分式的概念练习题
2023年中考数学《分式》专题知识回顾与练习题(含答案解析)
知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。
简单来说,分母中含有字母的式子叫做分式。
1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。
即BA中,0≠B 。
2. 分式值为0的条件:分式的分子为0,分母不为0。
即BA中,0=A ,0≠B 。
2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。
分式题型易错题难题大汇总
分式单元复习一、分式定义及有关题型一、分式的概念:形如BAA 、B 是整式,且B 中含有字母,B ≠0的式子,叫做分式; 概念分析:①必须形如“BA”的式子;②A 可以为单项式或多项式,没有其他的限制;③B 可以为单项式或多项式,但必须含有字母..;.例:下列各式中,是分式的是 ①1+x1②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πx练习:1、下列有理式中是分式的有A 、m 1 B 、162y x - C 、xy x 7151+- D 、572、下列各式中,是分式的是 ①x1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πy+51、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有 个;A 、2B 、3C 、4D 、5二、有理式:整式和分式统称有理式;即:⎪⎩⎪⎨⎧⎩⎨⎧分式多项式单项式整式有理式例:把下列各有理式的序号分别填入相应的横线上①21x②)(51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+ ⑦y x +2 整式: ;分式 ;①分式有意义:分母不为00B ≠ ②分式无意义:分母为00B = ③分式值为0:分子为0且分母不为0⎩⎨⎧≠=0B A④分式值为正或大于0:分子分母同号⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ⑤分式值为负或小于0:分子分母异号⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ⑥分式值为1:分子分母值相等A=B⑦分式值为-1:分子分母值互为相反数A+B=0 ⑧分式的值为整数:分母为分子的约数 例:当x 时,分式22+-x x 有意义;当x 时,22-x 有意义; 练习:1、当x 时,分式6532+--x x x 无意义;8.使分式||1xx -无意义,x 的取值是A .0B .1C .1-D .1±2、分式55+x x,当______x 时有意义; 3、当a 时,分式321+-a a 有意义.4、当x 时,分式22+-x x 有意义; 5、当x 时,22-x 有意义;分式x--1111有意义的条件是 ;4、当x 时,分式435x x +-的值为1; 2.辨析题下列各式中,无论x 取何值,分式都有意义的是A .121x +B .21x x +C .231x x+ D .2221x x +7当x 为任意实数时,下列分式一定有意义的是 A.23x + B.212x - C.1x D. 211x +四、分式的值为零说明:①分式的分子的值等于零;②分母不等于零例1:若分式242+-x x 的值为0,那么x ;例2 . 要使分式9632+--x x x 的值为0,只须 .A 3±=xB 3=xC 3-=xD 以上答案都不对 练习:1、当x 时,分式6)2)(2(2---+x x x x 的值为零; 2、要使分式242+-x x 的值是0,则x 的值是 ;3、 若分式6522+--x xx 的值为0,则x 的值为4、若分式2242x x x ---的值为零,则x 的值是5、若分式242+-x x 的值为0,那么x ;6、若分式33x x --的值为零,则x = 7、如果分式2||55x x x-+的值为0,那么x 的值是 A .0 B. 5 C .-5 D .±5分式12122++-a a a 有意义的条件是 ,分式的值等于零的条件是 ;9已知当2x =-时,分式ax bx -- 无意义,4x =时,此分式的值为0,则a b +的值等于 A .-6 B .-2 C .6 D .2使分式x312--的值为正的条件是 若分式9322-+a a 的值为正数,求a 的取值范围2、当x 时,分式xx--23的值为负数. 3当x 为何值时,分式32+-x x 为非负数.3、若关于x 的方程ax=3x-5有负数解,则a 的取值范围是☆典型题:分式的值为整数:分母为分子的约数 练习1、若分式23+x 的值为正整数,则x= 2、若分式15-x 的值为整数,则x= 8、若x 取整数,则使分式1236-+x x 的值为整数的x 值有 A .3个 B .4个 C .6个 D .8个二分式的基本性质及有关题型分式的基本性质:分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变;1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 例1: ①aca b=② y zx xy = 测试:1.填空:aby a xy= ; z y z y z y x +=++2)(3)(6; ()222y x y x +-=()yx -.23xx +=()23x x+; 例2:若A 、B 表示不等于0的整式,则下列各式成立的是 D .AM B M A B A ⋅⋅=M 为整式 B MB MA B A ++=M 为整式 C 22B A B A = D )1()1(22++=x B x A B A 5、下列各式中,正确的是 A .a m ab m b +=+ B .a b a b ++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+题型一:化分数系数、小数系数为整数系数例1不改变分式的值,把分子、分母的系数化为整数. 1y x y x 41313221+- 2ba ba +-04.003.02.0练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数. 1yx y x 5.008.02.003.0+-2b a ba 10141534.0-+ 1.辨析题不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以•A .10B .9C .45D .90 4.不改变分式0.50.20.31x y ++的值,使分式的分子分母各项系数都化为整数,结果是1、不改变分式的值,使分式的分子、分母中各项系数都为整数,0.20.10.5x x -=-- 2、不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是 题型二:分式的符号变化:例2不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.1yx y x --+-2ba a ---3ba---1、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数;①13232-+---a a a a = ②32211x x x x ++--= ③1123+---a a a = 2.探究题下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a bc c-++=-; ④m n m nm m---=-中,成立的是 A .①② B .③④ C .①③ D .②④3.探究题不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是•A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型三:分式的倍数变化:1、如果把分式y x x232-中的x,y 都扩大3倍,那么分式的值2、.如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值 3、把分式22x yx y+-中的x,y 都扩大2倍,则分式的值 A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍 4、把分式2aba +中的a 、b 都扩大2倍,则分式的值 C . A 扩大2倍 B 扩大4倍 C 缩小2倍 D 不变. 7、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值 A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍2、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是A 、y x 23B 、223y xC 、y x 232D 、2323yx三分式的运算4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用;学习时应注意以下几个问题:1注意运算顺序及解题步骤,把好符号关;2整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式; 3运算中及时约分、化简; 4注意运算律的正确使用; 5结果应为最简分式或整式;一、分式的约分:先将分子、分母分解因式,再找出分子分母的公因式,最后把公因式约去 注意:这里找公因式的方法和提公因式中找公因式的方法相同最简分式:分子、分母中不含公因式;分式运算的结果必须化为最简分式1、把下列各式分解因式1ab+b 2 22a 2-2ab 3-x 2+9 42a 3-8a 2+8a3.2009年浙江杭州在实数范围内因式分解44-x = _____________. 2、 约分16分1 2912xxy2 a b b a --223 96922+--x x x4 ab a b a +-222例2.计算:)3(3234422+•+-÷++-a a a a a a 例5.计算:2222223223y x yx y x y x y x y x --+-+--+. 3 、 约分122699x x x ++-= ;2882422+++x x x = ; 4、化简2293mmm --的结果是 A 、3+m m B 、3+-m m C 、3-m m D 、m m-3 4.辨析题分式434y x a+,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有A .1个B .2个C .3个D .4个8、分式a b 8,b a b a +-,22yx yx --,22y x y x +-中,最简分式有 A 1个 B 2个 C 3个 D 4个9、下列公式中是最简分式的是A .21227ba B .22()ab b a -- C .22x y x y ++ D .22x y x y --5.技能题约分:122699x x x ++-; 22232m m m m -+-.约分:2222bab a aba +++ 例:将下列各式约分,化为最简分式①=z xy yx 2264 ②=+++4422x x x ③ =+--+44622x x x x 14、计算:22696x x x x -+--÷229310x x x ---·3210x x +-.1. 已知:,则的值等于 A.B.C.D.15、已知x+1x=3,求2421x x x ++的值. 九、最简公分母1.确定最简公分母的方法:①如果分母是多项式,要先将各个分母分解因式,分解因式后的括号看做一个整体; ②最简公分母的系数:取各分母系数的最小公倍数;③最简公分母的字母因式:取各分母中所有字母因式的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.例:⑴分式231x和xy 125的最简公分母是 ⑵分式x x +21和xx -23的最简公分母是 题型一:通分例1将下列各式分别通分. 1c b a c a b ab c 225,3,2--; 2a b b b a a 22,--;322,21,1222--+--x x x x xx x ; 4aa -+21,21.在解分式方程:412--x x +2=xx 212+的过程中,去分母时,需方程两边都乘以最简公分母是___________________.2、分式,21x xyy 51,212-的最简公分母为 ;例7.计算:1123----x x x x . 正解:原式=111111)1)(1(1111332323-=----=-++---=++--x x x x x x x x x x x x x x x 十、分式通分的方法:①先找出要通分的几个分式的最简公分母;②运用分式的基本性质把它们变形成同分母的分式; 例:⑴ax 1,bx 1的最简公分母是 ,通分后=ax 1 ,bx1= ;⑵51+zx ,25422-x 的最简公分母是 ,通分后51+zx = ,25422-x = ; 十一、分式的乘法:分子相乘,积作分子;分母相乘,积作分母;如果得到的不是最简分式,应该通过约分进行化简;题型二:约分例2约分: 1322016xy y x -;3nm m n --22;36222---+x x x x .5、计算222a aba b+-= . 6、已知a+b =3,ab =1,则a b +ba的值等于 . 例:⑴nxmymx ny ⋅= ⑵2221x x x x x +⋅-= 十二、分式的除法:把除式的分子、分母颠倒位置后,与被除式相乘;例:⑴2256103x y x y ÷= ⑵xx x x x x +-÷-+-2221112= 九、零指数幂与负整指数幂★n m n m a a +=⋅a ★()mn nm a a =★()n n n b b a a = ★n m n m a a -=÷a 0≠a★n n b a b a =⎪⎭⎫⎝⎛n★n a 1=-n a 0≠a★10=a 0≠a 任何不等于零的数的零次幂都等于1其中m,n 均为整数;十、科学记数法a ×10-n ,其中n 是正整数,1≤∣a ∣<10.如=-7101.25⨯10、负指数幂与科学记数法 1.直接写出计算结果:1-3-2 ; 232-= ;333()2-= ; 40(13)-= . 2、用科学记数法表示 501= .3、一种细菌半径是×10-5米,用小数表示为 米;24、|1|2004125.02)21(032-++⨯---十三、分式的乘方:分子、分母分别乘方;例:⑴ 22⎪⎭⎫ ⎝⎛-x y = ⑵ 322⎪⎭⎫⎝⎛-c a =十四、同分母的分式相加减:分母不变,只把分子相加减,再把结果化成最简分式;例:⑴ab ab 610- = ⑵ba bb a a +++= 十五、异分母的分式相加减:先通 分成同分母的分式,在进行加减;例:⑴a b b b a a -+-= ⑵1111++-x x = 十六、分式的计算:1、xy y y x x 222-+- 2、112---a a a 例3计算:142232)()()(abc ab c c b a ÷-⋅-;222233)()()3(xy x y y x y x a +-÷-⋅+; 7个03m n m n m n m n n m ---+-+22; 4112---a a a ; 5874321814121111x x x x x x x x +-+-+-+--; 6)5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; 7)12()21444(222+-⋅--+--x x x x x x x ÷.28.2012 遵义化简分式﹣÷ ,并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值.36、222222y x y xy y xy x y x -+-+--,其中0|3|)2(2=-+-y x 1.计算1)1(232)1(21)1(252+-++--++a a a a a a ; 2a b ab b b a a ----222;3b a c c b a c b c b a c b a c b a ---++-+---++-232; 4ba b b a ++-22; 5)4)(4(b a ab b a b a ab b a +-+-+-; 62121111x x x ++++- 3、b a a b a +--2 4、)1(111112-⎪⎭⎫ ⎝⎛-++-x x x 5、111122----÷-a a a a a a 6、⎪⎭⎫ ⎝⎛---÷--225262x x x x1. 11分先化简,再求值:2111x x x x ---+,其中x =2. 2.本题6分先化简,再求值:111222---++x x x x x ,其中x =12- 3、8分先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛-+x x x ,其中:x=-2; 十七、分式的化简:1、计算ba b b a ++-22等于 ; 2、化简分式ac ab c c ab 35123522÷•的结果是3、计算yx y x y y x y x x ----+-22的结果是 4、计算11--+a a a 的结果是 5、计算yx x x y x y x +•+÷+222)(的结果是 6、化简a b a b a b--+等于 7、分式:①223a a ++,②22a b a b --,③412()a ab -,④12x -中,最简分式有 . 8、计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是 9、计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1x 111x 112的结果是 十八、化简分式求代数式的值:1、若32=b a ,则bb a +2的值是 ; 2.先化简后求值 11112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 2已知3:2:=y x ,求2322])()[()(y x x y x y x xy y x ÷-⋅+÷-的值.3、1110,()()()a b c b c c a a b a b c++=+++++已知求的值A 、-2B 、-3C 、-4D 、-5题型五:求待定字母的值例5若111312-++=--x N x M x x ,试求N M ,的值. 2.已知:222222yx y xy y x y x y x M --=+---,则M =______ ___. 1.若已知132112-+=-++x x x B x A 其中A 、B 为常数,则A=__________,B=__________; 题型三:化简求值题例4已知:21=-x x ,求221x x +的值.例5若0)32(|1|2=-++-x y x ,求y x 241-的值.10、已知411=-b a ,求分式bab a b ab a ---+222的值; 9.2005.杭州市当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.妙法巧解题已知13x y 1-=,求5352x xy y x xy y+---的值.4、已知a 2-3a+1=0,11、已知bb a a N b a M ab +++=+++==11,1111,1,则M 与N 的关系为 >N =N <N D.不能确定.题型四:化简求值题例4先化简后求值1已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值; 2已知:432z y x ==,求22232z y x xz yz xy++-+的值; 3已知:0132=+-a a ,试求)1)(1(22a a a a --的值. 13、若4x=5y,则222y y x -的值等于 A41 B 51- C 169 D 259- 16、已知n m n m -=+111,则=-n m m n ; 例3已知:311=+yx ,求y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.2.已知:31=+x x ,求1242++x x x 的值. 3.已知:311=-ba ,求a ab b b ab a ---+232的值. 4.若0106222=+-++b b a a ,求b a b a 532+-的值. 5.如果21<<x ,试化简x x --2|2|x x x x |||1|1+---. 2、当1<x<2时,化简分式x x x x -----1122= ;3、当x 时,122-=+-x x ;4、若3x=2y,则2294x y 的值等于5、若x 等于本身的倒数,则633622-++÷---x x x x x x 的值是 6、当=x 时,121+-x x 的值是1; 7、若3,111--+=-b a a b b a b a 则的值是 8、若2222,2b a b ab a b a ++-=则= 9、如果b a b a +=+111,则=+ba ab . 10、已知23=-+y x y x ,那么xy y x 22+= . 11、已知3a m =,则23a -= ,213a -== ,27a -= 12、若36,92m n ==,则2413m n -+的值为 四、整数指数幂与科学记数法题型一:运用整数指数幂计算例1计算:13132)()(---⋅bc a22322123)5()3(z xy z y x ---⋅ 324253])()()()([b a b a b a b a +--+--46223)(])()[(--+⋅-⋅+y x y x y x 题型二:化简求值题例2已知51=+-x x ,求122-+x x 的值;2求44-+x x 的值.题型三:科学记数法的计算例3计算:1223)102.8()103(--⨯⨯⨯;23223)102()104(--⨯÷⨯.练习:的22﹣20120+﹣6÷3; 1.计算:120082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- 2322231)()3(-----⋅n m n m323232222)()3()()2(--⋅⋅ab b a b a ab 421222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求11-+x x ,222-+x x 的值.7.已知x+1x=3,则x 2+21x= ________ . 10、已知0543≠==c b a ,求分式c b a c b a ++-+323的值; 第二讲 分式方程知识要点1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题主要方法1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 分式方程化分式为整式解方程验根4写出解1、学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是A .小明B .小亮C .小芳D .没有正确的 7. 已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为A 、-2B 、2C 、-4D 、48. 甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度 A. S a b + B. S av b - C. S av a b -+ D. 2S a b + 一分式方程题型分析题型一:用常规方法解分式方程例1解下列分式方程1x x 311=-;20132=--x x ;3114112=---+x x x ;4x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程例2解下列方程14441=+++x x x x ; 2569108967+++++=+++++x x x x x x x x 提示:1换元法,设y x x =+1;2裂项法,61167++=++x x x . 例3解下列方程组 题型三:求待定字母的值例4若关于x 的分式方程3132--=-x m x 有增根,求m 的值. 例5若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a . 29、已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为 . 24.指出下列解题过程是否存在错误,若存在,请加以改正并求出正确的答案.题目:当x 为何值,分式有意义解:= ,由x ﹣2≠0,得x≠2.所以当x≠2时,分式有意义.题型四:解含有字母系数的方程例6解关于x 的方程提示:1d c b a ,,,是已知数;20≠+d c .题型五:列分式方程解应用题练习:1.解下列方程: 1021211=-++-x x x x ; 23423-=--x x x ; 322322=--+x x x ; 4171372222--+=--+x x x x x x 52123524245--+=--x x x x 641215111+++=+++x x x x 76811792--+-+=--+-x x x x x x x x2.解关于x 的方程: 1bx a 211+=)2(a b ≠;2)(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. 二分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x二、化归法 例2.解方程:012112=---x x 三、左边通分法 例3:解方程:87178=----x x x四、分子对等法例4.解方程:)(11b a x b b x a a ≠+=+ 五、观察比较法 例5.解方程:417425254=-+-x x x x六、分离常数法 例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法 例7.解方程:41315121+++=+++x x x x 三分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值; 例2.若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值; 例3.若关于x 分式方程432212-=++-x x k x 有增根,求k 的值; 例4.若关于x 的方程1151221--=+-+-x k x x k x x 有增根1=x ,求k 的值;9.若m 等于它的倒数,求分式22444222-+÷-++m m m m m m 的值; 2. 已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷y y x 22+2的值. 奥赛初探1. 若432z y x ==,求222z y x zx yz xy ++++的值. 19.已知且y≠0,则= _________ . 十九、分式方程的概念:分母中含有未知数的方程叫做分式方程;例:下列方程中式分式方程的有①1025=+x ②104=-πx ③1012=-+y y ④102=+x x x 二十、“可化为一元一次方程的分式方程”的解法:①去分母:先看方程中有几个分母,找出它们的最简公分母,在方程的左右两边都乘以它们的最简公分母,约去分母,将分式方程化成一元一次方程;②解方程:解去分母得到的这个一元一次方程;③验根:将解一元一次方程得到的解带入最简公分母中计算:如果最简公分母的值为0,则这个解是方程的增根,原分式方程无解;如果最简公分母的值不为0,则这个解就是原分式方程的解;例:解下列分式方程步骤参照教材上的例题⑴114=-x ⑵3513+=+x x 5、中考题解:例1.若解分式方程产生增根,则m 的值是A.B. C. D. 分析:分式方程产生的增根,是使分母为零的未知数的值;由题意得增根是:化简原方程为:把代入解得,故选择D;例2. m 为何值时,关于x 的方程会产生增根 解:方程两边都乘以,得 整理,得 说明:分式方程的增根,一定是使最简公分母为零的根11、分式方程1.若1044m x x x--=--无解,则m 的值是 A. —2 B. 2 C. 3 D. —32.解方程:1325+x =13-x 2416222--+-x x x =1 321321-=---x x x ; 15.在一段坡路,小明骑自行车上坡的速度为每小时v 1千米,下坡时的速度为每小时v 2千米,则他在这段路上、下 A . 千米 B .千米C .千米 D . 无法确定10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm,•返回时每小时行nkm,则往返一次所用的时间是_____________.13、分式方程应用题19、8分甲打字员打9000个字所用的时间与乙打字员打7200个字所用的时间相同,已知甲、乙两人每小时共打5400个字,问甲、乙两个打字员每小时各打多少个字20、10分一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的倍,才能按要求提前2小时到达,求这位同学骑自行车的速度;22.列方程解应用题本题7分 从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 乘车从甲地出发,结果同时到达;已知B 乘车速度是A 骑车速度的3倍,求两车的速度;8.小张和小王同时从学校出发去距离15千米的一书店买书,小张比小王每小时多走1千米,结果比小王早到半小时,设小王每小时走x 千米,则可列出的的方程是A 、2115115=-+x xB 、2111515=+-x x C 、2115115=--x x D 、2111515=--x x 7、赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 A 、1421140140=-+x x B 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x 二十一、增根:使分式方程的最简公分母的值为0的未知数的值;注意:“可化为一元一次方程的分式方程”有增根,那么原方程无解,但这个增根是去分母后得到的一元一次方程的解,能使这个一元一次方程左右两边的值相等;例:已知关于x 的分式方程112=-+x a 有增根,则a=练习:1、若方程87178=----xx x 有增根,则增根是 ; 2、m 取 时,方程323-=--x mx x 会产生增根; 3、若关于x 的方程x a cb x d-=- 有解,则必须满足条件 A. a ≠b ,c ≠d B. a ≠b ,c ≠-d ≠-b , c ≠d ≠-b , c ≠-d4、 若分式方程xa xa x +-=+-321有增根,则a 的值是 5、当m=______时,方程233x mx x =---会产生增根.6、若方程42123=----xx x 有增根,则增根是 . 7、关于x 的分式方程442212-=++-x x k x 有增根x=-2,则k= . 2、.关于x 的方程322133x mxx x-++=---无解,m 的值为_______________;例4.2006年常德市先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.二十二、零指数幂:任何不等于零的数的零次幂都等于1;例:()01.0-= 020031⎪⎭⎫⎝⎛=二十三、负指数幂:任何不等于零的数的-nn为正整数次幂,等于这个数的n 次幂的倒数;例:221-⎪⎭⎫⎝⎛= 22--=22221--⎪⎭⎫ ⎝⎛b a = 23)2(---x = 知识点二:整数指数幂的运算1.基本技能题若x-3-2有意义,则x_______; 若x-3-2无意义,则x_______. 2.基本技能题5-2的正确结果是 A .-125 B .125 C .110 D .-1103.已知a ≠0,下列各式不正确的是A.-5a 0=1B.a 2+10=1C.│a │-10=1D.1a=16.计算:32-1+320--13-1 2m 2n -3-3·-mn -22·m 2n 0. -2 003÷-18-2 004.二十四、科学记数法:把一个数表示成na 10⨯或者n a -⨯10的形式,其中n 为正整数,101<≤a例:用科学记数法表示下列各数⑴ = ⑵= ⑶201300= 练习:1、将下列用科学记数法表示数还原:⑴41025.1-⨯= ⑵ =⨯--410075.2 ⑶6105104.2⨯= 2、用科学记数法表示下列各数 ⑴ = ⑵=3、人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示为二十 五、列分式填空:1、某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 公顷.2、某厂储存了t 天用的煤m 吨,要使储存的煤比预定的多用d 天,那么每天应节约煤的吨数为3、每千克单价为a 元的糖果m 千克与每千克单价为b 元的糖果n 千克混合,则混合后糖果的单价为4、全路全长m 千米,骑自行车b 小时到达,为了提前1小时到达,自行车每小时应多走 千米.10、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 A 、9448448=-++x x B 、9448448=-++x x C .9448=+x D.9496496=-++x x 二十六、列分式方程填空:1、某煤厂原计划x 天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为2、工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程①3172=-xx ②72-x=3x③x+3x=72 ④372=-xx上述所列方程,正确的有 个二十七、列分式方程解应用题:1、某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班的师生乘汽车出发,结果两班师生同时到达.已知汽车的速度是自行车速度的倍,求两种车的速度各是多少2、•怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑,该乡是选甲公司还是选乙公司请你说明理由.3、华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等. 1该校参加科技夏令营的学生共有多少人2如果又增加了部分学生,学校应选择哪家旅行社7.若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是 .4、在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,•那么剩下的工程还需要两队合做20天才能完成.1求乙工程队单独完成这项工程所需的天数; 2求两队合做完成这项工程所需的天数.分式1.若a 使分式241312a a a-++没有意义,那么a 的值是A 、0B 、13-或0C 、±2或0D 、15-或02.分式111a a--有意义,那么a 的取值范围是3.分式265632x x x --+的值为0,则x 的值为A 、3223-或B 、3223-或C 、23-D 、324.已知111x x x---的值是14-,那么x 的值是5.化简分式()()()()()()b c aa b b c b c c a c a a b ++------的结果是 . 6.化简44xy xy x y x y x y x y ⎛⎫⎛⎫-+⋅+- ⎪ ⎪-+⎝⎭⎝⎭的结果是 A 、22y x - B 、22x y - C 、224x y - D 、224x y -7.当222223768112256a a a a a a a ⎛⎫+-⎛⎫⎛⎫=-÷⋅+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭时,代数式的值是 6、小明通常上学时走上坡路,通常的速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为 千米/时 A 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 8.甲、乙两人相距k 公里,他们同时乘摩托车出发;若同向而行,则r 小时后并行;若相向而行,则t 小时后相遇,则较快者的速度与较慢者速度之比是A 、r t r t+- B 、r r t- C 、r k r k +- D 、r k r k-+9.已知2220202a b ab a ab b a b-≠+-=+,,那么的值为10.已知2222323423y x y zx z xy yz xz-+==++,则的值是11.已知222225032x y z x zy xy yz zx-+==≠++,那么的值为12.已知1143404323a ab b a a b a ab b ++≠+==-+-且,那么13.已知232132xy x xy y x y x y xy+-=----,则的值为 A 、53 B 、53- C 、35D 、35-14.若1124272a ab ba b a ab b---=+-,则的值是15.一辆汽车从甲地开往乙地,如果车速提高20%,可以比原定时间提前1小时到达,如果要提前2小时到达,那么车速应比原来车速提高 %;16.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙,那么甲的速度是乙的速度的A . a b b+倍 B . b a b+ C . b a b a+-倍 D . b a b a-+倍17.已知a 、b 均为正数,且1a+1b= -1a b+.求22()()b a ab+的值.18.计算: 1(1)a a ++1(1)(2)a a +++1(2)(3)a a +++…+1(2005)(2006)a a ++; 19.已知y x =34,求x x y ++y x y --x x y+的值. 20.若x +y =4,xy =3,求y x +xy的值. 21.若b + 1c=1,c + 1a=1,求1ab b+;22.观察下面一列有规律的数: 13,28,315,424,535,648…根据其规律可知第n 个数应是_______________ n 为整数23,关于x 的分式方程x +1x=c +1c的解是x 1=c ,x 2= 1c;x -1x = c -1c,即x +1x-=c +1c-的解是x 1=c ,x 2=-1c;x +2x=c +2c的解是x 1=c ,x 2=2c; x +3x=c +3c的解是x 1=c ,x 2=3c.1请观察上述方程与解的特征,比较关于x 的方程x +m x=c +m cm ≠0与它的关系,猜想它的解是什么,并利用方程解的概念进行验证.2如果方程的左边是未知数与其倒数的倍数的和,方程右边形式与左边的完全相同,只是把其中未知数换成某个常数.那请你利用这个结论解关于x 的方程:x +21x -=a +21a -24、设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 25、若实数x y 、满足0xy ≠,则yx m x y=+的最大值是 . 26、一组按规律排列的式子:()0,,,,41138252≠--ab ab a b a b a b ,其中第7个式子是第n 个式子是27.若2222,2b a b ab a b a ++-=则=28、已知b ab a b ab a b a ---+=-2232,311求的值 29、若0<x<1,且xx x x 1,61-=+求 的值 行程应用题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路;某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间;2、从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 骑自行车从甲地出发,结果同时到达;已知B 的速度是A 的速度的3倍,求两车的速度;3、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的倍,以便提前半小时到达目的地做准备工作;求先遣队和大队的速度各是多少4、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的倍,才能按要求提前2小时到达,求急行军的速度; 工程问题应用题:1:某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天2、某车间加工1200个零件后,采用新工艺,工效是原来的1;5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件3、现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务;求原来每天装配的机器数.4、某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝 水流问题:1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.2、一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度3、小芳在一条水流速度是s 的河中游泳,她在静水中游泳的速度是s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间;四、解下列分式方程:1、23561245x x x x x x x x -----=----- 2、2232511877x x x x x x x ---+=+--+- 3、821261949819965--+--=--+--x x x x x x x x 附加题:满分5分,将得分加入总分,但全卷总分不超过100分; 解分式方程16143132121+=-++++x x x x 13、的最小值是分式221012622++++x x x x例2:已知,求的值;分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了;解:原式例4:已知a、b、c为实数,且,那么的值是多少分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化;解:由已知条件得:所以即又因为所以例2、已知:,则_________;解:说明:分式加减运算后,等式左右两边的分母相同,则其分子也必然相同,即可求出M; 例2. 解方程分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值;解:原方程变形为:方程两边通分,得经检验:原方程的根是例3. 解方程:分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和;。
分式的概念及性质
分式的概念及性质一、分式的基本概念:【例1】下列各式2x ,22a b +,a b π+,2x +,1a m +中,分式有( )A .1个B .2个C .3个D .4个【拓1】(1)当x 满足条件_________时,分式21xx -有意义.(2)若分式()11x x +有意义,则x 需满足____________;若分式()1xx x +有意义,则x 需满足_____________.【拓2】当x 为何值时,下列分式的值为0:①31x x + ②2213x x - ③242x x -+ ④212x x x -+-【例2】已知:当x =2时,分式x m x n -+无意义;当x =-6时,分式x mx n-+的值为0,则 m -n =_______.【拓3】当x ________时,分式36x -的值为正数;当x ________时,分式26xx--的值为负数.【拓4】(21广陵期末)关于x 的方程1233x kx x -=+--的解为非负数,则k 的取值范围是___.【拓5】若分式1324x x x x ++÷++有意义,则x 的取值范围为__________.【拓6】(2021·扬州)不论x 取何值,下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .2(1)x +二、分式的基本性质:①x y x y +- ②xy x y - ③22x y x y +- ④2xx y+【拓7】(21邗江期末)把分式2xyx y+中的x 和y 都扩大2倍,分式的值( ) A .不变 B .扩大4倍 C .缩小12D .扩大2倍【拓8】不改变分式的值,把分式的分子和分母系数都化为整数:①0.10.51.5x y x y -+ ②21321334x y x y -+ ③10.3210.55a ba b -+【拓9】(1)不改变分式的值,把分式的分母化为6ab 2:23a b 22a bab+(2)不改变分式的值,把分式的分母化为()()11x x x -+:()11x x x -+ 21xx -【例4】(1)下列等式,从左到右的变形正确的是( )A .1x y x y --=-- B .0.220.50.353x y x yx y x y++=-- C .x a ax b b+=+ D .()2x y x y y x -=-+-(2)将下列格式约分:3439x x =-__________322384a b a b c -=-___________ 23224x x x -=-___________ 2442a a a-+=-_________【拓10】下列分式:2x x ,1m m +,x xπ+,a bb a --中,最简分式的个数有( ) A .4个 B .3个 C .2个 D .1个【拓11】(21扬州期末)当2021a =时,分式293a a --的值是________.【拓12】分式2214a b 与36a bab c+的最简公分母是________.【拓13】通分:①()()112x x --,2121x x -+;②()11a a a -+,21a a -,2221a a ++.【拓14】(18邗江期中)先约分,再求值:32322444a ab a a b ab --+,其中2a =,12b =-.【拓15】(15邗江月考)已知:y z z x x y x y z +++==,其中0x y z ++≠,求x y zx y z+-++的值.三、分式的运算:(1)2222463ab cc a b -⋅ (2)32422ab c ac c ab b ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭(3)()()222142y x x y xy x y x +-÷⋅- (4)23x y x y x y y x x y ++----(5)a b b c ab bc ++- (6)24142x x +-+【拓16】化简,求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m =四、真题演练:1.(21邗江月考)已知:23a b b c c a m cab+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最小的值为y ,则x y +=( ) A .1- B .1 C .2 D .32.(19扬州一模)已知111m n -=,则代数式222m mn nm mn n--+-的值为( ) A .3 B .1 C .1- D .3-3.(19江都期中)已知113x y +=,则分式2322x xy yx xy y-+++的值为( ) A .35 B .9C .1D .不能确定4.(15扬州月考)已知x 为整数,且222218329x x x x ++++--为整数,则所有符合条件的x 值的和为________.5.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(20邗江期末)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是________.7.(21广陵期末)先化简,再求值222124424x x x x x x x ++++÷--,其中2021x =.8.(19宝应期中)已知实数A 、B 使得等式34(1)(2)12x A Bx x x x -=+----成立,求实数A 、B .9.(18高邮期中)已知13x x +=,求221x x+的值.10.(18江都月考)定义,如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”如:112122111111x x x x x x x x +-+-==+=+-----,232252255211111x x x x x x x x -+-+-==+=-+++++,则 11x x +-和231x x -+都是“和谐分式”. (1)下列分式中,属于“和谐分式”的是:________(填序号); ①1x x+;②22x +;③21x x ++;④221y y +(2)将“和谐分式2231a a a -+-化成一个整式与一个分子为常数的分式的和的形为:2231a a a -+=-________+________.(3)应用:先化简22361112x x x x x x x +---÷++,并求x 取什么整数时,该式的值为整数.11.(20仪征期中)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式. 如:1(1)221111x x x x x -+-==-+++. 解决下列问题: (1)分式3x 是____(填“真”或“假”)分式;假分式64x x ++可化为带分式________形式; (2)如果分式42x x --的值为整数,求满足条件的整数x 的值; (3)若分式22251x x ++的值为m ,则m 的取值范围是________(直接写出答案).。
分式的概念和性质练习题-基础
分式的概念和性质练习题-基础一.选择题1.(2015春•东台市月考)下列式子是分式的是( )A. B. C. +y D.+1 2.(2016•连云港)若分式12x x -+的值为0,则的值是( ) A .-2 B .0 C .1 D .1或-23.下列判断错误..的是( ) A .当时,分式有意义 B .当时,分式有意义 C .当时,分式值为0 D .当时,分式有意义 4.为任何实数时,下列分式中一定有意义的是( )A .B .C .D . 5.如果把分式中的和都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的D .不变 6.下列各式中,正确的是( )A .B . x 23x ≠231-+x x a b ≠22ab a b -21-=x 214x x+x y ≠22x y y x--x 21x x +211x x --11x x -+211x x -+yx y x ++2x y 32a m a b m b +=+0a b a b+=+C .D . 二.填空题7.(2016•北京)如果分式21x -有意义,那么x 的取值范围是______. 8.若分式的值为正数,则满足______. 9.(1) (2) 10.(1) (2) 11.分式与的最简公分母是_________. 12. (2015•朝阳区一模)一组按规律排列的式子:,,,,,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三.解答题13. (2014春•丹阳市校级期中)当x 取什么值时,分式.(1)没有意义?(2)有意义?(3)值为零?1111ab b ac c +-=--221x y x y x y-=-+67x--x 112()x x x --=-.y x xy x 22353)(=22)(1y x y x -=+⋅-=--24)(21yy x 2214a b 36x ab c14.已知分式当=-3时无意义,当=2时分式的值为0, 求当=-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1) (2) (3) (4),y a y b-+y y y 22x x y--2b a a --2211x x x x---+2231m m m ---一.选择题1. 【答案】B ;【解析】解:A 、分母中不含有字母是整式,故A 错误;B 、分母中含有字母是分式,故B 正确;C 、分母中不含有字母是整式,故C 错误;D 、分母中不含有字母是整式,故D 错误;故选:B .2. 【答案】C ;【解析】x -1=0且x +2≠03. 【答案】B ;【解析】,有意义. 4. 【答案】D ;【解析】无论为何值,都大于零.5. 【答案】D ;【解析】. 6. 【答案】D ;【解析】利用分式的基本性质来判断.二.填空题7. 【答案】x ≠1;【解析】由题意,x -1≠0a b ≠±22ab a b -x 21x +102010(2)2101010()x y x y x y x y x y x y+++==+++【解析】由题意.9. 【答案】(1);(2);10.【答案】(1);(2);【解析】. 11.【答案】;【解析】最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积.12.【答案】,.【解析】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n 个式子为:.故答案是:,.三.解答题13.【解析】解:(1)∵分式没意义,∴x ﹣1=0,解得x=1;70,7x x -<>∴2x -5y x y -22xy x y +--221(1)(2)22244x x y xy x y y y y --++--==---2312a b c(2)∵分式有意义,∴x ﹣1≠0,即x≠1;(3)∵分式的值为0, ∴,解得x=﹣2. 14.【解析】解:由题意:,解得 ,解得 所以分式为,当=-7时,. 15.【解析】解:(1) ; (2); (3);(4). 30b -+=3b =2023a -=+2a =23y y -+y 2729937344y y ----===+-+-2222x x x y x y -=---22b b a a a a =---+222222111111x x x x x x x x x x x x ----++-==-+-++--22223311m m m m m m ---=---。
分式的定义专项习题
分式的定义练习题对应知识点:1.分式的概念:如果整式A 除以整式B, 可以表示成BA 的形式,且除式B 中含有字母,那么称式子BA 为分式。
其中, A 叫分式的分子,B 叫分式的分母。
注意:①判断一个代数式是否为分式,不能将它变形,不能约分后去判断。
②π是常数,所以a/π不是分式而是整式。
2.有理式:整式和分式统称有理式。
(整式的分母中不含有字母) 练习题:1.下列式子是分式的是( )A .2xB .x 2C .πx D .2y x + 2.下列各有理式,哪些是分式?-3x +52,1+x 3,21++x x ,m m 3-,53b a +,x 234-,123+x -132-y ,x x 22,π1(x +y), 分式:3.判断下列各式哪些是分式?分式(只填序号):(1)9x+4, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)91-x 4.在下列代数式中,分式有_______(只填序号)。
①a b 2、②b a +2、③x x -+-41、④y x xy 221+、⑤54322xy y x -、⑥112+-x x 、⑦x x 32 5.下列代数式中:y x y x y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: 6.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
7.代数式21,,,13x x a x x x π+中,分式的个数是( ) 8.在(3)5,,,214a b x x x a b a π-++++中,共有( )个9.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( )个 10.在π1,0,1,31),(21,32c a b y x x --中,分式有( )个。
分式的概念典型例题
《分式的概念》典型例题例1.下列各式中不是分式的是( )A .y x x +2B .21πC .21xD .13-x x例2.分式)3)(2(1---x x x 有意义,则x 应满足条件() A .1≠xB .2≠xC .2≠x 且3≠xD .2≠x 或3≠x例3.当x 取何值时,下列分式的值为零?(1)212-+x x ; (2)33+-x x例4.932-+x x 与31-x 是同一个分式吗?例5.若分式xx 2123-+的值为非负数,求x 的取值X 围例6. 判断下列有理式中,哪些是分式?()x -151;y y 132+;2b a +;c b a c b a ++--;()312-πx ;223121y x -;例7. 求使下列分式有意义的x 的取值X 围:(1)521-+x x ; (2)x x -+243;(3)()()3521+-x x ; (4)5.03222+--x x x 。
例8. 当x 是什么数时,下列分式的值是零:(1)22322+--x x x ; (2)33--x x 。
参考答案例1.解答B说明 ①分式与整式的根本区别在于分母是否含有字母; ②π是一个常数,不是一个字母例2.分析 因为零不能作除数,所以分式要有意义,分母必不为0,即 0)3)(2(≠--x x ,所以2≠x 且3≠x解C说明 当分母等于零时,分式没有意义,这是学习与分式有关问题时需要特别注意的一点例3.分析 要使分式的值为零,不仅要使分子等于零,同时还必须使分母不等于零解 (1)由分子012=+x ,得21-=x .又当21-=x 时,分母02≠-x . 所以当21-=x 时,分式212-+x x 的值为零。
(2)由分式03=-x ,得3±=x .当3=x 时,分母063≠=+x ;当3-=x 时,分母03=+x .所以当3=x 时,分式33+-x x 的值为零. 例4.分析 分式932-+x x 有意义的条件是092≠-x ,即3≠x 和3-.而31-x 有意义的条件是3≠x ,而当3-=x 时,31-x 是有意义的. 解 由于932-+x x 与31-x 有意义的条件不同,所以,它们不是同一个分式. 说明 在解分式问题时,一定要学会判断一个分式在什么条件下有意义,然后再考虑其他问题.例5.分析0>ab 可转化为0>a ,0>b 或0<a ,0<b ;0≥ba 可转化为0≥a ,0>b 或0≤a ,0<b解 根据题意,得xx 2123-+0≥,可转化为 (Ⅰ)⎩⎨⎧>-≥+021,023x x 和(Ⅱ)⎩⎨⎧<-≤+.021,023x x 由(Ⅰ)得2132<≤-x ,由(Ⅱ)得⎪⎪⎩⎪⎪⎨⎧>-≤.21,32x x 无解. 综上,x 取值X 围是:2132<≤-x 例6. 分析 判断有理式是否分式的依据,就是分式定义。
分式的概念练习题
分式的概念练习题一、选择题1. 下列哪个式子是分式?A. 3x + 2B. $\frac{4}{5}$C. $\frac{x}{y+1}$D. $\sqrt{a+b}$A. $\frac{1}{x}$B. $\frac{x^2 1}{x 1}$C. $\frac{2}{x^2 + 1}$D. $\frac{x^3 + 3x^2 4x + 4}{x^2 2x + 1}$3. 分式$\frac{3}{x2}$的定义域是?A. 全体实数B. 除了2以外的全体实数C. 除了0以外的全体实数D. 除了0和2以外的全体实数二、填空题1. 分式$\frac{a}{b}$中,a叫做______,b叫做______。
2. 若分式$\frac{x3}{x+2}$的值等于2,则x的值为______。
3. 已知分式$\frac{2}{x1}+\frac{3}{x+2}=1$,则x的值为______。
三、简答题1. 请简要说明分式与整式的区别。
2. 什么情况下分式无意义?什么情况下分式有意义?3. 如何求分式的值?四、计算题1. 计算$\frac{2}{3}+\frac{1}{6}$。
2. 计算$\frac{3}{4}\frac{2}{5}$。
3. 计算$\frac{4}{5}\times\frac{3}{7}$。
4. 计算$\frac{5}{8}\div\frac{2}{3}$。
5. 简化分式$\frac{x^2 9}{x^2 + 6x + 9}$。
五、应用题1. 某班有男生x人,女生人数是男生人数的$\frac{2}{3}$,求班级总人数与男生人数的比例。
2. 甲、乙两人共同完成一项工作,甲单独完成需要5天,乙单独完成需要8天。
求甲、乙合作完成这项工作的时间。
3. 一辆汽车行驶了a千米,其速度是b千米/小时,求汽车行驶这段路程所需的时间(用分式表示)。
六、判断题1. 分式的分子和分母都是整式。
()2. 分式的值在分母不为零的情况下一定有意义。
小学数学分式的认识练习题
小学数学分式的认识练习题在小学数学学习中,分式是一个重要的概念。
它包括了分数的认识和运算,对于培养学生的逻辑思维和解决实际问题的能力起着重要作用。
下面我们来通过一些认识练习题来巩固对小学数学分式的理解。
练习题一:1. 将下列分数化为最简形式:a) 12/16b) 20/25c) 48/60d) 64/1282. 将下列分数化为带分数:a) 13/4b) 7/2c) 9/3d) 10/53. 将下列带分数化为分数形式:a) 2 1/3b) 3 1/2c) 4 3/4d) 5 2/54. 将下列分数进行四则运算:a) 1/4 + 1/3b) 3/5 - 1/6c) 2/3 × 3/4d) 4/5 ÷ 2/3练习题二:1. 某班有35名学生,其中有5分之1的学生是男生,5分之3的学生是女生。
求男生和女生的人数分别是多少?2. 某批零食的一箱有2 3/5千克,共有5袋。
每袋的重量相同,求每袋的重量是多少千克?3. 小玲买了一箱苹果,共有36个。
她打算将这些苹果平均分给她的3个朋友,每人分多少个苹果?4. 某摊位上有12个苹果和4个梨,苹果的比例是多少?练习题三:1. 将 1/2、2/3、1/4 和 3/5 这四个分数按照由小到大的顺序排列。
2. 某校小明所在班级一共有32个学生,其中女生有3/8,男生有5/16,其他是男生和女生合计的1/16。
求男生和其他人的人数各是多少?3. 小华手里有一袋糖果,他自己吃了 3/5,小明和小红平分剩下的糖果,每人分了多少?4. 将分数 5/8、7/16、1/2 和 3/4 用最适当的分数表示。
这些练习题帮助小学生巩固和加深对于分式的认识和理解。
通过解题,学生能够更好地掌握分数的最简形式、带分数、分数的加减乘除运算以及分数在实际问题中的应用。
在解题过程中,学生需要注意化简分式的方法,理解带分数的概念,掌握分数运算规则,以及应用分式解决实际问题的技巧。
分式知识点及训练
三.分式考点一:分式的概念1. 定义:如果A 、B 表示两个整式,且B 中含有字母,0B ≠,那么式子A B叫做分式.例1.下列代数式是分式的是 ( ).31x A x + 21.2x B +-C x.aD π2. 分式有意义的条件:分式中分母的值不能为零,即A B中,0B ≠使,分式有意义,否则分式没有意义. 例2.若分式15x -有意义,则实数x 的取值范围是 .3. 分式的值的讨论: (1) 若分式0A B =,则A=0,且0B ≠,即0{A B =≠时,0A B=.(2) 若分式0A B >,则A 、B 同号,即0{0A B >>或者0{0A B <<(3) 若分式0A B<,则A 、B 异号,即0{0A B ><或者0{0A B <>例2. 分式211x x -+的值为0,则 ( ).1A x =- .1B x = .1C x =± .0D x =针对训练: 1.若分式22221x x x x --++的值为0,则x 的值等于 .考点二.分式的基本性质1. 基本性质:分式的分子、分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用符号来表示为:A A M A MB B MB M÷==÷ (M 的值不为0)2. 分式的基本性质的应用(1) 分式的约分:把一个分式的分子与分母的公共因式约去,分式的值不变,叫做约分。
说明:约分时,分子与分母不是乘积的形式,不能约分.(2) 分式的通分:把n 个异分母的分式分别化为与原来的分式相等的同分母的分式. 说明:①通分的依据是分式的基本性质, ②通分后的各分式的分母相同.③通分后的各式分式分别与原来的分式相等. ④通分的关键是确定最简公分母 ⑤分式通分的步骤:ⅰ.确定最简公分母;ⅱ.将各分式化成相同分母的分式.(3)分式的符号规则:分式的分子、分母及分式本身的符号中,改变其中任意俩个,分式的值不变.用式子表示为:,A A A A A A A BBB BBBB---==--=-==---(0B ≠).例3.(1)先化简,再求值:()2111211x x x ⎛⎫-÷+- ⎪+-⎝⎭,其中x =.(2)先化简,再求值:221211,24x x x x ++⎛⎫-÷ ⎪+-⎝⎭其中 3.x =- 针对训练:1. 化简:221211.241x x x x x x --+÷++--2. 先化简,再求值:22211.221x x x x x x x ++--÷++-其中2x =-考点三:分式的加减 1. 分式的加减,.a b a b a c ad bc ad bcc c c bd bd bd bd±±±=±=±= 2. 分式的乘除,.a c ac a c a d adb d bd b d bc bc=÷== 说明:对于分式的乘除混合运算,应先将除法运算转化为乘法运算,如分子、分母是多项式,可先将分子、分母分解因式,再相乘. 3.分式的乘方nnna ab b ⎛⎫= ⎪⎝⎭(n 为正整数) 例4.(1)化简:22221369x y x yx yx xy y+--÷--+(3) 先化简,再求值:22211(1),11m m m m m m -+-÷---+其中m =针对训练:1. 计算:2.b a ba b a b a ⎛⎫+-+ ⎪+⎝⎭2.先化简,再求值:()2211,1a a a ⎛⎫-+÷+ ⎪+⎝⎭其中 1.a =-课堂针对训练一、选择题 1.化简2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) 1.A xB. 1x - 1.x C x- D.1x x -2.若分式31x x -有意义,则x 应满足 ( ).0A x = B. 0x ≠ C. 1x = D. 1x ≠3.设22220,4,m n m n m n mn mn->>+==则( )A B. C. D.3二、填空题4.当x= 时,25x -.5.若ab=1,11,,1111a b x y abab=+=+++++则xy= .三、解答题 6.先化简,再求值:()222,a b a b a b-+-+其中2, 1.a b ==7.先化简,再求值:2242,6926a a a a a --÷+++其中 5.a =-。
分式的知识点及典型例题分析
分式的知识点及典型例题分析1、分式的定义:例:下列式子中, 152 9a 、 5a b 、 3a 2b 2 2 、 1 、 5xy 1 、xy 、8a b 、-23 2x y 4 、2- m 6 x a1 、 x 221 、 3xy 、 3 、 a 1 中分式的个数为()2x y m(A ) 2 (B ) 3 (C ) 4(D) 5 练习题:(1)下列式子中,是分式的有.⑴ 2x 7 ; ⑵ x1 ;⑶ 5a 2;⑷ x 2x 2;⑸2 b 2;⑹xyy 2.x 5 2 3a b 2x 2⑵ 下列式子,哪些是分式?a ;x23; y 3; 7 x ; x xy ; 1 b .54y 8 x 2 y 4 52、分式有、无意义 :( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解; ( 2)使分式无意义:令分母 =0 按解方程的方法去求解;例 1:当 x 时,分式 1 有意义;x 5例 2:分式 2x1中,当 x ____ 时,分式没有意义;2 x例 3:当 x 时,分式 1 有意义;2 1 x例 4:当 x 时,分式 x 有意义;2 1 x 例 5: x , y 满足关系时,分式 xy无意义;x y例 6:无论 x 取什么数时,总是有意义的分式是()A . 2x B. x C. 3xx 52 2x 13 1 D.x 2 x 1 x x 有意义的 x 的取值范围为() 例 7:使分式x 2 A . x 2 B . x2 C . x 2 D . x 2例 8:要是分式x 2没有意义,则 x 的值为()1)( x(x3)A. 2B.-1 或-3C. -1D.33、分式的值为零:使分式值为零:令分子 =0 且分母≠ 0,注意:当分子等于 0 使,看看是否使分母 =0 了,如果使分母 =0 了,那么要舍去。
例 1:当 x 时,分式1 2a的值为 0; a 12 x1例 2:当 x 时,分式的值为 0例 3:如果分式a2的值为为零 , 则 a 的值为 ( ) a 2A.2 B.2 C.2 D. 以上全不对例 4:能使分式 x2x 的值为零的所有 x 的值是() x 21A x 0 Bx 1 C x 0 或 x1 D x 0 或 x1例 5:要使分式x 29的值为 0,则 x 的值为()x 25x 6 A.3 或-3 B.3 C.-3 D 2 例 :若 a1 0 , 则 a 是 ( ) 6 aA. 正数B. 负数C. 零D. 任意有理数4、分式的基本性质的应用:分式的基本性质: 分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。
分式的概念和性质练习题
1.填空题:(1)当x= 时,分式135-+x x 无意义。
(2)当x= 时,分式123-+x x 的值为零;当分式23+-x x =0时,x= 。
(3)()()333++x x x =x 3成立的条件是 。
(7)当x 时,分式121+-x x 有意义。
2.选择题:(1)下列说法正确的是( )A .形如BA 的式子叫分式B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分式等于零,分式的值就等于零(2)已知有理式:x 4、4a 、y x -1、43x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个(3)使分式ax 45-有意义的x 的值是 ( )A .4aB .-4aC .±4aD .非±4a 的一切实数(4)使分式mx m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数3.解答下列各题:(1)当x 取什么数时,分式1132-+x x 有意义? (2)当x 为何值时,分式x x x 32212-++无意义? (3)若分式1642-+x x 无意义,求x 的值。
4.已知分式()()()()22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?(3)当x 为何值时,分式的值为-1?5.当x 为何值时,下列分式的值为正?(1)432+-x x (2)232-+x x 6.(1)填充分子,使等式成立;()222(2)a a a -=++ (2).填充分母,使等式成立:()2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。
6.(1)()2a b ab a b += (2)()21a aa c++=(a ≠0) (3)()22233x x x -=-+-(4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么? (2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a = B .1a b a b-+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。
分式的概念练习题
分式的概念练习题一、选择题1. 下列哪个选项不是分式的形式?A. \( \frac{1}{x} \)B. \( x^2 + 3x \)C. \( \frac{x}{y} \)D. \( \frac{x+1}{2} \)2. 以下哪个表达式可以化简为 \( \frac{1}{x} \)?A. \( \frac{1}{x^2} \)B. \( \frac{x}{x^2} \)C. \( \frac{2x}{2x^2} \)D. \( \frac{3}{3x} \)3. 判断下列哪个分式是真分式?A. \( \frac{1}{x+1} \)B. \( \frac{x}{x} \)C. \( \frac{x^2}{x} \)D. \( \frac{x-1}{x} \)4. 以下哪个分式不能通过通分来简化?A. \( \frac{1}{x} + \frac{2}{y} \)B. \( \frac{2}{x} - \frac{3}{x} \)C. \( \frac{1}{x} + \frac{1}{x+1} \)D. \( \frac{3}{x} + \frac{4}{x^2} \)5. 将分式 \( \frac{2x^2}{x^3+1} \) 化简,正确的结果是:A. \( \frac{2}{x+1} \)B. \( \frac{2x}{x^2+1} \)C. \( \frac{2x}{x+1} \)D. \( \frac{2x}{x^2} \)二、填空题6. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \)都是多项式,那么 \( b \) 必须是一个______。
7. 将分式 \( \frac{3x^2-9x}{x^2-4} \) 化简,结果为\( \frac{3x}{x+2} \),这是因为分子和分母都同时除以了______。
8. 如果 \( \frac{x^2-1}{x-1} \) 可以化简,化简后的结果是______。
初二数学分式练习题及概念
初二数学分式练习题及概念分式作为初中数学的一项重要内容,是初二学生需要掌握和熟练运用的知识点之一。
本文将为初二学生提供一些分式的练习题,并介绍相关概念,以帮助学生更好地理解和掌握分式的概念和运算。
一、练习题1. 计算下列各分式的值:a) $\frac{3}{4} + \frac{2}{3}$b) $\frac{5}{6} - \frac{1}{2}$c) $\frac{3}{5} \times \frac{4}{7}$d) $\frac{4}{9} \div \frac{2}{3}$2. 将下列各分式化简为最简形式:a) $\frac{12}{16}$b) $\frac{18}{24}$c) $\frac{20}{25}$d) $\frac{15}{35}$3. 计算下列各分式的和的倒数:a) $\frac{1}{2} + \frac{3}{4}$b) $\frac{3}{5} - \frac{2}{3}$c) $\frac{4}{7} \times \frac{2}{3}$d) $\frac{5}{6} \div \frac{6}{7}$4. 求下列适当分数的整数部分和小数部分:a) $\frac{7}{2}$b) $\frac{11}{3}$c) $\frac{23}{5}$d) $\frac{37}{10}$二、概念解析1. 分式的定义分式是指一个整体被分成几个相等的部分中的一部分或几部分。
通常由分子和分母两部分组成,分子表示整体中的一部分,分母表示整体被分成的部分数。
2. 分式的化简化简分式是将分式写成最简形式的过程。
可以通过约分、分子分母的公因式提取来实现。
最简形式的分式是分子和分母没有公因数的分式。
3. 分式的运算分式的运算包括加法、减法、乘法和除法四种基本运算。
具体运算的规则如下:a) 加法和减法:两个分式相加或相减,要求分母相等,然后将分子相加或相减后保留分母即可。
b) 乘法:两个分式相乘,将两个分式的分子相乘,分母相乘后得到新分式的分子和分母。
初二下册分式专题(全部题型)
分式专题题型一:分式的概念:【例题1】以下各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. 〔 〕A 、1B 、2C 、3D 、4 【练一练】1. 以下式子中,属于分式的是 〔 〕A 、π1 B 、3x C 、11-x D 、52 2. 以下式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】以下各式中,〔1〕2m m +;〔2〕1||2m -;〔3〕239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 〔 〕A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 假设代数式4-x x有意义,则实数x 的取值范围是________________. 3. (1)假设分式11+x 有意义,则x 的取值范围是________________; (2)已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______________________.4. 假设不管x 取何实数,分式mx x x ++-6322总有意义,则m 的取值范围是______________________. 【例题3】当x 为何值时,〔1〕2132x x +-;〔2〕221x x x +-;〔3〕224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零,那么x 的值是 〔 〕 A 、-1 B 、0 C 、1 D 、1±2. 假设分式112--x x 的值是零,则x 的值为 〔 〕A 、-1B 、0C 、1D 、1±3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)假设分式1232-a a 的值为负数,则a 的取值范围为__________________;(2)当整数=x _____________时,分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限,则n 的取值范围是______________________. 2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】如果把分式中的都扩大3倍,那么分式的值 〔 〕A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值,将以下分式的分子、分母中的系数化为整数.(1)0.20.020.5x yx y+-〔2〕11341123x y x y +- 【练一练】1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍,那么分式的值 〔 〕 A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 〔 〕 A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 yx x232-y x ,3. 分式x--11可变形为 〔 〕 A 、11--x B 、x +-11 C 、x +11 D 、11-x 4. 不改变分式的值,将以下分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx xx 24.03.12.001.032+- (2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】约分:〔1〕; 〔2〕;〔3〕1616822-+-a a a ,其中5=a 〔4〕y x y x ---2422,其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)已知212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________; (3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________.【练一练】通分:(1)xz xz y x 45,34,2123 〔2〕32)1(,)1(,1a z a y a x --- 〔3〕42,882,4422-+-+-a c a a b a a a【例题8】已知xy y x 4=-,求yxy x yxy x ---+2232的值【练一练】1. 假设2=+abb a ,则=++++22224b ab a b ab a ___________;假设311=-y x ,则代数式=----y xy x y xy x 22142____________;2. 已知311=-y x ,求yxy x yxy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1) 〔2〕〔3〕22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--222222222a ab b a b b a a b ++---〔4〕 〔5〕 〔6〕.【练一练】1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235b a ab a b a ---+=__________. 2. (1)已知1,3==+ab b a ,则=+a b b a ___________;(2)已知0322=++b ab a ,则=+ab b a __________. 3.〔1〕 〔2〕 〔3〕222442242x x x x x x-+-++-+【例题10】已知,求整式A ,B .21132a ab +2312224x x x x +-+--211a a a ---22256343333ab b a a b a bc ba c cba +-++-2222()()a b a b b a ---34(1)(2)12x A Bx x x x -=+----【练一练】1. 假设11)1)(1(3-++=-+-x Bx A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】 计算:(1)(2) (3)(4).【练一练】422449158a b xx a b 222441214a a a a a a -+--+-222324a b a bc cd -÷2222242222x y x y x xy y x xy -+÷+++1.计算:〔1〕32232)()2(y x x y -- 〔2〕x x x x x x +-÷-+-22211122.先化简,再求值:〔1〕其中 〔2〕其中=-1.3.已知求的值.题型七:分式方程:【例题12】解分式方程:,144421422x x x x x ++÷--14x =-⋅,ab .b b a a b a b a a 222224)()(+÷--,21=a b .0)255(|13|2=-+-+b a b a 323232236().()()a ab ba b b a-÷--〔1〕〔2〕 〔3〕【练一练】 〔1〕0122=-+x x 〔2〕22231--=-x x x〔3〕x x x -=+--23123 〔4〕1132-=+-x xx x题型七:分式方程增根问题:10522112x x +=--225103x x x x -=+-21233x x x -=---【例题13】(1)假设分式方程有增根,求值;〔2〕假设分式方程有增根,求的值.【练一练】 1、假设关于x 的方程0111=----x xx m 有增根,则m 的值是 〔 〕 A 、3B 、2C 、1D 、-12、假设关于x 的分式方程1322m x x x++=--有增根,则m 的值是 〔 〕 A 、1m =- B 、2m =C 、3m =D 、0m =或3m =3、假设关于x 的方程0552=-+--x mx x 有增根,则m 的值是 〔 〕 A 、-2 B 、-3 C 、5 D 、3223242mx x x x +=--+m 2221151k k x x x x x---=---1x =-k4、如果方程有增根,那么增根是_____.假设方程114112=---+x x x 有增根,则增根是______.5、已知分式方程5133x mx x+=--有增根,则m 的值为 .6、(1)假设关于x 的分式方程xx x m 2132=--+有增根,则该方程的增根为________________; (2)假设关于x 的方程2222=-++-xm x x 有增根,则m 的值是__________________. 7、假设关于x 的分式方程3232-=--x m x x 有增根,则2-m 的值为________________.题型八:分式方程无解问题:【例题14】假设关于x 的分式方程6523212+-=---x x x a x 总无解,求a 的值。
第十五章 第1课 分式的概念
5.自学下面材料后,解答问题. 分母中含有未知数的不等式叫分式不等式.如:xx- +21>0;2xx-+13 -1<0 等.那么如何求出它们的解集呢? 根据我们学过的有理数除法法则可知:两数相除,同号得正, 异号得负.其字母表达式为:
(1)若 a>0,b>0,则ab>0;若 a<0,b<0,则ab>0. (2)若 a>0,b<0,则ab<0;若 a<0,b<0,则ab<0. 反之:(1)若ba>0,则ab> >00, , 或ab< <00, . (2)若ba<0,则________或________. 根据上述规律,求不等式xx- +21>0 的解集.
(2)当 x=___1___时,分式xx2+-11的值为 0. 30
4.(1)汽车每小时行驶 x 千米,行驶 30 千米所用的时间为__x__小
时. 60
(2)三角形面积为 30,一边长为 a,则对应的高为__a____.
5.分式a-2 1的值为 1,则 a=__3____.
6.下列是分式的是( C ) A.1π C.xx2
a>0 b<0
a<0 b>0
x-2>0 x+1>0
或 xx-+21<<00
即xx> >-2 1 或xx<<2-1
所以 x>2 或 x<-1
谢谢欣赏
THANK YOU FOR WATCHING
解:由题意有x2+x-2>4<0,0,或
x+2<0, 2x-4>0.
解之得-2<x<2.
1.某单位全体员工在植树节义务植树 240 棵.原计划每小时植树 m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多 10 棵,那么实际比原计划提前了__2_m4_0_-__1_02_+4_0_m_______ 小时完成 任务.(用含 m 的式子表示)
分式 知识点及典型例题
分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为分母为 0 时,分式没有意义。
例如:\(\frac{x}{y}\),\(\frac{a + b}{c}\)都是分式,而\(\frac{3}{5}\)(分母不含有字母)就不是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即:对于分式\(\frac{A}{B}\),当\(B ≠ 0\)时,分式有意义。
例如:对于分式\(\frac{x + 1}{x 2}\),要使其有意义,则\(x 2 ≠ 0\),即\(x ≠ 2\)。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0,即\(A = 0\);2、分母不为 0,即\(B ≠ 0\)。
例如:若分式\(\frac{x 3}{x + 5}\)的值为 0,则\(x 3 = 0\)且\(x +5 ≠ 0\),解得\(x = 3\)。
四、分式的基本性质分式的分子与分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C ≠ 0\))例如:\(\frac{2}{3} =\frac{2×2}{3×2} =\frac{4}{6}\),\(\frac{6}{9} =\frac{6÷3}{9÷3} =\frac{2}{3}\)五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
例如:对分式\(\frac{6x}{9x^2}\)进行约分,分子分母的公因式为\(3x\),约分后为\(\frac{2}{3x}\)六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
分式的概念
分式的概念测试姓名:班级:一.选择题(共10小题)1.当x=2时,分式的值为()A.8 B.4 C.3 D.22.下列分式不是最简分式的是()A.B.C.D.3.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.54.在代数式、、6x2y、、、、中,分式有()A.4个B.3个C.2个D.1个5.要使分式有意义,则x的取值范围是()A.x= B.x>C.x<D.x≠6.分式有意义的条件是()A.x≠﹣1 B.x≠3 C.x≠﹣1或x≠3 D.x≠﹣1且x≠37.若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.08.若分式的值为0,则x的值为()A.﹣1 B.1 C.﹣2 D.29.如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.扩大4倍10.把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.不变 D.缩小9倍二.填空题(共10小题)11.下列各式,,x+y,,﹣3x2,0,﹣,,,,﹣y,,中分式有个.12.当x=﹣2时,=.13.若=.14.当x时,分式有意义.15.分数的基本性质:分数的分子与分母都,分数的值不变.16.要使分式有意义,则x的取值是.17.当x时,分式的值为0.18.若分式的值为0,则x的值为.19.若2x﹣5y=0,且x≠0,则代数式的值是.20.下列各式、、(x+y)、、﹣3x2、0、中,是分式的有,是整式的有.三.解答题(共2小题)21.当x取何值时,分式(1)有意义;(2)分式的值为0.22.求当x取何值时,分式的值为0.分式的概念测试参考答案一.选择题(共10小题)D.故选:D.【点评】本题考查了最简分式,利用了分式的分子分母不含公因式的分式是最简分式.3.(2016春•洪洞县期末)下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.5【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:中的分母含有字母是分式.故选A.【点评】本题主要考查分式的定义,π不是字母,不是分式.4.(2016春•衡阳县校级月考)在代数式、、6x2y、、、、中,分式有()A.4个B.3个C.2个D.1个【分析】根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式可得答案.【解答】解:分式有、、,故选:B.【点评】此题主要考查了分式定义,关键是把握分母中有字母.5.(2016春•景泰县期末)要使分式有意义,则x的取值范围是()A.x= B.x>C.x<D.x≠【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.6.(2016春•长沙校级期中)分式有意义的条件是()A.x≠﹣1 B.x≠3 C.x≠﹣1或x≠3 D.x≠﹣1且x≠3【分析】分式有意义的条件是分母不等于0.【解答】解:若分式有意义,则(x+1)(x﹣3)≠0,即x+1≠0且x﹣3≠0,解得x≠﹣1且x≠3.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.是一道比较简单的题目.7.(2016春•滕州市期末)若分式的值为零,则x的值是()A.±2 B.2 C.﹣2 D.0【分析】分式的值为0,则分母不为0,分子为0.【解答】解:∵|x|﹣2=0,∴x=±2,当x=2时,x﹣2=0,分式无意义.当x=﹣2时,x﹣2≠0,∴当x=﹣2时分式的值是0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.8.(2016春•耒阳市校级月考)若分式的值为0,则x的值为()A.﹣1 B.1 C.﹣2 D.2【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:原式==x﹣2.∵分式的值为0,∴x﹣2=0.解得:x=2.故选:D.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.9.(2016春•无锡期末)如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.扩大4倍【分析】可将式中的x,y都用2x,2y来表示,再将后来的式子与原式对比,即可得出答案.【解答】解:==,因此分式的值不变.故选:B.【点评】此题考查的是对分式的性质的理解,分式中元素扩大或缩小N倍,只要将原数乘以或除以N,再代入原式求解,是此类题目的常见解法.10.(2016春•衡阳县校级月考)把分式中的x、y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.不变 D.缩小9倍【分析】把原分式中的x、y换成3x、3y,进行计算,再与原分式比较即可.【解答】解:把原分式中的x、y换成3x、3y,则=×,故选B.【点评】本题主要考查了分式的基本性质,解题关键是用到了整体代入的思想.二.填空题(共10小题)11.(2013秋•开福区校级月考)下列各式,,x+y,,﹣3x2,0,﹣,,,,﹣y,,中分式有7个.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,x+y,,,的分母中均不含有字母,因此它们是整式,而不是分式.,,﹣,,﹣y,,分母中含有字母,因此是分式,共7个.故答案是:7.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.12.(2014秋•湘乡市期中)当x=﹣2时,=﹣.【分析】首先化简分式,进而将已知代入求出即可.【解答】解:∵x=﹣2,∴====﹣.故答案为:﹣.【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键.13.(2014秋•双峰县校级期中)若=.【分析】从=3出发,可得a=3b,将这个关系代入中并化简可得其答案.【解答】解:若=3,则a=3b,将a=3b,代入中可得,==;故答案为.【点评】解本题关键是找到a、b的关系,借助整体代入的思想代入分式进行计算求解,实际考查分式的运算与性质.14.(2015•秦淮区一模)当x≠﹣1时,分式有意义.【分析】由于x+1≠0时,分式有意义,求解即可.【解答】解:根据题意可得,x+1≠0,即x≠﹣1时,分式有意义.故答案为:≠﹣1.【点评】考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.(2015秋•祁阳县校级月考)分数的基本性质:分数的分子与分母都乘以(除以)同一个不为0的数,分数的值不变.【分析】根据分数的基本性质即可得到结果.【解答】解:分数的基本性质:分数的分子与分母都乘以(除以)同一个不为0的数,分数的值不变.故答案为:乘以(除以)同一个不为0的数【点评】此题考查了分数的基本性质,熟练掌握分数的基本性质是解本题的关键.16.(2016•临澧县模拟)要使分式有意义,则x的取值是x≠2.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣2≠0,解可得答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.17.(2016•湘潭模拟)当x=1时,分式的值为0.【分析】根据分式的值为0的条件列出关于x的不等式组是解答此题的关键.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:=1.【点评】本题考查的是分式的值为0的条件,即分子等于零且分母不等于零.18.(2016•应城市三模)若分式的值为0,则x的值为﹣1.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x2﹣1=0且x﹣1≠0,解得x=﹣1.故答案为﹣1.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.19.(2016春•衡阳县校级月考)若2x﹣5y=0,且x≠0,则代数式的值是2.【分析】首先由2x﹣5y=0,可得5y=2x,然后将2x代换5y,即可求得答案.【解答】解:∵2x﹣5y=0,∴5y=2x,∴==2.故答案为:2.【点评】此题考查了分式的化简求值问题.注意整体思想的应用是解此题的关键.20.(2015春•醴陵市校级期中)下列各式、、(x+y)、、﹣3x2、0、中,是分式的有、,是整式的有、(x+y)、﹣3x2、0、.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、(x+y)、﹣3x2、0、的分母中均不含有字母,因此它们是整式,而不是分式.、分母中含有字母,因此是分式.故答案是:、;、(x+y)、﹣3x2、0、.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.三.解答题(共2小题)21.(2011秋•北湖区校级月考)当x取何值时,分式(1)有意义;(2)分式的值为0.【分析】(1)分式有意义,分母不为零;(2)分式的值为零时,分子为零,但是分母不为零.【解答】解:(1)根据题意,得x2﹣9≠0,解得,x≠±3,即当x≠±3时,分式有意义;(2)根据题意,得(x+3)(x﹣2)=0,且x2﹣9≠0,解得,x=2,即当x=2时,分式的值为零.【点评】本题考查了分式的值为零的条件、分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.22.(2011春•邵阳校级月考)求当x取何值时,分式的值大于0?【分析】先化简分式得到﹣,则当或分式的值大于0,然后解不等式组即可得到x的取值范围.【解答】解:∵=﹣,分式的值大于0,∴或,解得1<x<2.所以当1<x<2时,分式的值大于0.【点评】本题考查了分式的值:当分式的值大于0,则分式的分子与分母同号;当分式的值小于0,则分式的分子与分母号;当分式的值等于0,则分式的分子等于0,分母不等于0.。
中考复习——分式的有关概念(解析版)
中考复习——分式的有关概念一、选择题 1、分式13x -可变形为( ).A. 13x +B. -13x+C.13x - D. -13x - 答案:D 解答:分式13x -可变形为:-13x -.选D.2、当x =1时,下列分式没有意义的是( ).A.1x x+ B.1x x - C.1x x- D.1x x + 答案:B解答:当x =1时,x -1=0, 故分式1xx -没有意义, 其余分式都有意义. 选B. 3、若分式12x -有意义,则x 的取值范围是( ).A. x >2B. x ≠2C. x ≠0D. x ≠-2答案:B解答:分式分母不为0, 所以x -2≠0,即x ≠2. 选B.4、下列式子中正确的是( ). A. a 2-a 3=a 5 B. (-a )-1=aC. (-3a )2=3a 2D. a 3+2a 3=3a 3答案:D解答:A 选项:a 2和a 3不是同类项,不能合并,选项错误; B 选项:(-a )-1=-1a,选项错误; C 选项:(-3a )2=9a 2,选项错误;D选项:a3+2a3=3a3,选项正确.选D.5、下列运算中正确的是().A. (a2)3=a5B. (12)-1=-2C. (0=1D. a3·a3=2a6答案:C解答:A选项:(a2)3=a6,故A错误;B选项:(12)-1=2,故B错误;C选项:(0=1,正确;D选项:a3·a3=a6,故D错误.选C.6、如果分式11x+在实数范围内有意义,则x的取值范围().A. x≠-1B. x>-1C. 全体实数D. x=-1答案:A解答:由题意可知:x+1≠0,x≠-1.选A.7、函数y=1x-中自变量x的取值范围是().A. x≥-2且x≠1B. x≥-2C. x≠1D. -2≤x<1答案:A解答:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0,解得:x≥-2且x≠1.选A.8、下列运算正确的是().A. B. (12)-1=-2C. (-3a)3=-9a3D. a6÷a3=a3(a≠0)答案:D解答:A,故A错误;B选项:(12)-1=2,故B错误;C选项:(-3a)3=-27a3,故C错误;D选项:a6÷a3=a6-3=a3(a≠0),故D正确.选D.9、分式52xx+-的值是零,则x的值为().A. 2B. 5C. -2D. -5答案:D解答:52xx+-=0,即(x+5)(x-2)=0,x1=-5,x2=2,经检验x=2不是原方程的解,x=-5是原方程的解,故x=-5.选D.10有意义的x的取值范围是().A. x≥4B. x>4C. x≤4D. x<4答案:D解答:有意义,则:4-x>0,解得:x<4,即x的取值范围是:x<4.选D.11、分式211xx-+=0,则x的值是().A. 1B. -1C. ±1D. 0答案:A解答:∵分式211x x -+=0,∴x 2-1=0且x +1≠0, 解得:x =1. 选A.12在实数范围内有意义,则x 的取值范围是( ). A. x ≥1且x ≠2 B. x ≤1C. x >1且x ≠2D. x <1答案:A解答:依题意,得x -1≥0且x ≠2, 解得x ≥1且x ≠2, 选A.13、函数y =13x -的自变量x 的取值范围是( ). A. x ≥2,且x ≠3 B. x ≥2C. x ≠3D. x >2,且x ≠3答案:A解答:依题意可得x -3≠0,x -2≥0, 解得x ≥2,且x ≠3. 选A.14、函数y 的自变量x 的取值范围是( ). A. x ≠5 B. x >2且x ≠5C. x ≥2D. x ≥2且x ≠5答案:D解答:由题意得:2050x x -≥⎧⎨-≠⎩, 解得:x ≥2且x ≠5.故答案选D.15、若代数式13xx+-有意义,则实数x的取值范围是().A. x=-1B. x=3C. x≠-1D. x≠3答案:D解答:13xx+-有意义,分母不为0,x-3≠0,x≠3.选D.二、填空题16、若分式1xx-的值为0,则x的值等于______.答案:1解答:分式1xx-的值为0,即分子为0且x≠0,x-1=0,x=1.故x=1.17、要使51x+有意义,则x的取值范围是______.答案:x≠-1解答:分式有意义,则分母不为零,所以x+1≠0,x≠-1,故x的取值范围为x≠-1.18、若式子1-11x-在实数范围内有意义,则x的取值范围是______.答案:x≠1解答:分式有意义,则x-1≠0,解得x≠1.故答案为:x≠1.19、若代数式17x-有意义,则实数x的取值范围是______.答案:x≠7解答:若17x-有意义,x≠7,故实数x的取值范围为x≠7,故答案为:x≠7.20、函数y=16x-中,自变量x的取值范围是______.答案:x≠6解答:由题意得,x-6≠0,解得x≠6.故答案为:x≠6.21、计算:(14)-1=______.答案:4解答:(14)-1=114=4,故答案为:4.22、要使分式21xx+-有意义,则x应满足条件______.答案:x≠1解答:由分式有意义的条件,得x≠1.23、若分式22x xx-的值为0,则x的值是______.答案:2解答:∵分式22x xx-的值为0∴x2-2x=0,且x≠0,解得:x=2.故答案为:2.24、若分式11x+的值不存在,则x=______.答案:-1解答:∵分式11x+的值不存在,解得:x=-1,故答案为:-1.25在实数范围内有意义,则x的取值范围是______.答案:x>3解答:由题意得:2x-6>0,解得:x>3,故答案为:x>3.26、函数y的自变量x取值范围是______.答案:x≥1且x≠3解答:根据题意得:1030xx-≥⎧⎨-≠⎩.,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.27、若分式121x-有意义,则x的取值范围是______.答案:x≠1 2解答:根据题意得,2x-1≠0,解得x≠12.28有意义,则x的取值范围是______.答案:x>2解答:由题意得,x-2>0,解得x>2.故答案为:x>2.29、函数y______.答案:x>3解答:得x ≥3, 由分母不为0得x -3≠0,x ≠3, 综上x >3. 30、分式22xx -与282x x-的最简公分母是______,方程22822x x x x ---=1的解是______.答案:x (x -2);x =-4 解答:∵x 2-2x =x (x -2),∴分式22xx -与282x x -的最简公分母是x (x -2), 方程22822x x x x---=1, 去分母得:2x 2-8=x (x -2), 去括号得:2x 2-8=x 2-2x ,移项合并得:x 2+2x -8=0,变形得:(x -2)(x +4)=0, 解得:x =2或-4,检验:∵当x =2时,x (x -2)=0,当x =-4时,x (x -2)≠0, ∴x =2是增根,x =-4是方程的根, ∴方程的解为:x =-4. 故答案为:x (x -2);x =-4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的概念练
习题
令狐采学
一、选择题
1.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()
A .8a b -分钟
B .8a b +分钟
C .8a b b -+分钟
D .8a b b --分钟
2.使分式
2x x +有意义的x 的取值范围是() A .2x ≠
B .2x ≠-
C .2x >-
D .2x < 3. 若分式211x x --的值为0,则()
A .1x =
B .1x =-
C .1x =±
D .1x ≠
4.如果分式
2x x -的值为0,那么x 为( ).(A )-2 (B )0 (C )1 (D )2
5. 使分式24
x x -有意义的x 的取值范围是( ) A.2x =B.2x ≠C.2x =-D.2x ≠-
6.
x 的取值范围为() A .0x >
B .0x ≥
C .0x ≠
D .0x ≥且1x ≠ 7. 若分式2362x x x
--的值为0,则x 的值为( ) A.0B.2C.2-D.0或2
8. 若2||123
x x x -+-的值为零,则x 的值是() A .1± B .1 C .1- D .不存在
9.
x 的取值范围是() A .0x > B .0x ≥
C .0x >且1x ≠
D .0x ≥且1x ≠ 二、填空题
10.若分式
241
x x -+的值为0,则x 的值为. 11.当x =时,分式321
x -无意义. 12. 如果分式211
m m -+的值为0,那么m=__________. 13. 若分式||11
x x --的值为零,则x 的值等于. 14. 当x =时,分式21
x -无意义. 15. 要使分式231x x +-有意义,则x 需满足的条件为. 16.当x =时,分式2233
x x x ---的值为零. 17. 使分式13
x x -+有意义的x 的取值范围是. 18. 当x =__________时,分式
22x x -+的值为零. 19.
x 的取值范围是_________. 20. 当m =_______时,分式
2(1)(3)32
m m m m ---+的值为零. 21. 当x 时,分式11
x x +-有意义.。