远的数越大。

1.在数轴上,右边的数总比左边的数大,因此可以通过数轴上的位置来比较数的大小关系。

正数大于负数,而两个负数比较时,距离原点远的数比距离原点近的数小。

4.在数轴上,有一些特殊的最大或最小数。

最小的自然数是1,而没有最大的自然数。

最小的正整数是1,而没有最大的正整数。

最大的负整数是-1,而没有最小的负整数。

有理数知识点及经典题型

有理数知识点及经典题型

有理数知识点及经典题型有理数的基本知识点及经典题型如下:1. 有理数定义:有理数是可以表示为两个整数的比值的数。

包括整数、分数和小数。

2. 有理数的加减乘除:- 加法:同号相加,异号相减取绝对值相加,结果取两数的符号。

- 减法:加上被减数的相反数即可。

- 乘法:符号相同时,两数相乘的结果是正数;符号不同时,两数相乘的结果是负数。

- 除法:符号相同时,两数相除的结果是正数;符号不同时,两数相除的结果是负数。

注意除数不能为0。

3. 有理数的比较:- 同号两数比较大小,绝对值大的数更大。

- 异号两数比较大小,正数大于负数。

4. 有理数的绝对值:- 正数的绝对值就是它本身。

- 负数的绝对值是其相反数。

5. 有理数的约分:- 化简分数,将分子和分母的最大公约数约去。

6. 有理数的四则混合运算:- 先进行括号内的运算,再进行乘除法运算,最后进行加减法运算。

7. 解有理数的应用问题:- 求两个有理数的和、差、积或商。

- 求多个有理数的和、差、积或商。

- 根据已知条件设置方程并求解。

经典题型示例:1. 求两个有理数的和:已知 a = -5/6,b = 2/3,求 a + b。

解答:a + b = (-5/6) + (2/3) = (-5/6) + (4/6) = -1/6。

2. 求两个有理数的差:已知 a = 2/3,b = 5/6,求 a - b。

解答:a - b = (2/3) - (5/6) = (2/3) - (10/6) = -4/6 = -2/3。

3. 求两个有理数的积:已知 a = -1/2,b = 3/4,求 a * b。

解答:a * b = (-1/2) * (3/4) = (-1 * 3) / (2 * 4) = -3/8。

4. 求两个有理数的商:已知 a = -5/6,b = 2/3,求 a / b。

解答:a / b = (-5/6) / (2/3) = (-5/6) * (3/2) = (-5 * 3) / (6 * 2) = -15/12 = -5/4。

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题一、正负数有理数分为正数、负数和0,其中正整数、负整数、0都属于整数;分数属于有理数。

有理数是指可以表示成两个整数比值的数,例如2、-5/3都是有理数。

基础练:1.正整数集{1.25.6/7};正有理数集{1.25.6/7};负有理数集{-789.-20.-590};负整数集{-789.-20};自然数集{1.25};正分数集{6/7};负分数集{-5/3}。

2.元表示价格上涨,原价为76元的食用油现在的卖价无法确定,需要给出更多信息。

二、数轴数轴是一条直线,上面的每个点都表示一个实数。

在数轴上,规定原点为0,正方向为右,负方向为左。

基础练:1.图中正确的数轴为D。

2.-|2|-4>1.3.数轴上的点可以表示有理数。

4.(1) 比-3大的负整数是-2;(2) -3,-2,-1,0,1,2;(3) 最大的负整数是-1,最小的正整数是1,最大的非正数是0;(4) 6个点,分别表示-3,-2,-1,1,2,3.5.点A表示-3.三、相反数相反数指的是互为相反的两个数,例如2和-2.一个数a的相反数为-a,互为相反数的两个数和为0.基础练:1.-(-5)=5;-(-(-8))=-8;-1/2的相反数是1/2;a的相反数是-a;-的相反数的倒数是-1/2.2.a和b互为相反数,则a+b=0.3.(1) -(-13)=13;(2) a=-1;(3) x=6;(4) x=-9.1.A。

-52 = 25.B。

(-1)1996 = -1.C。

(-1)2003 - (-1) = -1.D。

(-1)99 - 1 = -2正确答案:A2.此题需要讨论符号优先级,按照先乘除后加减的原则,应该先算32×(-6),再加上2,即:2+32×(-6)=2-192=-190.3.小幅度改写:① -3×[-5-(2/9)] = -3×[-45/9-(2/9)] = -3×[-47/9] = 141/9 = 47/3② (-1)×2+(-2)÷4 = -1×2+(-0.5) = -2.5③ -5³-3×(-4) = -125+12 = -113④ 4×(-1)×(1/5)÷(-3) = 4/15⑤ (-4)²-(3+3×2) = 16-9 = 7⑥ [-4×(-3)] = 12⑦ [2-(1-(-2/5))]×24 = (9/5)×24 = 216/5⑧ [-10+8×(-2)²-(-4)×(-3)]÷(-5) = [-10+32+12]/(-5) = -2⑨ -0.252÷(-0.5)³+(-1)¹⁰ = -0.252÷(-0.125)+1 = -2.016+1 = -1.016⑩ -3×(-2)²-4×(1-(-1))÷2 = -3×4-4×2/2 = -12-4 = -164.此题需要小幅度改写:1☆ 0 = 0×10⁰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数知识点及经典题型
规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,,则a=0
6.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;相反数为本身的数是0。

2.相反数的性质与判定
⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。

0的相反数对应原点;原点表示0的相反数。

说明:在数轴上,表示互为相反数的两个点关于原点对称。

4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。

化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)
例1.已知︱a︱=5,︱b︱=8,且︱a+b︱= -(a+b),试求a+b的值。

练习2.已知︱a︱=5,︱b︱=8,且∣ab∣= -ab,试求a+b的值。

有理数的加减法
1.有理数的加法法则
⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律
⑴加法交换律:a+b=b+a
⑵加法结合律:(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质
一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:
⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)
=-33+18-15-1+23 (省略加号和括号)
=(-33-15-1)+(18+23) (把符号相同的加数相结合)
=-49+41 (运用加法法则一进行运算)
=-8 (运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合 (凑整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)
=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)
=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)
=4-10+3.8 (运用加法法则进行运算)
=7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)
-53-21+43-52+21-8
7 原式=(-53-52)+(-21+21)+(+43-8
7) =-1+0-81=-18
1 Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)
(+0.125)-(-343)+(-381)-(-103
2)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-14
1) =81+343-381+1032-14
1 =(343-141)+(81-381)+103
2 =221-3+103
2 =-3+13
=106
1 Ⅴ.把带分数拆分后再结合(先拆分后结合)
-351+10116-12221+415
7 原式=(-3+10-12+4)+(-51+157)+(116-22
1) =-1+154+22
11 =-1+308+3015= -30
7
8、绝对值大于2且小于5的所有整数的和是 ( )
A. 7
B. -7
C. 0
D. 5
10、()3
4--等于( ) A .12- B. 12 C.64- D.64
11、数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知A 在B 的右侧,C 在B 的左侧,D 在B 、C 之间,则下列式子成立的是( )
A 、a<b<c<d
B 、b<c<d<a
C 、c<d<b<a
D 、c<b<d<a
12、若x 为有理数,则x x +必是 ( )
A 、非正数
B 、非负数
C 、0
D 、正数
13、下列各语句中正确的是( )
A 、若a>-0.5,则a 是正数
B 、若a <0,则 a a <
C 、若b a >,则b a >
D 、若b a =,则b a =
14、a ,b ,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )
A 、a+b<0
B 、a+c<0
C 、a-b>0
D 、b-c<
三、计算
1、()5.5-+()2.3-()5.2---4.8
2、()8-)02.0()25(-⨯-⨯
3、 ⎪⎭⎫ ⎝⎛-+-127659521()36-⨯
4、 ()1-⎪⎭
⎫ ⎝⎛-÷2131
5、21+()23-⎪⎭
⎫ ⎝⎛-⨯21 6、81)4(2833--÷-。

相关文档
最新文档