新北师大版七年级数学下册第六章概率初步1感受可能性教案52
北师大版初中七年级数学下册第六章集体备课教案教学设计含教学反思

第六章概率初步1 感受可能性【知识与技能】通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的.【过程与方法】使学生在教师的指导下自主地发现问题、探究问题、获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力.【情感态度】通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】事件发生的确定性与不确定性.【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念.一、情景导入,初步认知(结合动画欣赏)播放一段天气预报,“天有不测风云”,这句话被引申为世界上有很多事情具有偶然性,人们不能事先判定这些事情是否会发生?但是随着人们对事件发生可能性的深入研究,人们发现许多偶然事件的发生也是有规律可循的.课题:随机事件【教学说明】具体情境的引入,提高了学生学生的兴趣和动力.二、思考探究,获取新知生活中有哪些事情一定会发生,哪些事情一定不会发生,哪些事情可能会发生?思考:①随机投掷一枚均匀的骰子,掷出的点数会是10吗?②随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?③随机投掷一枚均匀的骰子,掷出的点数一定是1吗?让学生们思考,并请学生回答.探究1:教师提问——“下列事件一定发生吗?”1.玻璃杯从10米高处落到水泥地面上会破碎;2.太阳从东方升起;3.今天星期三,明天星期四;4.瓮中捉鳖.【归纳结论】像这样,在一定条件下一定能发生的事件,叫做必然事件.探究2:教师提问——“下列事件一定能发生吗?”1.太阳从西方升起;2.一个数的绝对值小于0;3.水中捞月.【归纳结论】像这样,在一定条件下不可能发生的事件,叫做不可能事件.必然事件和不可能事件统称为确定事件.探究3:教师提问——“下列事件一定能发生吗?”1.从商店买瓶绿茶饮料中奖了.2.掷一枚硬币,有国徽的一面朝上.3.张彩票恰好中奖.4.办公室老师从我们班选一个人去打水,你被选中.5.守株待兔.【归纳结论】像这样,我们事先无法确定它会不会发生,这样的事件称为不确定事件,也称为随机事件.【教学说明】使学生在有趣的问题中体会不确定事件(随机事件),提高学生学习数学的兴趣,积累丰富的数学活动经验,让学生感受到数学和实际生活的联系.探究4:游戏——掷骰子游戏利用质地均匀的骰子和同桌做游戏,规则如下:(1)两人同时游戏,各自掷一枚骰子,每人可以只掷一次骰子,也可以连续地掷几次骰子.(2)当掷出的点数和不超过10时,如决定停止掷,那么你的得分就是所掷出的点数和;当掷出的点数和超过10时,必须停止掷,并且你的得分为0.(3)比较两人的得分,谁的得分多谁就获胜.多做几次上面的游戏,并将最终结果填入课本P137上表中.在做游戏的过程中,你是如何决定是继续掷骰子还是停止掷骰子的?议一议:在做游戏时,如果前面掷出的点数和已经是5,你是决定继续掷还是决定停止掷?如果掷出的点数和已经是9呢?探究5:不透明的桶子中有3个红球,1个白球,所有的球除颜色外,其它完全相同.从中任意摸一个球,你认为摸到哪种颜色的球的可能性较大,说说你的理由.【归纳结论】一般地,不确定事件发生的可能性是有大小的.【教学说明】通过游戏使学生体会生活中许多不确定事件发生的可能性是有大小的.同时以游戏引入知识,学生接受起来会更自然,印象会更深刻.三、运用新知,深化理解1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( B ).A.必然事件B.随机事件C.不可能事件D.无法确定.2.一个袋中有5个红球,2个白球,从中任意摸出3个,下列事件中是不可能事件的是( C ).A.3个都是红球B.至少1个是红球C.3个都是白球D.至多1个是白球3.下列事件是必然事件的是( C )A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为10000公斤C.在只装有5个红球的袋中摸出1球是红球D.农历十五的晚上一定能看到圆月4.下列事件中,随机事件是( C )A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃105.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( D )A.点数之和为12B.点数之和小于3C.点数之和大于4且小于8D.点数之和为136.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D )A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花JD.抽出一张不是Q的牌7.不透明的袋子中装有4个红球,3个黑球,5个蓝球,每个球除颜色不同外,其它都一样,从中任意摸出一球,则摸出球的可能性最大.答案:蓝8.在200件产品中,有192件一级品,8件二级品,则下列事件:(如果没有请填“无”)①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品,其中是必然事件;是不可能事件;是随机事件.答案:④,②,①③【教学说明】通过亲身体验,把问题渗透到游戏中,找到求随机事件中可能性大小的方法,培养学生发现问题、解决问题的能力.四、师生互动,课堂小结1.理解确定事件与不确定事件;2.知道不确定事件发生的可能性有大有小;3.合理运用所学知识分析解决相关问题.五、教学板书1.布置作业:教材“习题6.1”中第1、2、3题.2.完成同步练习册中本课时的练习.这种开放性的游戏活动课,学生热情高涨,时间要把握好,课前准备要充分,否则影响整个课堂效果;另外,怎样应对学生“动”起来后发生的各种令教师始料不及的问题,是教师随时要面临的,这也要求教师不断地提高业务水平与课堂应对技巧.2 频率的稳定性【知识与技能】1.通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力.【过程与方法】通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法.【情感态度】通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生应用数学的能力.【教学重点】通过对事件发生的频率的分析来估计事件发生的概率.【教学难点】通过对事件发生的频率的分析来估计事件发生的概率.一、情景导入,初步认知抛掷一枚图钉,落地后会有几种情况?这几种情况的可能性一样大吗?【教学说明】培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同.二、思考探究,获取新知探究1:图钉试验1.两人一组做20次掷图钉游戏,并将数据记录在下表中:介绍频率定义:在n 次重复试验中,不确定事件A 发生了m 次,则比值nm 称为事件发生的频率.2.累计全班同学的试验结果,并将试验数据汇总填入下表:3.请同学们根据已填的表格,完成下面的折线统计图小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图象,钉尖朝上的频率的变化有什么规律?【归纳结论】在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.【教学说明】通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论课本P141议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.探究2:硬币试验1.同桌两人做20次掷硬币的游戏,并将数据填在下表中:2.各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成下表:3.根据上表,完成课本P143折线统计图.观察上面的折线统计图,你发现了什么规律?4.观察P144表上的数学家所作的掷硬币试验的数据.表中的数据支持你发现的规律吗?【归纳结论】(1)在试验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为:频率的稳定性.(2)我们把这个刻画事件A发生的可能性大小的数值,称为事件A的概率,记为P(A).(3)一般地,大量重复的试验中,我们常用不确定事件A发生的频率来估计事件A发生的概率.5.想一想:事件A 发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?【归纳结论】必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A 发生的概率P(A)是0与1之间的一个常数.【教学说明】一是通过实验让学生体验等可能性事件发生的可能性的发现过程,当试验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是实验的次数不够,培养学生发现问题、解决问题的能力.从而使学生自发的把全班试验的结果都统计出来,学会进行实验和收集实验数据;二是培养学生的合作精神,通过实验和收集实验数据的过程增进学生之间的感情,并明白团队精神的重要性.三、运用新知,深化理解1.一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( A )A.0.2B.80%C.2420 D.1 2.从标有1、2、3、4、5的5个小球中任取2个,它们的和是偶数的概率是( C ) A.101 B. 51 C. 52 D.以上均不对 3.一名运动员连续射靶10次,其中2次命中10环,2次命中9环,6次命中8环,针对某次射击,下列说法正确的是( C )A.射中10环的可能性最大B.命中9环的可能性最大C.命中8环的可能性最大D.以上可能性均等4.袋中有红球12个,白球k 个,这些球除颜色外完全相同.小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则估计口袋中白球有 个.解:∵小刚通过多次摸球试验后发现摸到白球的频率稳定在25%,则 12k k =0.25, k=4,∴口袋中白球很可能有4个.5.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小组做了棋子下掷试验,试验数据如下表:(1)请将数据补充完整;(2)画出“兵”字面朝上的频率折线统计图;(3)如果试验继续进行下去,根据上表的数据,这个试验的频率将稳定在它的概率附近,请你估计这个概率是多少?解:(1)所填数字为40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.【教学说明】使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性.四、师生互动,课堂小结1.通过本节课的学习,你了解了哪些知识?2.在本节课的教学活动中,你获得了哪些活动体验?五、教学板书1.布置作业:教材“习题6.3”中第1、2题.2.完成同步练习册中本课时的练习.在小组做出猜测之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组合作给予适当的指导,包括知识的启发引导.学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.教师应注意激发学生的内在动机,通过学生的发现给他们带来满意和内在的激励.3 等可能事件的概率第1课时计算简单事件发生的概率【知识与技能】通过摸球游戏,帮助学生了解计算一类事件发生的可能性的方法,体会概率的意义.【过程与方法】通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力.【情感态度】通过环环相扣、层层深入的问题设置以及分组游戏的设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣.【教学重点】概率的意义及其计算方法的理解与应用【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.一、情景导入,初步认知任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能相同吗?正面朝上的概率是多少?【教学说明】本节课的内容是要学会简单的概率计算的方法,所以在学习新课以前复习有关简单掷硬币正面朝上的概率,为后面的学习打好基础.二、思考探究,获取新知探究:一个袋中有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.(1)会出现哪些可能的结果?(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?1.这里我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点?设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果出现.如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.想一想:你能找一些结果是等可能的实验吗?【归纳结论】一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,m那么事件A发生的概率为:P(A)=n【教学说明】通过小组合作交流讨论,学生能够准确理解何为等可能试验,并且大家共同合作得出求等可能试验中事件A的概率公式.在本环节中有利于培养学生与他人的合作、互助意识,锻炼学生与他人的沟通、协作能力.三、运用新知,深化理解1.见教材P例11472.一道单项选择题有A、B、C、D四个备选答案,当你不会做的时候,从中随机地选一个答案,你答对的概率是 . 答案:41. 3.一副扑克牌,任意抽取其中的一张,①P(抽到大王)= .②P(抽到3)= .③P(抽到方块)= . 答案:①541,②272,③5413. 4.一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同.从中任意摸出一球,则:P (摸到红球)= ,P (摸到白球)= ,P (摸到黄球)= . 答案:31,92,94. 5.有7张纸签,分别标有数字1,1,2,2,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.答案:(1)71,(2)72,(3)74. 6.任意掷一枚均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等.(1)掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6. 所以P (掷出的点数大于4)=3162=. (2)掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.所以P(掷出的点数是偶数)=2163=.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题6.4”中第1、2、3题.2.完成同步练习册中本课时的练习.通过环环相扣的问题的设立与智力大比拼题目的设置,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解,以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力的目标放在教学首位,通过运用各种启发、激励的语言以及组织小组合作学习,帮助学生形成积极主动的求知态度.在教学的过程中,应该留给学生充分独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.第2课时游戏的公平性【知识与技能】通过小组合作、交流、试验,理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.【过程与方法】再次经历数据的收集、整理和简单分析、作出决策的合作交流过程.发展学生的随机意识;让学生在小组活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【情感态度】在实验过程中体会数据的客观真实性,感受数学与现实生活的密切关系,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【教学重点】摸球类问题的原则,会进行摸球类的游戏.【教学难点】根据题意添加条件使游戏具有公平性.一、情景导入,初步认知在一个装有2个红球和3个白球(每个球除颜色外完全相同) 的盒子中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜,这个游戏对双方公平吗?【教学说明】对于这个游戏的公平性的问题是本节课的教学重点和教学难点,让学生探究讨论游戏的公平与否,从而产生学生认识问题上的矛盾冲突,激发学习的积极性.二、思考探究,获取新知探究:设计摸球游戏1.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到白球的概率为1 2,摸到红球的概率也是12.2.用4个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率为1 2,摸到白球和黄球的概率都是14.3.选取10个除颜色外完全相同的球设计一个摸球游戏,使得摸到红球的概率为12,摸到白球的概率也是12.4.能否用7个除颜色外完全相同的球设计一个摸球游戏.使得摸到红球的概率是12,摸到黄球和白球的概率都是14.【教学说明】逆向思维能力是思维能力的一个重要组成部分.加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识.三、运用新知,深化理解1.规定:在一副去掉大、小王的扑克牌中,牌面从小到大的顺序为:2、3、4、5、6、7、8、9、10、J、Q、K、A,且牌面的大小与花色无关.(1)小明和小颖做摸牌游戏,他们先后从这副去掉大、小王的扑克牌中任意抽取一张牌 (不放回),谁摸到的牌面大,谁就获胜现小明已经摸到的牌面为4,然后小颖摸牌,P(小明获胜 )=_______. P(小颖获胜 )=_______.(2)若小明已经摸到的牌面为2,然后小颖摸牌,P(小明获胜 ) =_______.P(小颖获胜 )=_______.(3)现小明已经摸到的牌面为 A,然后小颖摸牌,P(小明获胜 )=_______. P(小颖获胜 )=_______.答案:略2.小明和小刚都想去看周末的足球赛,但却只有一张球票,小明提议用如下的办法决定到底谁去看比赛:小明找来一个转盘,转盘被等分为8份,随意的转动转盘,若转到颜色为红色,则小刚去看足球赛;转到其它颜色,小明去.你认为这个游戏公平吗? 如果你是小明,你能设计一个公平的游戏吗?解:不公平因为,小刚去的概率为38,而小明去的概率为58.将转盘等分成2份,涂成两种颜色,这样就比较公平.【教学说明】学生应用所学新知解决典型概率问题,解决与生活实际联系紧密的问题.同时可以通过分组竞赛的方式培养学生学习数学的积极性.达到提高学生的学习效率,增强学生的自信心的目的.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题6.5”中第1、2、3题.2.完成同步练习册中本课时的练习.通过学生自己动手、动脑、主动解决问题的教学方法,培养学生通过观察、思考发现问题,从而产生想要解决问题、分析问题的欲望,通过自己动手操作,完成任务,解决问题,获得成功的喜悦,树立了自信心.这样教给学生的不单单是知识和技能,而且还教给了学生获取知识的方法.第3课时计算与面积相关的事件的概率【知识与技能】1.了解一类事件发生概率的计算方法,并能进行简单计算,能设计符合要求的简单概率模型.2.了解概率的大小与面积的关系,能设计符合要求的简单概率模型.【过程与方法】在分组讨论合作探究的过程中体会事件发生的不确定性,进一步体会“数学就在我们身边”.【情感态度】初步认识概率与人类生活的密切联系,感受概率的应用价值,增强学生学数学、用数学的意识,提高学生之间的合作交流能力和学习数学的兴趣.【教学重点】会进行简单的概率计算.【教学难点】会进行简单的概率计算.一、情景导入,初步认知以“传球游戏”开始,诱发学生的学习兴趣,寓教于乐.要求:学生座位安排成方阵形式,开展传球活动.(教师可以对学生活动给予一定的指导,发出口令“开始”、“停”,学生进行循环传球游戏.让学生体验事件的随机性.)游戏结束后提出问题:球落在男、女生的概率分别为多大?【教学说明】以游戏的形式对求概率进行复习,并为本节课做铺垫,同时提高了学生的学习兴趣.二、思考探究,获取新知探究1:下图是卧室和书房的示意图,图中每一方块除颜色外,其它都相同.一小球在卧室和书房中自由地滚动,并随机停留在某块方砖上.思考下列问题:1.小球在卧室和书房中自由地滚动,并随机停留在某块方砖上,在哪个房间里,小球停留在黑砖上的概率大?(学生:在卧室里)2.你是怎样分析的?(生:黑色方砖的块数多些)3.你觉得小球停留在黑砖上的概率大小与什么有关?【教学说明】由这些问题引发学生的思考,使知识间的过渡自然、轻松、直观的初步体验几何概率.探究2:假如小球在如图所示的地板上自由地滚动,并随机停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?各小组讨论.交流后派代表说出自己的分析思路和答案,(选3~4个小组代表讲解).思考下列问题,由小组讨论得出结论并交流.互相补充完善,并派代表回答.1.题中所说“自由地滚动,并随机停留在某块方砖上”说明了什么?2.小球停留在方砖上所有可能出现的结果有几种?停留在黑砖上可能出现的结果有几种?3.小球停留在黑砖上的概率是多少?怎样计算?4.小球停留在白砖上的概率是多少?它与停留在黑砖上的概率有何关系?5.如果黑砖的面积是5平方米,整个地板的面积是20平方米,小球停留在黑砖上的概率是多少?【教学说明】通过这一系列问题,使学生充分体验随机性的必要性以及几何概率的含义,并掌握概率的计算方法.以问题串的形式引导学生逐步深入的思考.便于加深对本节课知识的理解,有助于相关知识的消化.探究3:如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在蓝色区域和红色区域的概率分别是多少?首先让学生独立思考.书写答案,然后小组交流,最后全班展示,教师总结. 注意让学生重点讨论以下三种答案:方案一:指针不是落在蓝色区域就是落在红色区域,落在蓝色区域和红色区域的概率相等,所以P (落在蓝色区域)=P (落在红色区域)=21. 方案二:先把红色区域等分成2份,这样转盘被分成3个扇形区域,其中1个是蓝色,2个是红色,所以P (落在蓝色区域)=31,P (落在红色区域)=32.方案三:利用圆心角度数计算,所以P (落在蓝色区域)=31360120 ,P (落。
七年级数学下册第六章概率初步回顾与思考教案新版北师大版

第六章概率初步回顾与思考一、学生知识状况分析在本单元中,学生了解了不确定现象的特点,通过具体情境体会概率的意义,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,同时学习了一些计算概率的方法,并通过概率帮助自己作出合理的决策。
七年级学生具有求知欲较强的特点,学生间相互评价、小组间的竞争能够激起学生的好胜心,因此,参与本节课的热情应该是比较高的。
二、教学任务分析本节主要是复习本章内容,测试并总结学生的学习情况。
本节是从知识结构图入手,使学生进一步加深本章所学知识点。
组内,通过“生教生”的方法展开例题的学习,努力做到全员参与。
组间,通过竞赛的形式做到进一步的能力提升。
增强学生互帮互助精神,激发学习兴趣。
三、教学过程分析本节课设计了五个教学环节:知识回顾;复习思考;课堂小结;博弈竞技;课后作业。
第一环节:知识回顾内容:以“提问——补充”的方法复习本章内容。
目的:通过学生抢答,小组加分的活动,激发学生学习兴趣。
效果:激发了学生的求知欲,激起学生的学习兴趣。
第二环节:复习思考内容:组内互帮互助完成例题的学习,教师提问后统一答案。
例1 下列事件中,哪些是确定的?哪些是不确定的?请说明理由。
(1)随机开车经过某路口,遇到红灯;(2)两条线段可以组成一个三角形;(3)400人中有两人的生日在同一天;(4)掷一枚均匀的骰子,掷出的点数是质数。
例2 如图所示有9张卡片,分别写有1至9这九个数字。
将它们背面朝上洗匀后,任意抽出一张。
(1)P(抽到数字9)= ;(2)P (抽到两位数)= ;(3)P(抽到的数大于6)= ,P(抽到的数字小于6)= ;(4)P(抽到奇数)= ,P(抽到偶数)= 。
数字。
转动转盘,当转盘停止后,指针指向的数字即为转出的数字。
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜。
猜数的方法从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”。
北师版七年级数学下册第6章概率初步 【说课稿】 感受可能性

感受可能性一、教材分析(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件.它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础.(二)教学目标(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(三)重点、难点分析重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
(四)学情分析由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,教师只有通过大量、生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念。
二、教法分析为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操作、观察、归纳、讨论总结概括出定义,为了检验学生是否理解它的特点,我通过一定的例题加以巩固,特别让学生对“生死签”问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的学习主体性。
充分挖掘出学生的学习潜力,激发学生的学习兴趣,让学生充分感受数学的价值。
三、学法指导建构主义认为:“数学学习并非是一个被动接受的过程,而应是主动建构的过程”。
教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流。
逐步加深对随机事件及其特点的理解和把握。
充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者。
四、教学过程五.教学设计说明本节是“概率初步”一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受必然事件,不可能事件,随机事件的意义。
北师大版七年级数学下册《6.1 感受可能性》说课稿

北师大版七年级数学下册《6.1 感受可能性》说课稿一. 教材分析北师大版七年级数学下册《6.1 感受可能性》这一章节主要让学生初步接触概率知识,通过实验和游戏等活动,让学生感受事件发生的可能性,并能够利用概率知识解决一些实际问题。
教材从生活实例出发,引导学生探究概率的基本概念和方法,培养学生的动手操作能力和数据分析能力。
二. 学情分析学生在进入七年级之前已经学习了初中数学的基础知识,对于一些简单的数学运算和逻辑推理已经有了一定的掌握。
但是,对于概率这一概念,学生可能比较陌生,需要通过具体的实验和案例来理解和掌握。
此外,学生的动手操作能力和团队协作能力也需要进一步的培养。
三. 说教学目标1.让学生通过实验和游戏等活动,初步了解概率的基本概念和方法。
2.培养学生的动手操作能力和数据分析能力。
3.引导学生运用概率知识解决一些实际问题,提高学生的应用能力。
四. 说教学重难点1.概率的基本概念和方法。
2.如何运用概率知识解决实际问题。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生通过实验和游戏等活动,自主探究概率的基本概念和方法。
2.利用多媒体教学手段,展示实验和游戏的过程,增强学生的直观感受。
3.小组讨论和汇报,培养学生的团队协作能力和口头表达能力。
六. 说教学过程1.导入:通过一个简单的抽奖游戏,引出概率的概念,激发学生的兴趣。
2.探究:让学生分组进行实验,如抛硬币、掷骰子等,统计实验结果,引导学生发现事件发生的可能性。
3.讲解:教师讲解概率的基本概念和方法,如频率、概率等,并给出一些实际例题。
4.练习:让学生进行一些概率计算练习,巩固所学知识。
5.应用:引导学生运用概率知识解决一些实际问题,如抽签、摸奖等。
6.总结:教师和学生一起总结本节课所学内容,强调重点和难点。
七. 说板书设计板书设计要简洁明了,能够突出概率的基本概念和方法。
可以设计如下:八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和概率计算练习的正确率来进行。
七年级数学下册6_1感受可能性教案新版北师大版

《感受可能性》教学目标一、知识与技术1.通过猜想与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确信事件与不确信事件;2.明白事件发生的可能性是有大小的;二、进程与方式1.让学生在经历猜想、实验、探讨、交流与分析进程中取得结论,进一步进展学生的逻辑思维能力,体会不确信事件的特点;2.感受数学和实际生活的联系,进一步进展学生合作交流的能力和数学表达能力;三、情感态度和价值观1.通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识;2.初步培育学生以科学数据为依据分析问题、解决问题的良好适应;教学重点体会事件发生的确信性与不确信性;教学难点明白得生活中不确信现象的特点,不确信事件发生的可能性大小,树立必然的随机观念;教学方式引导发觉法、启发猜想、讲练结合法课前预备教师预备课件、多媒体;学生预备三角板,练习本;课时安排1课时教学进程一、导入游戏猜想(1)随意抛掷一枚均匀的骰子,掷出的点数会是10吗?可不能(2)随意抛掷一枚均匀的骰子,掷出的点数必然不超过6吗?必然(3)随意抛掷一枚均匀的骰子,掷出的点数必然是1 吗?不必然通过问题情景的引入,引发试探,使学生初步感受到“数学来源于生活”,直接切入本节课题.二、新课在必然条件下,有些情形咱们事前能确信它必然发生,这些情形称为必然事件.例如,在掷骰子的实验中,“抛掷一枚均匀的骰子,掷出的点数不超、过6” 确实是一个必然事件.有些情形咱们事前能确信它必然可不能发生,这些事、情称为不可能事件.例如,、“抛掷一枚均匀的骰子,掷出的点数是10”确实是一个不可能事件.必然事件与不可能事件统称为确信事件.可是,也有许多情形咱们事前无法确信它会可不能发生,这些情形称为不确信事件,也称为随机事件.例如,“抛掷一枚均匀的骰子,掷出的点数是1”确实是一个不确信事件.做一做利用均匀的骰子和同桌做游戏,规那么如下:(1)两人同时做游戏,各自抛掷一枚骰子,每人能够只抛掷一次骰子,也能够持续地抛掷几回骰子;(2)当掷出的点数和不超过10,若是决定停止抛掷,那么你的得分确实是所掷出的点数和;当掷出的点数和超过10,必需停止抛掷,而且你的得分为0;(3)比较两人的得分,谁的得分多谁就获胜.多做几回上面的游戏,并将最终结果填入下表:本游戏最后一个环节要求实验次数多些,因此依照所教班级实际情形与时刻上的要求,能够让学生以小组为单位在课前进行,并完成表格的填写,教师要视学生情形而定.议一议在做游戏的进程中,若是前面掷出的点数和已是5,你是决定继续抛掷仍是决定停止抛掷?若是掷出的点数和已是9呢?掷出的点数和已是5,依照游戏规那么,再掷一次,若是掷出的点数不是6,那么我的得分就会增加,而掷出的点数不是6的可能性要比是6的可能性大,因此我决定继续抛掷.掷出的点数和已是9,再掷一次,若是掷出的点数不是1,那么我的得分就会变成0,而掷出的点数是1的可能性要比不是1的可能性小,因此我决定停止抛掷.你以为小明和小颖的说法有道理吗?一样地,不确信事件发生的可能性是有大有小的.进一步让学生明白得确信事件与不确信事件发生的情形,体会不确信事件发生的可能性是有大小的,游戏简单易懂,更直观的加深学生对本节知识点的明白得.三、习题1.以下事件中,哪些是确信事件?哪些是不确信事件?(1)将油滴入水中,油会浮在水面上;确信事件(2)任意抛掷一枚均匀的骰子,掷出的点数是奇数.不确信事件2.小明任意买一张电影票,座位号是2 的倍数与座位号是5 的倍数的可能性哪个大?解:座位号是2的倍数的可能性大.四、拓展某路口红绿灯的时刻设置为:红灯40秒,绿灯60秒,黄灯4秒。
19-20学年七年级数学下册第六章概率初步教案新版北师大版

1 感受可能性【教学目标】1.知识与技能(1)理解不确定事件(随机事件)的概念,能区分确定事件与不确定事件;(2)并感受不确定事件发生的可能性有大有小。
2.过程与方法通过骰子活动,经历猜测、试验、收集试验结果等过程,体会数据的随机性。
3.情感态度和价值观初步培养以科学数据为依据分析问题、解决问题的良好习惯。
【教学重点】体会事件发生的确定性与不确定性。
【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件、骰子若干。
【课时安排】1课时【教学过程】一、情景导入【过渡】在生活中,我们总会遇到不同的事情,这些事情,有的是一定会发生的,有的则是一定不会发生的。
更多的则是我们不确定是否能发生的事情。
现在,我来展示几个事件,大家来判断一下这些事件是否是一定能发生,或一定不能发生。
下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)在一个装着白球和黑球的袋中摸球,摸出红球;(3)a2+b2=-1(a,b都是有理数);(4)水往低处流;(5)实心铁球投入水中会沉入水底。
【过渡】这些都是日常生活中的常见现象,大家一起来判断一下吧。
(学生回答)【过渡】今天我们就来学习一下,在数学中,如何定义这些一定会发生的,一定不会发生的以及可能会发生的事件。
二、新课教学1.感受可能性【过渡】在日常生活中,骰子是大家常见的,在电视中,我们也经常能看到通过掷骰子得到点数的大小决定游戏的顺序等等。
现在,我们来思考这样几个问题。
如果随机投掷一枚均匀的骰子,那么(1)掷出的点数会是10吗?(2)掷出的点数一定不超过6吗?(3)掷出的点数一定是1吗?(学生讨论)【过渡】我们先来看一下第一个问题,掷出的点数会是10吗?(学生回答)【过渡】我们知道,骰子的最大点数是6,因此,是不可能出现10的。
我们把这样的事件称为不可能事件。
有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。
【精选】北师版七年级数学下册第六章《概率初步》优秀教案

【精选】北师版七年级数学下册第六章《概率初步》优秀教案6.1 感受可能性【学习目标】1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点) 2.知道事件发生的可能性是有大小的.(难点)【教学过程】一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?二、合作探究探究点一:必然事件、不可能事件和随机事件【类型一】必然事件一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( ) A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.【类型二】不可能事件下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.太阳从西边升起解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型三】随机事件下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°.其中是随机事件的是________(填序号).解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件.故答案是①③.探究点二:随机事件发生的可能性掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( )A.一定是6B.是6的可能性大于是1~5中的任意一个数的可能性C.一定不是6D.是6的可能性等于是1~5中的任意一个数的可能性解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可.第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B 错,D对.故选D.方法总结:不确定事件的可能性有大有小.骰子在掷的过程中,每个点数出现的可能性是一样的.三、板书设计1.必然事件、不可能事件和随机事件必然事件:一定会发生的事件;不可能事件:一定不会发生的事件;必然事件和不可能事件统称为确定事件;随机事件:无法事先确定一次试验中会不会发生的事件.2.随机事件发生的可能性【教学反思】教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去6.2 频率的稳定性【学习目标】1.理解频率和概率的意义;2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点) 【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率的稳定性在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有( )A.5个 B.10个 C.15个 D.45个解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.探究点二:用频率估计概率【类型一】用频率估计概率为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.【类型二】利用频率估计球的个数王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保留两位小数):(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数.解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.解:(1)251÷1000≈0.25.∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11+x=0.25,x =3. 答:估计袋中有3个白球.方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .【类型三】 利用频率折线图估计概率一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下(结果保留两位小数):相应的0.700.450.630.590.520.550.56____频率(1)请将表中数据补充完整,并画出折线统计图中剩余部分;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,试验频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.解:(1)120×0.55=66,88÷160=0.55,故所填数字为66,0.55;补全折线图如下;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.【类型四】利用概率解决实际问题某批篮球质量检验结果如下:抽取的篮球数n 40060080010001200优等品频数m 3765707449401128优等品频率m/n 0.94________________(1)填写表中优等品的频率;(2)这批篮球优等品的概率估计值是多少?解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94;(2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.【教学反思】教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系6.3 等可能事件的概率第1课时与摸球相关的等可能事件的概率【学习目标】1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)【教学过程】一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为( )A.23B.12C.13D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为( )A.15B.310C.12D.35解析:共有10个数,满足条件的有6个,则可得到所求的结果.∵m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,只有(-3)4=81,(-2)4=16,34=81,24=16小于100,∴P(m4>100)=610=35.故选D.探究点二:利用概率分析游戏规则是否公平在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球.(1)小明从中任意摸出一个小球,摸到的白球机会是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么?解析:(1)由题意可得共有6种等可能的结果,其中从口袋中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可.解:(1)∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,∴P(摸出一个白球)=1 6;(2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)=36=12,P(小亮获胜)=1+26=12,∴他们获胜的概率相等,即游戏是公平的.方法总结:判断游戏是否公平,关键是看双方在游戏中所关注的事件所发生的概率是否相同.三、板书设计1.等可能事件的概率计算2.等可能事件的概率的应用【教学反思】教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1,通过适当的练习,及时巩固所学知识,引导学生从练习中总结解题规律,培养学生独立思考与归纳总结的能力6.3 等可能事件的概率第2课时与面积相关的等可能事件的概率【学习目标】1.了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算;(重点)2.能够运用与面积有关的概率解决实际问题.(难点)【教学过程】一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若图①指针所指数字为奇数,则甲获胜;若图②指针所指数字为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:与面积有关的概率如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为( )A.14B.15C.38D.23解析:根据题意,AB、CD是水平放置的轮盘上两条互相垂直的直径,即圆面被等分成4个面积相等的部分.分析图示可得阴影部分面积之和为圆面积的1 4,可知该小钢球最终停在阴影区域的概率为14.故选A.方法总结:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A ,然后计算阴影区域的面积在总面积中占的比例,这个比例即事件A 发生的概率.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( ) A.13 B.12 C.34 D.23解析:观察这个图可知阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A. 方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,∴圆形转盘被等分成10份,其中B 区域占2份,∴P (落在B 区域)=210=15.故答案为15. 三、板书设计1.与面积有关的等可能事件的概率2.与面积有关的概率的应用【教学反思】本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题。
北师版数学七年级下册教案6.1感受可能性

6.1 感受可能性教学目标:1.通过实例进一步体验事件发生的可能性的意义.了解必然事件,不确定事件,不可能事件的概念.2.会根据经验判断一个事件是属于必然事件,不确定事件,不可能事件.3.经历猜测、试验、收集与分析实验结果等过程,进一步体验事件发生的可能性的意义,提高学生学习数学的兴趣,积累一定的数学活动经验层次目标:会用列举法统计简单事件发生的各种可能的结果教学重点与难点:.教学重点:事件发生的可能性的意义,包括按事件发生的可能性对事件分类.教学难点:简单事件发生的所有可能的结果.教学过程:一、提出问题,引起兴趣同学们做过抛硬币的游戏吗?抛硬币一定会正面朝上吗?如果掷一枚骰子,一定会六点朝上吗?除此之外在生活中还有其他类似的事件吗?是不是所有事件的结果都无法确定?(引出课题)二、师生互动,讲授新课1、根据实际情景,讲解概念在数学中,我们把在一定条件下必然发生的事件叫做必然事件.我们把在一定条件下必然不会发生的事件叫做不可能事件我们把在一定条件下可能发生,也可能不发生的事件叫做不确定事件或随机事件.2.书中合作学习下列事件哪些是必然事件,哪些是随机事件,哪些是不可能事件?①在标准大气压下,当温度低于0℃时,水结成冰.②老师刚才在操场上100米跑了5秒.③据天气预报,温州明天的最高气温是10摄氏度.④朱启南射击一次,命中10环.⑤在我们班级里,总共39个人,有两个人是同月出生的.【答案】①必然事件②不可能事件③随机事件④随机事件⑤必然事件3、畅所欲言你还能举出必然事件,不可能事件,不确定事件的例子吗?三、练习反馈,巩固新知书中做一做1、小红看到蚂蚁在搬家,判断说:“天就要下雨了”,在小红看来,天就要下雨是什么事件?2、小聪的弟弟还没有学过三角形的有关知识,他想以长度为10cm,20cm,40cm的小木条为边围成一个三角形,小聪认为这是不可能的.在小聪看来,以长度为10cm,20cm,40cm的小木条为边围成一个三角形这是什么事件?3、吴帆每天上学前,妈妈总是少不了一句话:“路上小心点,注意交通安全,不要被来往的车辆碰着.”为此吴帆每天很烦,心想:温州市有700多万人口,每天交通事故也就那么几起,这样的事件轮到我是不可能的,大家觉得他的想法对吗?从今天所学的知识看,应该是什么事件?【答案】1、确定事件2、不可能的事件3、不对,是个不确定事件四、梳理知识,总结收获1、本节课你最大的收获是什么?判断一个事件是属于必然事件,不可能事件,还是不确定事件?用列举法统计简单事件发生的各种可能的结果数.2、你还有什么新的发现?五、布置作业习题.。
七年级数学下册教学设计第六章第一节《感受可能性》北师大版

七年级数学下册教学设计第六章第一节《感受可能性》北师大版
单位:威宁县东风中学备课人:黄照铝
学习目标
知识目标:
通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断.
过程与方法:
思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念.
情感态度价值观:培养学生自己会判断事物的真假、爱学习、爱劳动的习惯。
学习重难点
重点:随机事件的特点并能对生活中的随机事件做出准确判断.
难点:对随机事件发生的可能性大小的定性分析.
教具准备:多媒体教室、相关道具准备
课时安排及方法:1课时;2 采用讲解法、任务驱动、讨论法
教学过程
自主学习
学习课本P136-138,思考下列问题:
1.在一定条件下进行重复试验时,有些事情我们事先就能肯定它一定发生,
这些事情称为;在一定条件下进行重复试验时,有些事情我们事先就能肯定它一定不会发生,这些事情称为
2.在一定条件下进行重复试验时,有些事情我们事先无法肯定它会不会发生,
这些事情称为__________;
3.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?
(1)明天一定下雨
(2)人的正常体温100摄氏度
(3)0是有理数
(4)人一定会死
(5)13个人中,至少有两个人出生的月份相同;
导学达标
【自主学习成果展示】
学生交流“自主学习”中的相关概念,并认真纠错。
北师大版七年级数学下册6.1感受可能性(教案)

-可能性方法:学生需要学会使用列表法和树状图法来展示事件发生的所有可能结果,这是分析事件可能性的基础。
-列表法的应用:列举所有可能的情况,如掷两个骰子的点数组合。
-树状图法的应用:构建树状图表示事件的可能分支,如选择红色或蓝色的球。
2.教学难点
-抽象概念的理解:学生对必然事件、不可能事件和随机事件的抽象概念理解可能存在困难,需要通过具体的实例来加深理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“可能性在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
小组讨论环节,学生们的参与度较高,能够积极发表自己的观点。我在旁听时发现,有些学生能够迅速理解并运用所学知识,而有些学生则在理解上存在一定差距。针对这种现象,我在今后的教学中需要更加关注学生的个体差异,给予他们有针对性的指导。
此外,在总结回顾环节,学生对本节课的知识点有了较为全面的掌握。但仍有个别学生对某些细节问题存在疑问。为了更好地帮助学生巩固知识,我计划在下一节课前预留一定时间,让学生提问并解答他们的疑惑。
五、教学反思
在本次教学过程中,我注意到学生在理解必然事件、不可能事件和随机事件的概念时,普遍表现出较高的兴趣。通过引入日常生活中的实例,他们能够较为直观地感受到这些概念的实际意义。然而,我也发现部分学生对事件可能性的量化分析仍存在一定难度,尤其是在运用列表法和树状图法时。
在讲授新课的过程中,我尽量使用简洁明了的语言解释概念,并通过案例分析,让学生看到这些概念在实际问题中的应用。在实践活动环节,学生分组讨论和实验操作有助于他们更好地理解可能性原理。但我认为,在今后的教学中,可以进一步增加学生对这些方法的操作练习,以便他们更熟练地掌握。
北师版七年级数学下册第6章概率初步【说课稿】感受可能性

北师版七年级数学下册第6章概率初步【说课稿】感受可能性感受可能性一、教材分析(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件.它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的研究打下良好的基础.(二)教学目标(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(三)重点、难点分析重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
(四)学情分析由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,教师只有通过大量、生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念。
二、教法分析为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操纵、观察、归纳、讨论总结概括出定义,为了检修学生是不是了解它的特点,我通过一定的例题加以巩固,特别让学生对“生死签”问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的研究主体性。
充分挖掘出学生的研究潜力,激发学生的研究兴趣,让学生充裕感触感染数学的价值。
三、学法指导建构主义以为:“数学研究并非是一个被动接受的进程,而应是自动建构的进程”。
教师通过一系列活动和具格式子,让学生通过观察,着手操纵,积极思考,充裕讨论和交流。
逐步加深对随机事件及其特点的了解和掌控。
充分调动、激发学生研究思维的积极性,充分体现学生是研究的主体和教师是学生研究的构造者、参与者和促进者。
四、教学过程问题与情境问题引入:2010年10月22日晴早上,我早退了。
北师大版七年级下册数学:6.1感受可能性教案

B、不太可能发生
C、不可能发生
D、很有可能发生
3、已知地球表面陆地面积与海洋面积的比均为 3:7 如果宇宙中飞来一块陨石落在地球上, “落在海洋里”
与“落在陆地上”哪个可能性更大?
4、下列事件中,哪些是确定事件?哪些是不确定事件?
(1)将油滴入水中,油会浮在水面上;
(2)任意掷一枚质地均匀的骰子,掷出的点数是奇数.
1 、这节课你学到了什么? 2、 你体会到了什么? 3、 最让你难忘的是什么
五、教学板书
Байду номын сангаас
课题 游戏 1 2
结论 1 2
3/3
(八)听故事,拓展新知
师:《阿凡提的故事》.(大意:国王以抽生死签决定死刑犯是生还是死。和死刑犯有仇的宰相改“生、
死”两支签为两支“死、死”签,非制死刑犯于死地不可。阿凡提给死刑犯出注意,抽签后立即吞下所
2/3
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
抽的签。结果死刑犯重获新生) (1)在法规中,大臣被处死是什么事件? (2)在国王的阴谋中,大臣被处死是什么事件? (3)在大臣的计策中,大臣被处死是什么事件? 在改变条件的情况下,必然事件、不可能事件和随机事件可以互相转化. 设计意图:为后面的使游戏公平,怎样改变条件打基础. (九)反思小结,回顾新知
的数学规律.本节将学习各种事件的分类,即必然事件、不可能事件和随机事件,其中随机事件是本节
以及本章的重点内容,通过学习会判断日常生活中哪些事件是可能发生的、一定发生的或不可能发生的.
并通过游戏感受随机事件发生的可能性有大有小,为以后系统学习概率奠定了基础,同时学生学会应用
随机事件等知识去分析解决身边的问题,提高自身数学素养和应用数学的能力.
北师大版七下数学第6章频率初步6.1感受可能性教案

北师大版七下数学第6章频率初步6.1感受可能性教案一. 教材分析北师大版七下数学第6章频率初步6.1感受可能性教案主要介绍了频率与概率的关系,通过实例让学生感受事件的随机性和可能性,培养学生的数据分析能力。
本节课的内容是学生学习概率统计的基础,对于学生形成数据观念,提高解决问题的能力具有重要意义。
二. 学情分析学生在六年级已经学习了概率的基本概念,对随机事件有一定的认识。
但是,对于频率与概率的关系,以及如何通过实验来感受事件的可能性还需要进一步的引导和培养。
因此,在教学过程中,教师需要以学生已有的知识为基础,设计富有启发性的教学活动,激发学生的学习兴趣,提高学生的参与度。
三. 教学目标1.让学生通过实例感受事件的随机性和可能性,理解频率与概率的关系。
2.培养学生的数据分析能力,提高学生解决问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:让学生通过实例感受事件的随机性和可能性,理解频率与概率的关系。
2.难点:如何设计实验,让学生通过实验感受事件的可能性。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受事件的随机性和可能性。
2.小组合作学习:培养学生合作意识,提高学生解决问题的能力。
3.启发式教学:引导学生思考,激发学生创新精神。
六. 教学准备1.教学PPT:包括本节课的内容、实例、问题等。
2.实验材料:如硬币、骰子等。
3.教学卡片:用于小组讨论和展示。
七. 教学过程1.导入(5分钟)利用硬币实验,让学生观察硬币正反面出现的频率,引出本节课的主题——感受事件的随机性和可能性。
2.呈现(10分钟)通过PPT展示本节课的内容,包括频率与概率的关系,以及如何通过实验来感受事件的可能性。
3.操练(10分钟)分组进行实验,每组选择一种实验材料(如硬币、骰子等),进行多次实验,记录实验结果,观察频率与概率的关系。
4.巩固(5分钟)学生分享实验结果,讨论频率与概率的关系,加深对知识点的理解。
北师大版七下数学6.1感受可能性教学设计

北师大版七下数学6.1感受可能性教学设计一. 教材分析北师大版七下数学6.1“感受可能性”是初中数学概率初步知识的教学内容。
本节课通过生活中的实例,让学生感受概率的意义,理解随机事件、必然事件和不可能事件的概念,为后续概率计算打下基础。
教材内容由浅入深,从具体实例出发,引导学生探究概率问题,符合学生的认知规律。
二. 学情分析学生在六年级已经接触过简单的可能性问题,对概率有了初步的认识。
但他们对概率的本质和计算方法还不够了解。
因此,在教学过程中,教师需要帮助学生建立概率概念,培养他们的逻辑思维能力。
三. 教学目标1.了解随机事件、必然事件和不可能事件的定义。
2.能够用概率的观点解释生活中的可能性问题。
3.学会用列举法求解简单事件的概率。
4.培养学生的合作交流能力和逻辑思维能力。
四. 教学重难点1.教学重点:随机事件、必然事件和不可能事件的定义及判断。
2.教学难点:概率计算方法的掌握和应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生感受概率的意义。
2.小组合作学习:培养学生合作交流能力,提高学习效果。
3.启发式教学:教师提问,引导学生思考,揭示概率的本质。
4.实践操作法:让学生亲自动手操作,巩固概率知识。
六. 教学准备1.教学课件:制作课件,展示生活中的概率实例。
2.学习材料:为学生准备相关的生活案例,供课堂讨论使用。
3.教学道具:准备一些小物件,用于课堂实践操作。
4.计数器:用于计算概率。
七. 教学过程1.导入(5分钟)教师通过展示一个简单的生活实例,如抛硬币、抽奖等,引导学生思考:什么是可能性?让学生感受到概率在日常生活中的应用。
2.呈现(10分钟)教师呈现一组生活案例,让学生判断哪些是随机事件、必然事件和不可能事件。
学生分组讨论,得出结论。
3.操练(10分钟)教师引导学生动手操作,如抛硬币、掷骰子等,让学生亲身体验概率现象。
学生在操作过程中,记录下各种事件的发生次数。
4.巩固(10分钟)教师学生进行小组讨论,如何用列举法求解简单事件的概率。
最新北师大版七年级数学下册6.1感受可能性公开课优质教案 (2)

感受可能性一、教学内容地地位、作用分析在小学阶段,学生对确定事件与不确定事件等概念有初步体会,本节课既是对事件地继续学习,又是探索可能性地开始,为后继概率地计算打基础。
本节内容源于生活,与实际联系非常紧密。
在学习中,通过实验活动、游戏等可以有效激发学生学习兴趣,体会数学在实际中地应用。
充分地数学活动对于培养学生数学素养,探索方法有具大价值。
让学生历经猜测、实验、分析、归纳过程,培养其数学直觉、动手能力、分析归纳能力等,有利于全面培养学生地数学素养。
就内容地人文价值上来看,在感受可能性地实验和游戏中,需要学生大胆猜测、动手操作,有助于培养学生创新思维和探索精神。
二、学生学情分析1.知识技能基础:学生已在小学六年级时接触过不确定事件,初步体会了不确定事件地特点及发生可能性地意义,为本次课“培养学生从不确定(或统计)地角度观察世界”地教2学目标奠定了一定地认识基础;2.活动经验基础:七年级学生活泼好动,对新鲜事物充满好奇,所以本节课地游戏串设计能充分调动学生去试验、收集数据、分析讨论,在直观形象感知地基础上得出结论;学生已进入初中近一学年,小组合作、小组展示已成常态,能很好地进行活动地配合,并能用恰当地语言表示自己地活动感受。
3.情感动机基础:我班学生数学基础在年级排名靠前,大部分学生地数学兴趣深厚,有一定地数学活动经验。
课堂上爱问好动,对形式多样地学习方式很感兴趣,参与积极性强。
三、教学目标和重点、难点分析教学目标:1.知识与技能目标:理解事件地有关概念,能区分确定事件与不确定事件,必然事件与不可能事件,并感受随机事件发生地可能性有大有小,初步建立正确处理不确定性问题地能力;2..过程与方法:经历猜测、试验、收集与分析试验结果等过程,在此过程中体会不确定现象地特点,树立一定地随机观4念;3.情感态度与价值观:培养学生对于数学地学习兴趣,体会随机现象在我们身边大量存在,认识到概率思维方式和确定性思维地差异;体会用数学思想和方法去理解和解决现实问题。
2023年北师大版七年级下册数学第六章概率初步第1课时感受可能性

随机事件 注意:判断所给事件是否为必然事件、不可能事件和随机事 件最简单的方法是:判断所给句子的正确性.如果这句话是 正确的,那么它就是必然事件;如果这句话是错误的,那么 它就是不可能事件;其他情况均为随机事件.
2.(人教9上P128)观察下列事件,分类填空: ①通常加热到100 ℃时,水沸腾; ②宇宙飞来一块陨石,落在火车上; ③地理老师把自己抱起来; ④直角三角形的两个锐角和为90°; ⑤发热病人的核酸检测显阳性; ⑥向空中抛一枚硬币,不向地面掉落. 上述事件中是必然事件的有 ①④ ,不可能事件的有
·数学
1.下列事件中, ① 是必然事件, ④ 是不可能事件, ②③ 是随机事件.(填序号)
①13个同学参加一场聚会,他们中至少有两个同学的生日在 同一个月; ②经过有交通信号灯的路口,遇到红灯; ③射击运动员射击一次,命中靶心; ④任意画一个三角形,其内角和是360°.
·数学
知识点二:事件的分类
(1)抽到的数字有几种可能的结果? 答: 5种 ; (2)抽到的数字会小于6吗? 答: 一定会 ; (3)抽到的数字会是0吗? 答: 不可能 ; (4)抽到的数字会是1吗? 答: 有可能 .
·数学
·数学
7.(北师7下P136改编、人教9上P127改编)投掷两枚质地均匀的 骰子,骰子的六个面上分别刻有1到6的点数,则下列事件中: ①两枚骰子向上一面的点数之和大于1; ②两枚骰子向上一面的点数之和等于1; ③两枚骰子向上一面的点数之和大于12; ④两枚骰子向上一面的点数之和等于12. (1)随机事件有 ④ ; (2)必然事件有 ① ; (3)不可能事件有 ②③ .(填序号)
·数学
知识点一:必然事件、不可能事件与随机事件 (1)在一定条件下进行可重复试验时,有些事件一定会发生, 这样的事件称为 必然 事件. (2)在一定条件下进行可重复试验时,有些事件一定不会发 生,这样的事件称为 不可能 事件. (3)在一定条件下进行可重复试验时,有些事件可能发生也 可能不发生,这样的事件称为 随机 事件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 感受可能性
【教学目标】
1.知识与技能
(1)理解不确定事件(随机事件)的概念,能区分确定事件与不确定事件;
(2)并感受不确定事件发生的可能性有大有小。
2.过程与方法
通过骰子活动,经历猜测、试验、收集试验结果等过程,体会数据的随机性。
3.情感态度和价值观
初步培养以科学数据为依据分析问题、解决问题的良好习惯。
【教学重点】
体会事件发生的确定性与不确定性。
【教学难点】
理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。
【教学方法】
自学与小组合作学习相结合的方法。
【课前准备】
教学课件、骰子若干。
【课时安排】
1课时
【教学过程】
一、情景导入
【过渡】在生活中,我们总会遇到不同的事情,这些事情,有的是一定会发生的,有的则是一定不会发生的。
更多的则是我们不确定是否能发生的事情。
现在,我来展示几个事件,大家来判断一下这些事件是否是一定能发生,或一定不能发生。
下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边落下;
(2)在一个装着白球和黑球的袋中摸球,摸出红球;
(3)a2+b2=-1(a,b都是有理数);
(4)水往低处流;
(5)实心铁球投入水中会沉入水底。
【过渡】这些都是日常生活中的常见现象,大家一起来判断一下吧。
(学生回答)
【过渡】今天我们就来学习一下,在数学中,如何定义这些一定会发生的,一定不会发生的以及可能会发生的事件。
二、新课教学
1.感受可能性
【过渡】在日常生活中,骰子是大家常见的,在电视中,我们也经常能看到通过掷骰子得到点数的大小决定游戏的顺序等等。
现在,我们来思考这样几个问题。
如果随机投掷一枚均匀的骰子,那么
(1)掷出的点数会是10吗?
(2)掷出的点数一定不超过6吗?
(3)掷出的点数一定是1吗?
(学生讨论)
【过渡】我们先来看一下第一个问题,掷出的点数会是10吗?
(学生回答)
【过渡】我们知道,骰子的最大点数是6,因此,是不可能出现10的。
我们把这样的事件称为不可能事件。
有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。
【过渡】大家能举出一些不可能事件的例子吗?不要局限于数学范围。
(学生讨论回答)
课件展示几个例子
【过渡】通过对不可能事件定义的理解,我们知道,例如:太阳从西方升起;负数大于正数等都是不可能事件。
【过渡】在课堂刚开始的时候,我们提到了还有一种一定会发生的情况。
我们来看第二个问题,掷出的点数一定不超过6吗?
(学生回答)
【过渡】骰子的最大点数是6,因此,不论我们掷出来的是几,都肯定是不超过6的。
这样的事件我们称为必然事件。
有些事情我们事先肯定它一定会发生,这些事情称为必然事件。
【过渡】同样的,大家举例来理解必然事件吧。
(学生回答)
【过渡】三根长度分别为2cm、3cm、5cm的木棒能摆成三角形;13人中至少有2人的生日在同
一个月;等等这些事情都是必然事件。
【过渡】从不可能事件和必然事件中,我们发现,这两种事件都是确定会发生或者不会发生的,因此,我们把这两种事件称为确定事件。
【过渡】既然有确定的事件,结合实际,我们知道,好多情况下,我们是无法确定事件是否会发生的,如第三个问题:掷出的点数一定是1吗?
【过渡】我们知道,掷出的数值是随机的,不能确定的,所以能否掷出1,可能会发生,也可能不会发生。
我们称这样的事件为随机事件。
有些事情我们事先无法肯定它会不会发生,这样的事件称为不确定事件,也称为随机事件。
举例:打开电视,正好在播放广告;遇到红绿灯时,刚好是红灯。
【过渡】对于一件事情是何种事件,我们根据实际情况以及这三种事件的定义就能够判断出来,现在,我们一起来练习一下吧。
【练习】判断下列事件是必然事件、不可能事件,还是随机事件:
(1)测得某天的最高气温为100℃;
(2)度量三角形的内角和,结果是180°;
(3)100件某种产品中有2件次品,从中任取1件恰好是次品;
(4)在标准大气压下,水加热到100℃时,沸腾;
(5)经过城市中某一有交通信号灯的路口,遇到红灯;
(6)某篮球队员在罚球线上投篮1次,恰好投中.
(学生回答)
【过渡】大家回答的都很正确,看来大家都掌握的很好哦。
【过渡】下边,我给大家展示两幅图画,大家能猜到图画所代表的成语吗?
【过渡】这两幅图片分别讲了两个成语故事,大家猜出来了吗?
(学生回答)
【过渡】分别是拔苗助长以及守株待兔,那么,结合我们今天学习的内容,这两个成语所代表的故事是什么样的事件呢?
(学生回答)
【过渡】刚刚我们学习了定义,现在,我们一起来做一个游戏吧。
大家手里都有课前发给大家的骰子,现在,和同桌一起来进行课本的游戏吧。
并思考问题,你是如何决定停止或继续的。
(学生活动、讨论之后回答)
【过渡】刚刚大家都说了自己是如何决定停止或继续的,现在,我们一起来分析一下。
如果你掷出的点数和是5,再掷一次,出现小于6的点数,均能使得分增加,而掷出点数小于6的可能性要比是6的可能性大;
如果你之前掷出的点数和是9,再掷一次,出现大于1的点数,均能使得分变成0,而掷出点数大于1的可能性要比是1的可能性大。
【过渡】从刚刚的活动中,我们发现,随机事件的发生的可能性是不同的,有大也有小。
一般地,
1.随机事件发生的可能性是有大小的;
2.不同的随机事件发生的可能性的大小有可能不同。
【知识巩固】1、下列说法正确的是( C )
A.为了审核书稿中的错别字,选择抽样调查
B.为了了解春节联欢晚会的收视率,选择全面调查
C.“射击运动员射击一次,命中靶心”是随机事件
D.“经过有交通信号灯的路口,遇到红灯”是必然事件
2、有甲、乙、丙三个不透明的口袋,在甲袋中放有12个红球,在乙袋中放有6个红球,6个黄球,在丙袋中放有12个黄球,这些球除颜色外,其它都相同,从三个袋中任意摸出一球,哪一个可以使“摸到红球”是必然发生的?哪一个可以使“摸到红球”是不可能发生的?哪一个可以使“摸到红球”是随机发生的?
解:甲可以使“摸到红球”是必然发生的;
丙袋可以使“摸到红球”是不可能发生的;
乙袋可以使“摸到红球”是随机发生的。
3、从分别标有1-10这10张卡片中任意选取两张(不放回),下列事件中,哪些是“必然发生”的?哪些是“随机发生”的?哪些是“不可能发生”的?
(1)A=“两数之和是整数”
(2)B=“两数不相同”
(3)C=“两数的积是偶数”
(4)D=“两数的积是负数”
(5)E=“第一个数是第二个数的2倍”
解:(1)必然发生;(2)必然发生;(3)随机发生;(4)不可能发生;(5)随机发生
【达标检测】1、下列说法不正确的是( C )
A.“某射击运动员射击一次,正中把靶心”属于随机事件
B.“13名同学至少有两名同学的出生月份相同”属于必然事件
C.“在标准大气压下,当温度降到-5℃时,水结成冰”属于随机事件
D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件
2、一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是( A )
A.至少有1个球是黑球B.至少有1个球是白球
C.至少有2个球是黑球D.至少有2个球是白球
3、判断下列事件为必然事件,随机事件,还是不可能事件?
一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死。
如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片。
(1)若两张卡片均为死,该臣民最终活着;
(2)若两张卡片均为死,该臣民被杀死;
(3)若两张卡片上分别写着一“生”一“死”,该臣民最终活着。
解:(1)不可能事件;(2)必然事件;(3)随机事件
4、你同意下列说法吗?请说明理由.
(1)平时我们去买彩票时常会这样说:我不可能中奖的,所以就算为国家做点贡献吧;
(2)寒冷的冬天淋了一场雨,很可能会生病,因而这个事件是必然事件;
(3)到医院注射青霉素药水,医生总是要给病人做皮肤试验。
我认为没有必要,因为极少数人对青霉素过敏,大约1 000人里只有1人。
解:(1)不正确,只能说中奖几率比较小;
(2)不正确,是随机事件;
(3)不正确,虽然极少数人对青霉素过敏,但是也存在可能。
【板书设计】
【教学反思】
准确定位学习起点,保证学生有效起步结合初一学生活泼好动,爱发言、爱表现的性格特点,让学生充分试验、收集数据、分析讨论,在直观形象感知地基础上得出结论。
学生分组合作是完成本节内容的关键,因此注意调动和增强学生的积极性,保证良好的课堂效果,也为下面的学习做好知识和心理上的铺垫。